WO2009082876A1 - Support à revêtement de magnésium métallique à dégradation contrôlée et son procédé de préparation - Google Patents
Support à revêtement de magnésium métallique à dégradation contrôlée et son procédé de préparation Download PDFInfo
- Publication number
- WO2009082876A1 WO2009082876A1 PCT/CN2008/001313 CN2008001313W WO2009082876A1 WO 2009082876 A1 WO2009082876 A1 WO 2009082876A1 CN 2008001313 W CN2008001313 W CN 2008001313W WO 2009082876 A1 WO2009082876 A1 WO 2009082876A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- magnesium
- stent
- alloy
- stent body
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
Definitions
- the invention belongs to the field of medical instruments, and particularly relates to a magnesium metal coated stent capable of controlled degradation and a preparation method thereof. Background technique
- Magnesium is one of the most abundant elements on the earth. It is also the fourth most abundant cation in the human body and the second most abundant cation in the human body. It is an indispensable nutrient element in the human body. It is about 20 grams in the human body. Magnesium promotes the formation of bones and cells during life, catalyzes or activates more than 300 enzyme systems in the body, participates in energy metabolism in the body, and plays a key role in the transport, storage and utilization of energy. Magnesium affects protein synthesis by regulating the structure of ribosomal DNA and RNA in the three major metabolisms of the body.
- magnesium alloys have become the material of choice for stents due to their good mechanical properties, controlled corrosion properties and minimal side effects of degradation products. Magnesium has good medical safety as a biomedical material, and is especially suitable for the treatment of cardiovascular diseases. Although magnesium alloy stents have good magnetic resonance imaging (MRI) compatibility, they cannot be displayed under "X-ray". Intravascular ultrasound guidance must be used when implanting; another disadvantage of magnesium alloy stents is that the degradation rate is too fast. It has completely degraded in about 2 months.
- MRI magnetic resonance imaging
- the degradable polymer material has the advantages of non-toxicity, non-irritation, easy processing and molding, and large drug loading.
- a scaffold material its strength is low, hardness and rigidity are difficult to meet the needs of use.
- the degradable polymer scaffold has a series of shortcomings such as poor degradation controllability, poor processing stability, poor storage stability, accumulation of local acidic degradation products, and affecting healing.
- Patent CN1857742A discloses a scaffold material used in combination with a degradable polymer material, which can delay the corrosion of the magnesium alloy, prolong the service life of the stent, and increase the drug loading and the mechanical strength of the stent.
- the polymer material since there is no surface anti-corrosion treatment process of the magnesium alloy, in the blood, the polymer material may start to degrade at the same time as the magnesium alloy, and there is a disadvantage that the degradation rate of the magnesium alloy material is fast. Summary of the invention
- the object of the present invention is to provide a controllable and degradable magnesium metal coated stent and a preparation method thereof.
- the stent is provided with a coating composed of a magnesium alloy anticorrosive layer and a degradable polymer material, which can reduce the corrosion of the magnesium alloy stent. Rate and control the release of the drug; in this method, the surface of the magnesium alloy stent is treated with anti-corrosion treatment to delay the degradation of the magnesium alloy stent.
- a controllable degradation magnesium metal coated stent wherein the stent body is made of medical high-purity magnesium or magnesium alloy, the surface of the stent body has an anti-corrosion coating, and the surface of the anti-corrosion coating is coated with a degradable polymer film for drug loading a coating that carries a therapeutic drug.
- the anticorrosive coating may be a medically acceptable metal oxide coating, preferably a magnesium oxide coating.
- the degradable polymer film-coated coating comprises one or more of the following substances: polylactic acid, poly-L-lactic acid, polyglycolide, polyglycolic acid, polycyanoacrylate, polycaprolactone , polyanhydrides, polylactic acid copolymers, polyhydroxybutyrate, polyacetylglutamic acid, polyorthoester, polyethylene oxide, polybutene copolymer, polyorthoester, polycaprolactone, polyglycolic acid , polyethylene oxide, polybutylene terephthalate copolymer, methacrylate or ester, methacrylate or ester, polyurethane, silicone, polyvinyl alcohol, vinyl alcohol, polyglycolic acid, poly Phospholipase, and a copolymer between the above polymers, collagen, gelatin, and chitin.
- the therapeutic drug comprises one or more of the following: anti-proliferative agent, anti-drug Biotin, antimetabolites, hormonal drugs, anticoagulant drugs, antisecretory drugs, etc.
- the magnesium alloy may be a magnesium-aluminum alloy, a magnesium-manganese alloy, a magnesium-zinc alloy, a magnesium-zirconium alloy, a magnesium rare earth alloy, a magnesium-lithium alloy, a magnesium-calcium alloy or a magnesium-silver alloy. Or a binary, ternary or multi-component magnesium alloy composed of these systems, wherein any of the above magnesium alloys has a magnesium content of more than 50%.
- the medical device made of the magnesium alloy includes but is not limited to: a blood vessel stent, a bone suture, a bone nail, a bone connector, a spinal bone plate, a suture anchor, a hemostatic forceps, a hemostatic screw, a hemostatic plate, and a hemostasis. Clips and so on.
- the invention also provides a preparation method of a controlled degradation magnesium metal coated stent, wherein the stent body material is medical high-purity magnesium or magnesium alloy, the method comprises the following steps: preserving the stent body, after anti-corrosion treatment The surface of the stent body is formed with an anti-corrosion coating; a surface of the anti-corrosion coating is coated with a degradable polymer film-loaded coating; and a therapeutic drug is coated on the surface of the drug-loading coating.
- the stent body is made by laser engraving or machining before the stent body is subjected to an anticorrosive treatment.
- the body of the bracket should be clean and the surface of the bracket body should be cleaned before the anti-corrosion treatment, including mechanical cleaning and chemical cleaning.
- the mechanical cleaning can be carried out according to the following steps: grinding the surface of the bracket body through a belt, mechanically removing the surface oxide, adjusting the surface roughness; cleaning the surface of the bracket body with ultrasonic waves, and removing impurities on the surface of the bracket body;
- Chemical cleaning can be carried out according to the following steps: cleaning with medical ethanol solvent; cleaning with medical ethanol solvent and cleaning with acetone analytical pure solution; acetone analysis for pure solution cleaning and washing with deionized water.
- the chemical cleaning may further comprise the steps of: immersing the stent body in a sodium hydroxide solution for removing grease and scale; then washing with deionized water and drying under vacuum.
- the anticorrosive treatment can be carried out by a chemical oxidation or anodization method.
- the chemical oxidation preservative treatment can be realized by the following method: immersing the stent body in a chemical oxidation bath at a temperature of 343 ⁇ 353K, and an oxidation time of 0.5 ⁇ 2.0 minutes, the tank The liquid contains: potassium dichromate 15 ⁇ 20g/L, nitric acid 15 ⁇ 25g/L, sodium chloride 0.75 ⁇ 1.25g/L.
- the anodizing treatment can be performed by alternating current oxidation.
- the specific method is to install the same bracket body on the two electrodes, and immerse the bracket in the bath at a temperature of 293 333K, an oxidation time of 10 to 50 minutes, and a current density of 0.1 to 10 A/ Dm 2 , using an AC voltage of 50 ⁇ 90 V, the bath contains: potassium permanganate 15 ⁇ 20g / L, trisodium phosphate 15 ⁇ 55 gL, potassium fluoride 25 ⁇ 55g / L, potassium hydroxide 65 ⁇ 165g / L, aluminum hydroxide 15 ⁇ 65 g / L; in this method, dip coating, spray coating, thermal spraying, electrostatic coating, sol-gel, supercritical liquid coating, etc., in the anti-corrosion
- the surface of the coating is coated with a degradable polymer film-loaded coating.
- the preservative-treated stent can be immersed in a degradable polymer material solution, properly soaked, and vacuum dried.
- concentration of the degradable polymer material solution is usually about 1.0 mg/mL, and the soaking time is usually 5 to 20 minutes.
- the soaking time of the stent in different solutions can be adjusted accordingly, for example, immersing in a polylactic acid solution for 5 to 15 minutes, and using a polyglycolic acid solution for 20 minutes, which is mainly related to degradable polymer polymerization.
- the type of material and the thickness of the film required.
- the excess surface solution can be removed by low-speed centrifugation, for example, at 1000 rpm for 3 minutes.
- the temperature can be set at 30 ⁇ 40 °C during vacuum drying, and it can be dried for 30 ⁇ 60min.
- the therapeutic drug can also be applied to the surface of the drug-loaded coating by dip coating or spraying.
- the spraying method may be: using methanol as a solvent, using a rapamycin solution having a concentration of l ⁇ 15 g/ml for directional ultrasonic spraying on the surface of the stent body, rotating the stent body at a constant speed, according to the stent The surface of the body should be sprayed 1 ⁇ 15 times.
- the dip coating method can be: using tetrahydrofuran as an organic solvent to prepare a rapamycin solution with a concentration of 1 ⁇ 15 g/ml, soak the stent body in the above solution. - 10 minutes, repeat dip coating four times.
- the coating process of coating the degradable polymer film-loading coating or coating the therapeutic drug using any one of the following or a combination thereof: dip coating, spray coating, thermal spraying, electrostatic coating , sol-gel, supercritical liquid coating.
- the anti-corrosion treatment may also adopt any one or more of the following anti-corrosion methods: Ion implantation, laser surface treatment, thermal diffusion, metal plating, vapor deposition, organic coating.
- Ion implantation laser surface treatment
- thermal diffusion thermal diffusion
- metal plating metal plating
- vapor deposition organic coating.
- the surface-coated controlled degradable pure magnesium and magnesium alloy stents still maintain the excellent mechanical properties of the metal materials, improve the mechanical strength of the stent, and enable the implantation of magnesium materials.
- the device can effectively maintain good mechanical properties during service; at the same time, the use of the surface degradable polymer layer greatly improves the type and quantity of drugs required for the stent, and improves the stability of the drug fixation; the magnesium alloy anti-corrosion layer
- the coating composed of the degradable polymer material can fix different drugs and dosages by adjusting the molecular weight and the thickness of the polymer layer, and can carry a plurality of therapeutic drugs, and the drug loading amount is more than 30%;
- the degradation rate of magnesium material is reduced, and the service life of the stent is prolonged. Due to the intimacy of the polymer material, no matter how thick the polymer is, it is difficult for the polymer material to prevent the water molecules from reaching the surface of the magnesium alloy. Therefore, the magnesium alloy will start simultaneously with the polymer material. Degradation; preparation of anti-corrosion coating on magnesium alloy surface can delay the corrosion of magnesium alloy, prolong the service life of the stent, greatly reduce the degradation rate of magnesium alloy and control the release of the drug, and avoid the problem of reduced function due to degradation of the stent;
- magnesium and magnesium alloys can be gradually degraded by the body in the physiological environment and absorbed or metabolized by the body.
- the degradation products are mainly magnesium ions required by the human body, and other magnesium alloy materials.
- the content of alloying elements is within the range of biomedicine. Therefore, it is safe to prepare controlled degradable medical implanted devices with pure magnesium and magnesium alloys.
- biodegradable polymer materials are gradually degraded by hydrolysis reaction in organisms. For C0 2 and H 2 0, the degradation products are safe to the human body; the accumulation of local acidic degradation products of the existing degradable polymer scaffolds is improved, and the healing condition is affected to meet the clinical needs.
- FIG. 1 is a schematic structural view of a metal-coated stent with controlled degradation according to the present invention
- Figure 2 is an enlarged cross-sectional view taken along line AA of Figure 1; 3 is a flow chart of a method for preparing a metal-coated stent with controlled degradation according to the present invention.
- stent In the figure: 1, stent; 101, stent body; 102, anti-corrosion coating; 103, drug-coated coating; 104, therapeutic drugs;
- Figure 4 is a comparison of corrosion resistance of a magnesium alloy stent before and after application of a degradable polymer film.
- Curve 1 is a linear polarization curve of a stent surface coated with a degradable polymer film
- curve 2 is a linearity of a magnesium alloy bare stent. Polarization curve.
- the controllable degradable magnesium metal coated stent provided by the invention can be made of medical high-purity magnesium or magnesium alloy.
- the magnesium alloy is a binary, ternary or multi-component magnesium alloy with a magnesium content of more than 50%.
- the content of alloying elements in the magnesium alloy should basically meet the requirements of biomedicine, so that the degradation amount in the degradation process should not be Within the dose range that causes tissue toxicity.
- the magnesium alloy includes magnesium alloy series alloy, magnesium manganese series alloy, magnesium zinc series alloy, magnesium zirconium series alloy, magnesium rare earth series alloy, magnesium lithium series alloy, magnesium calcium series alloy or magnesium silver series alloy and other different alloy systems.
- the stent 1 is formed by laser engraving or machining, and can be made into a blood vessel stent, and can also be made into a bone suture, a bone nail, a bone connector, a spinal push bone plate, a suture anchor, a hemostatic forceps. , hemostatic screws, hemostatic plates, hemostatic clips, and medical equipment such as tissue adhesives, sealants, artificial bones.
- the stent 1 includes a stent body 101, an anti-corrosion coating 102, a drug-loaded coating 103, a therapeutic drug 104, and the like; a surface of the stent body 101 is provided with an anti-corrosion coating 102, and the surface of the anti-corrosion coating 102 A degradable polymer film-loaded drug coating 103 is disposed, and the drug-loaded coating 103 carries a therapeutic drug 104 thereon.
- the anti-corrosion coating 102 may be magnesium oxide, but is not limited thereto.
- the degradable polymer film-coated coating 103 comprises one or more of the following substances: polylactic acid (PLA), poly-L-lactic acid (PLLA), polyglycolide or polyhydroxyl Acetic acid (PGA), polycyanoacrylate (PACA), polycaprolactone (PCL), polyanhydrides: including aliphatic polyanhydrides, aromatic polyanhydrides, heterocyclic polyanhydrides, polyacid anhydrides and cross-linkable Polylactic acid copolymer, etc., polylactic acid copolymer (PLGA), polyhydroxybutyrate (PHBV), polyacetylglutamic acid (PAGA), polyorthoester (POE), polyethylene oxide / polybutene copolymer (PEO) /PBTP), polyorthoester, polycaprolactone, polyglycolic acid, polyoxyethylene/polybutylene terephthalate copolymer, methacrylate or ester, methacrylate or ester, polyurethane , silicone resin, polyvin
- the therapeutic drug 104 includes one or more of the following: an anti-proliferative agent, an antibiotic, an antimetabolite, a hormonal drug, an anticoagulant drug, a secretory drug, and the like, but is not limited thereto.
- FIG. 3 is a flow chart showing a method for preparing a controllable degradable magnesium metal coated stent according to the present invention.
- the method mainly comprises the steps of: 1 forming a stent body by laser engraving or machining; 2 surface cleaning; 3 surface antiseptic treatment; 4 coating a degradable polymer film-loaded drug coating; 5 coating a therapeutic drug process step, wherein:
- the surface of the bracket body 101 is ground by a belt, mechanically removing oxides on the surface, and adjusting the surface roughness;
- the ultrasonic frequency is 28 ⁇ 100khz
- the cleaning time is 5-15 minutes
- the cleaning step includes 1) cleaning with a concentration of 75% medical ethanol solvent; ) using a solution of 99.5% acetone to clean the solution; 3) using deionized water for cleaning;
- the stent body 101 is immersed in a sodium hydroxide solution having a concentration of 15 to 60 g/L and a temperature of 343 to 373 K for 5 to 10 minutes to remove grease and scale; and then washed with deionized water;
- the cleaned stent body 101 is placed in a vacuum dryer to be dried, the temperature is set at 30 to 40 ° C, and dried for 30 to 60 minutes, and then taken out.
- the composition of the bath for chemical oxidation treatment is: potassium dichromate 15 ⁇ 20g/L, nitric acid 15 ⁇ 25g/L, sodium chloride 0.75 ⁇ 1.25g/L; the stent body 101 is immersed in the above solution, the temperature is selected 343 ⁇ 353K, oxidation time is 0.5 ⁇ 2.0 minutes, the surface can form an oxide film; b.
- Anodizing treatment ⁇ is oxidized by alternating current, the same magnesium alloy support 1 is installed on both electrodes, and the bath composition for anodizing treatment is: Potassium permanganate 15 ⁇ 20g/L, trisodium phosphate 15 ⁇ 55g/L, potassium fluoride 25 ⁇ 55g / L, potassium hydroxide 65 ⁇ 165 g / L, aluminum hydroxide 15 65 g / L; temperature Select 293-333K, oxidation time is 10 ⁇ 50 minutes, current density is 0.1 ⁇ 10A / dm 2 , the AC voltage is 50 ⁇ 90V, the surface can form an oxide film;
- any one of various anticorrosive processes such as ion implantation, laser surface treatment, thermal diffusion, metal plating, vapor deposition, organic coating, or the like may be used to form the surface.
- Anti-corrosion coatings, these anti-corrosion treatment technologies are all prior art and will not be described in detail here.
- the preservative-treated stent 1 is immersed in a degradable polymer material polylactic acid (PLA) solution at a concentration of 1.0 mg/mL for 5 to 15 minutes, on a flying pigeon TGL-16G centrifuge at 1000 rpm. Centrifuge at a speed of 3 minutes for 3 minutes, then dry the holder 1 in a vacuum oven, set the temperature at 30 ⁇ 40 °C, and remove it after drying for 30 ⁇ 60 minutes;
- PLA polylactic acid
- a therapeutic drug is applied by any one of the following methods:
- rapamycin or paclitaxel at a concentration of 1 ⁇ 15 ⁇ 1 to the surface of the stent 1 for directional ultrasonic spraying, rotating the stent 1 at a constant speed, spraying 1 to 15 times according to the surface drug content of the stent 1 ;
- rapamycin Using tetrahydrofuran as an organic solvent, add rapamycin at a concentration of l ⁇ 15 g/ml, soak the stent 1 in the above solution for 5 - 10 minutes, and repeat dip coating four times.
- the surface coating process except 4 coating the degradable polymer polymer film-loading coating; 5 coating the therapeutic drug process step, in addition to dip coating, spraying, thermal spraying, electrostatic coating Any one of sol gel, supercritical liquid coating process or a combination thereof.
- the stent body 101 is immersed in a solution of potassium dichromate 15g / L, 15g / L of nitric acid, 1.0 g / L of sodium chloride, and oxidized at 80 ° C for 1 minute, the surface can form an oxide film;
- Coating therapeutic drug Using methanol as a solvent, adding rapamycin at a concentration of 10 ⁇ / ⁇ 1, spraying on the surface of the stent 1 and repeating spraying 10 times.
- the AZ31B magnesium alloy is polished, it is laser-engraved into a blood vessel stent;
- the stent body 101 is anodized, and the same stent body 101 is mounted on the two electrodes.
- the bath composition of the anodizing treatment is: potassium permanganate 15 g/L, trisodium phosphate 15 g/L, Potassium fluoride 25 g / L, potassium hydroxide 65 g / L, aluminum hydroxide 15 g / L, oxidation at 30 ° C for 15 minutes, current density of 3A / dm 2 , AC voltage is 60V, the surface is An oxide film can be formed;
- the preservative-treated stent 1 was immersed in a 1.0 mg/mL polyglycolic acid (PMA) solution for 20 minutes on a flying pigeon TGL-16G centrifuge to 1000 Centrifugal treatment for 3 minutes at rpm, then the stent 1 was placed in a vacuum oven to dry, the temperature was set at 40 ° C, and dried for 40 minutes and then taken out;
- PMA polyglycolic acid
- Coating therapeutic drug tetrahydrofuran was used as an organic solvent, and rapamycin having a concentration of 10 g/ml was added, and the stent body 1 was immersed in the above solution for 5 minutes, and dip coating was repeated four times.
- This example was used to investigate the degradation of the stent after preservative treatment.
- the stent prepared in Example 2 was used as an experimental object, and the change in corrosion resistance before and after the stent was coated with the degradable polymer film was compared.
- the linear scanning function of the M2273 potentiostat the stent was placed in a phosphate buffer solution of pH 7.4, and the linear polarization curves of the bare stent and the coated polymer membrane stent were tested at room temperature.
- the results are shown in FIG.
- Curve 2 in Figure 4 is a linear polarization curve of a magnesium alloy stent in pH 7.4 PBS
- curve 1 is a linear polarization curve after coating the surface of the stent with a degradable polymer film.
- the linear polarization resistance of curve 2 is 656.3 ohms
- the linear polarization resistance of curve 1 is 9574.6 ohms
- the reciprocal of the polarization resistance represents the corrosion rate of the metal material. Therefore, the corrosion resistance of the stent surface is significantly improved after coating the degradable polymer film, and the service life of the magnesium alloy stent is prolonged.
- the pure magnesium or magnesium alloy stent of the invention can delay the corrosion of the magnesium alloy, prolong the service life of the stent, greatly reduce the degradation rate of the magnesium alloy and control the release of the drug, and avoid the use function caused by the degradation of the stent.
- the problem of reduction, by modifying the degradable polymer material, improving the controllability of degradation, processing stability, easy processing, and its strength, hardness and rigidity can meet the requirements of medical use.
- the use of pure magnesium and magnesium alloys for the preparation of controlled degradation medical implants is safe and practical.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
Abstract
L'intention porte sur un support à revêtement de magnésium métallique à dégradation contrôlée qui comprend un squelette constitué de magnésium médical très pur ou d'alliage de Mg. La surface du squelette du support comporte un revêtement anticorrosif. La surface du revêtement anticorrosif comporte un revêtement de charge de médicament sous forme de film de polymère dégradable, qui charge un médicament curatif. Le procédé de préparation du support comprend : l'application d'un traitement anticorrosif sur la surface du squelette pour former un revêtement anticorrosif, le dépôt en revêtement du revêtement de charge de médicament sous forme de film de polymère dégradable sur la surface du revêtement anticorrosif, et le dépôt en revêtement du médicament curatif sur la surface du revêtement de charge de médicament, et ainsi de suite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100559547A CN101214396A (zh) | 2008-01-03 | 2008-01-03 | 可控降解的镁合金涂层支架及其制备方法 |
CN200810055954.7 | 2008-01-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009082876A1 true WO2009082876A1 (fr) | 2009-07-09 |
Family
ID=39620942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/001313 WO2009082876A1 (fr) | 2008-01-03 | 2008-07-14 | Support à revêtement de magnésium métallique à dégradation contrôlée et son procédé de préparation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101214396A (fr) |
WO (1) | WO2009082876A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112341795A (zh) * | 2020-11-27 | 2021-02-09 | 浙江长鸿纺织科技有限公司 | 一种可降解的tpu膜 |
CN112472879A (zh) * | 2020-12-21 | 2021-03-12 | 上海康德莱医疗器械股份有限公司 | 一种镁合金支架及其制备方法 |
CN113499475A (zh) * | 2021-06-10 | 2021-10-15 | 广东省科学院健康医学研究所 | 一种支架用复合材料及其制备方法和应用 |
CN114392398A (zh) * | 2022-01-19 | 2022-04-26 | 常熟致圆微管技术有限公司 | 一种生物可降解的医用金属镁补片及其制备方法 |
CN114432499A (zh) * | 2021-12-20 | 2022-05-06 | 脉通医疗科技(嘉兴)有限公司 | 人工血管及其制备方法 |
CN114571644A (zh) * | 2022-02-22 | 2022-06-03 | 浙江大学 | 一种具有全氟表面的复合式闭式叶轮 |
CN114917414A (zh) * | 2022-04-26 | 2022-08-19 | 东南大学 | 一种用于制备镁合金心脏支架材料的多功能复合涂层及其制备方法 |
CN116236623A (zh) * | 2023-03-07 | 2023-06-09 | 南京市第一医院 | 可时空调节的感染性骨软骨缺损镁合金复合水凝胶支架材料及其制备方法和应用 |
CN116586633A (zh) * | 2023-07-17 | 2023-08-15 | 陕西斯瑞新材料股份有限公司 | 一种3D打印制备耐电弧烧蚀CuCr触头材料的方法 |
US20230263647A1 (en) * | 2009-04-02 | 2023-08-24 | Q3 Medical Devicess Limited | Stent |
CN116815107A (zh) * | 2023-05-29 | 2023-09-29 | 北京大学第三医院(北京大学第三临床医学院) | 一种复合合金材料及其制备方法与应用 |
WO2024103629A1 (fr) * | 2022-11-18 | 2024-05-23 | 东莞宜安科技股份有限公司 | Revêtement composite d'alliage de magnésium biomédical et son procédé de préparation |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214396A (zh) * | 2008-01-03 | 2008-07-09 | 乐普(北京)医疗器械股份有限公司 | 可控降解的镁合金涂层支架及其制备方法 |
DE102009025511A1 (de) * | 2009-06-19 | 2010-12-23 | Qualimed Innovative Medizin-Produkte Gmbh | Implantat mit einem vom Körper resorbierbaren metallischen Werkstoff |
CN101721753B (zh) * | 2009-12-23 | 2014-04-09 | 天津大学 | 无机有机防腐生物相容性复合涂层的可吸收镁合金支架及其制备方法 |
US8888841B2 (en) | 2010-06-21 | 2014-11-18 | Zorion Medical, Inc. | Bioabsorbable implants |
CN102294054B (zh) * | 2010-06-24 | 2014-04-09 | 乐普(北京)医疗器械股份有限公司 | 一种生物可吸收复合支架及其制备方法 |
CN102008751B (zh) * | 2010-11-24 | 2014-01-08 | 北京道淼浩博科技发展有限公司 | 一种生物降解支架复合材料及其制备方法 |
US8986369B2 (en) | 2010-12-01 | 2015-03-24 | Zorion Medical, Inc. | Magnesium-based absorbable implants |
CN102652840A (zh) * | 2011-03-02 | 2012-09-05 | 吉林金源北方科技发展有限公司 | 一种医用生物可降解镁合金复合材料 |
CN102247623B (zh) * | 2011-08-17 | 2014-07-23 | 上海微创医疗器械(集团)有限公司 | 一种具备形状记忆性能的多层可降解支架及其制备方法 |
CN102441994B (zh) * | 2011-09-26 | 2014-01-01 | 南京师范大学 | 通透性可控的组织工程支架材料的超声加工技术 |
CN102671241B (zh) * | 2012-05-29 | 2015-04-01 | 山东科技大学 | 医用镁合金表面植酸微弧阳极氧化膜及聚乳酸涂层及工艺 |
CN102772831A (zh) * | 2012-08-20 | 2012-11-14 | 道淼科技(北京)有限公司 | 一种可降解载药支架 |
CN102793947B (zh) * | 2012-08-28 | 2015-05-20 | 广州有色金属研究院 | 一种可降解镁及其合金的表面改性方法 |
CN102793951A (zh) * | 2012-08-29 | 2012-11-28 | 哈尔滨医科大学 | 医用可降解镁合金肠道吻合环 |
CN102908675A (zh) * | 2012-10-29 | 2013-02-06 | 东南大学 | 吻合器用可吸收缝钉 |
CN103272287B (zh) * | 2013-05-24 | 2015-03-11 | 华南理工大学 | 生物医用可降解材料及其制备方法 |
DE102013214636A1 (de) * | 2013-07-26 | 2015-01-29 | Heraeus Medical Gmbh | Bioresorbierbare Werkstoffverbunde, enthaltend Magnesium und Magnesiumlegierungen sowie Implantate aus diesen Verbunden |
CN104511048B (zh) * | 2013-09-27 | 2016-09-28 | 上海交通大学医学院附属第九人民医院 | 一种可降解金属抗菌缝线 |
CN104127910B (zh) * | 2014-07-15 | 2015-12-30 | 东南大学 | 具有抗菌消炎功能的可吸收镁合金缝钉及制备方法 |
CN104233431B (zh) * | 2014-09-26 | 2016-10-19 | 佳木斯大学 | 纯镁表面超声微弧氧化-植酸-丝素蛋白多级复合生物活性涂层复合材料的制备方法 |
CN104548203B (zh) * | 2014-12-29 | 2017-02-22 | 东莞颠覆产品设计有限公司 | 一种富含胶原蛋白人工神经支架的制备方法 |
CN105031745B (zh) * | 2015-05-08 | 2018-10-19 | 上海起励生物技术服务中心 | 一种用聚合物包裹金属假体的骨科内植入物 |
CN106310372B (zh) * | 2015-06-23 | 2020-05-22 | 上海交通大学 | 可降解镁基骨内植物可载药高分子/钙磷复合涂层及制备 |
CN105232193A (zh) * | 2015-08-19 | 2016-01-13 | 北京迈迪顶峰医疗科技有限公司 | 一种肺动脉支架 |
TWI577324B (zh) * | 2015-12-30 | 2017-04-11 | Applicable to hot melt implantation to bone correction or bone defect | |
CN106214295A (zh) * | 2016-01-20 | 2016-12-14 | 沈晨阳 | 一种适用于动脉血管的具有锥度的生物可降解血管支架 |
CN106581781A (zh) * | 2016-12-09 | 2017-04-26 | 苏州纳贝通环境科技有限公司 | 一种血管支架材料及其制备方法 |
CN108236484B (zh) * | 2016-12-27 | 2021-05-11 | 江苏风和医疗器材股份有限公司 | 止血夹 |
CN108236480A (zh) * | 2016-12-27 | 2018-07-03 | 江苏风和医疗器材股份有限公司 | 止血夹 |
CN108236483A (zh) * | 2016-12-27 | 2018-07-03 | 江苏风和医疗器材股份有限公司 | 止血夹 |
CN106620837B (zh) * | 2017-01-18 | 2020-01-24 | 杨水祥 | 一种制备镁合金血管支架的制备方法 |
CN107281543A (zh) * | 2017-06-30 | 2017-10-24 | 南京师范大学 | 一种表面多重防护的生物医用镁或镁合金植入材料 |
CN109199514B (zh) * | 2017-07-04 | 2020-12-15 | 江苏风和医疗器材股份有限公司 | 一种可吸收的血管夹 |
CN107412886A (zh) * | 2017-08-02 | 2017-12-01 | 北京华信佳音医疗科技发展有限责任公司 | 一种硬化胶原复合聚乳酸的生物材料的制备方法 |
CN107820416A (zh) * | 2017-08-17 | 2018-03-20 | 鼎科医疗技术(苏州)有限公司 | 可降解金属支架及其制造方法 |
CN107715176A (zh) * | 2017-10-31 | 2018-02-23 | 无锡中科光远生物材料有限公司 | 一种促进骨再生的纳米纤维涂层支架的制备方法 |
CN108309513B (zh) * | 2018-02-05 | 2020-05-19 | 刘洋 | 关节置换假体 |
CN108498875A (zh) * | 2018-04-24 | 2018-09-07 | 苏州脉悦医疗科技有限公司 | 一种生物可吸收性医疗器械及其制备方法 |
CN108543118B (zh) * | 2018-05-21 | 2022-04-26 | 申英末 | 体内可控降解的镁合金固定螺钉 |
CN108714252B (zh) * | 2018-05-21 | 2022-04-26 | 申英末 | 体内可控降解的镁合金固定螺钉的制备方法 |
CN109939271B (zh) * | 2019-04-11 | 2021-10-15 | 赵亚芳 | 一种医用生物可降解锌合金支架的涂层结构及其制备方法 |
CN112155814B (zh) * | 2020-09-27 | 2022-05-13 | 艾柯医疗器械(北京)有限公司 | 低致栓颅内血管编织支架及其处理方法 |
CN112494718A (zh) * | 2020-11-24 | 2021-03-16 | 淮阴工学院 | 一种负载多功能复合涂层的生物医用金属材料的制备方法 |
CN112675362A (zh) * | 2020-12-24 | 2021-04-20 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种用于骨修复的个性化镁合金支架的制备方法及其产品 |
CN112877679B (zh) * | 2021-01-07 | 2021-10-22 | 江苏丰范嘉致新材料有限公司 | 一种高强度可降解的镁合金缝合线及其制备方法 |
CN113209366A (zh) * | 2021-04-23 | 2021-08-06 | 常州市第二人民医院 | 一种可降解局部万古霉素缓释系统及其制备方法 |
CN113413237A (zh) * | 2021-06-01 | 2021-09-21 | 温州医科大学 | 一种具有同心环图案的可降解的药物缓释涂层表面修饰的人工晶状体及其制备方法 |
CN114246993B (zh) * | 2021-12-09 | 2023-09-01 | 中国科学院宁波材料技术与工程研究所 | 一种活性成分释放性能可调的复合涂层及其制备方法 |
CN114395763A (zh) * | 2021-12-15 | 2022-04-26 | 创美得医疗器械(天津)有限公司 | 一种适用于镁合金植入物的表面清洁工艺 |
CN114159197B (zh) * | 2022-02-14 | 2022-05-17 | 北京美中双和医疗器械股份有限公司 | 一种可降解生物医用镁合金药物洗脱血管支架及制备方法 |
CN115531606B (zh) * | 2022-09-30 | 2024-03-26 | 珠海奥华复维医疗技术有限公司 | 一种梯度降解的网状植入物、其制备方法及其用途 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1552945A (zh) * | 2003-06-06 | 2004-12-08 | 成都发动机(集团)有限公司有色金属 | 镁合金铸件表面抗腐蚀处理技术 |
CN1900360A (zh) * | 2006-07-14 | 2007-01-24 | 西南大学 | 镁合金表面功能梯度膜制备方法 |
CN100998897A (zh) * | 2006-12-27 | 2007-07-18 | 天津大学 | 具有双重可控释放涂层的可吸收镁合金支架及其制备方法 |
US20070224244A1 (en) * | 2006-03-22 | 2007-09-27 | Jan Weber | Corrosion resistant coatings for biodegradable metallic implants |
CN101214396A (zh) * | 2008-01-03 | 2008-07-09 | 乐普(北京)医疗器械股份有限公司 | 可控降解的镁合金涂层支架及其制备方法 |
-
2008
- 2008-01-03 CN CNA2008100559547A patent/CN101214396A/zh active Pending
- 2008-07-14 WO PCT/CN2008/001313 patent/WO2009082876A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1552945A (zh) * | 2003-06-06 | 2004-12-08 | 成都发动机(集团)有限公司有色金属 | 镁合金铸件表面抗腐蚀处理技术 |
US20070224244A1 (en) * | 2006-03-22 | 2007-09-27 | Jan Weber | Corrosion resistant coatings for biodegradable metallic implants |
CN1900360A (zh) * | 2006-07-14 | 2007-01-24 | 西南大学 | 镁合金表面功能梯度膜制备方法 |
CN100998897A (zh) * | 2006-12-27 | 2007-07-18 | 天津大学 | 具有双重可控释放涂层的可吸收镁合金支架及其制备方法 |
CN101214396A (zh) * | 2008-01-03 | 2008-07-09 | 乐普(北京)医疗器械股份有限公司 | 可控降解的镁合金涂层支架及其制备方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230263647A1 (en) * | 2009-04-02 | 2023-08-24 | Q3 Medical Devicess Limited | Stent |
CN112341795A (zh) * | 2020-11-27 | 2021-02-09 | 浙江长鸿纺织科技有限公司 | 一种可降解的tpu膜 |
CN112472879A (zh) * | 2020-12-21 | 2021-03-12 | 上海康德莱医疗器械股份有限公司 | 一种镁合金支架及其制备方法 |
CN113499475A (zh) * | 2021-06-10 | 2021-10-15 | 广东省科学院健康医学研究所 | 一种支架用复合材料及其制备方法和应用 |
CN114432499B (zh) * | 2021-12-20 | 2023-02-17 | 浙江脉通智造科技(集团)有限公司 | 人工血管及其制备方法 |
CN114432499A (zh) * | 2021-12-20 | 2022-05-06 | 脉通医疗科技(嘉兴)有限公司 | 人工血管及其制备方法 |
CN114392398A (zh) * | 2022-01-19 | 2022-04-26 | 常熟致圆微管技术有限公司 | 一种生物可降解的医用金属镁补片及其制备方法 |
CN114571644B (zh) * | 2022-02-22 | 2023-03-17 | 浙江大学 | 一种具有全氟表面的复合式闭式叶轮 |
CN114571644A (zh) * | 2022-02-22 | 2022-06-03 | 浙江大学 | 一种具有全氟表面的复合式闭式叶轮 |
CN114917414A (zh) * | 2022-04-26 | 2022-08-19 | 东南大学 | 一种用于制备镁合金心脏支架材料的多功能复合涂层及其制备方法 |
CN114917414B (zh) * | 2022-04-26 | 2023-09-29 | 东南大学 | 一种用于制备镁合金心脏支架材料的多功能复合涂层及其制备方法 |
WO2024103629A1 (fr) * | 2022-11-18 | 2024-05-23 | 东莞宜安科技股份有限公司 | Revêtement composite d'alliage de magnésium biomédical et son procédé de préparation |
CN116236623A (zh) * | 2023-03-07 | 2023-06-09 | 南京市第一医院 | 可时空调节的感染性骨软骨缺损镁合金复合水凝胶支架材料及其制备方法和应用 |
CN116815107A (zh) * | 2023-05-29 | 2023-09-29 | 北京大学第三医院(北京大学第三临床医学院) | 一种复合合金材料及其制备方法与应用 |
CN116815107B (zh) * | 2023-05-29 | 2024-05-31 | 北京大学第三医院(北京大学第三临床医学院) | 一种复合合金材料及其制备方法与应用 |
CN116586633A (zh) * | 2023-07-17 | 2023-08-15 | 陕西斯瑞新材料股份有限公司 | 一种3D打印制备耐电弧烧蚀CuCr触头材料的方法 |
CN116586633B (zh) * | 2023-07-17 | 2023-11-10 | 陕西斯瑞新材料股份有限公司 | 一种3D打印制备耐电弧烧蚀CuCr触头材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101214396A (zh) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009082876A1 (fr) | Support à revêtement de magnésium métallique à dégradation contrôlée et son procédé de préparation | |
EP3144018B1 (fr) | Procédé de préparation de revêtement de surface à vitesse de dégradation réduite de stent vasculaire en alliage de magnésium biodégradable | |
CN101337090B (zh) | 一种复合涂层镁/镁合金生物医用器件及其制备方法 | |
Zeng et al. | In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants | |
Qi et al. | Mechanism of acceleration of iron corrosion by a polylactide coating | |
CN101249286B (zh) | 可降解的化学氧化镁合金支架及其制备方法 | |
US8603569B2 (en) | Implant and method for producing a degradation-inhibiting layer on the surface of an implant body | |
Liu et al. | Enhanced in vitro and in vivo performance of Mg–Zn–Y–Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application | |
US8337936B2 (en) | Implant and method for manufacturing same | |
Wei et al. | In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy | |
US11898055B2 (en) | PEM layer-by-layer systems for coating substrates to improve bioactivity and biomolecule delivery | |
CN101239009A (zh) | 可控降解的微弧氧化金属支架及其制备方法 | |
EP2793966B1 (fr) | Activation par plasma sélective pour implants médicaux et dispositifs de cicatrisation | |
US8741073B2 (en) | Implant and method for producing the same | |
US20100087915A1 (en) | Implant and Method for Manufacturing Same | |
CN101869723A (zh) | 抑制心血管再狭窄的复合药物支架及制备方法 | |
EP2762111A1 (fr) | Dispositif médical interventionnel et procédé de fabrication de celui-ci | |
CN104784750A (zh) | 提高变形性生物镁合金植入器件耐蚀性的表面改性方法 | |
Ghafarzadeh et al. | Bilayer micro-arc oxidation-poly (glycerol sebacate) coating on AZ91 for improved corrosion resistance and biological activity | |
Xu et al. | Corrosion resistance of HF-treated Mg alloy stent following balloon expansion and its improvement through biodegradable polymer coating | |
Zhao et al. | Dual strengthened corrosion control of biodegradable coating on magnesium alloy for vascular stent application | |
Moaref et al. | Application of sustainable polymers for reinforcing bio-corrosion protection of magnesium implants–a review | |
US20100145432A1 (en) | Implant and method for producing the same | |
Bazaka et al. | Polymer encapsulation of magnesium to control biodegradability and biocompatibility | |
CA2476841C (fr) | Article metallique enduit de chitosane et methode de production connexe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08783518 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08783518 Country of ref document: EP Kind code of ref document: A1 |