WO2009076873A1 - 生物相容性变性淀粉海绵 - Google Patents

生物相容性变性淀粉海绵 Download PDF

Info

Publication number
WO2009076873A1
WO2009076873A1 PCT/CN2008/073375 CN2008073375W WO2009076873A1 WO 2009076873 A1 WO2009076873 A1 WO 2009076873A1 CN 2008073375 W CN2008073375 W CN 2008073375W WO 2009076873 A1 WO2009076873 A1 WO 2009076873A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
sponge
modified starch
biocompatible
hemostatic
Prior art date
Application number
PCT/CN2008/073375
Other languages
English (en)
French (fr)
Inventor
Xin Ji
Original Assignee
Xin Ji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40767156&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009076873(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Xin Ji filed Critical Xin Ji
Priority to EP08862032A priority Critical patent/EP2233157A4/en
Publication of WO2009076873A1 publication Critical patent/WO2009076873A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0085Porous materials, e.g. foams or sponges

Definitions

  • the present invention relates to a biocompatible modified starch sponge which can be directly used for blood wounds of humans, mammals and the like.
  • the invention further relates to the use of the sponge as a hemostatic material, a biocompatible anti-adhesion material, a tissue healing material, an absorbable surgical sealant, a wound tissue gel, and a sponge product thereof.
  • the currently available surgical absorbable hemostatic materials include the following:
  • Hemostatic sponges gelatin sponge, collagen sponge, chitosan hemostatic sponge, sponge containing thrombin or fibrin;
  • hemostatic gauze / hemostatic membrane oxidized cellulose hemostatic gauze
  • hemostatic glue protein glue, synthetic rubber
  • hemostatic powder starch polysaccharide hemostatic powder, chitosan hemostatic powder.
  • Gelatin sponge is derived from the extract of animal tissues, and its main component is animal collagen. Its hydrophilic and porous structure absorbs moisture from the blood and concentrates the blood to achieve hemostasis. However, gelatin is a collagen extract derived from animals, containing heterologous proteins, which may cause allergic reactions, and may cause symptoms such as fever in patients. At the same time, the absorption of gelatin sponge by the human body is slow, generally 4 weeks or more, so Increase the infection rate of the wound and affect wound healing.
  • Collagen sponges are also derived from collagen extracts from animal tissues. In addition to concentrating blood by absorbing water from the blood, it is also possible to promote coagulation by activating endogenous coagulation mechanisms.
  • the collagen sponge is derived from animals and is a heterologous protein; and the human body absorbs it slowly, clinically manifested as a patient with allergic reactions, slow wound healing and complications of wound infection, so the clinical use is greatly Limitations.
  • Oxidized cellulose is one type of cellulose derivative.
  • the hemostasis mechanism is to concentrate the blood by the water absorption property of the material, and initiate the blood coagulation mechanism; at the same time, the carboxyl group combines with the hemoglobin Fe to cause the blood to produce acidic hemoglobin, form a brown rubber block, and close the end of the capillary to stop bleeding.
  • Oxidized regenerated cellulose has the same hemostatic mechanism as oxidized cellulose.
  • the oxidized cellulose is artificially synthesized. Normal human tissues are relatively slow to absorb such proteins due to the lack of enzymes that metabolize oxidized cellulose.
  • the parts used according to the dosage are generally absorbed in the body for at least 3 to 6 weeks, which may cause local infection and Affect local tissue healing.
  • Fibrin glue is composed of fibrinogen, thrombin, aprotinin and calcium chloride. Hemostasis is mainly caused by thrombin activation of fibrinogen to promote blood clotting in the body.
  • the fibrin sealant is a widely used clinical application, and it is a spray device for fibrinogen binding to thrombin.
  • Thrombin and fibrin in fibrin glue are derived from humans or animals and are susceptible to allergic reactions in patients and cause infections of human and animal-borne diseases such as hepatitis, AIDS, and mad cow disease.
  • the application of fibrin glue to wet tissue wounds is weak and does not effectively control active bleeding.
  • protein gel is not easy to store, transport, and inconvenient to use.
  • Biopolysaccharide products have developed rapidly and received attention.
  • Naturally used for hemostasis Biopolysaccharide products are plant polysaccharides and chitosan. Their biocompatibility is good, non-toxic, non-irritating, not easy to cause allergic reactions in the body, and will not cause infection of animal-borne diseases.
  • the chitosan/chitin product is representative of a high-expansion chitosan sponge, which is made from natural marine organism extract chitosan and advanced bioengineering technology.
  • Chitosan has good water absorption, can initiate and accelerate the initiation of its own coagulation mechanism and promote coagulation, so it can be used as a topical hemostatic agent.
  • microporous Polysaccharide Hemospheres In 2002, an absorbable hemostatic material called Ari staTM developed by Medafor of the United States (US Patent No. 6060461), The active ingredient is a microporous polysaccharide, including dextran.
  • the microporous polysaccharide is prepared by reacting a polysaccharide with epichlorohydrin, and an epichlorohydrin having a hydroxyl group reacts with a starch molecule to form ethyl glycerol, which can crosslink the glucose molecule into a three-dimensional network structure.
  • Ari staTM hemostatic material itself still has some problems.
  • this hemostatic material is mainly limited to hemostasis of skin or soft tissue wounds, and hemostasis of deep tissues and organs, especially endoscopic hemostasis (such as gastroscope, colonoscopy and laparoscopy).
  • endoscopic hemostasis such as gastroscope, colonoscopy and laparoscopy.
  • epichlorohydrin is a colorless oily liquid, which is toxic and anesthetic, so the production of the product is unfavorable to the environment and the production cost is high.
  • Cellulose Publication No. CN1533751A discloses a hemostatic wound dressing, commercially available under the trade name SURGICEL, comprising a fabric and a porous polymeric matrix coated on the surface of the fabric in contact with the wound and at least partially dispersed in the fabric, the matrix comprising a biocompatible water soluble Or a water-swellable polymer, wherein the fibers of the fabric are oxidized regenerated cellulose, and the water-soluble or water-swellable polymer is a polysaccharide.
  • the main body of this hemostatic dressing is oxidized cellulose, which is slowly absorbed by the human body, so the clinical application is limited. Summary of the invention
  • a further object of the invention provides the use of the sponge.
  • the present invention provides a product for use with the sponge.
  • the invention provides a biocompatible modified starch sponge, which can directly act on blood wounds, including hemostasis on tissues, organs and tissues in the body surface, rapid hemostasis, absorption for the human body, and adhesive sealing effect. . It can be used to stop bleeding for various needs and is easy to use.
  • the biocompatible modified starch sponge of the present invention can be used as a biocompatible anti-adhesion material, a tissue healing material, a surgical sealant, and a wound tissue gel which contributes to tissue repair.
  • Another technical problem to be solved by the present invention is to provide a method for preparing the above biocompatible modified starch sponge.
  • the modified starch of the present invention is one of pregelatinized starch, acid modified starch, dextrin, oxidized starch, esterified starch, etherified starch, crosslinked starch, grafted starch, and composite modified starch. kind or combination of the above.
  • the denaturation means for denaturation of starch may be physical denaturation, chemical denaturation, enzymatic treatment denaturation, natural denaturation, and at least modified starch obtained by compound denaturation of the above two methods.
  • the physical denaturation includes irradiation, mechanical, and wet heat treatment
  • the chemical denaturation includes acid hydrolysis, oxidation, esterification, etherification, crosslinking, grafting by chemical reagents. Denaturing treatment;
  • the composite denatured treatment is carried out by at least the above two methods to form a composite modified starch, or at least two denaturation treatments of the above method, to produce a plurality of homogenized denatured starches.
  • the biocompatible sponge made of two or more modified starches may have a weight percentage of the two modified starches of 99:1 to 1:99 depending on the physical properties of the hemostatic material.
  • it can be: 95: 5, 90: 10, 85: 15, 80: 20, 75: 25, 70: 30, 65: 35, 60: 40, 55: 45, 50: 50.
  • the biocompatible sponge has a water absorption ratio of not less than 1 time, generally 1 to 500 times, and a water absorption ratio of preferably 5 to 100 times.
  • the etherified starch comprises at least one of carboxymethyl starch, hydroxyethyl starch, and cationic starch.
  • carboxymethyl starch is taken as an example, which is a linear structural polymer, and the structural formula is as follows:
  • Modified starches for plasma substitutes such as carboxymethyl starch (CMS) and hydroxyethyl starch, which have long been clinically known, have good biocompatibility and can be used in human blood vessels without toxic side effects and safety. High sex.
  • CMS carboxymethyl starch
  • hydroxyethyl starch which have long been clinically known, have good biocompatibility and can be used in human blood vessels without toxic side effects and safety. High sex.
  • the hemostatic material of the present invention can be broadened to other plasma substitutes to produce a safe and reliable hemostatic material utilizing its generally known properties.
  • denatured cationic starch can be added to the hemostatic material, and the negative charge on the surface of the cationic starch can be used to attract the negatively charged red blood cells to interact with them, thereby accelerating the blood coagulation.
  • the modified starch adheres tightly to the tissue after contact with the blood, and closes the wound, thereby quickly stopping the bleeding.
  • the composite modified starch comprises at least pre-gelatinized hydroxypropyl distarch phosphate.
  • the hydroxypropyl distarch phosphate is prepared by pre-gelatinization of starch by cross-linking and etherification of propylene oxide and phosphoric acid, and is stable under acidic and alkaline conditions, and has high viscosity. It has strong water absorption and good hemostatic effect. It can be used as a hemostatic material, anti-adhesion material, surgical sealant, tissue healing material, wound tissue glue and so on.
  • the crosslinked starch comprises at least one of epichlorohydrin crosslinked starch and crosslinked carboxymethyl starch.
  • the grafted starch comprises at least an acrylic-carboxymethyl starch graft copolymer and an acrylate-carboxymethyl starch graft copolymer.
  • the grafted starch has superior water absorption capacity and viscosity, and can be used for rapid hemostasis in wounds. It is especially suitable for the treatment of rupture of the arteries, venous tumors, major movements and venous bleeding in war wounds, first aid and clinical operations.
  • the surgeon or rescuer For bleeding with high activity and high blood pressure, the surgeon or rescuer must apply pressure to the bleeding site to block the blood flow. At this time, due to the rapid bleeding rate, the hemostatic powder is easy to open when the blood pressure is high. Not conducive to stopping bleeding. If pressure is applied to the hemostatic agent, the colloid formed by the blood and the powder tends to adhere to the accessories such as gloves or gauze, and when the hair is removed, the clot is easily removed to cause rebleeding.
  • the invention makes the modified starch into a biocompatible sponge which can directly contact the bleeding point and press on the sponge to avoid the above situation. Therefore, the biocompatible modified starch sponge has a good effect on active bleeding.
  • the biocompatible modified starch sponge is included, but not limited to, columnar, flaky, massive, flocculent, layered or membranous, to meet the needs of different operations.
  • the biocompatible sponge can be produced by vacuum freeze-drying modified starch, but is not limited to the above preparation process.
  • the biocompatible sponge is a biocompatible sponge prepared by vacuum freeze-drying of modified starch and other biocompatible hemostatic materials other than modified starch, but is not limited to the above preparation process.
  • biocompatible hemostatic material other than the modified starch comprises gelatin, collagen, and carboxy One of methylcellulose, oxidized cellulose, chitosan or a combination thereof, but is not limited thereto.
  • the present invention utilizes a combination of other bioabsorbable hemostatic materials with known biocompatibility and widely accepted clinically and modified starch to form a composite biocompatible.
  • Sponge wherein other bioabsorbable hemostatic materials may be one or more
  • modified starch may also be one or more, such as modified starch and gelatin, modified starch and collagen, modified starch and chitosan.
  • Modified starch and carboxymethyl cellulose, modified starch and hyaluronic acid, etc. which are suitable for sponge molding and meet clinical needs.
  • the weight percentage of the modified starch and other biocompatible hemostatic materials may be 99. 9 : 0. 1 ⁇ 0. 1: 99. 9.
  • modified starch to other biocompatible hemostatic materials can be: 95: 5, 90: 10, 85: 15, 80: 20, 75: 25, 70: 30, 65: 35, 60: 40, 55: 45, 50: 50, 45: 55, 40: 60, 35: 65, 30: 70, 25: 75, 20: 80.
  • the biocompatible modified starch sponge can also be directly added with a blood coagulation agent, or a coagulant can be added in the case of preparing a composite biocompatible sponge with other biocompatible hemostatic materials, and vacuum freeze-dried to prepare A biocompatible sponge for coagulants.
  • the preparation may be carried out by directly mixing the coagulant with the denatured starch and then performing freeze-drying, but is not limited to the above preparation process.
  • the blood clotting agent comprises one or a combination of a blood coagulation factor, thrombin, fibrin, a calcium agent, and protamine, but is not limited thereto.
  • the modified starch is formed into a biocompatible sponge by vacuum freeze-drying with a molding agent and a plasticizer.
  • the molding agent comprises an organic molding agent, an inorganic molding agent, a natural molding agent, a synthetic plasticizer, including but not limited to one of glycerin, kaolin, sorbitol, ethanol, ammonia, polyoxalic acid or Its combination.
  • the vacuum freeze-drying technique freezes the wet material or solution to a solid state at a lower temperature (10 to 50 ° C), and then the water is not subjected to a vacuum (1.3 to 15 Pa).
  • a liquid drying process that directly sublimes into a gaseous state, which ultimately dehydrates the material. Since vacuum freeze drying is carried out at low temperature and low pressure, Moreover, the water directly sublimes, thus giving the product many special properties.
  • the basic parameters of the vacuum freeze-drying technology include physical parameters and process parameters.
  • the physical parameters refer to the thermal conductivity and transfer coefficient of the materials.
  • the process parameters include refrigeration, heat supply and material morphology. The study of the freezing process is intended to find the optimal freezing curve for the system.
  • biocompatible modified starch sponge of the invention is used for hemostasis of blood wounds in humans, mammals, birds and climbing objects;
  • the biocompatible modified starch sponge is used for blood stasis in human body surface, body tissues and tissues or organs in the body cavity, or for hemostasis of surgery, burns, and wound emergency.
  • biocompatible modified starch sponges are used as hemostatic materials, other biological properties and efficacies are also of concern, because the use of biocompatible modified starch sponges can cause infection in wounds and affect postoperative outcomes. Tissue adhesion and tissue healing, whether it can inhibit the inflammatory response of wounds, is of great significance for clinical application.
  • the biocompatible modified starch sponge of the present invention can have further uses, including as an absorbable material for preventing post-operative adhesion.
  • the mechanism of action is that the modified starch comprising, but not limited to, the present invention can achieve the purpose of preventing adhesion by reducing local bleeding, exudation, and mechanically isolating the wound or wound from adjacent organs or peritoneum.
  • the biocompatible modified starch sponge of the invention can also promote tissue healing, adopt appropriate operation methods, select appropriate modified starch and apply appropriate dosage to skin, subcutaneous soft tissue, muscle tissue, bone tissue, brain tissue, nerve tissue. Organ, kidney, spleen and other organ damage can promote healing.
  • the principle includes but is not limited to: "gelatin” formed by mixing modified starch with blood can be used as a "scaffold” to facilitate the attachment, crawling and ligated growth of tissue cells such as osteoblasts and fibroblasts; Platelet aggregation, increased local platelet concentration, and platelet activation activate platelets to release tissue factor and promote tissue healing.
  • a further use of the biocompatible modified starch sponge of the present invention is as a biocompatible surgical sealant which can form a protective colloid or film on the wound or wound surface, and the closure is caused by surgery, trauma and the like. Lymphatic fistula, biliary fistula, pleural effusion, intestinal fistula, brain, spinal fluid sputum, brain, spinal fluid exudation, vasospasm and so on.
  • a further use of the biocompatible modified starch sponge of the present invention is as a biocompatible wound tissue glue which can be used for adhesion to nerve tissue, muscle tissue, bone tissue, skin, subcutaneous tissue, organs, Repairing, repairing, and other medical materials can be bonded to the tissues, organs and their wounds to be repaired, and directly bonded to achieve the effect of surgical suturing.
  • the biocompatible sponge can also be used as a blood film and a hemostatic patch, and can be directly contacted to stop bleeding on a blood wound surface, wherein the hemostatic membrane and the hemostatic patch can be formed into a film or layer attached to the inside of the fiber fabric or the fiber fabric.
  • Surfaces such as bandages, band-aids, etc.
  • the biocompatible modified starch sponge is made into a hemostatic gel, and the physical form includes a gel, a sol, a gel, a semi-fluid, a gel, and the like.
  • the preparation of the hemostatic gel can be obtained by diluting, swelling or dissolving the modified starch with other liquids not limited to water.
  • the modified starch sponge of the present invention also has an antibacterial and anti-inflammatory effect on bleeding wounds when applied clinically. Since the modified starch hemostatic sponge of the invention can play a hemostatic effect, reducing wound bleeding, bleeding, tissue fluid exudation and maintaining the relative humidity of the wound or wound, thereby inhibiting bacterial growth and inflammation, and contributing to local inflammation of the wound. , reduce the pain of the patient.
  • a known antibiotic or other anti-inflammatory agent may be added to the material to form an anti-inflammatory hemostatic composite material.
  • Modified starch sponge is soft, elastic, easy to form, easy to curl, etc. It can be applied to wounds of various shapes and characteristics, such as deep, curved, irregular wounds, physiological organs, internal and external surfaces of physiological cavities, endoscopy And hemostasis and treatment under the endoscope help the doctor to operate.
  • the modified starch sponge of the present invention may be sterilized after packaging, and the sterilization methods include, but are not limited to, Y-ray irradiation sterilization, ethylene oxide sterilization, and ozone sterilization.
  • the sponge is flexible in shape and requires a combination of clinical procedures. It can be filled and pressed, and it is easy to control active bleeding and has a good hemostasis effect.
  • the invention adopts biocompatible starch as the main hemostatic material, directly acts on the blood wound, has good biocompatibility, and avoids animal/human infection caused by using raw materials such as animal source or human collagen. Allergies, infections and complications caused by disease, xenogeneic/allogeneic proteins, avoiding infections caused by fibrous fabric materials that are not easily absorbed by the human body, and difficult to heal wounds. When water is used immediately, hydration is particularly effective.
  • the biocompatible sponge of the invention has greater viscosity and stronger viscosity after being absorbed, and can be tens or even 100 times more viscous than the existing hemostatic material, so that the formed blood coagulation mixture has good adhesion and closed tissue. Wounds and broken blood vessels. While stopping bleeding, it can further block the damage of the tissue and blood vessels, thus significantly improving the hemostatic effect.
  • the biocompatible sponge is easy to use, low in cost, and has good compatibility with the composite sponge.
  • a further advantage of using the modified starch hemostatic sponge is that since the invented modified starch material can be easily dissolved or suspended in water after being exposed to water, it is convenient to be partially cleaned after the operation is completed, and the residual modified starch hemostatic material and the wound first aid are removed. After the second debridement treatment. After the surgery is completed, the area can be rinsed to remove excess modified starch that is not involved in hemostasis. When debridement treatment is carried out after war wounds, self-rescue, and emergency treatment, the hemostatic agent can be easily removed, even if a small amount of modified starch hemostatic material remains, it can be absorbed by the body, avoiding the wounding of gauze and bandages for the patient and the wounded. pain of.
  • Modified starch hemostatic sponge is also stable, not easy to decompose, long shelf life, easy to store, high pressure resistance, low pressure, high temperature resistance (up to 60 ° C or higher), low temperature resistance (up to -40 ° C or less), difficult to change physical and chemical properties, etc. It can be used as an army, firefighters, ambulances, and homes, especially as a hemostatic material in extreme conditions such as cold, hot areas and deserts, Antarctica, Arctic, high mountains, space, and underwater.
  • Figure 1 is a scanning electron micrograph of the section of the blood sponge A.
  • Figure 2 is a scanning electron micrograph of the blood sponge B section. detailed description
  • the test method of the viscous work index of the present invention is carried out by using a physical property analyzer (plasty analyzer); the test conditions are: at normal temperature, the speed before the test: 0. 5 mm/sec; and the test speed: 10 mm/sec.
  • a physical property analyzer plasty analyzer
  • the viscous work index means that the probe will be subjected to the adhesion of the sample when it is returning. When the probe is completely out of the experimental sample, it must do work. The work done during this period is the viscous work index, which can reflect the viscosity agent. Bond strength (firmness) to the probe surface.
  • the scanning electron micrograph of the section of the blood sponge A shows that the plasticizer is added during the preparation to reduce the pore size of the sponge pores, increasing the density and ratio. Surface area.
  • the seat drop method was used to track and record the water absorption of the sponge through the dynamic recording function and the movie function.
  • the specific steps are as follows: Place the sponge sample on the stage and slowly adjust so that the stage appears at the bottom 1/3 of the field of view.
  • the needle to which deionized water is added is fixed to the injection unit, and a certain volume of water droplets is hung on the needle through the automatic sample introduction system, and the focus is made to clear the sponge sample and the water drop image in the field of view.
  • turn on the camera and dynamic recording function to observe the process of water droplets being inhaled and obtain dynamic contact angle values.
  • the composite hemostatic sponge containing modified starch has a higher water absorption rate than the gelatin sponge and the collagen hemostatic sponge, and the maximum water absorption rate is 2 to 5 times that of the ordinary gelatin sponge and the collagen hemostatic sponge, and the water absorption is faster. It is more efficient and can still maintain a high water absorption rate in the 5th, 6th and 20th seconds afterwards.
  • the hemostatic sponge used in the experimental group was:
  • the above wounds were hemostasis.
  • a gelatin sponge and a collagen sponge were used as a control group.
  • Adhesive sponges and clots cause rebleeding when uncovered. After the hemostasis, it is not necessary to remove or remove the modified starch sponge, but use physiological saline to properly infiltrate and rinse.
  • the hemostatic effect of the hemostatic sponge experimental group containing modified starch is ideal and convenient to use. All the experimental group's hemostatic sponge immediately absorbed water/blood and formed a sticky sponge-clotting gel with blood, which effectively controlled hemorrhage of the liver wound in 1 ⁇ 2 minutes. Control gelatin sponge and collagen The protein sponge group takes 3 to 5 minutes or more to control bleeding. The hemostatic sponge of the experimental group quickly sucked blood after blood, and adhered closely to the wound tissue of the liver, promoted blood coagulation, and formed a sealing effect on the damaged blood vessel at the wound site of the wound. The sponge of the experimental group has good elasticity, easy operation and convenient use.
  • the sponge After 1 ⁇ 2 minutes, the sponge is not easily peeled off, and the clot does not stick to the pressed glove or gauze dressing. Uncover the gloves or yarn. The cloth will not damage the clot and will not cause another bleeding.
  • the gelatin sponge and collagen hemostatic sponge of the control group have slow water absorption/blood rate, and must be squeezed by the sponge for blood suction. The adhesion to the tissue of the wound surface is weak, and it can be easily peeled off from the wound surface, and the hemostasis effect is poor and slow.

Description

生物相容性变性淀粉海绵 技术领域
本发明涉及一种生物相容性变性淀粉海绵, 可直接用于人、 哺乳动物等的 有血创面。本发明还涉及所述海绵作为止血材料、 生物相容性的防粘连材料、促 进组织愈合材料、 可吸收性外科密封剂、 伤口组织胶中的应用, 及其海绵产品。 背景技术
外科手术及外伤都会形成有血创面,其间会有大量血液流失, 需要及时采用 止血手段。使用具有可生物相容性的可吸收止血材料敷在有血创面止血是一种常 见的止血手段。 在外科手术止血、 外伤、 急救止血时均有迫切需求, 由此可见提 供一种安全、 有效、 使用方便且成本低廉的止血材料对市场的重要性。
现有常用的外科可吸收止血材料包括以下几种:
1、 止血海绵类: 明胶海绵、 胶原蛋白海绵, 壳聚糖止血海绵, 含凝血酶或纤维 蛋白的海绵;
2、 止血纱布 /止血膜类: 氧化纤维素止血纱布;
3、 止血胶类: 蛋白胶、 人工合成胶;
4、 止血粉类: 淀粉多聚糖止血粉、 壳聚糖止血粉。
以下对常用的生物相容性止血材料作具体分析:
1、 可吸收性明胶海绵及胶原蛋白海绵
明胶海绵来源于动物组织的提取物,它的主要成分为动物胶原。它的亲水性 和多孔结构可迅速吸收血液中的水分而浓缩血液, 从而达到止血的目的。 但是, 明胶是来源于动物的胶原提取物, 含异种蛋白, 易引起过敏反应, 临床上可引起 病人发热等症状; 同时, 人体对明胶海绵的吸收较慢, 一般为 4周以上, 因此会 增加伤口的感染率, 影响伤口愈合。
胶原蛋白海绵亦来源于动物组织的胶原提取物。除可以通过吸收血液中的水 分而浓缩血液外, 还可以通过激活内源性凝血机制而促凝。
同明胶海绵一样, 胶原蛋白海绵的原料来源于动物, 为异种蛋白; 且人体对 它吸收慢, 临床上表现为病人过敏反应、伤口愈合慢和伤口易感染的并发症, 故 临床使用受到很大局限。
2、氧化纤维素 ( Oxidized Cel lulose )^氧化再生纤维素 ( Oxidized regenerated cel lulose ) 止血纱布
氧化纤维素是纤维素衍生物的一种。其止血机制是通过材料吸水的特性而浓 缩血液, 启动凝血机制; 同时, 羧基与血红蛋白 Fe结合, 使血液产生酸性正铁 血红素, 形成棕色胶块, 封闭毛细血管末端而止血。氧化再生纤维素与氧化纤维 素的止血机制相同。
氧化纤维素为人工合成。正常的人体组织因缺乏代谢氧化纤维素的酶而对该 类产品吸收速度相对较慢,根据用量合使用的部位一般在体内吸收的时间至少为 3〜6周, 临床上可引起局部的感染及影响局部组织愈合。
3、 纤维蛋白胶 (Fibrin glue )
纤维蛋白胶是由纤维蛋白原、凝血酶、抑肽酶和氯化钙组成。止血作用主要 是凝血酶激活纤维蛋白原促进机体的凝血。近年临床应用较为广泛的是纤维蛋白 封闭剂, 是纤维蛋白原结合凝血酶的喷雾装置。纤维蛋白胶中的凝血酶和纤维蛋 白来源于人体或动物, 易引起病人过敏反应, 并导致感染人源性和动物源性性疾 病, 如肝炎、 爱滋病、 疯牛病等。, 纤维蛋白胶应用在湿润组织创面时的粘附性 较弱, 不能对活动性出血进行有效的控制。 并且, 蛋白胶不易储存、 运输、 使用 不便。
4、 天然生物多聚糖类产品
近年来, 天然生物多聚糖类产品发展迅速, 受到关注。 目前用于止血的天然 生物多聚糖类产品是植物多聚糖和壳聚糖。它们的生物相容性好,无毒、无剌激, 不易引起机体的过敏反应, 同时不会弓 I起感染动物源性疾病。
( 1 ) 壳聚糖 /甲壳素类产品
壳聚糖 /甲壳素的产品代表性的是高膨溶壳聚糖海绵,是以天然海洋生物提 取物壳聚糖为原料,采用先进的生物工程技术制作而成。壳聚糖有较好的吸水性, 可以引发并加速启动自身的凝血机制而促凝,因此可以成为外用的止血剂。但是, 由于人体内缺乏将其迅速有效降解的酶, 尚无法在外科手术中使用。 目前, 国内 外尚未见将其作为 I I I类的止血材料用于临床外科术中止血的报道。
( 2 ) 微孑 L多聚糖一Ari sta™ (Microporous Polysaccharide Hemospheres, MPH) 2002年, 美国的 Medaf or公司研发的一种称为 Ari sta™ 的可吸收性止血材 料 (美国专利 US6060461 ) , 其有效成分是多微孔多聚糖, 包括葡聚糖。 该微孔 多聚糖由多聚糖与表氯醇反应制得,带有羟基的表氯醇与淀粉分子作用生成乙基 丙三醇, 可以使葡萄糖分子交联成三维网状结构。
Ari sta™止血材料本身仍然存在着一些问题。 首先, 从应用面上, 这种止血 材料主要还是局限于皮肤或软组织创面的止血,对体腔深部的组织器官进行止血 特别是内窥镜下的止血(如胃镜、肠镜及腹腔镜等微创手术时) 尚缺乏有效的手 段; 第二, 从制备方法上, 表氯醇为无色油状液体, 有毒性和麻醉性, 因此生产 该产品对环保不利, 生产成本亦较高; 第三, 从止血效果上, 由于它的吸水性不 够强, 吸水倍率低, 且吸水的速度较慢, 止血效果不理想特别对活动性出血止血 效果欠佳; 第四, 它的粘度低, 吸水后形成的凝胶粘性差, 因此与血作用后形成 的凝血块与组织的粘附性差, 不能对破损的组织、血管产生有效的粘性封堵, 因 而影响止血的效果; 第五, 在活动性出血时, 止血粉难以附着在出血处, 易被血 流冲走, 若在止血粉上用辅料按压, 则辅料很容易被凝血块粘连, 揭开辅料时造 成再次出血。 因此, 对活动性出血止血效果不好。
( 3 ) 纤维素 公开号 CN1533751A公开了一种止血创伤敷料, 商品名为 SURGICEL, 包括织 物和涂布在织物与创伤接触的表面并至少部分分散于织物中的多孔聚合物基质, 该基质包含生物相容的水溶性或水溶胀性聚合物,而织物的纤维为氧化再生纤维 素,水溶性或水溶胀性聚合物为多糖。但这种止血敷料选用的主体是氧化的纤维 素, 人体吸收缓慢, 因此临床应用受到限制。 发明内容
本发明目的是提供一种生物相容性变性淀粉海绵。
本发明的再一目的提供所述海绵的用途。
本发明的又一目的是提供所述海绵的制备方法。
再有, 本发明提供一种针对所述海绵用途的产品。
本发明提供一种生物相容性变性淀粉海绵,可直接作用于有血创面,包括对 体表、 体内及体腔内的组织器官的止血, 止血迅速, 能为人体吸收, 且具有粘性 封堵作用。 可以适合各种需求的手术止血, 且使用方便。
本发明所述的生物相容性变性淀粉海绵, 可用作生物相容性的防粘连材料、 促进组织愈合材料、 外科密封剂和有助于组织修复的伤口组织胶。
本发明又一要解决的技术问题在于提供一种上述生物相容性变性淀粉海绵 的制备方法。
上述方案基础上,本发明所述的变性淀粉为预糊化淀粉、酸变性淀粉、糊精、 氧化淀粉、 酯化淀粉、 醚化淀粉、 交联淀粉、 接枝淀粉、 复合变性淀粉中的一种 或以上的组合。
对淀粉进行变性所采用的变性手段可以为物理变性、化学变性、酶处理变性、 天然变性, 及至少上述两种方法的复合变性而获得的变性淀粉。
所述的物理变性包括辐照、 机械、 湿热处理;
所述的化学变性包括经化学试剂进行酸解、 氧化、 酯化、 醚化、 交联、 接枝 变性处理;
或者, 采用至少上述两种方法进行复合变性处理, 制成复合变性淀粉, 或上 述一种方法的至少两次变性处理, 制成多次同种变性的变性淀粉。
由包含两种或以上变性淀粉制成的生物相容性海绵,根据对止血材料物化性 质的要求, 其两种变性淀粉的重量百分比可以为 99: 1〜1: 99。
具体可以是: 95: 5, 90: 10, 85: 15, 80: 20, 75: 25, 70: 30, 65: 35, 60: 40, 55: 45, 50: 50。
所述生物相容性海绵的吸水倍不低于 1倍, 一般可以为 1〜500倍, 吸水倍 率优选 5〜 100倍。
所述的醚化淀粉至少包括羧甲基淀粉、 羟乙基淀粉、 阳离子淀粉中的一种。 其中以羧甲基淀粉为例, 其为线性结构聚合物, 结构式如下:
OCH2COONa
Figure imgf000007_0001
采用长期以来在临床上已知的用于血浆代用品的变性淀粉, 如羧甲基淀粉 ( CMS) 和羟乙基淀粉, 其生物相容性好, 可用于人体血管内, 无毒副作用, 安 全性高。本发明的止血材料可以拓宽到其他血浆代用品,利用其普遍所知的性质 制成安全可靠的止血材料。
为了加强止血效果,可在止血材料中加入变性的阳离子淀粉,利用阳离子淀 粉表面带有的正电荷来吸引带负电的红细胞, 与其相互作用, 从而更加速了凝血 的过程; 另一方面, 变性淀粉在与血液接触后能紧紧地贴附于组织, 封闭伤口, 从而快速止血。
所述的复合变性淀粉至少包括预糊化的羟丙基二淀粉磷酸酯。具体的,羟丙 基二淀粉磷酸酯是由淀粉经环氧丙烷和磷酸交联醚化后,再经过喷雾干燥法预糊 化变性制成, 在酸性、 碱性条件下均较稳定、 粘度高、 吸水性强、 止血效果好, 可以用来作为止血材料、 防粘连材料、 外科密封剂、 促进组织愈合材料、 伤口组 织胶等使用。
所述的交联淀粉至少包括表氯醇交联淀粉、 交联羧甲基淀粉中的一种。 所述的接枝淀粉至少包括丙烯酸 -羧甲基淀粉接枝共聚物、丙稀酯-羧甲基淀 粉接枝共聚物。接枝淀粉具有超强的吸水能力和粘性,用于伤面可达到迅速止血 的目的, 尤其适用于处理战伤、 急救及临床手术当中的动、 静脉瘤破裂、 大动、 静脉出血。
对于活动性出血及血管压力较高的出血,术者或救护人员必须对出血处进行 施压, 阻断血流, 此时, 由于出血速度很快, 血管压力高时容易将止血粉冲开, 不利于止血。若在止血剂上施压则血液与粉剂形成的胶体易粘连在手套或纱布等 辅料上,拿开时容易撕脱凝血块造成再出血。而本发明将变性淀粉制成生物相容 性海绵可以直接接触出血点、在海绵上按压则很好地避免了上述情况的发生。因 此, 生物相容性变性淀粉海绵对于活动性出血具有很好的疗效。
所述的生物相容性变性淀粉海绵为包含但不限于柱状、 片状、 块状、 絮状、 层状或膜状, 以满足不同手术下的需要。
所述的生物相容性海绵可以由变性淀粉经真空冷冻干燥制成,但不限于上述 制备工艺。
所述的生物相容性海绵为变性淀粉与除变性淀粉外的其他生物相容性止血 材料经真空冷冻干燥制成的生物相容性海绵, 但不限于上述制备工艺。
其中, 所述的除变形淀粉外的生物相容性止血材料包含明胶、胶原蛋白、羧 甲基纤维素、 氧化纤维素、 壳聚糖中的一种或其组合, 但不限于此。
为了解决部分变性淀粉制作海绵时成型不佳的问题,本发明利用已知的生物 相容性较好、广泛被临床所接受的其他生物可吸收性止血材料与变性淀粉联合制 成复合生物相容性海绵,其中,其它生物可吸收性止血材料可以采用一种或多种, 变性淀粉也可采用一种或多种, 具体如变性淀粉与明胶、 变性淀粉与胶原蛋白、 变性淀粉与壳聚糖、变性淀粉与羧甲基纤维素、变性淀粉与透明质酸等, 利于海 绵成型, 满足临床需要。
变性淀粉与其他生物相容性止血材料的重量百分比可以为 99. 9 : 0. 1〜0. 1: 99. 9。
具体的,变性淀粉与其他生物相容性止血材料的优选重量百分比可以是: 95: 5, 90: 10, 85: 15, 80: 20, 75: 25, 70: 30, 65: 35, 60: 40, 55: 45, 50: 50, 45: 55, 40: 60, 35: 65, 30: 70, 25: 75, 20: 80。
所述的生物相容性变性淀粉海绵制备时还可以直接添加凝血剂,或在与其他 生物相容性止血材料制备复合生物相容性海绵的情况下添加凝血剂,经真空冷冻 干燥制成含凝血剂的生物相容性海绵。制备的方法可以是将凝血剂直接与变性淀 粉混合后进行冷冻干燥但不限于上述制备工艺。
其中, 所述的凝血剂包括凝血因子、 凝血酶、 纤维蛋白、 钙剂、 鱼精蛋白中 的一种或其组合, 但不限于此。
所述的变性淀粉与成型剂、 增塑剂经真空冷冻干燥制成生物相容性海绵。 其中, 所述的成型剂包括有机成型剂、 无机成型剂、 天然成型剂、 人工合成 增塑剂, 包括但不限于甘油、 高岭土、 山梨醇、 乙醇、 氨水、 聚乙二酸中的一种 或其组合。
具体的, 真空冷冻干燥技术是将湿物料或溶液在较低的温度 (一 10〜一 50 °C ) 下冻结成固态, 然后在真空 (1. 3〜15帕) 下使其中的水分不经液态直接升 华成气态,最终使物料脱水的干燥技术。由于真空冷冻干燥在低温、低压下进行, 而且水分直接升华, 因此赋予产品许多特殊的性能。
真空冷冻干燥技术的基本参数包括物性参数和过程参数,物性参数指物料的 导热系数、 传递系数等, 过程参数包括冷冻、 供热和物料形态等有关参数。 对冷 冻过程的研究意在为系统找到最优冷冻曲线。
本发明生物相容性变性淀粉海绵的应用, 用于人、 哺乳动物、 鸟类、 爬行动 物有血创面的止血;
在上述方案基础上, 生物相容性变性淀粉海绵用于人体体表、体内组织器官 及体腔内组织或器官有血创面、 或用于外科手术、 烧伤、 创伤急救的止血。
在生物相容性变性淀粉海绵用作止血材料的同时,具有的其它生物学特性和 功效也是值得关注的, 因为使用生物相容性变性淀粉海绵对伤口是否会引起感 染、是否会影响术后的组织粘连及组织愈合、 能否抑制伤口的炎症反应, 对临床 应用具有重大意义。
而实验证明,本发明的生物相容性变性淀粉海绵还可以有进一步的用途,包 括作为可吸收的防止术后粘连的材料。其作用机理是包含但不限于本发明的变性 淀粉可以通过减少局部出血、渗出, 并使伤口或创面与邻近脏器或腹膜形成机械 隔离, 从而达到防止粘连的目的。
本发明的生物相容性变性淀粉海绵还可以促进组织愈合,采取适当的操作方 法、 选择适当的变性淀粉以及施加合适的用量, 对于皮肤、 皮下软组织、 肌肉组 织、骨组织、脑组织、神经组织、肝、 肾、脾等脏器损伤均可有促进愈合的作用。
其原理包含但不限于: 变性淀粉与血液混合后而形成的 "胶状物"可以作为 "支架 "利于成骨细胞、成纤维细胞等组织细胞的附着、爬行及连接生长;此外, 伤口局部处的血小板聚集、局部的血小板浓度增加、血小板被激活, 从而使血小 板释放组织因子, 促进组织愈合。
本发明的生物相容性变性淀粉海绵的再一用途是,用作生物相容的外科密封 剂, 可以在伤口或创面表面形成一层保护胶体或膜, 封闭因手术、外伤等原因造 成的淋巴瘘、胆痿、 胸膜痿、肠痿、脑、脊髓液痿、脑、脊髓液渗出、血管痿等。 本发明的生物相容性变性淀粉海绵的又一用途是,用作生物相容的伤口组织 胶, 可以用于对神经组织、 肌肉组织、 骨组织、 皮肤、 皮下组织、 脏器的粘合、 修复、 修补, 也可以将其他医用材料粘结在需要修补的组织、 器官及其创面上, 直接粘合而达到免外科缝合的效果。
所述的生物相容性海绵也可以为止血膜、止血贴,可直接接触在有血创面上 止血,其中止血膜、止血贴可以是制成膜状或层状附着在纤维织物内部或纤维织 物表面, 如绷带、 创可贴等。
所述的生物相容性变性淀粉海绵制成止血胶, 物理形态包括胶状、 溶胶状、 融胶状、 半流体状、 凝胶状等。
止血胶的制作可由变性淀粉加不限于水的其它液体以一定比例稀释、溶胀或 溶解获得。
在上述区别特征的基础上, 本发明的变性淀粉海绵在临床上应用时还具有 对出血创面的抑菌和抗炎的作用。 由于本发明的变性淀粉止血海绵可以起到 止血作用, 减少了伤口出血、 渗血, 组织液渗出并保持创面或伤口的相对湿 度, 因此抑制了细菌生长及炎症反应, 有助于对伤口局部消炎, 减少病人的 疼痛。 此外, 为加强抗炎效果, 在制作止血海绵、 止血胶等材料时, 可在材 料中加入已知的抗生素或其它消炎剂, 制成消炎止血复合材料使用。
变性淀粉海绵具有柔软、 有弹性, 易成型、 易卷曲等特点, 可以适用于各种 形状、 特点的伤口, 如对深部、 弯曲、 不规则伤口、 生理器官、 生理腔隙的内外 表面, 腔镜及内窥镜下的止血、 处理, 有助于医者进行操作。
为了进一步增强变性淀粉在创面、 组织等方面直接使用的安全性, 可以对本 发明的变性淀粉海绵包装后进行消毒, 消毒方法包括但不限于 Y射线辐照消毒、 环氧乙烷消毒、 臭氧消毒。
但是不推荐采用酒精消毒或用高温、 蒸汽消毒, 因为这样可能会改变变性淀 粉的物化特性而影响止血效果。
本发明的有益效果是:
海绵形态灵活, 复合临床的手续需要, 可填塞、 按压, 对活动性出血易于控 制, 有良好的止血效果。
本发明选用生物相容性淀粉为主要的止血材料, 直接作用于有血创面, 生 物相容性好, 避免采用动物源或人源性的胶原蛋白等原料而带来的动物 /人源性 传染病、 异种 /异体蛋白引起的过敏、 感染和并发症, 避免采用不易为人体吸收 的纤维类织物材料引起的感染、伤口难以愈合的情况, 遇水立即进行水合作用, 吸水速度提高尤为明显。
本发明生物相容性海绵吸水后具有更大的粘度和更强的粘性,可以比现有 的止血材料提高数十倍甚至百倍的粘度, 从而形成的凝血混合物有很好的附 着力, 封闭组织伤口及血管破损处。 止血的同时还能进一步起到封堵破损组 织及血管的作用, 因而明显提高了止血效果。
生物相容性海绵使用方便, 成本低廉, 制成复合海绵兼容性好。
使用变性淀粉止血海绵的又一优点是, 由于所发明的变性淀粉材料遇水后 可易溶解或混悬于水中, 因此, 便于在手术完成后局部清洗, 清除残余的变 性淀粉止血材料以及创伤急救后的二次清创处理。 在手术完成后可对局部进 行冲洗, 除去多余的未参与止血的变性淀粉。 在战伤、 自救、 急救处理后进 行清创处理时, 可以轻易地清除止血剂, 即使残留有少量变性淀粉止血材料 也可为机体所吸收, 避免因撕开纱布、 绷带而给病人、 伤员造成的痛苦。
变性淀粉止血海绵还具有稳定、 不易分解、 保质期长、 便于储存、 耐高压、 低压、 耐高温 (可达 60°C以上)、 耐低温 (可达 -40°C以下)、 不易改变理化特性 等的特点, 可以作为军队、 消防人员、 急救车、 家庭, 特别适用作为在寒冷、 炎 热地区和沙漠、 南极、 北极、 高山、 太空、 水下等极端条件下的止血材料。 附图说明
图 1为止血海绵 A断面的扫描电子显微镜照片。
图 2为止血海绵 B断面的扫描电子显微镜照片。 具体实施方式
实施例 1
将 2g预糊化羟丙基二淀粉磷酸酯 51#至于 30ml水中, 不断搅拌, 使淀粉颗 粒充分溶胀并分散于水中, 形成均匀的悬浮液, 并加入数滴甘油为成型剂,然后 倒入容器中, 在 -40°C下预冷 22小时, 再放入冷冻干燥机中, 在 -40°C、 真空度 小于 20帕下冷冻干燥 20小时, 得到止血海绵 A。
取 51#止血海绵 A 3g, 加 30ml水, 吸水后形成凝水混合物粘性胶, 其粘性 功指数为 76. 42 g · sec。
本发明粘性功指数的测试方法采用物性分析仪 (质构仪); 测试条件为: 常温下, 试验前速度: 0. 5mm/sec; 测试速度: 10mm/sec。
粘性功指数是指探头在做返回运动时, 会受到样品对它的粘结力, 而探头 要完全脱离实验样品, 它就必须做功, 这期间所做的功就是粘性功指数, 可以反 映粘性剂和探头表面的结合强度 (牢固程度)。
实施例 2
将 lg预糊化羟丙基二淀粉磷酸酯 51#至于 30ml水中, 不断搅拌, 使淀粉颗 粒充分溶胀并分散于水中, 形成均匀的悬浮液, 然后倒入容器中, 在 -40°C下预 冷 22小时, 再放入冷冻干燥机中, 在 -50°C、 真空度小于 20 帕下冷冻干燥 20 小时, 得到止血海绵 B。
请参阅图 1为止血海绵 A断面的扫描电子显微镜照片, 图 2为止血海绵 B 断面的扫描电子显微镜照片所示,在制备过程中添加增塑剂使海绵孔隙的孔径降 低, 增加了密度、 比表面积。 实施例 3
将 2g羧甲基淀粉 66#至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀并分 散于水中, 形成均匀的悬浮液, 然后倒入容器中, 在 -40°C下预冷 22小时, 再放 入冷冻干燥机中, 在 -50°C、 真空度小于 20帕下冷冻干燥 20小时, 得到止血海 绵〇。
取 66#止血海绵 C 1. 5g, 加 30ml水, 吸水后形成凝水混合物粘性胶, 其粘 性功指数为 162. 68 g · sec。
实施例 4
将 3g交联羧甲基淀粉 66#+至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀 并分散于水中, 形成均匀的悬浮液, 然后倒入容器中, 在 -40°C下预冷 22小时, 再放入冷冻干燥机中, 在 -45°C、 真空度小于 20帕下冷冻干燥 20小时, 得到止 血海绵 D。
实施例 5
将 3g羟乙基淀粉 88#变性淀粉至于 30ml水中, 不断搅拌, 使淀粉颗粒充分 溶胀并分散于水中, 形成均匀的悬浮液, 然后倒入容器中, 在 -40°C下预冷 22 小时, 再放入冷冻干燥机中, 在 -50°C、 真空度小于 20帕下冷冻干燥 20小时, 得到止血海绵 E。
实施例 6
将 10g医用明胶加水 100ml ,在烧杯中加热至 60°C制成溶胶状, 2g羧甲基淀 粉 66#至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀并分散于水中, 形成均 匀的悬浮液, 两者倒入容器中混合, 其中 66#与明胶质量比为 1 : 1, 在 -40°C下 预冷 22小时, 再放入冷冻干燥机中, 在 -45°C、 真空度小于 20帕下冷冻干燥 20 小时, 得到止血海绵 F。
实施例 7
将 10g医用明胶加水 100ml ,在烧杯中加热至 60°C制成溶胶状, 2g羧甲基淀 粉 66#至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀并分散于水中, 形成均 匀的悬浮液, 两者倒入容器中混合, 其中 66#与明胶质量比为 2: 1, 在 -40°C下 预冷 22小时, 再放入冷冻干燥机中, 在 -45°C、 真空度小于 20帕下冷冻干燥 20 小时, 得到止血海绵 G。
实施例 8
将 10g医用明胶加水 100ml ,在烧杯中加热至 60°C制成溶胶状, lg预糊化羟 丙基二淀粉磷酸酯 51#至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀并分散 于水中, 形成均匀的悬浮液, 两者倒入容器中混合, 其中 51#与明胶质量比为 2: 1, 在 -40°C下预冷 22小时, 再放入冷冻干燥机中, 在 _45°C、 真空度小于 20帕 下冷冻干燥 20小时, 得到复合止血海绵 H。
实施例 9
将 10g医用明胶加水 100ml ,在烧杯中加热至 60°C制成溶胶状, lg羟丙基二 淀粉磷酸酯 51#至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀并分散于水中, 形成均匀的悬浮液,两者倒入容器中混合,其中 51#与明胶质量比为 1 : 1,在 -40 °C下预冷 22小时, 再放入冷冻干燥机中, 在 -45°C、 真空度小于 20帕下冷冻干 燥 20小时, 得到复合止血海绵 I。
实施例 10
将 lg羧甲基淀粉 66#至于 30ml水中, 不断搅拌, 使淀粉颗粒充分溶胀并分 散于水中, 形成均匀的悬浮液, 然后加入事先制备好的胶原蛋白凝胶, 66#与胶 原蛋白的重量比例为 5: 1, 搅拌、 混匀。 倒入容器中, 在 -40°C下预冷 22小时, 再放入冷冻干燥机中, 在 -45°C、 真空度小于 20帕下冷冻干燥 20小时, 得到止 血海绵 K。
实施例 11
将 lg预糊化羟丙基二淀粉磷酸酯 51#至于 30ml水中, 不断搅拌, 使淀粉颗 粒充分溶胀并分散于水中, 形成均匀的悬浮液,然后加入事先制备好的胶原蛋白 凝胶, 51#与胶原蛋白的重量比例为 5: 1, 搅拌、 混匀。 倒入容器中, 在 -40°C 下预冷 22小时, 再放入冷冻干燥机中, 在 -45°C、 真空度小于 20帕下冷冻干燥 20小时, 得到止血海绵 L。
各生物相容性海绵及其他止血海绵的理化参数如表 1所示:
表 1
Figure imgf000016_0001
接触角测量:
仪器: 德国 Dataphysics公司 0CA40Micro视频接触角测量仪
方法: 采用座滴法, 通过动态记录功能和电影功能跟踪和记录海绵吸水的情况。 具体操作步骤如下: 将海绵试样放置在载物台上, 缓慢调节使载物台出现在视野 的下 1/3处。将加入去离子水的针头后固定在注射单元上,通过自动进样系统使 一定体积的水滴挂在针头上,聚焦使视野中的海绵样品和水滴图象清晰。缓慢上 移载物台, 使海绵样品接触水滴, 同时打开摄像及动态记录功能, 观察水滴被吸 入的过程, 并得到动态的接触角值。
各复合生物相容性变性淀粉海绵的吸水性能如表 2所示:
表 2
Figure imgf000016_0002
复合止血海绵 G 1. 95 0. 1 19. 5 复合止血海绵 H 0. 82 0. 1 8. 2 复合止血海绵 I 1. 1 0. 1 11. 0 其中, 海绵吸水倍率采用离心法测定, 即将约 0. 025g海绵至于 2ml水中, 平衡 10min, 然后放入离心机中, 在 500rpm转速下, 离心 10分钟后取出, 称重 计算残液量, 每个样品测试 6次去平均值。 海绵体积密度的测量为剪取一定长宽的海绵试样, 用游标卡尺分别量出长、 宽、 高, 并称重, 求出密度。
海绵的亲水性和吸水速率通过德国 Dataphysics公司 0CA40Micro视频接触 角测量仪观察。
0. lg各复合生物相容性变性淀粉海绵及其他止血海绵的吸水速率比较如表 3所示:
表 3
Figure imgf000017_0001
由表 3可知,包含变性淀粉的复合止血海绵其吸水速率明显高于明胶海绵和 胶原蛋白止血海绵, 其最大吸水速率可达普通明胶海绵和胶原蛋白止血海绵的 2〜5倍, 吸水更快、 更有效, 并且在之后的第 5、 6个 20秒内仍然可以保持较 高的吸水速率。 动物实验 试验目的:
观察变性淀粉止血海绵对肝脏出血模型的止血效果
试验方法:
于猪肝脏表面用手术刀切取肝脏浆膜层面积 2cmX lcm, 创面深度为 0. 3cm, 制成出血创面, 实验组采用的止血海绵有:
1、 51#止血海绵 B;
2、 66#止血海绵 C;
3、 51#与医用明胶质量比 1 : 1的复合止血海绵 I;
4、 66#与明胶质量比 1 : 1的复合止血海绵 F;
5、 66#与胶原蛋白质量比为 5: 1的复合止血海绵 K;
6、 51#与胶原蛋白质量比为 5: 1的复合止血海绵 L;
7、 66#与羧甲基纤维素质量比 1 : 1的复合止血海绵;
分别对上述创面进行止血。以明胶海绵和胶原蛋白海绵为对照组。将出血后, 立即将止血海绵放置在伤口上并用医用外科手套或止血纱布在海绵上施压,阻断 血流, l〜2min后将手套或纱布轻轻松开, 观察止血效果、 手套及纱布是否粘连 海绵及凝血块, 揭开时造成再次出血。 止血后无需将变性淀粉海绵拿开或揭除, 而是用生理盐水做适当浸润冲洗即可。
试验结果:
包含变性淀粉的止血海绵实验组止血效果均较为理想, 且使用方便。所有实 验组的止血海绵遇血后立即吸水 /血、 并与血液形成粘性的海绵-凝血块胶状体, 在 1〜2分钟内均可有效地控制肝脏创面的出血, 对照组明胶海绵和胶原蛋白海 绵组均需要 3〜5分钟或以上的时间才可以控制出血。 实验组的止血海绵遇血后 迅速吸血、 并与肝脏创面组织紧密粘附, 促进凝血, 并形成对创面出血点破损血 管的封闭作用。 实验组的海绵弹性好, 易操作, 使用方便。 1〜2 分钟后, 海绵 不易被剥离开伤口,凝血块与按压的手套或纱布敷料不发生粘连, 揭开手套或纱 布时不会破坏凝血块, 不会造成再次出血。而对照组的明胶海绵和胶原蛋白止血 海绵吸水 /血的速度慢, 须多次挤压海绵体吸血, 与创面的组织粘附性很弱, 可 轻易与伤口创面剥离, 止血效果较差且慢。

Claims

权 利 要 求 书
1、 一种生物相容性变性淀粉海绵。
2、 针对权利要求 1所述的生物相容性变性淀粉海绵的用途, 作为止血材料、 防 粘连材料、 促进组织愈合材料、 外科密封剂、 伤口组织胶中的一种。
3、 根据权利要求 1所述的生物相容性变性淀粉海绵, 其特征在于: 所述的变性 淀粉为预糊化淀粉、 酸变性淀粉、 糊精、 氧化淀粉、 酯化淀粉、 醚化淀粉、 交联 淀粉、 接枝淀粉、 复合变性淀粉中的一种或以上的组合。
4、 根据权利要求 1所述的生物相容性变性淀粉海绵, 其特征在于: 所述海绵的 吸水倍率不低于 1倍。
5、 根据权利要求 4所述的生物相容性变性淀粉海绵, 其特征在于: 所述的海绵 的吸水倍率优选 5〜100倍。
6、 根据权利要求 3所述的生物相容性变性淀粉海绵, 其特征在于: 所述的预糊 化淀粉采用干法变性法或湿法变性法制备而成,其中,所述的干法变性法包括挤 压法、 滚筒干燥法; 所述的湿法变性法包括喷雾干燥法。
7、 根据权利要求 3所述的生物相容性变性淀粉海绵, 其特征在于: 所述的醚化 淀粉至少包括羧甲基淀粉、 羟乙基淀粉、 阳离子淀粉中的一种。
8、 根据权利要求 3所述的生物相容性变性淀粉海绵, 其特征在于: 所述的交联 淀粉至少包括表氯醇交联淀粉、 交联羧甲基淀粉。
9、 根据权利要求 3所述的生物相容性变性淀粉海绵, 其特征在于: 所述的复合 变性淀粉至少包括预糊化的羟丙基二淀粉磷酸酯。
10、根据权利要求 3所述的生物相容性变性淀粉海绵, 其特征在于: 所述的接枝 淀粉至少包括丙烯酸 -羧甲基淀粉接枝共聚物、丙稀酯 -羧甲基淀粉接枝共聚物中 的一种。
11、根据权利要求 1所述的生物相容性变性淀粉海绵, 其特征在于: 所述的海绵 为柱状、 片状、 块状、 絮状、 层状或膜状。
12、针对权利要求 1所述的生物相容性变性淀粉海绵的制备方法, 以一种或以上 的变性淀粉经真空冷冻干燥制成海绵。
13、针对权利要求 1所述的生物相容性变性淀粉海绵的制备方法, 以变性淀粉与 除变性淀粉外的生物相容性止血材料经真空冷冻干燥制成海绵。
14、根据权利要求 13所述的生物相容性变性淀粉海绵的制备方法,其特征在于: 所述的除变性淀粉外的生物相容性止血材料包含明胶、胶原蛋白、羧甲基纤维素、 壳聚糖、 透明质酸中的一种或其组合。
15、针对权利要求 1所述的生物相容性变性淀粉海绵的制备方法,用所述的变性 淀粉与凝血剂经真空冷冻干燥制成。
16、根据权利要求 15所述的生物相容性变性淀粉海绵的制备方法,其特征在于: 所述的凝血剂包括凝血因子、 纤维蛋白、 钙剂、 鱼精蛋白、 多肽、 氨基酸中的一 种或其组合。
17、针对权利要求 1所述的生物相容性变性淀粉海绵的制备方法,用所述的变性 淀粉与增塑剂经真空冷冻干燥制成。
18、根据权利要求 17所述的生物相容性变性淀粉海绵的制备方法,其特征在于: 所述的增塑剂包括甘油、 高岭土、 山梨醇、 乙醇、 氨水、 聚乙二酸中的一种或其 组合。
19、针对权利要求 1所述的生物相容性变性淀粉海绵的使用方法, 用于人、哺乳 动物、 鸟类、 爬行动物的有血创面。
20、根据权利要求 19所述的生物相容性变性淀粉海绵的使用方法,其特征在于: 用于人体体表、组织器官及体腔内组织或器官的有血创面, 或用于外科手术、创 伤、 急救、 内窥镜下的止血。
21、 针对权利要求 1的生物相容性变性淀粉海绵产品, 包括止血胶、 止血贴、 止 血膜。
PCT/CN2008/073375 2007-12-11 2008-12-08 生物相容性变性淀粉海绵 WO2009076873A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08862032A EP2233157A4 (en) 2007-12-11 2008-12-08 SPONIOUS BIOCOMPATIBLE MATERIAL WITH UNSATURATED STARCH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710199682.3A CN101455857B (zh) 2007-12-11 2007-12-11 生物相容性变性淀粉海绵
CN200710199682.3 2007-12-11

Publications (1)

Publication Number Publication Date
WO2009076873A1 true WO2009076873A1 (zh) 2009-06-25

Family

ID=40767156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073375 WO2009076873A1 (zh) 2007-12-11 2008-12-08 生物相容性变性淀粉海绵

Country Status (3)

Country Link
EP (1) EP2233157A4 (zh)
CN (1) CN101455857B (zh)
WO (1) WO2009076873A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187103A1 (en) * 2014-05-21 2015-12-10 Punyanitya Sittiporn Surgical hemostatic based rice starch
CN110538344A (zh) * 2019-10-09 2019-12-06 北京诺康达医药科技股份有限公司 医用可降解止血材料及其制备方法
CN113429909A (zh) * 2020-11-17 2021-09-24 江门市蓝羽建筑粘合剂实业有限公司 一种碱糊化湿胶及其制备方法和应用
CN114306754A (zh) * 2021-12-29 2022-04-12 中鼎凯瑞科技成都有限公司 以马铃薯淀粉为基体的全有机降解骨修复材料及制备方法
CN115721771A (zh) * 2022-10-22 2023-03-03 湖南中腾湘岳生物科技有限公司 一种医用海绵、制备方法及其应用
CN115721772A (zh) * 2022-12-15 2023-03-03 湖南中腾湘岳生物科技有限公司 一种可吸收止血材料
CN115721772B (zh) * 2022-12-15 2024-05-10 湖南中腾湘岳生物科技有限公司 一种可吸收止血材料

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2740499B1 (en) * 2011-08-02 2018-09-26 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Anti-adhesion medical material and method for producing same
CN102580138A (zh) * 2012-03-30 2012-07-18 张晓金 一种用于止血的多糖复合膜及其制备方法
CN102772819B (zh) * 2012-05-09 2014-07-23 苏州博创同康生物工程有限公司 一种皮肤创面生物诱导活性敷料及其制备方法和应用
CN102813758A (zh) * 2012-09-07 2012-12-12 凌峰 肛肠塞填充药剂
DE102013203997A1 (de) 2013-03-08 2014-09-11 Aesculap Ag Medizinisches Produkt
CN103275345B (zh) * 2013-05-08 2016-08-10 江苏德威兰医疗器械有限公司 一种止血海绵及其制备方法
CN103265719B (zh) * 2013-05-08 2016-08-10 江苏德威兰医疗器械有限公司 一种止血海绵及其制备方法
CN103275344B (zh) * 2013-05-08 2016-08-10 江苏德威兰医疗器械有限公司 一种止血海绵及其制备方法
CN103319744B (zh) * 2013-05-08 2016-08-10 江苏德威兰医疗器械有限公司 一种止血海绵及其制备方法
DE102013211316A1 (de) 2013-06-17 2014-12-18 Aesculap Ag Hämostyptikum
CN103394115B (zh) * 2013-07-31 2014-06-11 江苏迪沃生物制品有限公司 一种淀粉型可吸收医用海绵及其制备方法
CN104546893A (zh) * 2014-01-07 2015-04-29 北京大清生物技术有限公司 一种可生物降解吸收的止血组合物
US10124084B2 (en) 2014-03-24 2018-11-13 Datt Life Sciences Private Limited Ready to use biodegradable and biocompatible device and a method of preparation thereof
CN105412975B (zh) * 2014-09-18 2019-05-31 苏州安德佳生物科技有限公司 一种生物相容性止血制品及其制备方法
CN104353107B (zh) * 2014-11-10 2016-08-31 顾玉奎 一种医用止血海绵材料及其制备方法
CN105770969A (zh) * 2014-12-23 2016-07-20 重庆联佰博超医疗器械有限公司 一种可吸收性淀粉止血粉及其制备方法、应用
CN105770967A (zh) * 2014-12-23 2016-07-20 重庆联佰博超医疗器械有限公司 一种可吸收性淀粉止血粉及其制备方法、应用
CN105816475A (zh) * 2015-01-04 2016-08-03 重庆联佰博超医疗器械有限公司 一种止血粉及其制备方法、应用
CN105816902A (zh) * 2015-01-08 2016-08-03 重庆联佰博超医疗器械有限公司 可吸收性止血粉及其制备方法、应用
CN104623720B (zh) * 2015-02-04 2017-05-10 北京爱特康科贸有限责任公司 一种淀粉基止血海绵及其制备方法
CN105056281A (zh) * 2015-07-09 2015-11-18 天津市长江医疗器械有限公司 一种淀粉海绵止血材料及其制作方法
CN106474524A (zh) * 2015-08-31 2017-03-08 山东美泰医药有限公司 一种可降解淀粉止血海绵及其制备方法
US10137220B2 (en) 2015-11-08 2018-11-27 Omrix Biopharmaceuticals Ltd. Hemostatic composition
CN105796596A (zh) * 2016-03-11 2016-07-27 张�杰 一种外科手术平衡盐冲洗液及其制备方法
CN106237370A (zh) * 2016-07-29 2016-12-21 江苏蓝湾生物科技有限公司 一种淀粉类医用海绵的制备方法
CN108498879B (zh) 2017-02-28 2021-12-28 苏州安德佳生物科技有限公司 黏膜下注射用组合物和试剂组合及其应用
CN107088236B (zh) * 2017-03-31 2020-05-19 北京化工大学 一种增强型抗菌止血生物海绵的制备方法
CN106975098B (zh) * 2017-04-13 2020-07-07 赛克赛斯生物科技股份有限公司 一种复合多糖止血组合物及其制备方法与应用
CN106913899A (zh) * 2017-04-26 2017-07-04 江苏华能药业有限公司 利用二次冷冻法制备植物多糖止血海绵
CN107158448A (zh) * 2017-06-01 2017-09-15 苏州乔纳森新材料科技有限公司 一种医用生物止血材料及其制备方法
CN107349458B (zh) * 2017-07-14 2019-09-13 北京化工大学 一种明胶/植物多糖复合止血海绵的制备方法
CN107551312B (zh) * 2017-10-19 2020-06-26 北京华信佳音医疗科技发展有限责任公司 一种絮状胶原止血纤维及其制备方法
CN108273115B (zh) * 2018-04-16 2020-06-16 山东威高药业股份有限公司 羟乙基淀粉在制作创面敷料中的应用
CN109821059A (zh) * 2019-04-16 2019-05-31 大连医科大学附属第一医院 一种可吸收流体明胶止血材料的制备方法
CN110575562B (zh) * 2019-10-15 2023-08-08 华东理工大学 一种具有时序止血作用的淀粉基止血材料及其制备方法
CN110713303B (zh) * 2019-10-24 2021-12-14 北京石油化工学院 一种电聚结强化纳米吸附沉淀污水处理方法
CN113045793A (zh) * 2021-04-02 2021-06-29 宁波因天之序生物科技有限公司 医用止血海绵材料及其制备方法
CN114191601B (zh) * 2021-11-25 2022-05-24 华南理工大学 一种基于3d打印技术的淀粉凝胶止血材料及其制备方法和应用
CN114767933A (zh) * 2022-04-02 2022-07-22 伊索曼(中山)医疗器械有限公司 一种水凝胶及其制备方法
CN114806261B (zh) * 2022-04-18 2023-04-11 广东红日星实业有限公司 一种脱墨剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060461A (en) 1999-02-08 2000-05-09 Drake; James Franklin Topically applied clotting material
CN1312118A (zh) * 2001-02-27 2001-09-12 鲁格 一种海绵状止血材料的制备方法
US20030073663A1 (en) * 1997-06-25 2003-04-17 David M Wiseman Bioabsorbable medical devices from oxidized polysaccharides
CN1502376A (zh) * 2002-11-26 2004-06-09 包含醛改性的再生多糖的伤口敷料
CN1533751A (zh) 2002-06-28 2004-10-06 止血的创伤敷料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1219942B (it) * 1988-05-13 1990-05-24 Fidia Farmaceutici Esteri polisaccaridici
IT1263394B (it) * 1993-07-30 1996-08-05 Fidia Advanced Biopolymers Srl Composizioni farmaceutiche per uso topico a base di acido ialuronico e suoi derivati
US6107371A (en) * 1998-06-16 2000-08-22 National Starch And Chemical Investment Holding Corporation Biodegradable expanded starch products and the method of preparation
US20070248653A1 (en) * 2006-04-20 2007-10-25 Cochrum Kent C Hemostatic compositions and methods for controlling bleeding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073663A1 (en) * 1997-06-25 2003-04-17 David M Wiseman Bioabsorbable medical devices from oxidized polysaccharides
US6060461A (en) 1999-02-08 2000-05-09 Drake; James Franklin Topically applied clotting material
CN1312118A (zh) * 2001-02-27 2001-09-12 鲁格 一种海绵状止血材料的制备方法
CN1533751A (zh) 2002-06-28 2004-10-06 止血的创伤敷料及其制备方法
CN1502376A (zh) * 2002-11-26 2004-06-09 包含醛改性的再生多糖的伤口敷料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI B. ET AL.: "Hemostatic evaluation and mechanism of novel rapid hemostatic biomaterials.", EXPERIMENTAL TECHNOLOGY AND MANAGEMENT., vol. 24, no. 7, July 2007 (2007-07-01), pages 51 - 54, XP008145675 *
See also references of EP2233157A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187103A1 (en) * 2014-05-21 2015-12-10 Punyanitya Sittiporn Surgical hemostatic based rice starch
CN110538344A (zh) * 2019-10-09 2019-12-06 北京诺康达医药科技股份有限公司 医用可降解止血材料及其制备方法
CN113429909A (zh) * 2020-11-17 2021-09-24 江门市蓝羽建筑粘合剂实业有限公司 一种碱糊化湿胶及其制备方法和应用
CN113429909B (zh) * 2020-11-17 2022-07-15 广东蓝羽新材料科技有限公司 一种碱糊化湿胶及其制备方法和应用
CN114306754A (zh) * 2021-12-29 2022-04-12 中鼎凯瑞科技成都有限公司 以马铃薯淀粉为基体的全有机降解骨修复材料及制备方法
CN115721771A (zh) * 2022-10-22 2023-03-03 湖南中腾湘岳生物科技有限公司 一种医用海绵、制备方法及其应用
CN115721771B (zh) * 2022-10-22 2024-02-02 湖南中腾湘岳生物科技有限公司 一种医用海绵、制备方法及其应用
CN115721772A (zh) * 2022-12-15 2023-03-03 湖南中腾湘岳生物科技有限公司 一种可吸收止血材料
CN115721772B (zh) * 2022-12-15 2024-05-10 湖南中腾湘岳生物科技有限公司 一种可吸收止血材料

Also Published As

Publication number Publication date
EP2233157A1 (en) 2010-09-29
CN101455857A (zh) 2009-06-17
CN101455857B (zh) 2014-03-12
EP2233157A4 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2009076873A1 (zh) 生物相容性变性淀粉海绵
US10076590B2 (en) Modified starch material of biocompatible hemostasis
JP5931339B2 (ja) 生物相容性の止血、癒着防止、癒合促進、外科密封可能な変性澱粉材料
US10314937B2 (en) Biocompatible hemostatic product and preparation method thereof
JP2011509932A5 (zh)
WO2018113147A1 (zh) 一种超吸水性高分子水凝胶干胶海绵及其制备方法和用途
WO2009018764A1 (fr) Matériau hémostatique à base d'amidon modifié résorbable et son procédé de préparation
CN1872351A (zh) 可溶性纤维素止血海绵的制备方法
Pavliuk et al. Characteristics of structured medical hemostatic sponges as a medical devices for stop bleeding and for close the wound
CN112007202B (zh) 一种可粘附促愈合止血海绵及其制备方法
CN111991611B (zh) 一种可粘附自修复止血海绵及其制备方法
CN104800880A (zh) 一种含有止血消炎药物的可吸收海绵贴剂的制备技术
JP2020130541A (ja) 医療材料およびその製造方法
Yang et al. A Laparoscopically Compatible Rapid‐Adhesion Bioadhesive for Asymmetric Adhesion, Non‐Pressing Hemostasis, And Seamless Seal
Susrutha et al. Types of Wound Dressings and Materials used in Mild to Moderately Exuding Wounds: A Review
CN115887741A (zh) 一种可吸收骨蜡及其制备方法
Pan et al. Strongly-Adhesive and Easily-Detachable Carboxymethyl Cellulose Aerogel for Control of Noncompressible Hemorrhage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08862032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008862032

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE