WO2009075366A1 - ソフトスイッチング電力変換装置 - Google Patents

ソフトスイッチング電力変換装置 Download PDF

Info

Publication number
WO2009075366A1
WO2009075366A1 PCT/JP2008/072716 JP2008072716W WO2009075366A1 WO 2009075366 A1 WO2009075366 A1 WO 2009075366A1 JP 2008072716 W JP2008072716 W JP 2008072716W WO 2009075366 A1 WO2009075366 A1 WO 2009075366A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
phase
semiconductor switch
capacitor
Prior art date
Application number
PCT/JP2008/072716
Other languages
English (en)
French (fr)
Inventor
Ryuichi Shimada
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Priority to US12/746,575 priority Critical patent/US20100259955A1/en
Priority to DE112008003369T priority patent/DE112008003369T5/de
Priority to JP2009545470A priority patent/JP4534007B2/ja
Publication of WO2009075366A1 publication Critical patent/WO2009075366A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to AC power or DC-to-DC power forward conversion, and DC-to-AC power reverse conversion, using a magnetic energy regenerative switch that regenerates magnetic energy without loss in both directions.
  • the present invention relates to a soft-switching power converter capable of reverse conversion using the generated high-frequency boost pulse voltage as a DC link power supply.
  • Magnetic energy regenerative switch does not have reverse blocking capability, that is, reverse conduction type semiconductor. It consists of a bridge circuit composed of four body elements (hereinafter referred to as reverse conducting semiconductor switches) and a capacitor connected between the DC terminals of the bridge circuit.
  • the present invention is a soft switching power conversion device that performs soft switching to convert AC power to DC power or vice versa, and the object of the present invention is to provide an AC power source or a DC current that reverses the current polarity to the input power source 1.
  • the power supply is used, and the input power supply 1 is connected to the AC input terminals a and b via the AC inductance 2 and the boost pulse voltage generating means 3 and the DC output terminal of the boost pulse voltage generating means 3
  • a smoothing cylinder inserted in series between c or d and the DC power supply or load 7 to smooth the boost pulse voltage generated by the boost pulse voltage generating means 3 and supply it to the DC power supply or load 7.
  • a control means 4 for controlling the boost pulse voltage generating means 3, and the boost pulse voltage generating means 3 includes four reverse conducting semiconductor switches S 1, S 2, S 3 and S 4. And a capacitor 3 1 that is connected between the DC output terminals c and d of the bridge circuit and regenerates and stores the magnetic energy of the current at the time of current interruption. Provides a control signal to the gate so that at least one reverse conducting semiconductor switch pair located on the diagonal of the bridge circuit is simultaneously turned on and off. By setting the ON / OFF cycle of the reverse conducting semiconductor switch to be longer than the resonance cycle determined by the capacitance of the capacitor 3 1 and the inductance L ac of the AC inductance 2. Capacitor 31 voltage is discharged every cycle to zero, zero voltage when turning off reverse conducting semiconductor switch, zero current when turning on, and soft switching is realized. This is achieved by a soft switching power converter.
  • the above object of the present invention is to provide a pulse width modulation (PWM) that is connected in parallel with the DC output terminal (:, d) of the boost pulse voltage generation means 3 and that synchronizes the boost pulse voltage with the generation period of the boost pulse voltage.
  • PWM pulse width modulation
  • Switching control means 5 that alternately turns on and off the upper and lower voltages of the bus based on the carrier signal is provided, and the switching control means 5 includes one or more arms in which two semiconductor switches are connected in series. And is achieved effectively by a soft switching power converter characterized by being controlled by the control means 4.
  • the above object of the present invention is to provide a single arm when the power applied to the load 7 is direct current, step down the boost pulse voltage by turning on and off the semiconductor switch, and supply the load to the load 7.
  • the arm Two when the semiconductor switch is turned on and off to generate a low-frequency single-phase AC voltage, and the power applied to the load 7 is three-phase AC, the number of arms is three, and the semiconductor switch is turned on and off. Controls to generate a three-phase AC voltage, and when the power applied to the load 7 is N-phase AC, the number of arms is N, and the N-phase AC voltage is generated by controlling the semiconductor switch on / off. This is achieved by a soft switching power converter.
  • the above object of the present invention is to provide a pair of reverse conducting semiconductor switches (S 1 and S 3 pair or S 2 and S 4 pair) located on the diagonal line of the bridge circuit when the input power source 1 is DC. Only two reverse conducting semiconductor switches of one pair of the pair) are turned on and off, but the two reverse conducting semiconductor switches of the other pair are kept off and operated as diodes. This is effectively achieved by a soft switching power converter characterized by controlling the power as described above.
  • the above-described object of the present invention is to provide a half-bridge circuit comprising boosting pulse generating means 3 including two series-connected reverse conducting semiconductor switches S 2 and S 3 and two series-connected diodes.
  • the boost pulse voltage generating means 3 is composed of two reverse conducting semiconductor switches connected in series as one leg. Connected between the DC terminals of a three-phase full-wave bridge circuit consisting of six reverse-conducting semi-conductor switches consisting of two legs, and a first capacitor and a first diode connected in parallel A second capacitor and a second diode in parallel. A circuit in which the first diode and the second diode are connected in series so that the first diode is in the forward direction, and the middle point of the series connection is connected to the neutral point of the three-phase AC power source.
  • Select two reverse conducting semiconductor switches on each leg select a three-phase AC current direction switch, and simultaneously turn on and off all selected reverse conducting semiconductor switches. It can also be effectively achieved by a soft switching power converter that generates a pulse voltage between the DC terminals of a three-phase full-wave bridge circuit and performs three-phase AC power conversion. Further, the above object of the present invention is also effectively achieved by a soft switching power converter characterized in that a sirius is used as a semiconductor switch of the switching control means 51.
  • the above object of the present invention is also effectively achieved by a soft switching power converter characterized in that a diode is used in place of the smoothing inductance 6 as means for smoothing the boost pulse voltage.
  • the above object of the present invention is to synchronize the power MOSFETs when the power MOSFETs are reversely conductive when the power MOSFETs with built-in parasitic diodes are used in the four reverse conducting semiconductor switches (S 1, S 2, S 3, S 4). It is also effectively achieved by sending a signal to reduce conduction losses.
  • control means is based on the input voltage or input current of the boost pulse voltage generating means 3, the voltage and current of the switching AC output by DC output or pulse width modulation, and the voltage of the capacitor 31. It is also achieved effectively by a soft switching power converter characterized in that the on-Z-off control of the reverse conduction type semiconductor switch is performed by determining the on-Z-off time ratio and switching period of the gate signal.
  • the above object of the present invention is achieved by a soft switching power converter characterized in that the arm of the switching control means 5 is replaced with a series connection of four semiconductor switches. Further, the above object of the present invention is to use a three-phase AC as the input power source 1 and use a reverse conduction type semiconductor switch for the semiconductor switch of the switching control means 5 when the power applied to the load 7 is a three-phase AC. Effectively achieved by a soft switching power converter. The invention's effect
  • the soft switching power conversion device of the present invention zero voltage is applied when a semiconductor element used for all switching is turned off, and zero current is turned on when the semiconductor element is turned on. . For this reason, the frequency can be easily increased, and the power converter can be downsized. In addition, there is an excellent effect that power reverse conversion from DC power to AC power, which was impossible with a power forward conversion device from AC power to DC power by a conventional diode bridge input, is also possible.
  • FIG. 1 is a diagram for explaining the operation of a DC boost pulse voltage generating means using a magnetic energy regeneration switch.
  • FIG. 2 is a diagram showing an initial state of current flow in the DC boost pulse voltage generating means.
  • FIG. 3 is a diagram for explaining the current flow immediately after turning off (A) and immediately after turning on (B) of the reverse conducting semiconductor switches S l and S 3.
  • Fig. 4 shows the results of computer simulation of the power supply current and capacitor voltage in Fig. 1.
  • FIG. 5 is a diagram showing computer simulation results of the voltage and current applied to the reverse conducting semiconductor switch.
  • Figure 6 shows the soft switching power variation based on MERS according to the present invention. It is a circuit block diagram which shows the basic composition of a conversion apparatus.
  • FIG. 7 is a circuit block diagram showing the single-phase AC Z-DC converter with PFC function according to the first embodiment of the present invention.
  • FIG. 8 is a circuit block diagram showing an example of the gate control circuit of the reverse conducting semiconductor switch according to the first embodiment of the present invention.
  • Fig. 9 is a block diagram of the circuit and control of a conventional single-phase AC / DC converter with PFC function.
  • FIG. 10 is a diagram showing a computer simulation result of Example 1 of the present invention.
  • FIG. 11 shows the results of computer simulation of Example 1 of the present invention, and shows the current and voltage waveforms of the reverse conducting semiconductor switch in FIG.
  • FIG. 12 shows a circuit diagram (A) and a computer simulation result (B) of the DC / DC converter of Embodiment 2 of the present invention.
  • FIG. 13 is a circuit diagram of a three-phase AC / DC converter according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram showing a computer simulation result of Example 3 of the present invention.
  • FIG. 15 is a circuit block diagram of a single-phase AC / DC converter according to Embodiment 4 of the present invention.
  • FIG. 16 is a circuit diagram of a DC three-phase AC converter according to Embodiment 5 of the present invention.
  • FIG. 17 is a diagram showing the computer simulation results of Example 5 of the present invention.
  • FIG. 18 is a diagram showing the computer simulation results of Example 5 of the present invention.
  • FIG. 19 shows a circuit diagram (A) and a computer simulation result (B) of the DC step-down DC converter according to Embodiment 6 of the present invention.
  • FIG. 20 is a circuit block diagram of a DC Z single-phase AC converter according to Embodiment 7 of the present invention.
  • FIG. 21 is a diagram showing the computer simulation result of Example 7 of the present invention.
  • FIG. 22 is a circuit diagram showing the case where four semiconductor switches are connected in series to the arm in the switching control means 5.
  • FIG. 23 is a circuit block diagram (B) of a DC Z-DC converter using a diode as the smoothing means of Embodiment 8 of the present invention, and a circuit block diagram (A) of Embodiment 2 of the present invention.
  • FIG. 24 is a circuit block diagram of the three-phase alternating current Z three-phase alternating current converter according to Embodiment 9 of the present invention.
  • FIG. 25 is a diagram (A) showing the computer simulation result of Example 9 of the present invention, and a diagram (B) showing the switching timing of the reverse conduction type semiconductor switch and the low-speed polarity switching switch.
  • the main component of the present invention is a magnetic energy regenerative switch (hereinafter referred to as M E R S) disclosed in Patent Document 1 described above.
  • MERS consists of a bridge circuit composed of four reverse conducting semiconductor switches and a capacitor connected between the DC terminals of the bridge circuit. Forward-reverse current can be turned on only by gate control of a reverse conducting semiconductor switch, and two reverse conducting semiconductor switches at diagonal positions of the bridge circuit are made into one pair, and at least one of the pair When two pairs of reverse conducting semiconductor switches are turned on at the same time Z-off, the capacitor absorbs the magnetic energy of the current when the current is cut off when the reverse conducting semiconductor switch is turned off and is turned on. It is a switch circuit that regenerates current by discharging through a reverse conducting semiconductor switch.
  • a DC pulse voltage appears at the voltage across the capacitor, it can be converted from DC or AC to DC power by smoothing it with a smooth inductance to produce a DC output.
  • it can be converted to single-phase AC or three-phase AC voltage with a low-speed switch that switches in sync with the DC pulse voltage being zero, and the waveform can be changed by using PWM-controlled switch switching for switching. Can be made close to the fundamental wave (sine wave).
  • Fig. 1 shows a DC power supply and AC inductance 2 connected in series to AC terminals &, b of ⁇ 4 6 3.
  • Fig. 2, Fig. 3 (A), (B) Shows that the path through which the current flows changes due to the switching of the reverse conducting semiconductor switch.
  • Power MOSFETs with built-in parasitic diodes are used as the reverse conducting semiconductor switches in Figs. 1, 2, and 3 (A) and (B).
  • the current from the DC power source is: b — Parasitic diode of reverse conducting semiconductor switch S 2 — c
  • One capacitor C 1 d Parasitic diode of reverse conducting semiconductor switch S 4 a And flows into the capacitor C, and the capacitor C is charged.
  • Capacitor C voltage rising speed Is determined by the resonance period obtained from the capacitance of the capacitor C and the inductance of the AC inductance L ac. If the rising speed of the capacitor voltage is sufficiently slower than the on / off speed of the reverse conducting semiconductor switch, then almost all the closing voltage is realized when turning off the reverse conducting semiconductor switches S1 and S3. It can be said.
  • Fig. 4 shows the waveforms of the power supply current I1, the capacitor voltage Vc, and the signal (gate signal) Vg that turns on / off the gate of the reverse conducting semiconductor switch.
  • FIG. 4 shows the computer simulation result when the circuit constants are as follows in the circuit of FIG. 1.
  • V d c i n DC power supply voltage 10 V,
  • R DC resistance of AC inductance L a c 0.5 ⁇ .
  • FIG. 4 shows how the capacitor voltage Vc and the power supply current I1 grow for each pulse.
  • Capacitor C generates many times the power supply voltage V d c i ⁇ .
  • the capacitor voltage V c increases until the input from the power supply balances with the loss in the DC resistance R of the AC inductance L a c.
  • FIG. 5 shows waveforms of voltage, current and gate signal applied to the reverse conducting semiconductor switch S 3 in FIG. From FIG. 5, it can be seen that the reverse conducting semiconductor switch S3 is switched at zero voltage when turned off and at zero current when turned on, that is, soft switching is performed.
  • MERS can generate a pulse of current at the AC terminal and a voltage pulse at the DC terminal. At this time, zero voltage zero current switching is realized in the reverse conducting semiconductor switch regardless of the magnitude of the current. With the switch operation without loss, the capacitor voltage and the flowing power supply current grow, and the capacitor voltage and the flowing power supply current increase until the input from the power supply and the loss in resistance are balanced.
  • V c ⁇ > T (L / C) ⁇ I... (2)
  • the final value of the steady-state current I s is determined by the DC resistance component R of the AC inductance L ac, and is given by the following equation (3).
  • the capacitor voltage V c is the DC impedance of the supply voltage surge impedance ⁇ and AC inductance L ac It can be seen that the ratio is increased by a factor of component R.
  • T s is the sum of the L and R time constant pulse-off times. It is close to the number (LZR) divided by the on / off ratio (D uty), and is given by the following equation (5).
  • FIG. 6 is a circuit block diagram showing a basic configuration of the soft switching power converter according to the present invention.
  • the input power source 1 uses an AC power source or a DC power source whose current polarity is reversed.
  • the input power source 1 generates a boost pulse voltage which is input to the AC input terminals a and b via the AC inductance 2 3
  • the boost pulse voltage generated by the boost pulse voltage generating means 3 is supplied to the DC power source or the load 7 via the smoothing inductance 6 and connected to the DC output terminals c and d of the boost pulse voltage generating means 3
  • a switching control means 5 and a boosting pulse voltage generating means 3 and a control means 4 for controlling the switching control means 5 are provided.
  • Load 7 can be either an AC load or a DC load.
  • the step-up pulse voltage generating means 3 is connected between a bridge circuit composed of four reverse conducting semiconductor switches S1, S2, S3, and S4 and the DC output terminals c and d of the bridge circuit. And a capacitor 3 1 that regenerates and stores the magnetic energy of the current at the time of interruption.
  • the control means 4 simultaneously transmits two reverse conducting semiconductor switches of at least one pair of reverse conducting semiconductor switches located on the diagonal line of the bridge circuit.
  • the control signal is given to the gate so that the ON / OFF operation is performed at the same time, and the ON / OFF cycle of the reverse conducting semiconductor switch is determined by the capacitance C of the capacitor 3 1 and the inductance L ac of the AC inductance 2
  • the capacitor By setting the capacitor so that it is longer than the determined resonance period, the voltage of the capacitor 31 will discharge to zero in each half cycle, to zero voltage when the reverse conducting semiconductor switch turns off, and zero current to turn on As a result, soft switching is realized.
  • the capacitor 3 1 of the power converter according to the present invention only stores the magnetic energy of the AC inductance 2. This is completely different from the conventional general use of voltage type capacitors.
  • the capacitor In the conventional general voltage type inverter, the capacitor is used as a voltage source, so the voltage is always maintained. After current interruption, voltage is generated at once in the semiconductor elements used for switching, and hard switching is performed.
  • the capacitor 31 of the power conversion device according to the present invention sets the pulse period of the gate of the reverse conducting semiconductor switch so that the voltage of the capacitor 31 is discharged to zero voltage in each half cycle.
  • Capacitor 3 1 is characterized by resonating with AC inductance 2.
  • the capacitance C of the capacitor 31 is a capacitance determined by the resonance frequency with the inductance L a c of the AC inductance 2. As a result, the capacitance C of the capacitor 3 1 can be remarkably reduced as compared with the conventional voltage source capacitor of the voltage type inverter.
  • the voltage of the capacitor 31 oscillates at the pulse period of the gate signal of the reverse conducting semiconductor switch to regenerate magnetic energy.
  • the voltage of the capacitor 31 is boosted by the power supply, and a DC boost pulse voltage having a zero voltage period appears between the DC output terminals c and d.
  • the switching control means 5 is an arm in which two semiconductor switches are connected in series. Rf. Thus, the voltage on the top and bottom of the bus is alternately switched on and off based on the pulse width modulation (PWM) carrier signal. It is.
  • PWM pulse width modulation
  • the number of arms is two, and the semiconductor switch is turned on and off to generate a low-frequency single-phase AC voltage.
  • the power supplied to the load 7 is a three-phase AC
  • the number of arms is three
  • the three-phase AC voltage is generated by controlling the semiconductor switch on and off.
  • the number of arms is N, and it can be controlled by turning on and off the semiconductor switch to generate N-phase AC voltage.
  • the N-phase alternating current is represented by a three-phase alternating current.
  • the L fill and C fill provided on the AC input terminal side and DC output terminal side are provided to remove unwanted frequency signals and extract power at the desired frequency. It is.
  • Example 1 Example of single-phase AC / step-up DC conversion with PFC function
  • FIG. 7 shows an example of application to AC Z step-up DC conversion with PFC (Power F actor Correction, hereinafter referred to as PFC) function.
  • Ldc smoothing inductance
  • Fig. 8 shows the capability of detecting the voltage and current of an AC power supply.
  • two pairs of reverse conduction type semiconductor switches (S 1 and S3 pair and S2 and S4 pair) are given an on-gate for one pair and an off-gate for the other pair, and the Z-off state is alternately switched between the pairs.
  • a power MOSFET with a built-in parasitic diode is used as the reverse conducting semiconductor switch in Fig. 7, the on-resistance of the MOSFET element part is smaller than the junction voltage of the parasitic diode part.
  • Fig. 9 shows a circuit block diagram of the conventional AC step-up DC conversion with PFC function.
  • a boost-up circuit with high-speed switching allows input power factor and waveform
  • Fig. 9 shows that after the diode rectifier, hard switching is performed at 30 kHz, which is sufficiently faster than the input frequency. It controls the current. After the AC is rectified by a diode bridge, the current amplitude is modulated so that the input current is similar to the voltage waveform when performing flyback boosting.
  • PFC control is performed so that the input current is close to the fundamental wave (sine wave), this is generally called PAM (Pu 1 se Amp 1 amplitude Modulation) control.
  • the boosted pulse voltage is sent to the voltage source capacitor via the successive smoothing circuit, where it is smoothed out and becomes DC power.
  • This method is superior in that only one semiconductor element is used for high-speed switching, but hard switching is performed, and the loss caused by voltage X current is large. Inserting a diode bridge (through two diode elements during conduction) and one diode to prevent reverse current in the flyback is also disadvantageous in that the forward conduction loss of the diode is added by three elements. is there. Also, reverse conversion from DC to AC is not possible.
  • FIG. 10 shows the waveforms of the input AC current I a c in, the input AC voltage V a c i ⁇ , the capacitor voltage V c c, and the output DC voltage V d cout shown in FIG. (Current is displayed at 1/10 times)
  • FIG. 10 shows the computer simulation results when the circuit constants are as follows in the circuit of FIG. 1.
  • Reverse-conducting semiconductor switches S1, S2, S3, S4 The semiconductor elements used are IGBT and diodes connected in reverse parallel to them, and their respective conduction losses are ignored
  • AC power supply 50Hz, 200Vrms,
  • Capacitor 0.1 micro F
  • Output DC voltage 350V is obtained from input AC voltage 200V rms.
  • FIG. 11 shows the waveforms of the voltage VP 3 and current I applied to the reverse conducting semiconductor switch S 3 in the case of FIG. 10 (current is displayed 10 times). From Fig. 11, it can be seen that the reverse-conducting semiconductor switch S3 is switched at the zero voltage when turned off and at zero current when turned on, that is, soft switching is performed.
  • the soft switching power conversion device can perform AC / DC conversion by directly inputting AC without rectifying the AC with a diode bridge.
  • AC Z boost DC conversion with PFC function is performed using a high-frequency pulse link generated by using the function of generating a step-up pulse voltage.
  • the generation of the boost pulse voltage by ME RS is lossless, and the semiconductor elements used for switching become zero voltage when turned off and zero current when turned on, so there is no switching loss. It is suitable for high-speed switching operation and can be downsized with higher frequency.
  • reverse conversion from direct current to alternating current which was impossible with the conventional diode bridge input, is also possible.
  • Embodiment 2 (Operation of ME RS Reverse Conductive Semiconductor Switch at DC Input)
  • FIG. 12 (A) shows an example of an embodiment of direct current Z direct current conversion.
  • Fig. 12 (B) shows the computer simulation results of Fig. 12 (A).
  • FIG. 12 (A) is a modification of the first embodiment of the present invention (FIG. 7) in which the input AC power source in FIG. 7 is replaced with a direct current power source. It can be converted reversibly across differences.
  • FIG. 12 (A) shows a circuit block diagram of the step-up conversion from DC 100 V to DC 300 V.
  • Fig. 12 (B) shows the input DC current I in, output DC current I out, bus PN voltage V pn, voltage V applied to the reverse conducting semiconductor switch S 1 in Fig. 12 (A). The waveform of igbt and current I is shown (current is displayed 10 times).
  • FIG. 13 shows an example of an embodiment of power conversion from three-phase AC to DC.
  • Fig. 14 shows the computer simulation results of Fig. 13.
  • FIG. 13 shows a case where a single-phase AC input is replaced with a three-phase AC input in the first embodiment (FIG. 7) of the present invention.
  • Fig. 1 shows that as a boost pulse voltage generation means, two reverse conduction type semiconductor switches connected in series as one leg, and six reverse conduction type consisting of three legs.
  • a first capacitor and a first diode Connected between the DC terminals of a three-phase full-wave bridge circuit using a semiconductor switch and a three-phase full-wave bridge circuit, a first capacitor and a first diode connected in parallel, a second capacitor and a second capacitor Daio
  • the first diode and the second diode are connected in series so that the first diode and the second diode are in the forward direction, and the midpoint of the series connection is connected to the neutral point of the three-phase AC It uses a magnetic energy regenerative switch composed of the above, and can convert three-phase power.
  • Fig. 14 shows the input three-phase AC current IL aa, IL bb IL cc, bus PN voltage V n, DC output voltage V dcout, gate signals G l, G 2, G
  • the waveform of 3 is shown. More specifically, the gate control signal is 10 kHz and is turned on and off at high speed.
  • the power factor of the input three-phase AC current is 1, which is a fundamental wave (sine wave), by simple control of the on-Zoff time ratio (duty ratio). From the input three-phase AC voltage 2 0 0 V r m s, output DC voltages 1 0 0 0 V and 1 0 kW are obtained.
  • the arm is switched, and a boost pulse voltage rising from a square wave zero is generated between the bus PN with a high frequency pulse.
  • FIG. 15 shows an example in which the bridge circuit in the boost pulse voltage generating means 3 is replaced with a simpler one.
  • FIG. 15 shows the reverse conduction type semiconductor switches S 1 and S 4 of the bridge circuit in the boosting pulse voltage generating means 3 in the first embodiment (FIG. 7) of the present invention.
  • This is an example of half-bridged replacement.
  • Half-bridge construction requires two capacitors, but the number of reverse conducting semiconductor switches can be halved.
  • This embodiment is particularly effective in power conversion of three-phase AC input.
  • FIG. 16 shows an example of a DC / three-phase AC conversion embodiment.
  • Figures 17 and 18 show the computer simulation results of Figure 16.
  • FIG. 16 shows a low-speed polarity switching switch (T 1 to T 6) as the switching control means 5 for switching the direct current output to the three-phase alternating current in Example 1 (FIG. 7) of the present invention.
  • FIG. 17 shows the input DC current I dcin 0, output current of each phase (I a, I b, I c), line voltage V ac 1 ine, and bus line PN voltage V pn of Fig. 16 Yes.
  • Figure 18 shows the waveforms of the T 1 gate signal V gau, T 2 gate signal V gad, and reverse-conducting semiconductor switches S 1 and S 3 gate signal V gs in the low-speed polarity switching switch in Figure 16 Is shown.
  • the switching frequency of the reverse conducting semiconductor switch of FIG. 16 is 10 kHz.
  • the low-speed polarity switching switch (T 1 to T 6) of the switching control means 5 switches in accordance with the period when the voltage V ⁇ ⁇ between the buses ⁇ is zero.
  • a voltage source capacitor was required in the conventional voltage inverter, but in this embodiment, a MERS capacitor that stores and regenerates magnetic energy plays a role. Even if the energy of each pulse is small, the link frequency is high, and the energy per unit time is multiplied by the frequency of the energy of each pulse. As a result, the capacitor can convert a large amount of power with a small capacitance. In addition, reverse conversion, which was not possible with conventional voltage-type inverters, is also possible. [Example 6] (Second embodiment of switching control means)
  • FIG. 19 (A) shows an example of an embodiment of DC / DC conversion.
  • Fig. 19 (B) shows the simulation results of Fig. 19 (A).
  • Fig. 19 (A) shows that switching control means 5 uses one arm with two semiconductor switches connected in series, and outputs a DC voltage obtained by stepping up the boost pulse voltage by turning on and off the semiconductor switch. It is a circuit block diagram. Unlike the second embodiment (FIG. 12) of the present invention, a stepped-down DC output can be obtained.
  • Fig. 19 (B) shows the waveforms of input current I in, output current I dc, bus PN voltage V pn, and voltage V igbt and current I igbt 3 applied to reverse conducting semiconductor switch S3. Yes (current is displayed 10 times).
  • the voltage can be stepped down from DC 100 V to DC 24 V.
  • the gate signal G 1 supplied to the gates of the reverse conducting semiconductor switches S 1 and S 3 is turned on and off at a switching frequency of 10 kHz and a duty ratio of 0.4.
  • the gate signal G 2 supplied to the gates of the reverse conducting semiconductor switches S 2 and S 4 is always off.
  • the gate signals G 1 and G 2 are interchanged to control the reverse conducting semiconductor switch, the reverse conversion can be performed. That is, reverse conversion from the input power source 1 side (DC 24 V) to the DC power source or load 7 side (DC 100 V) is possible.
  • FIG. 20 shows an example of an embodiment of DC Z single-phase AC conversion that employs Siris Yu as the switching control means 5.
  • Fig. 21 shows the results of the computer simulation of Fig. 20.
  • FIG. 20 is a block diagram of a conversion circuit from DC 48 V to single-phase 100 V, 50 Hz.
  • FIG. 21 shows the waveforms of the input DC current I d c in, the output AC current I a cout, the bus P N voltage V pn, and the output AC voltage V a cout shown in FIG.
  • Fig. 20 shows an example in which reverse conversion from AC to DC is not performed.
  • the generation of the boost pulse voltage from the direct current gives an on-off gate signal to the reverse conducting semiconductor switches S1 and S3, and S2 and S4 always give an off-gate signal. Since the reverse conducting semiconductor switches S2 and S4 can be used only by diode operation, they are replaced by diodes without using the reverse conducting semiconductor switch.
  • FIG. 22 shows a case in which four semiconductor switches connected in series are used as the arm of the switching control means 5.
  • the advantage is that the withstand voltage per semiconductor switch is small. This is all This is because the switching operation of this semiconductor element is performed at zero voltage and zero current, so that it is possible to use the semiconductor switching of the low speed switching operation.
  • Embodiment 8 Example in which smooth inductance is replaced with diode
  • Figure 23 (B) shows an example in which a diode is used in place of the smoothing inductance 6.
  • FIG. 23 (B) uses a diode instead of the smooth inductance 6 as the smoothing means for the boost pulse voltage.
  • FIG. 23 (A) shows a direct current DC conversion using a smoothing inductance and capable of reversible conversion, as shown in Example 2 (FIG. 12) of the present invention.
  • Example 9 Example of conversion from three-phase AC power source to three-phase AC load
  • Example 9 of the present invention a soft switching power conversion device according to Example 9 of the present invention will be described.
  • Figure 24 shows an example of an embodiment of conversion from a three-phase AC power source to a three-phase AC load. Is shown.
  • Fig. 25 (A) shows the results of computer simulation of the circuit of Fig. 24.
  • FIG. 25 (B) shows the switching timing of the reverse conduction type semiconductor switch and the switching control means 5 of the low-speed polarity switching switch.
  • FIG. 24 is a conversion circuit block diagram in which the DC output of Embodiment 3 (FIG. 13) of the present invention is the same three-phase AC output as the input.
  • Figure 25 (A) shows the input currents (IL aa, IL bb, IL cc), output currents (I a, I b, I c), voltage between bus PN V pn The waveform is shown.
  • Figure 25 (B) shows the three-phase AC input voltage, reverse-conducting semiconductor switches S1 and S2 gate signal, three-phase AC output voltage, and low-speed polarity switching switches T1 and T2 in Figure 24. The waveform of the gate signal is shown.
  • MC matrix converter
  • the three-phase AC Z three-phase AC converter circuit shown in Fig. 24 is realized with a semiconductor device that does not have reverse blocking capability and can only be turned on and off in the forward direction. That is, it is composed of a reverse conduction type semiconductor switch.
  • the number of semiconductor elements used is 12. However, the structure of the semiconductor elements used is simple and the cost is low.
  • the control method is the same as the conventional DC link method and is simple.
  • MC does not have, such as the DC bus voltage can be higher than the input power supply voltage.
  • the two capacitors that store magnetic energy are discharged until the voltage becomes zero in each control cycle, so that zero is applied when the semiconductor switch used for all switching is turned off. It can be seen that the voltage is switched at zero current when turned on, that is, soft switching is performed. This is a feature not found in conventional MC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

少なくとも2個の逆導通型半導体スイッチから成るブリッジ回路の直流端子間に小容量の磁気エネルギー蓄積用のコンデンサを接続した磁気エネルギー回生スイッチを用いて、すべてのスイッチングに使用する半導体素子のスイッチング動作をソフトスイッチング化し、磁気エネルギー回生スイッチで発生させた高周波の昇圧パルス電圧を直流リンク部の電圧とし、その電圧をフィルタや切り替え制御手段によって、再び、直流、若しくは任意の低周波の交流に変換するソフトスイッチング電力変換装置を提供する。これらにより、すべてのスイッチングに使用する半導体素子のスイッチング動作をソフトスイッチング化し、出力電圧の昇圧、または降圧を行うことが可能な電力変換装置であり、比較的少ない部品点数で、簡単な制御手段で構成できる可逆電力変換装置となる。

Description

明細書
ソフトスィツチング電力変換装置
技術分野
本発明は、 交流電力または直流から直流への電力順変換、 直流から交 流への電力逆変換に関し、 磁気エネルギー回生スィッチの持つ電流双方 向でロスのない磁気エネルギーを回生させる機能を利用して発生させた 高周波の昇圧パルス電圧を、 直流リンクの電源として使用した逆変換が 可能なソフトスイッチング電力変換装置に関する。 背景技術
従来、 直流から交流への変換は様々な方式が実用化されている。 装置 の小型化と高効率化が望まれており、 また、 構成部品の少なさや、 制御 の簡潔さも求められている。絶縁トランスなどの部品の小型化のために、 スィツチング周波数を高周波化すると、 スィツチングによる損失が増え る。 スイッチング周波数が 1 0 k H zを超える高速スイッチングでは、 スィツチングに使用する半導体素子のオン Zオフの過渡状態において、 電圧 X電流で生じる損失が、 半導体素子の導通損失よりもはるかに大き くなつている。
高速スィツチングに対応した半導体素子の登場が望まれるが、 一方で 回路技術として、スィツチングに使用する半導体素子のオン Zオフ時に、 電圧または電流のどちらか、 またはその両方をゼロにするソフトスィッ チング技術は、 重要な解決策である。
また、 もう一方で回路技術として、 磁気エネルギー回生スィッチと呼 ばれるものが本発明者により提案され、既に特許として成立している(特 許第 3 6 3 4 9 8 2号公報、 以下 「特許文献 1」 という) 。 磁気エネル ギー回生スィッチは、 逆阻止能力を持たない、 すなわち逆導通型の半導 体素子 (以下、 逆導通型半導体スィッチという) を 4個用いて構成され るブリッジ回路と、 プリッジ回路の直流端子間に接続されたコンデンサ から成る。 順逆両方向の電流を、 逆導通型半導体スィツチのゲート制御 のみでオン/オフ可能であり、 プリッジ回路の対角に位置する 2個の逆 導通型半導体スィッチをペアとし、 少なくとも一方のペアの 2個の逆導 通型半導体スィツチを同時にオン Zオフすると、 コンデンザが電流を遮 断した際の電流の持つ磁気エネルギーを吸収し、 オンしている逆導通型 半導体素子を通じて放電することで電流を回生するスィツチ回路である。 発明の概要
発明が解決しょうとする課題
本発明の目的は、 すべてのスィツチングに使用する半導体素子のスィ ツチング動作をソフトスイッチング化し、 出力電圧の昇圧、 または降圧 が可能な電力変換装置を提供することである。 さらに本発明の他の目的 は、 比較的少ない部品点数で、 簡単な制御手段で構成できる可逆電力変 換装置を提供することである。 課題を解決するための手段
本発明は、 交流電力から直流電力に、 またはその逆変換をソフトスィ ツチングによって行うソフトスイッチング電力変換装置であって、 本発 明の上記目的は、 入力電源 1に交流電源または電流極性が反転する直流 電源を使用し、 入力電源 1が、 交流インダク夕ンス 2を介して、 その交 流入力端子 a 、 bに入力される昇圧パルス電圧発生手段 3と、 昇圧パル ス電圧発生手段 3の直流出力端子 cまたは dと直流電源または負荷 7と の間に直列に挿入され、 昇圧パルス電圧発生手段 3で発生させた昇圧パ ルス電圧を平滑して直流電源または負荷 7に供給するための平滑ィンダ クタンス 6と、 昇圧パルス電圧発生手段 3を制御する制御手段 4と、 を 備えるとともに、 昇圧パルス電圧発生手段 3は、 4個の逆導通型半導体 スィッチ S 1 、 S 2 、 S 3 、 S 4から構成されるブリッジ回路と、 プリ ッジ回路の直流出力端子 c 、 d間に接続され、 電流遮断時の電流の持つ 磁気エネルギーを回生して蓄積するコンデンサ 3 1 と、 を具備し、 制御 手段 4は、 プリッジ回路の対角線上に位置する少なくとも一方の逆導通 型半導体スィツチのペアの 2個の逆導通型半導体スィツチを、 同時にォ ン Zオフ動作を行うようにゲー卜に制御信号を与えるとともに、 逆導通 型半導体スィッチのオン /"オフ周期を、 コンデンサ 3 1の静電容量と交 流インダクタンス 2のインダク夕ンス L a cとで決まる共振周期より長 くなるように設定することで、 コンデンサ 3 1の電圧がサイクル毎に放 電してゼロになり、 逆導通型半導体スィツチをオフするときゼロ電圧に なり、 オンするときゼロ電流になることでソフトスイッチングを実現す ることを特徴とするソフトスィツチング電力変換装置によって達成され る。
また、 本発明の上記目的は、 昇圧パルス電圧発生手段 3の直流出力端 子(:、 dと並列に接続され、 昇圧パルス電圧を、 昇圧パルス電圧の発生 周期に同期したパルス幅変調 (P W M ) キャリア信号に基づいて母線の 上下の電圧を交互にオン Zオフ制御する切り換え制御手段 5を備え、 切 り換え制御手段 5は、 半導体スィッチを 2個直列接続したアームを 1つ、 または複数具備して成るとともに、 制御手段 4によって制御されること を特徴とするソフトスィツチング電力変換装置によって効果的に達成さ れる。
さらに、 本発明の上記目的は、 負荷 7に与える電力が直流の場合は、 アームは 1つで、 昇圧パルス電圧を半導体スィッチのオン オフで降圧 して負荷に供給し、 負荷 7に与える電力が単相交流の場合は、 アームは 2つで、 半導体スィツチのオン Zオフで制御して低周波の単相交流電圧 を発生させ、 負荷 7に与える電力が三相交流の場合は、 アームは 3つで、 半導体スィツチのオン オフで制御して三相交流電圧を発生させ、 負荷 7に与える電力が N相交流の場合は、 アームは N個で、 半導体スィッチ のオン/オフで制御して N相交流電圧を発生させることを特徴とするソ フトスィツチング電力変換装置によって達成される。
さらに、 本発明の上記目的は、 入力電源 1が直流である場合、 ブリツ ジ回路の対角線上に位置する逆導通型半導体スィツチのペア (S 1 と S 3のペア、 または S 2と S 4のペア) のうちの一方のペアの 2個の逆導 通型半導体スィッチのみをオン Zオフさせるが、 他方のペアの 2個の逆 導通型半導体スィツチはオフのままとし、 ダイォ一ドとして動作させる ように制御することを特徴とするソフトスィツチング電力変換装置によ つて効果的に達成される。
さらに、 本発明の上記目的は、 昇圧パルス発生手段 3を、 2個の直列 に接続した逆導通型半導体スィッチ S 2 、 S 3および 2個の直列に接続 したダイオードにより構成されるハーフブリッジ回路と、 2個の直列に 接続したダイォードのそれぞれに対して並列に接続される 2個の電流遮 断時の電流の持つ磁気エネルギーを回生して蓄積するコンデンサと、 を 具備したことを特徴とするソフトスィツチング電力変換装置によって効 果的に達成される。
さらに、 本発明の上記目的は、 入力電源 1が三相交流電源の場合に、 昇圧パルス電圧発生手段 3は、 2個の逆導通型半導体スィツチを直列に 接続したものを一つのレグとし、 3つのレグから成る 6個の逆導通型半 導体スィツチによる三相全波プリッジ回路と、 三相全波プリッジ回路の 直流端子間に接続され、 第 1のコンデンサと第 1のダイオードを並列に 接続したものと、 第 2のコンデンサと第 2のダイオードを並列に接続し たものを、 第 1のダイオードと第 2のダイオードが順方向の向きになる ように直列接続した回路で、 さらに直列接続の中点を三相交流電源の中 性点と接続したものと、 を具備し、 各レグの 2個の逆導通型半導体スィ ツチを、 三相交流の電流方向のスィッチを選択し、 かつ、 すべての選択 された逆導通型半導体スィッチを同時にオン Zオフして、 昇圧パルス電 圧を三相全波プリッジ回路の直流端子間に発生させて三相交流電力変換 を行うソフトスィツチング電力変換装置によっても効果的に達成される。 さらに、 本発明の上記目的は、 切り換え制御手段 5 1の半導体スイツ チとしてサイリス夕を使用したことを特徴とするソフトスイッチング電 力変換装置によっても効果的に達成される。
さらに、本発明の上記目的は、昇圧パルス電圧を平滑する手段として、 平滑ィンダク夕ンス 6に換えてダイォードを用いたことを特徴とするソ フトスィツチング電力変換装置によっても効果的に達成される。
さらに、本発明の上記目的は、 4個の逆導通型半導体スィツチ(S 1 、 S 2 、 S 3 、 S 4 ) に寄生ダイオードを内蔵したパワー M O S F E Tを 使用したとき、 パワー M O S F E Tの逆導通時に同期信号を送って導通 損失を減らすことによつても効果的に達成される。
さらに、 本発明の上記目的は、 制御手段は、 昇圧パルス電圧発生手段 3の入力電圧若しくは入力電流、 直流出力若しくはパルス幅変調による 切り換え交流出力の電圧と電流、 およびコンデンサ 3 1の電圧に基づい て、 ゲート信号のオン Zオフの時間比およびスィツチング周期を決定し て逆導通型半導体スィツチのオン Zオフ制御を行うことを特徴とするソ フトスィツチング電力変換装置によっても効果的に達成される。
さらに、 本発明の上記目的は、 切り換え制御手段 5のアームを、 半導 体スィツチを 4個直列接続したもので置き換えたことを特徴とするソフ トスィツチング電力変換装置によって達成される。 さらに、 本発明の上記目的は、 入力電源 1 として三相交流を使用し、 負荷 7に与える電力が三相交流の場合、 切り換え制御手段 5の半導体ス イッチに、 逆導通型半導体スィツチを使用したソフトスイッチング電力 変換装置によって効果的に達成される。 発明の効果
本発明に係るソフトスィツチング電力変換装置によれば、 すべてのス ィツチングに使用する半導体素子がオフするときゼロ電圧、 オンすると きゼロ電流になるため、 スイッチング損失がなく、 高速動作に適してい る。 このため、 容易に高周波化でき、 電力変換装置の小型化が可能とな る。 また、 従来のダイオードブリッジ入力による交流電力から直流電力 への電力順変換装置では不可能であった直流電力から交流電力への電力 逆変換も可能となるという優れた効果がある。 図面の簡単な説明
第 1図は磁気エネルギー回生スィツチによる直流の昇圧パルス電圧発生 手段の動作を説明するための図である。
第 2図は直流の昇圧パルス電圧発生手段の電流の流れの初期状態を示す 図である。
第 3図は逆導通型半導体スィツチ S l 、 S 3のオフ直後 (A ) と、 オン 直後 (B ) の電流の流れを説明する図である。
第 4図は第 1図における電源電流とコンデンサ電圧の計算機シミュレー ション結果を示す図である。
第 5図は逆導通型半導体スィツチに印加される電圧と電流の計算機シミ ユレーシヨン結果を示す図である。
第 6図は本発明に係る M E R Sを基本とするソフトスイッチング電力変 換装置の基本構成を示す回路ブロック図である。
第 7図は本発明の実施例 1の P F C機能付き単相交流 Z直流変換装置を 示す回路ブロック図である。
第 8図は本発明の実施例 1の逆導通型半導体スィツチのゲート制御回路 の一例を示す回路ブロック図である。
第 9図は従来の P F C機能付き単相交流/直流変換装置の回路と制御の ブロック図である。
第 1 0図は本発明の実施例 1の計算機シミュレーション結果を示す図で ある。
第 1 1図は本発明の実施例 1の計算機シミュレ一ション結果で、 第 7図 における逆導通型半導体スィッチの電流および電圧波形を示すものである
(電流は 1 0倍に表示している) 。
第 1 2図は本発明の実施例 2の直流 Z直流変換装置で、回路図(A ) と、 その計算機シミュレーション結果 (B ) を示す図である。
第 1 3図は本発明の実施例 3の三相交流 直流変換装置の回路図である。 第 1 4図は本発明の実施例 3の計算機シミュレーション結果を示す図で ある。
第 1 5図は本発明の実施例 4の単相交流/直流変換装置の回路ブロック 図である。
第 1 6図は本発明の実施例 5の直流 三相交流変換装置の回路図である。 第 1 7図は本発明の実施例 5の計算機シミュレーシヨン結果を示す図で ある。
第 1 8図は本発明の実施例 5の計算機シミュレーション結果を示す図で ある。
第 1 9図は本発明の実施例 6の直流 降圧直流変換装置で、 回路図 (A ) と、 その計算機シミュレーション結果 (B ) を示す図である。 第 2 0図は本発明の実施例 7の直流 Z単相交流変換装置の回路ブロック 図である。
第 2 1図は本発明の実施例 7の計算機シミュレーション結果を示す図で ある。
第 2 2図は切り換え制御手段 5に、 アームに半導体スィッチを 4個直列 接続した場合を示す回路図である。
第 2 3図は本発明の実施例 8の平滑手段としてダイォードを用いた直流 Z直流変換装置の回路ブロック図 (B ) と、 本発明の実施例 2の回路ブ ロック図 (A ) である。
第 2 4図は本発明の実施例 9の三相交流 Z三相交流変換装置の回路プロ ック図である。
第 2 5図は本発明の実施例 9の計算機シミュレーション結果を示す図 ( A ) と、 逆導通型半導体スィッチ、 低速極性切り換えスィッチの切り 換えタイミングを示す図 (B ) である。 発明を実施するための最良の形態
以下、 本発明に係る最良の実施の形態について、 図面を参照しながら 説明する。 各図面に示される同一の構成要素、 部材、 処理には、 同一の 符号を付するものとし、 適宜重複した説明は省略する。 また、 実施の形 態は、 発明を限定するものではなく例示であって、 実施の形態に記述さ れるすべての特徴やその組合せは、 必ずしも発明の本質的なものである とは限らない。
本発明は、 上記特許文献 1に開示されている磁気エネルギー回生スィ ツチ (以下、 M E R Sという) を主要な構成要素としている。
M E R Sは、 4個の逆導通型半導体スィッチから構成されるブリッジ 回路と、ブリツジ回路の直流端子間に接続されたコンデンサとから成る。 順逆方向電流を、 逆導通型半導体スィツチのゲート制御のみでオン Zォ フ可能であり、 プリッジ回路の対角の位置にある 2個の逆導通型半導体 スィッチを 1組のペアとし、 少なくとも一方のペアの 2個の逆導通型半 導体スィッチを同時にオン Zオフすると、 コンデンサが、 逆導通型半導 体スィツチのオフ時に電流を遮断した際の電流の持つ磁気エネルギーを 吸収し、 オンしている逆導通型半導体スィツチを通じて放電することで 電流を回生するスィツチ回路である。
M E R S内のブリツジ回路の対角の位置にある 2個の逆導通型半導体 スィッチを同時にオン/オフさせると、 コンデンサに直流パルス電圧が 発生して磁気エネルギーを蓄積し、 そのコンデンサが電源と直列に放電 することから、 さらに電源からエネルギーを引き出すので、 コンデンサ の電圧と電源電流がパルスごとに成長する。 電気抵抗による損失が無け ればコンデンサ電圧と電源電流は際限なく成長する。 このとき、 逆導通 型半導体スィツチのスィツチング動作は、 オフするときにゼロ電圧で、 オンするときにゼロ電流となっている。 いわゆるゼロ電圧ゼロ電流スィ ツチング (ソフトスイッチング) がなされている。
コンデンサの両端電圧には直流パルス電圧が現われるので、 これを平 滑インダク夕ンスで平滑して直流出力とすれば、 直流または交流から直 流電力への変換ができる。 さらに、 直流パルス電圧の電圧がゼロの状態 に同期して切り換える低速のスィツチで単相交流または三相交流電圧に 変換することもでき、 さらに切り換えに P W M制御されたスィツチ切り 換えを採用すれば波形を基本波 (正弦波) に近づけることができる。
ここで、 M E R Sによる昇圧パルス電圧発生の動作を、 図を使って詳 しく説明をする。
第 1図は、 ^4 6 3の交流端子 &、 bに、 直流電源と交流インダク夕 ンス 2を直列に接続したものを示している。第 2図、第 3図(A )、 ( B ) は、 逆導通型半導体スィッチのスイッチングにより、 電流の流れる経路 が変化することを示している。 第 1図、 第 2図、 第 3図 (A ) 、 ( B ) の逆導通型半導体スィツチとして、 寄生ダイオードを内蔵したパワー M O S F E Tを使用している。
図を使った説明は、 逆導通型半導体スィッチ S 1 と S 3を同時にオン ノオフした場合に、 直流端子 c、 d間に現れる直流パルス電圧と電流の 流れる経路を中心に説明する。
1 ) コンデンサ Cに充電電圧が無い状態で、 逆導通型半導体スィッチ S 1と S 3をオンにすると、 第 2図の矢印で示すように、 直流電源からの 電流の流れる経路は、 b —逆導通型半導体スィッチ S 2の寄生ダイォー ドー c 一逆導通型半導体スィツチ S 1— aの経路と、 b —逆導通型半導 体スィッチ S 3 - d 一逆導通型半導体スィツチ S 4の寄生ダイオード— aの経路とになり、 並列導通状態となる。
2 ) 次に、 電源から交流インダク夕ンス L a cへ電流が流れている状態 で、 逆導通型半導体スィッチ S 1と S 3を同時にオフにすると、 第 3図
( A ) に示すように、 直流電源からの電流は、 b —逆導通型半導体スィ ツチ S 2の寄生ダイオード— c 一コンデンサ C一 d—逆導通型半導体ス イッチ S 4の寄生ダイォ一ドー aという経路で流れ、 コンデンサ Cに流 れ込み、 コンデンサ Cが充電される。
3 ) 電源からの充電によりコンデンサ Cの電圧が高くなると同時に、 コ ンデンサ Cと交流ィンダクタンス L a c との共振により、 交流ィンダク タンス L a cの磁気エネルギーがコンデンサ Cに移ったところで電流は 停止する。
従って、 逆導通型半導体スィッチ S 1 と S 3を同時にオフにして、 流 れていた電流を遮断しても、 コンデンサ Cの電圧はすぐに発生せず、 コ ンデンサ Cの充電に従って高くなる。 コンデンサ Cの電圧の上昇スピー ドは、 コンデンサ Cの静電容量と交流ィンダク夕ンス L a cのインダク 夕ンスとから求められる共振周期で決まる。 コンデンサ電圧の上昇スピ 一ドが、 逆導通型半導体スィツチのオンノオフのスピードより十分に遅 い場合は、 逆導通型半導体スィツチ S 1 と S 3をオフするときにほぼゼ 口電圧が実現していると言える。
直流端子 c、 dの間にはコンデンサ Cの両端電圧が現われて、 直流パ ルス電圧が、 逆導通型半導体スィツチのゲー卜のオン Zオフに合わせて 発生することがわかる。 しかも、 第 1図のように負荷抵抗が無い場合、 コンデンサ Cの両端電圧は逆導通型半導体スィツチのゲートのオン Zォ フを繰り返すと際限なく成長して、 コンデンサ電圧と流れる電流の値は 両方とも大きくなつていく。 コンデンサ Cに最大まで充電されたところ で、 電流は停止する。
4 ) 再び、 逆導通型半導体スィツチ S 1 と S 3をオンにすると、 コンデ ンサ Cには充電電圧があるので、 第 3図 (B ) に示すように、 逆導通型 半導体スィツチ S 2と S 4の寄生ダイォードを通る経路には電流は流れ ず、 コンデンサ Cからの放電電流が、 b —逆導通型半導体スィッチ S 3 一 d _コンデンサ C— c—逆導通型半導体スィツチ S 1— aという経路 を通って、 交流インダク夕ンス L a cに流れる。 このとき、 逆導通型半 導体スィツチ S 1と S 3をオンにしても交流ィンダク夕ンス L a cがあ るために、 電流量はコンデンサ Cと交流インダク夕ンス L a cとの共振 により上昇する。 そのため、 逆導通型半導体スィッチ S 1と S 3をオン するときにほぼゼロ電流が実現していると言える。
5 ) コンデンサ Cが全放電して、 その両端電圧がゼロになると、 再び 第 2図に示すように、 直流電源からの電流の流れる経路は、 b —逆導通 型半導体スィツチ S 2の寄生ダイオード— c 一逆導通型半導体スィツチ S I— aの経路と、 b—逆導通型半導体スィツチ S 3— d—逆導通型半 導体スィッチ S 4の寄生ダイオード一 aの経路になり、 並列導通状態と なる。 以降は繰り返しとなる。
次に、 M E R Sによる昇圧パルス電圧発生の動作を、 計算機シミュレ —シヨンによって説明する。
第 4図は、 電源電流 I 1、 コンデンサ電圧 V c、 逆導通型半導体スィ ツチのゲートをオン/オフする信号 (ゲート信号) V gの波形を示して いる。
より詳しくは、 第 4図は、 第 1図の回路において、 回路定数を以下の 通りとしたときの、 計算機シミュレーション結果を示すものである。 1. V d c i n : 直流電源の電圧 1 0 V、
2. L :交流インダク夕ンス L a cのインダクタンス成分 l mH、
3. C : コンデンサの静電容量 1 0マイクロ F、
4. f : 逆導通型半導体スィツチ S 1と S 3のゲートのオン Zオフ周波 数 1 kH z (T : 周期 1 mS)、
5. R : 交流インダク夕ンス L a cの直流抵抗分 0. 5 Ω。
第 4図は、 コンデンサ電圧 V cと電源電流 I 1が、 パルス毎に成長す る様子を示している。 コンデンサ Cには、 電源電圧 V d c i ηの何倍も の電圧が発生する。 コンデンサ電圧 V cは、 電源からの入力が交流イン ダク夕ンス L a cの直流抵抗分 Rでの損失とバランスするまで、 電流が 増大する。 直流電源の電圧 V d c i n = 1 0 Vが、 コンデンサ電圧 V c = 2 1 5 V、 電源電流 I 1 = 2 1 Aまでになつている。
第 5図は、 第 4図のときの逆導通型半導体スィッチ S 3に印加される 電圧と電流、 ゲート信号の波形を示している。 第 5図より、 逆導通型半 導体スィツチ S 3がオフするときにゼロ電圧で、 オンするときにゼロ電 流でスイッチングされていること、 すなわち、 ソフトスイッチングがな されていることがわかる。 上述の計算機シミュレーシヨンを使った説明のように、 M E R Sは、 電流のパルスを交流端子に、 電圧パルスを直流端子に発生させることが できる。 このとき、 電流の大きさによらず逆導通型半導体スィッチは、 ゼロ電圧ゼロ電流スィツチングが実現している。 ロスの無いスィツチ動 作で、 コンデンサ電圧と流れる電源電流が成長して、 電源からの入力と 抵抗分での損失が釣り合うところまでコンデンサ電圧と流れる電源電流 が大きくなる。
さらに、コンデンサ電圧 V cについて、数式を使って詳しく説明する。 交流インダク夕ンス L a cのインダク夕ンス成分を L、 電流を I、 コ ンデンサ Cの静電容量を C、 コンデンサ Cの電圧を V cとすると、 交流 インダク夕ンス L a cの磁気エネルギーとコンデンサの静電エネルギー が相互にロス無く変換を行うので、 次式 ( 1 ) が成り立つ。
C - V c 2/ 2 = L - \ 2 / 2 . . . ( 1 )
従って、 コンデンサ電圧 V cと電流 I との関係は、 次式 ( 2 ) のように なる。
V c = {>T (L/C) } I . . . ( 2 )
また、 定常電流 I sの最終値は、 交流インダク夕ンス L a cの直流抵抗 成分 Rで決まるので、 次式 ( 3 ) のようになる。
I s = VZR . . . ( 3 )
従って、 次式 (4) が導き出される。
V c = ( Z ZR) V、 ただし τ = / 、 . . . ( 4 ) 上述の式 (4 ) より、 コンデンサ電圧 V cは電源電圧のサージインピ —ダンス Ζと交流ィンダク夕ンス L a cの直流抵抗成分 Rの比倍だけ大 きくなることがわかる。
コンデンサ電圧 V cが定常状態に落ち着くまでの時間を T s とすると、 T sは Lと Rの時定数のパルスオフ時間を足したものであるから、 時定 数 (LZR) をオン オフの比 (D u t y) で割ったものに近くなり、 次式 ( 5 ) のようにな-る。
T s = (L/R) /D u t y . . . ( 5)
上述の式 ( 5 ) に、 第 4図の回路定数を当てはめる。 L = l mH、 R = 0. 5 Ωであるから、 時定数 (LZR) は 2mSとなる。 オン Zオフの 比 (D u t y) は 0. 5であるから、 時間 T sは 4mSと算出される。 時定数の定常状態は、 コンデンサ電圧 V cの最大電圧 2 1 5 Vの約 6 3 %程度と定義されるので、 コンデンサ電圧 V cが約 1 3 5 Vになった 時間である。 この時間は、 第 4図の波形でコンデンサ電圧 V c =約 1 3 5 Vとなった時間であり、 図から確認できる。
第 6図は、 本発明に係るソフトスィツチング電力変換装置の基本的な 構成を示す回路ブロック図である。 入力電源 1は、 交流電源または電流 極性が反転する直流電源を使用し、 入力電源 1が、 交流インダク夕ンス 2を介して、 その交流入力端子 a、 bに入力される昇圧パルス電圧発生 手段 3と、昇圧パルス電圧発生手段 3の直流出力端子 c、 dに接続され、 昇圧パルス電圧発生手段 3で発生させた昇圧パルス電圧を、 平滑ィンダ クタンス 6を介して、 直流電源または負荷 7に供給する切り換え制御手 段 5と、 昇圧パルス電圧発生手段 3および切り換え制御手段 5を制御す る制御手段 4とを具備している。 負荷 7は交流負荷または直流負荷のい ずれでもよい。
昇圧パルス電圧発生手段 3は、 4個の逆導通型半導体スィツチ S 1、 S 2、 S 3、 S 4から構成されるブリッジ回路と、 ブリッジ回路の直流 出力端子 c、 d間に接続され、 電流遮断時の電流の持つ磁気エネルギー を回生して蓄積するコンデンサ 3 1 とを具備している。
制御手段 4は、 ブリッジ回路の対角線上に位置する少なくとも一方の 逆導通型半導体スィツチのペアの 2個の逆導通型半導体スィツチを同時 にオン オフ動作を行うようにゲー卜に制御信号を与えるとともに、 逆 導通型半導体スィツチのオン/オフ周期がコンデンサ 3 1の静電容量 C と交流ィンダク夕ンス 2のインダク夕ンス L a cとで決まる共振周期よ り長くなるように設定することによって、 コンデンサ 3 1の電圧が各半 サイクルで放電してゼロになり、 逆導通型半導体スィッチがオフすると きゼロ電圧になり、 オンするときゼロ電流になることによってソフトス ィツチングを実現している。
本発明に係る電力変換装置のコンデンサ 3 1は、 交流インダクタンス 2の磁気エネルギーを蓄積するだけである。 従来の一般的な電圧型ィン バー夕のコンデンサの使い方と全く異なる。 従来の一般的な電圧型イン バー夕では、 コンデンサは電圧源として使用するため、 常に電圧を保持 している。 電流遮断後、 スイッチングに使用する半導体素子に電圧が一 挙に発生して、 ハードスイッチングになっている。
本発明に係る電力変換装置のコンデンサ 3 1は、 コンデンサ 3 1の電 圧を、 各半サイクルで電圧ゼロまで放電するように、 逆導通型半導体ス イッチのゲートのパルス周期を設定している。 コンデンサ 3 1は、 交流 インダク夕ンス 2と共振させていることが特徵である。
コンデンサ 3 1の静電容量 Cは、 交流ィンダク夕ンス 2のインダク夕 ンス L a c との共振周波数で求まる容量となる。 結果、 コンデンサ 3 1 の静電容量 Cは、 従来の一般的な電圧型インバー夕の電圧源コンデンサ に比べて著しく小さくできる。
また、 コンデンサ 3 1の電圧は、 逆導通型半導体スィッチのゲート信 号のパルス周期で振動して磁気エネルギーを回生する。 コンデンサ 3 1 の電圧は電源より昇圧され、 直流出力端子 c 、 d間には、 ゼロ電圧期間 を有する直流の昇圧パルス電圧が現われる。
切り換え制御手段 5は半導体スィツチを 2個直列接続したアームを 1 つ、 または複数具備して、 昇圧パルス電圧の発生周期に. rf.斯'して、 パル ス幅変調 (PWM) キャリア信号に基づいて母線の上下の電圧を交互に オン Zオフして切り換えるものである。
負荷 7に与える電力が直流の場合は、 アームは 1つで、 直流電圧を半 導体スィッチのオン Zオフで降圧して負荷に供給する。
また、 負荷 7に与える電力が単相交流の場合は、 アームは 2つで、 半 導体スィツチのオン Zオフで制御して低周波の単相交流電圧を発生させ る。
また、 負荷 7に与える電力が三相交流の場合は、 アームは 3つで、 半 導体スィツチのオン Zオフで制御して三相交流電圧を発生させる。
また、 負荷.7に与える電力が N相交流の場合は、 アームは N個で、 半導 体スィツチのオン Zオフで制御して N相交流電圧を発生させることがで さる。
なお、 後述の実施例では、 N相交流は三相交流で代表して説明してい る。 また、 交流入力端子側および直流出力端子側に設けられている Lフ ィル夕と Cフィル夕は、 不要な周波数の信号を除去し、 所望の周波数の 電力を取り出すために設けられているものである。
【実施例 1】 (P F C機能付き単相交流/昇圧直流変換の例) 続いて、 本発明の実施例 1に係るソフトスイッチング電力変換装置に ついて説明する。
第 7図は、 P F C (P owe r F a c t o r C o r r e c t i o n、 以下 P F Cという) 機能付き交流 Z昇圧直流変換に応用した例を示 している。 第 8図は、 第 7図の 4個の逆導通型半導体スィッチ (S l、 S 2、 S 3、 S 4) のゲートに制御信号を与えるゲート制御回路のプロ ック図である。 より詳しくは、 第 7図では、 出力が 1 k W程度で、 突-流 ら昇圧直流 への変換において、 入力する交流の電流波形を改善する P F C機能を設 けている。 また、 第 6図の昇圧パルス電圧発生手段 3内のブリッジ回路 の直流端子間 c、 dに接続されるコンデンサ 3 1として、 静電容量 C = 0 . 1マイクロ Fのものを接続している。 また、 第 6図にある切り換え 制御手段 5は具備せず、 直流の昇圧パルス電圧を、 平滑インダクタンス L d cを介して、 直流負荷に接続している。
第 7図において、 交流電源から直流への電力変換は、 逆導通型半導体 スィツチがオフするときにゼロ電圧で、 オンするときにゼロ電流である ソフトスィツチングが実現されるため、スィツチング損失が低減される。 従来技術 (後述する) と比較して、 電流が通過する半導体素子の数を減 らせるので、 交流から直流への変換効率を上げることができる。
第 8図は、 交流電源の電圧、 電流を検出する能力を備え、 交流電源の 電流の方向により、 プリッジ回路の対角の位置にある 2個の逆導通型半 導体スィッチのペア (S 1 と S 3のペアと、 S 2と S 4のペア) に、 一 方のペアにはオンゲート、 他方のペアにはオフゲートを与え、 さらに、 ペア間でオン Zオフの状態を交互に入れ替えるゲ一卜信号が送られるこ とを示している。 これは従来技術 (後述する) にはない特徴である。 第 7図の逆導通型半導体スィツチとして、 寄生ダイオードを内蔵した パワー M O S F E Tを使用した場合、 M O S F E T素子部分のオン抵抗 は、 寄生ダイオード部分のジャンクション電圧より小さいので、 寄生ダ ィオードによる逆導通時に、 M O S F E T素子部分のゲートにオンゲ一 卜を与える同期信号を送って、導通損失をさらに低減することもできる。 第 9図は、 従来技術による P F C機能付き交流ノ昇圧直流変換の回路 ブロック図を示すものである。 交流電力を直流に変換する際に、 高速ス イッチングによるブーストアップ回路によって、 入力電流の力率と波形 を改善する P F C回路を備えていることが特徴である ' より詳しくは、 第 9図は、 ダイオード整流器の後に、 入力周波数より 十分高速な 3 0 kH zで、 ハ一ドスイッチングを行って、 入力電流の制 御を行うものである。 交流をダイオードブリッジで整流した後に、 フラ ィバック昇圧を行う際に、 入力電流が電圧の波形と相似になるように、 電流振幅変調を行う。 入力電流が基本波 (正弦波) に近くなる P F C制 御がなされることから、 一般に PAM ( P u 1 s e Amp 1 i t u d e Mo d u l a t i o n) 制御と呼ばれている。 その昇圧パルス電圧 は、 逐次平滑回路を介して電圧源コンデンサへと送られ、 そこで十分平 滑されて直流電力となる。 この方法は、 高速スイッチングに使用する半 導体素子が 1個で済む点で優れているが、 ハードスィツチングを行って おり、 電圧 X電流で生じる損失が大きい。 ダイオードブリッジ (導通時 ダイオード素子を 2個経由する) と、 フライバックの逆電流阻止のため にダイオードを 1個入れることで、 ダイオードの順方向導通損失が、 3 素子分加算される点でも不利である。 また、 直流から交流への逆変換は できない。
第 1 0図は、 第 7図の入力交流電流 I a c i n、 入力交流電圧 V a c i η、 コンデンサ電圧 V c c、 出力直流電圧 V d c o u tの波形を示し ている。 (電流は 1 / 1 0倍に表示している)
より詳しくは、 第 1 0図は、 第 7図の回路において、 回路定数を以下の 通りとしたときの、 計算機シミュレーション結果を示すものである。 1. 逆導通型半導体スィッチ S l、 S 2、 S 3、 S4 (使用する半導体素子は、 I GBTおよびそれと逆並列に接続したダイオードであり、 それぞれの導通損失 は無視している) 、
2. L a c :交流インダク夕ンス 0. 6mH、
3. Ld c :平滑インダク夕ンス 5mH、 4. 負荷:直流負荷 144Ω、
5. Cd c :平滑コンデンサ 2000マイクロ F、
6. 交流電源: 50Hz、 200Vrms、
7. コンデンサ: 0. 1マイクロ F、
そのほか、 交流側にフィル夕回路 (〇 1 1 1; 6 =2マィクロ?、 1^ 1 1 1: e r = 100マイクロ H) を付加している。 入力交流電圧 200 V rmsから、 出力直流電圧 350Vが得られている。
第 1 1図は、 第 1 0図のときの、 逆導通型半導体スィッチ S 3に印加され る電圧 VP 3と電流 I の波形を示している (電流は 1 0倍に表示してい る) 。 第 1 1図より、 逆導通型半導体スィツチ S 3がオフするときにゼ 口電圧で、 オンするときにゼロ電流でスイッチングされていること、 す なわち、 ソフトスィッチングがなされていることがわかる。
上述の本発明の実施例 1に係るソフトスィツチング電力変換装置は、 交流をダイォードブリッジで整流せずに、 交流を直接入力して交流ノ直 流変換を行うことが可能であり、 ME R Sの昇圧パルス電圧を発生する 機能を利用して発生させた高周波パルスリンクを使用して、 P F C機能 付きの交流 Z昇圧直流変換を行うものである。 ME R Sによる昇圧パル ス電圧の発生は、無損失で、かつスィツチングに使用する半導体素子は、 オフするときにゼロ電圧、 オンするときにゼロ電流のソフトスイツチン グとなるため、 スイッチング損失がなく、 高速スイッチング動作に適し ているとともに、 高周波化に伴う装置の小型化が可能である。 また、 従 来のダイォードブリッジ入力では不可能であった、 直流からの交流への 逆変換も可能である。 【実施例 2】 (直流入力時の ME R Sの逆導通型半導体スィッチの動作) 続いて、 本発明の実施例 2に係るソフトスィツチング電力変換装置に ついて説明する。
第 1 2図 (A ) は、 直流 Z直流変換の実施形態の例を示している。 第 1 2図 (B ) は、 第 1 2図 (A ) の計算機シミュレ一シヨン結果を示す ものである。
より詳しくは、 第 1 2図 (A ) は、 第 7図おける入力の交流電源を直 流電源に替えたもので、 本発明の実施例 1 (第 7図) の変形例であり、 電圧の違いを越えて可逆に変換可能である。 第 1 2図 (A ) は、 直流 1 0 0 Vから直流 3 0 0 Vへの昇圧変換の回路ブロック図を示すものであ る。 第 1 2図 (B ) は、 第 1 2図 (A ) の入力直流電流 I i n、 出力直 流電流 I o u t、 母線 P N間電圧 V p n、 逆導通型半導体スィツチ S 1 に印加される電圧 V i g b t、 電流 Iの波形を示している (電流は 1 0 倍に表示している) 。
【実施例 3】 (入力が三相交流の場合)
続いて、 本発明の実施例 3に係るソフトスイッチング電力変換装置に ついて説明する。
第 1 3図は、 三相交流から直流への電力変換の実施形態の例を示して いる。 第 1 4図は、 第 1 3図の計算機シミュレーション結果を示すもの である。
より詳しくは、 第 1 3図は、 本発明の実施例 1 (第 7図) において、 単相交流入力を、 三相交流入力で置き換えた場合を示すものである。 ま た、 第 1 3図は、 昇圧パルス電圧発生手段として、 2個の逆導通型半導 体スィツチを直列に接続したものを 1つのレグとし、 3つのレグから成 る 6個の逆導通型半導体スィツチによる三相全波プリッジ回路と、 三相 全波ブリッジ回路の直流端子間に接続され、 第 1のコンデンサと第 1の ダイオードを並列に接続したものと、 第 2のコンデンサと第 2のダイォ 一ドを並列に接続したものを、 第 1のダイォードと第 2のダイォードが 順方向の向きになるように直列接続した回路で、 さらに直列接続の中点 を三相交流の中性点に接続したものから構成される磁気エネルギー回生 スィッチを用いたもので、 三相電力変換が可能である。
第 1 4図は、 第 1 3図の、 入力三相交流電流 I L a a、 I L b b I L c c、 母線 P N間電圧 V n、 直流出力電圧 V d c o u t、 ゲ一ト信 号 G l、 G 2、 G 3の波形を示している。 より詳しくは、 ゲート制御信 号は 1 0 k H zで、 高速にオン/オフしている。 また、 単純なオン Zォ フの時間比 (デューティ比) 一定制御によって、 入力三相交流電流の力 率は 1で、 基本波 (正弦波) になっている。 入力三相交流電圧 2 0 0 V r m sから、 出力直流電圧 1 0 0 0 V、 1 0 k Wが得られる。 さらに、 ゲート信号が示すように、 アームの切り換えが行われると共に、 母線 P N間に高周波パルスで方形波状のゼロから立ち上がる昇圧パルス電圧が 発生している。
【実施例 4】 (単相交流入力時の、 M E R Sの縦ハーフブリッジ化) 続いて、 本発明の実施例 4に係るソフトスィツチング電力変換装置に ついて説明する。
第 1 5図は、 昇圧パルス電圧発生手段 3内のブリッジ回路を、 より簡 易なものに置き換えた例を示すものである。
より詳しくは、 第 1 5図は、 本発明の実施例 1 (第 7図) において、 昇 圧パルス電圧発生手段 3内のブリツジ回路の逆導通型半導体スィツチ S 1と S 4を、 それぞれダイオードで置き換えてハーフブリッジ化した例 を示すものである。 ハーフブリッジ化によりコンデンサが 2個必要にな るが、 逆導通型半導体スィッチの個数が半分で済む。 この実施態様は三 相交流入力の電力変換において特に有効となる。 【実施例 5】 (切り換え制御手段の第 1実施形態)
続いて、 本発明の実施例 5に係るソフトスィツチング電力変換装置に ついて説明する。
第 1 6図は、 直流 三相交流変換の実施形態の例を示している。 第 1 7図、 第 1 8図は、 第 1 6図の計算機シミュレーション結果を示すもの である。
より詳しくは、 第 1 6図は、 本発明の実施例 1 (第 7図) における直 流出力を三相交流に切り換えるための切り換え制御手段 5として、 低速 極性切り換えスィツチ(T 1〜T 6 )を使用した回路プロック図である。 また、 負荷として三相交流負荷を接続している。 第 1 7図は、 第 1 6図 の入力直流電流 I d c i n 0 , 各相出力電流 ( I a、 I b、 I c ) 、 線 間電圧 V a c 1 i n e、 母線 P N間電圧 V p nを示している。 第 1 8図 は、第 1 6図の低速極性切り換えスィツチの T 1のゲート信号 V g a u、 T 2のゲート信号 V g a d , 逆導通型半導体スィツチ S 1と S 3のゲー ト信号 V g sの波形を示している。
第 1 6図の逆導通型半導体スィツチのスイッチング周波数は 1 0 k H zである。 切り換え制御手段 5の低速極性切り換えスィッチ (T 1 〜T 6 )は、母線 Ρ Ν間電圧 V ρ ηがゼロとなる期間に合わせて切り換える。 従来の電圧型インバー夕では電圧源コンデンサが必要であつたが、 本実 施態様では磁気エネルギーを蓄積して回生する M E R Sのコンデンサが その役目を果たしている。 各パルスのエネルギーは小さくても、 リンク 周波数は高周波であり、 単位時間当たりのエネルギーは、 各パルスのェ ネルギ一の周波数倍される。 結果、 コンデンサは、 小さな静電容量で大 電力が変換できる。 また、 従来の電圧型インバー夕ではできなかった逆 変換も可能である。 【実施例 6】 (切り換え制御手段の第 2実施形態)
続いて、 本発明の実施例 6に係るソフトスィツチング電力変換装置に ついて説明する。
第 1 9図 (A) は、 直流/直流変換の実施形態の例を示している。 第 1 9図 (B) は、 第 1 9図 (A) の計算機シミユレーション結果を示す ものである。
より詳しくは、 第 1 9図 (A) は、 切り換え制御手段 5として半導体 スィッチを 2個直列接続したアームを 1つ使用し、 昇圧パルス電圧を半 導体スィツチのオン Zオフで降圧した直流を出力する回路プロック図で ある。 本発明の実施例 2 (第 1 2図) と異なり、 降圧された直流出力を 得ることができる。 第 1 9図 (B) は、 入力電流 I i n、 出力電流 I d c、 母線 P N間電圧 V p n、 逆導通型半導体スィッチ S 3に印加される 電圧 V i g b t , 電流 I i g b t 3の波形を示している (電流は 1 0倍に 表示している) 。
第 1 9図 ( A) では、 直流 1 0 0 Vから直流 2 4 Vへの降圧を行うこ とができる。 逆導通型半導体スィツチ S 1 と S 3のゲートに供給される ゲ一ト信号 G 1は、スイッチング周波数 = 1 0 kHz、デューティ比 = 0. 4でオン Zオフされる。 逆導通型半導体スィツチ S 2と S 4のゲートに 供給されるゲート信号 G 2は、 常にオフになっている。 ここで、 ゲート 信号 G 1と G 2を入れ替えて逆導通型半導体スィツチを制御すると、 逆 変換ができる。 すなわち、 入力電源 1側 (直流 2 4 V) から直流電源ま たは負荷 7側 (直流 1 0 0 V) への逆変換が可能である。
第 1 9図 (B) より、 入力電流 I i nは 2 6 Aであるのに対し、 出力 電流 I d cは 1 1 0 Aが出力されていることがわかる。 母線 P N間電圧 V p nは 3 4 0 V p pまで出ているが、 切り換え制御手段 5によって、 出力電圧を下げて、 出力電流が上がっていることがわかる。 第 1 9図
( B )より、逆導通型半導体スィツチ S 3がオフするときにゼロ電圧で、 オンするときにゼロ電流でスイッチングされていること、 すなわち、 ソ フトスィツチングがなされていることがわかる。
【実施例 7】 (切り換え制御手段の低速極性切り換えスィツチとしてサ イリス夕、 または、 アームとして半導体スィッチを 4個直列接続したも のを使用した場合)
続いて、 本発明の実施例 7に係るソフトスィツチング電力変換装置に ついて説明する。
第 2 0図は、 切り換え制御手段 5としてサイリス夕を採用した、 直流 Z単相交流変換の実施形態の例を示している。 第 2 1図は、 第 2 0図の 計算機シミュレ一ション結果を示すものである。
より詳しくは、 第 2 0図は、 直流 4 8 Vから単相 1 0 0 V、 5 0 H z への変換回路のブロック図である。 第 2 1図は、 第 2 0図の入力直流電 流 I d c i n、 出力交流電流 I a c o u t、 母線 P N間電圧 V p n、 出 力交流電圧 V a c o u tの波形を示している。
第 2 0図は、 交流から直流への逆変換をしない例である。 直流からの 昇圧パルス電圧発生は、 逆導通型半導体スィツチ S 1と S 3にオン ォ フのゲート信号を与え、 S 2と S 4は、常にオフのゲート信号を与える。 逆導通型半導体スィツチ S 2と S 4は、 ダイォード動作のみで使用可能 であるので、 逆導通型半導体スィッチを使用せずに、 ダイオードで代替 している。
第 2 2図は、 切り換え制御手段 5のアームとして、 半導体スィッチを 4個直列接続したものを使用した場合を示すものである。 半導体スイツ チ 1個あたりの耐圧が小さくて済むという利点がある。 これは、 すべて の半導体素子のスィツチング動作がゼロ電圧ゼロ電流で行われることか ら、 低速スィツチング動作の半導体スィツチの使用が可能となるからで ある。 【実施例 8】 (平滑ィンダク夕ンスをダイォードに置換した例) 続いて、 本発明の実施例 8に係るソフトスィツチング電力変換装置に ついて説明する。
第 2 3図 (B ) は、 平滑インダク夕ンス 6の代わりにダイオードを使 用した例を示している。
より詳しくは、 第 2 3図(B ) は、 昇圧パルス電圧の平滑手段として、 平滑ィンダクタンス 6に代わってダイオードを使用したものである。 第 2 3図 (A ) は、 平滑インダクタンスを使用した、 可逆変換が可能な直 流 直流変換であり、 本発明の実施例 2 (第 1 2図) で示したとおりあ る。
第 2 3図 (B ) に示すように、 平滑手段をダイオードに変更すると、 可逆変換は不可能になる。 しかし、 昇圧パルス電圧が低くなる利点があ る。 平滑手段としてダイオードを採用するか、 または平滑インダクタン スを採用するかは、 ダイォードの導通損失と平滑ィンダクタンスでの損 失などを比較考量して選択されるべきである。 また、 ダイオードで出力 直流電圧がクランプされると、 昇圧パルス電圧が半分になり、 出力電力 も半分になるが、 電力変換装置の小型化などの利点がある。
【実施例 9】 (三相交流電源から三相交流負荷への変換の例) 続いて、 本発明の実施例 9係るソフトスィツチング電力変換装置につ いて説明する。
第 2 4図は、 三相交流電源から三相交流負荷への変換の実施形態の例 を示している。 第 2 5図 (A ) は、 第 2 4図の回路の計算機シミュレ一 ション結果を示すものである。 第 2 5図(B ) は、 逆導通型半導体スィッ チ、 切り換え制御手段 5の低速極性切り換えスィツチの切り換え夕イミ ングを示すものである。
より詳しくは、 第 2 4図は、 本発明の実施例 3 (第 1 3図) の直流出 力を、 入力と同じ三相交流出力とした変換回路ブロック図である。 第 2 5図 (A ) は、 第 2 4図の各相入力電流 ( I L a a、 I L b b、 I L c c ) 、 各相出力電流 ( I a、 I b、 I c ) , 母線 P N間電圧 V p nの波 形を示している。 第 2 5図 (B ) は、 第 2 4図の三相交流入力電圧、 逆 導通型半導体スィツチ S 1 と S 2のゲート信号、 三相交流出力電圧、 低 速極性切り換えスィツチ T 1と T 2のゲート信号の波形を示している。 従来技術として、 マトリックスコンバータ (M a t r i x C o n v e r t e r、 以下 M Cという) と呼ばれる交流 Z交流直接変換回路があ る。 電圧源コンデンサを排除しているが、 順逆両方向に阻止能力のある 交流スィッチが必要である。 入出力が三相交流の場合、 使用する半導体 素子は 9個で済むが、 使用する半導体素子の構造が複雑なため、 コスト 的に不利である。
第 2 4図の三相交流 Z三相交流変換回路では、 逆阻止能力を持たず、 順方向のオン Zオフしかできない半導体素子で実現している。すなわち、 逆導通型半導体スィッチで構成している。 使用する半導体素子数は 1 2 個であるが、使用する半導体素子の構造が簡単なため、低コス卜になる。 また、 制御方法は、 従来の直流リンク方式と同様であり、 簡単である。 さらに、 直流母線電圧が、 入力電源電圧より高くできるなど、 M Cには ない利点がある。 また、 本実施例も、 磁気エネルギーを蓄積する 2個の コンデンサが、各制御サイクルで電圧がゼロになるまで放電することで、 すべてのスィツチングに使用する半導体スィツチがオフするときにゼロ 電圧で、 オンするときにゼロ電流でスイッチングされでい-ること、 すな わち、 ソフトスイッチングがなされることがわかる。 これは従来の M C に無い特徴である。

Claims

請 求 の 範 囲
1 交流電力から直流電力に、 またはその逆の変換をソフトスィッチン グによって行うソフトスィツチング電力変換装置であって、 該電力変換 装置は、
入力電源 ( 1 ) に交流電源または電流極性が反転する直流電源を使用 し、 該入力電源 ( 1 ) が、 交流インダク夕ンス (2 ) を介してその交流 入力端子 ( a、 b) に入力される昇圧パルス電圧発生手段 ( 3) と、 前記昇圧パルス電圧発生手段 ( 3 ) の直流出力端子 (cまたは d) と 直流電源または負荷 ( 7) との間に直列に挿入され、 前記昇圧パルス電 圧発生手段 ( 3) で発生させた昇圧パルス電圧を平滑して前記直流電源 または負荷 ( 7 ) に供給するための平滑インダク夕ンス ( 6) と、 前記昇圧パルス電圧発生手段 ( 3) を制御する制御手段 (4) と、 を備えるとともに、
前記昇圧パルス電圧発生手段 ( 3 ) は、 4個の逆導通型半導体スイツ チ (S l、 S 2、 S 3、 S 4 ) から構成されるブリッジ回路と、 前記ブ リッジ回路の直流出力端子 (c、 d) 間に接続され、 電流遮断時の電流 の持つ磁気エネルギーを回生して蓄積するコンデンサ ( 3 1 ) と、 を具備し、
前記制御手段 (4) は、 前記ブリッジ回路の対角線上に位置する少な くとも一方の前記逆導通型半導体スィツチのペアの 2個の前記逆導通型 半導体スィツチを、 同時にオン オフ動作を行うようにゲー卜に制御信 号を与えるとともに、 前記逆導通型半導体スィツチのオン オフ周期を、 前記コンデンサ (3 1 ) の静電容量と前記交流インダク夕ンス ( 2 ) の インダク夕ンス (L a c ) とで決まる共振周期より長くなるように設定 することで、 前記コンデンサ ( 3 1 ) の電圧がサイクル毎に放電してゼ 口になり、 前記逆導通型半導体スィツチをオフするとぎゼロ'電圧になり、 オンするときゼロ電流になることでソフトスィツチングを実現すること を特徴とするソフ卜スィツチング電力変換装置。 2 前記昇圧パルス電圧発生手段 ( 3) の直流出力端子 ( c、 d) と並 列に接続され、 前記昇圧パルス電圧を、 前記昇圧パルス電圧の発生周期 に同期したパルス幅変調 (PWM) キャリア信号に基づいて母線の上下 の電圧を交互にオン オフ制御する切り換え制御手段 ( 5) を備え、 該切り換え制御手段 ( 5) は、 半導体スィッチを 2個直列接続したァ ームを 1つ、 または複数具備して成るとともに、 前記制御手段 (4) に よって制御されることを特徴とする請求の範囲第 1項に記載のソフトス ィツチング電力変換装置。
3 前記負荷( 7 )に与える電力が直流の場合は、前記アームは 1つで、 前記昇圧パルス電圧を前記半導体スィツチのオン オフで降圧して負荷 に供給し、
前記負荷 ( 7 ) に与える電力が単相交流の場合は、 前記アームは 2つ で、 前記半導体スィツチのオン Zオフで制御して低周波の単相交流電圧 を発生させ、
前記負荷 ( 7 ) に与える電力が三相交流の場合は、 前記アームは 3つ で、 前記半導体スィツチのオン/オフで制御して三相交流電圧を発生さ せ、
前記負荷 ( 7 ) に与える電力が N相交流の場合は、 前記アームは N個 で、 前記半導体スィツチのオン オフで制御して N相交流電圧を発生さ せることを特徴とする請求の範囲第 2項に記載のソフトスイッチング電 力変換装置。 4 前記制御手段 (4 ) は、 前記入力電源 ( 1 ) が直流である場合、 前 記プリッジ回路の対角線上に位置する前記逆導通型半導体スィツチのぺ ァ (S 1と S 3のペア、 または S 2と S 4のペア) のうち、 一方のペア の 2個の前記逆導通型半導体スィッチのみをオン オフさせるが、 他方 のペアの 2個の前記逆導通型半導体スィツチはオフのままにして、 ダイ ォードとして動作させるように制御することを特徴とする請求の範囲第 1項または第 2項に記載のソフトスィツチング電力変換装置。 5 前記昇圧パルス電圧発生手段 ( 3 ) は、 2個の直列に接続した前記 逆導通型半導体スィッチ (S 2 、 S 3 ) および 2個の直列に接続したダ ィォードにより構成されるハーフブリッジ回路と、 前記 2個の直列に接 続したダイォ一ドのそれぞれに対して並列に接続される 2個の前記コン デンサ (3 1 ) と、 を具備したことを特徴とする請求の範囲第 1項また は第 2項に記載のソフトスィツチング電力変換装置。
6 前記入力電源 ( 1 ) が三相交流電源の場合、 前記昇圧パルス電圧発 生手段 (3 ) は、 2個の前記逆導通型半導体スィッチを直列に接続した ものを 1つのレグとし、 3つの前記レグから成る 6個の前記逆導通型半 導体スィッチによる三相全波ブリッジ回路と、 前記三相全波ブリッジ回 路の直流端子間に接続され、 第 1のコンデンサと第 1のダイオードを並 列に接続したものと、 第 2のコンデンサと第 2のダイォードを並列に接 続したものを、 前記第 1のダイォードと前記第 2のダイォードが順方向 の向きになるように直列接続した回路で、 さらに前記直列接続の中点を 前記三相交流電源の中性点と接続したものと、 を具備し、 前記各レグの 2個の前記逆導通型半導体スィツチを、 三相交流の電流の方向の前記逆 導通型半導体スィッチを選択し、 かつ、 すべての選択された前記逆導通' 型半導体スィツチを同時にオン Zオフして、 前記昇圧パルス電圧を前記 三相全波プリッジ回路の直流端子間に発生させて三相交流電力変換を行 うことを特徴とする請求の範囲第 1項または第 2項に記載のソフ 卜スィ ツチング電力変換装置。
7 前記切り換え制御手段 ( 5 ) の前記半導体スィッチに、 サイリス夕 を使用したことを特徴とする請求の範囲第 2項乃至第 6項のいずれか 1 項に記載のソフトスィツチング電力変換装置。
8 前記昇圧パルス電圧を平滑する手段として、 前記平滑インダクタン ス ( 6 ) に換えてダイオードを用いたことを特徴とする請求の範囲第 1 項乃至第 7項のいずれか 1項に記載のソフトスィツチング電力変換装置。 9 前記 4個の逆導通型半導体スィッチ (S 1 、 S 2 、 S 3 、 S 4 ) に、 寄生ダイオードを内蔵したパワー M O S F E Tを使用したとき、 前記逆 導通型半導体スィッチの逆導通時に、 同期信号を送って導通損失を減ら . すことを特徴とする請求の範囲第 1項乃至第 3項のいずれか 1項に記載 のソフトスィツチング電力変換装置。
1 0 前記制御手段 (4 ) は、 前記昇圧パルス電圧発生手段 ( 3 ) の入 力電圧若しくは入力電流、 直流出力若しくは前記パルス幅変調による切 り換え交流出力の電圧と電流、 およびコンデンサ ( 3 1 ) の電圧に基づ いて、 前記ゲート信号のオン Zオフの時間比およびスイッチング周期を 決定して前記逆導通型半導体スィツチのオン/オフ制御を行うことを特 徴とする請求の範囲第 2項乃至第 9項のいずれか 1項に記載のソフトス ィツチング電力変換装置
1 1 前記切り換え制御手段 ( 5 ) の前記アームを、 前記半導体スイツ チを 4個直列接続したもので置き換えたことを特徴とする請求の範囲第 2項に記載のソフトスィツチング電力変換装置。
1 2 前記入力電源 ( 1 ) として三相交流を使用し、 前記負荷 ( 7 ) に 与える電力が三相交流の場合、 前記切り換え制御手段 ( 5 ) の前記半導 体スィッチに、 前記逆導通型半導体スィッチを使用した、 請求の範囲第 3項または第 6項に記載のソフトスィツチング電力変換装置。
PCT/JP2008/072716 2007-12-11 2008-12-08 ソフトスイッチング電力変換装置 WO2009075366A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/746,575 US20100259955A1 (en) 2007-12-11 2008-12-08 Soft switching power converter
DE112008003369T DE112008003369T5 (de) 2007-12-11 2008-12-08 Sanftschaltender Stromwandler
JP2009545470A JP4534007B2 (ja) 2007-12-11 2008-12-08 ソフトスイッチング電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-320000 2007-12-11
JP2007320000 2007-12-11

Publications (1)

Publication Number Publication Date
WO2009075366A1 true WO2009075366A1 (ja) 2009-06-18

Family

ID=40755601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072716 WO2009075366A1 (ja) 2007-12-11 2008-12-08 ソフトスイッチング電力変換装置

Country Status (4)

Country Link
US (1) US20100259955A1 (ja)
JP (1) JP4534007B2 (ja)
DE (1) DE112008003369T5 (ja)
WO (1) WO2009075366A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087105A1 (ja) * 2010-01-15 2011-07-21 株式会社MERSTech 保護機能付電力変換装置及び制御方法
WO2011158947A1 (ja) * 2010-06-18 2011-12-22 株式会社MERSTech 電力変換装置、電力変換制御装置、電力変換方法及びプログラム
WO2012015048A1 (ja) * 2010-07-30 2012-02-02 株式会社MERSTech 直列共振dc/dc変換装置及び電力変換方法
CN102668353A (zh) * 2009-10-28 2012-09-12 莫斯科技株式会社 电力转换装置
WO2012176338A1 (ja) * 2011-06-24 2012-12-27 株式会社MERSTech 電力変換装置、電力変換制御装置、電力変換方法、及び、プログラム
WO2013118678A1 (ja) * 2012-02-10 2013-08-15 日産自動車株式会社 電力変換装置及びその駆動方法
JP2014072917A (ja) * 2012-09-27 2014-04-21 Taiyo Yuden Co Ltd 双方向dc−dcコンバータ
KR101411142B1 (ko) * 2010-04-28 2014-07-14 파나소닉 주식회사 쌍방향 dc/dc 컨버터
JP2016116292A (ja) * 2014-12-12 2016-06-23 新日鐵住金株式会社 大電流電源装置および通電加熱システム
KR20170084295A (ko) 2014-12-12 2017-07-19 신닛테츠스미킨 카부시키카이샤 전원 장치, 접합 시스템 및 통전 가공 방법
JP2019508008A (ja) * 2016-03-08 2019-03-22 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft エネルギー回生型整流装置
WO2020012814A1 (ja) * 2018-07-13 2020-01-16 三菱重工サーマルシステムズ株式会社 コンバータ装置、制御切り替え方法及びプログラム
CN113287252A (zh) * 2018-11-02 2021-08-20 浦卓科技有限公司 电力转换器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528886B2 (ja) * 2008-07-03 2010-08-25 株式会社MERSTech 電力制御装置
EP2244368A1 (en) * 2009-04-23 2010-10-27 Mitsubishi Electric R&D Centre Europe B.V. Method and an apparatus for controlling the output voltage of a boost converter composed of plural bridge devices
US8981589B2 (en) * 2010-08-24 2015-03-17 GM Global Technology Operations LLC Switched battery and capacitor arrangement and related operating methods
JP5928865B2 (ja) * 2010-11-18 2016-06-01 富士電機株式会社 非接触給電装置の制御方法
US9660451B1 (en) * 2010-11-29 2017-05-23 Sunpower Corporation Islanded operation of distributed power sources
US8564260B2 (en) * 2010-12-17 2013-10-22 Qualcomm Incorporated Dual-stage power conversion
US8878390B2 (en) 2011-04-22 2014-11-04 David Lee Lorentzen Adaptor for adding a second power supply unit to a computer system
KR20140037894A (ko) 2011-06-02 2014-03-27 가부시키가이샤 어드밴티스트 무선 수전 장치, 무선 급전 장치 및 무선 급전 시스템, 자동 튜닝 보조 회로
JPWO2013035671A1 (ja) * 2011-09-05 2015-03-23 株式会社MERSTech 電力変換装置、制御方法、及び、プログラム
KR101285079B1 (ko) 2012-06-21 2013-07-17 (주)정도파워텍 전계효과 트랜지스터를 이용한 동기정류형 전파정류회로
CN105337490A (zh) * 2014-08-13 2016-02-17 中兴通讯股份有限公司 一种直流开关电源变换电路
DE102015105889A1 (de) * 2015-04-17 2016-10-20 Ge Energy Power Conversion Technology Limited Schaltmodul und Umrichter mit wenigstens einem Schaltmodul
RU2622043C2 (ru) * 2015-11-06 2017-06-09 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Система управления управляемого выпрямителя напряжения
US9954427B2 (en) * 2015-11-06 2018-04-24 Wisconsin Alumni Research Foundation Converter control using reduced link capacitor
US10243447B2 (en) 2017-02-02 2019-03-26 Wisconsin Alumni Research Foundation Converter control with reduced link capacitor
CN107809184A (zh) * 2017-11-29 2018-03-16 苏州博思得电气有限公司 一种脉冲电压发生装置、方法及控制器
CN211880300U (zh) * 2020-05-22 2020-11-06 台达电子企业管理(上海)有限公司 一种功率因数校正电路
US20220399879A1 (en) * 2021-06-11 2022-12-15 Texas Instruments Incorporated Synchronous switch control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238460A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 電力変換装置
JP2002369388A (ja) * 2001-06-08 2002-12-20 Matsushita Electric Ind Co Ltd 系統連系インバータ
WO2004017151A1 (ja) * 2002-08-19 2004-02-26 The Circle For The Promotion Of Science And Engineering 磁気エネルギーを回生するパルス電源装置
JP2007058676A (ja) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology 進相電流による交流電圧制御装置
JP2007174723A (ja) * 2005-12-19 2007-07-05 Tokyo Institute Of Technology 交流/直流変換電源装置及び、それを利用した発光ダイオード駆動システム
JP2007312589A (ja) * 2006-04-20 2007-11-29 Daikin Ind Ltd 電力変換装置および電力変換装置の制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730242A (en) * 1986-09-25 1988-03-08 Wisconsin Alumni Research Foundation Static power conversion and apparatus having essentially zero switching losses
JP2527911B2 (ja) * 1993-10-20 1996-08-28 東洋電機製造株式会社 Pwmコンバ―タ
US5644483A (en) * 1995-05-22 1997-07-01 Lockheed Martin Energy Systems, Inc. Voltage balanced multilevel voltage source converter system
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
JP3634982B2 (ja) 1999-06-11 2005-03-30 財団法人理工学振興会 スナバーエネルギーを回生する電流順逆両方向スイッチ
US6330170B1 (en) * 1999-08-27 2001-12-11 Virginia Tech Intellectual Properties, Inc. Soft-switched quasi-single-stage (QSS) bi-directional inverter/charger
US6573664B2 (en) * 2001-05-31 2003-06-03 Koninklijke Philips Electronics N.V. High efficiency high power factor electronic ballast
US6728121B2 (en) * 2002-05-31 2004-04-27 Green Power Technologies Ltd. Method and apparatus for active power factor correction with minimum input current distortion
GB2393336B (en) * 2002-09-20 2005-07-20 Coutant Lambda Ltd Multi-resonant power conversion apparatus and methods
US7064509B1 (en) * 2005-03-14 2006-06-20 Visteon Global Technologies, Inc. Apparatus for DC motor position detection with capacitive ripple current extraction
WO2007123118A1 (ja) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. 電力変換装置および電力変換装置の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238460A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 電力変換装置
JP2002369388A (ja) * 2001-06-08 2002-12-20 Matsushita Electric Ind Co Ltd 系統連系インバータ
WO2004017151A1 (ja) * 2002-08-19 2004-02-26 The Circle For The Promotion Of Science And Engineering 磁気エネルギーを回生するパルス電源装置
JP2007058676A (ja) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology 進相電流による交流電圧制御装置
JP2007174723A (ja) * 2005-12-19 2007-07-05 Tokyo Institute Of Technology 交流/直流変換電源装置及び、それを利用した発光ダイオード駆動システム
JP2007312589A (ja) * 2006-04-20 2007-11-29 Daikin Ind Ltd 電力変換装置および電力変換装置の制御方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668353A (zh) * 2009-10-28 2012-09-12 莫斯科技株式会社 电力转换装置
WO2011087105A1 (ja) * 2010-01-15 2011-07-21 株式会社MERSTech 保護機能付電力変換装置及び制御方法
KR101411142B1 (ko) * 2010-04-28 2014-07-14 파나소닉 주식회사 쌍방향 dc/dc 컨버터
US8780588B2 (en) 2010-04-28 2014-07-15 Panasonic Corporation Bidirectional DC/DC converter with simple control operation
WO2011158947A1 (ja) * 2010-06-18 2011-12-22 株式会社MERSTech 電力変換装置、電力変換制御装置、電力変換方法及びプログラム
WO2012015048A1 (ja) * 2010-07-30 2012-02-02 株式会社MERSTech 直列共振dc/dc変換装置及び電力変換方法
WO2012176338A1 (ja) * 2011-06-24 2012-12-27 株式会社MERSTech 電力変換装置、電力変換制御装置、電力変換方法、及び、プログラム
JP2013165572A (ja) * 2012-02-10 2013-08-22 Nissan Motor Co Ltd 電力変換装置及びその駆動方法
WO2013118678A1 (ja) * 2012-02-10 2013-08-15 日産自動車株式会社 電力変換装置及びその駆動方法
JP2014072917A (ja) * 2012-09-27 2014-04-21 Taiyo Yuden Co Ltd 双方向dc−dcコンバータ
JP2016116292A (ja) * 2014-12-12 2016-06-23 新日鐵住金株式会社 大電流電源装置および通電加熱システム
KR20170084295A (ko) 2014-12-12 2017-07-19 신닛테츠스미킨 카부시키카이샤 전원 장치, 접합 시스템 및 통전 가공 방법
US10603743B2 (en) 2014-12-12 2020-03-31 Nippon Steel Corporation Power supply device, joining system, and electric processing method
JP2019508008A (ja) * 2016-03-08 2019-03-22 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft エネルギー回生型整流装置
WO2020012814A1 (ja) * 2018-07-13 2020-01-16 三菱重工サーマルシステムズ株式会社 コンバータ装置、制御切り替え方法及びプログラム
JP2020014275A (ja) * 2018-07-13 2020-01-23 三菱重工サーマルシステムズ株式会社 コンバータ装置、制御切り替え方法及びプログラム
JP7136613B2 (ja) 2018-07-13 2022-09-13 三菱重工サーマルシステムズ株式会社 コンバータ装置、制御切り替え方法及びプログラム
CN113287252A (zh) * 2018-11-02 2021-08-20 浦卓科技有限公司 电力转换器
CN113287252B (zh) * 2018-11-02 2024-04-09 浦卓科技创新服务有限公司 电力转换器

Also Published As

Publication number Publication date
JPWO2009075366A1 (ja) 2011-04-28
JP4534007B2 (ja) 2010-09-01
DE112008003369T5 (de) 2010-12-30
US20100259955A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
WO2009075366A1 (ja) ソフトスイッチング電力変換装置
US5936855A (en) Harmonic correction of 3-phase rectifiers and converters
JP3207431B2 (ja) 新規なソフト・スイッチ3相ブースト整流器及び電圧インバータ
Anderson et al. New synergetic control of a 20kw isolated vienna rectifier front-end ev battery charger
US7768800B2 (en) Multiphase converter apparatus and method
Chiang et al. DC/DC boost converter functionality in a three-phase indirect matrix converter
Itoh et al. A novel five-level three-phase PWM rectifier with reduced switch count
WO2017049250A1 (en) Pwm scheme based on space vector modulation for three-phase rectifier converters
Niapour et al. Extremely sparse parallel AC-link universal power converters
Itoh et al. Realization of high efficiency AC link converter system based on AC/AC direct conversion techniques with RB-IGBT
JP3324645B2 (ja) 交流−直流変換装置
JP7121971B2 (ja) 三相ac-dcコンバータ
Guler et al. Simplified single-stage buck-boost rectifier with proportional-integral and cascaded proportional-resonant control method
Chen et al. Three-Phase Boost Multilevel Inverter Based on Coupled-Structure Switched-Capacitor and V 2 SVM
Khodabandeh et al. A new t-type direct AC/AC converter
Klumpner A new two-stage voltage source inverter with modulated DC-link voltage and reduced switching losses
Ashraf et al. An efficient single-phase ac-to-ac buck and boost matrix converter
EP4380035A1 (en) Control apparatus for an arcp inverter
De et al. Bidirectional soft-switched AC/AC high frequency link converter
Gandikota et al. A new leakage energy commutation technique for single stage high frequency link inverters
Loh Buck–boost thyristor-based PWM current-source inverter
Dongdong et al. Space Vector Modulated Matrix Type Rectifier
Yin et al. Single-Phase Active Split-Source Inverter with High AC Gain
JP2022551224A (ja) ソフトスイッチング電流型インバータ
Jose et al. Simulation and Analysis of Three Phase/Level Vienna Rectifier as a Front end Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08859126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009545470

Country of ref document: JP

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12746575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120080033692

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 5008/DELNP/2010

Country of ref document: IN

RET De translation (de og part 6b)

Ref document number: 112008003369

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08859126

Country of ref document: EP

Kind code of ref document: A1