WO2009071006A1 - Procédé de production de produits à base de vanadium par technologie de fluidisation - Google Patents

Procédé de production de produits à base de vanadium par technologie de fluidisation Download PDF

Info

Publication number
WO2009071006A1
WO2009071006A1 PCT/CN2008/072759 CN2008072759W WO2009071006A1 WO 2009071006 A1 WO2009071006 A1 WO 2009071006A1 CN 2008072759 W CN2008072759 W CN 2008072759W WO 2009071006 A1 WO2009071006 A1 WO 2009071006A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
furnace
fluidization
vanadium slag
producing
Prior art date
Application number
PCT/CN2008/072759
Other languages
English (en)
French (fr)
Inventor
Yi Peng
Yiping Zhou
Shengyou Zhu
Fan Zhang
Zhaohui Sun
Jing Wang
Original Assignee
Panzhihua Iron & Steel (Group) Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panzhihua Iron & Steel (Group) Corporation filed Critical Panzhihua Iron & Steel (Group) Corporation
Priority to NZ586447A priority Critical patent/NZ586447A/en
Publication of WO2009071006A1 publication Critical patent/WO2009071006A1/zh
Priority to ZA2010/02349A priority patent/ZA201002349B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/10Roasting processes in fluidised form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a vanadium product by using a fluidization technique, and belongs to the field of vanadium extraction technology.
  • Vanadium slag is a vanadium-rich material that is blown from vanadium-bearing iron water with an oxygen-containing gas such as oxygen or oxygen-enriched air.
  • the vanadium in the common vanadium slag is mainly present in the ferrovanadium spinel in a trivalent form, and its chemical formula can be represented by FeO.V 2 0 3 , and a small amount of calcium is present in the silicate phase.
  • the standard vanadium slag standard requires very strict CaO content in the vanadium slag.
  • the CaO/V 2 0 5 requirement of the first vanadium slag is not more than 0.11, and can only be relaxed to the CaO of the third-stage vanadium slag.
  • V 2 0 5 is not more than 0.22.
  • Vanadium products are produced from ordinary vanadium slag as raw materials.
  • vanadium slag, sodium roasting, and water leaching and vanadium extraction are used to produce vanadium oxide, vanadium iron, vanadium nitride and other products, such as China's Panzhihua Iron and Steel Co., Ltd., Chenggang, Russia. Lower Tagil, Chusov Steel United, South Africa's Hayward, New Zealand Steel Corporation, etc.
  • the process mixes the finely divided vanadium slag with sodium salt such as Na 2 C0 3 and then adds it to the rotary kiln or multi-hearth furnace, and gradually increases the temperature from 260 ° C to 300 ° C to 850 ° C to 850 ° from the low temperature of 200 ° C to 300 ° C. C, roasting time is usually 21! ⁇ 5h.
  • the calcined product is discharged from the calciner, which is called clinker or calcination, and the clinker is leached with water to transfer the water-soluble sodium vanadate into the solution to further prepare the vanadium product.
  • Another process is the calcification roasting-sulphuric acid leaching process, which is used by the Russian vanadium-Tula Metallurgical Company. Art.
  • the process uses lime as an additive, and the ground vanadium slag is calcined in a rotary kiln or a multi-hearth furnace, and the temperature is gradually increased from a low temperature of 200 ° C to 300 ° C, and finally at 880 ° C to 950 °. C is thermostated for lh ⁇ 3h, and then discharged into the roaster, called calcified roast clinker.
  • the vanadium in the clinker is in the form of calcium vanadate or calcium manganese vanadate, enters the solution under the leaching action of the sulfuric acid solution, and further prepares the vanadium product.
  • the advantage of using the calcification roasting-sulfuric acid leaching process is that the wastewater treatment is easier to meet the national required emission standards than the sodium roasting process. Since the calcification roasting process uses lime as a roasting additive, the CaO content in the vanadium slag is not critical, and the CaO content can reach 4.5% to 5.5%.
  • the heat transfer efficiency of the fluidized roaster is extremely high, the particles are uniformly mixed, and the temperature field in the whole furnace is relatively uniform.
  • the reaction time is short in the same physical volume.
  • the material has sufficient contact with oxygen, low energy consumption, high production efficiency and large equipment capacity. Therefore, if the vanadium slag can be calcined using fluidization technology and equipment, it will have obvious advantages over rotary kiln or multi-hearth furnace.
  • the technical problem to be solved by the present invention is to overcome the prior art to produce vanadium products by using vanadium slag, and energy consumption. High, low efficiency, low capacity per unit of equipment, etc., providing a method for producing vanadium products with high efficiency, energy saving and good oxidation effect.
  • the invention adopts high calcium vanadium slag as raw material, and does not add any additive for fluidized roasting, and obtains uniform mixing and sufficient calcination of the material in the fluidization furnace to convert vanadium into calcium vanadate and calcium vanadate.
  • the successful completion of the process led to major innovations in vanadium extraction technology.
  • the invention is achieved by the following technical solutions:
  • roasting clinker by calcining high calcium vanadium slag in a fluidized furnace The average temperature in the fluidized furnace is 850 V ⁇ 950V (preferably 880-940 °C), and the average vanadium slag in the fluidized furnace The residence time is 30 ⁇ 150min (preferably 50-120min);
  • the fluidized furnace can pass excess air or oxygen-enriched air to enhance the oxidation effect, such as burning with gas, natural gas, fuel oil, etc., and then mixing with air, and heating the material into the fluidized furnace to ensure sufficient oxidation in the furnace.
  • step c leaching the calcined clinker is firstly added with water having a weight of 1 to 4 times to prepare a slurry, and then the sulfuric acid is adjusted to a concentration of 10% to 65% (preferably 32% to 65%) to adjust the pH of the slurry. The value is leached, and the pH of the leaching process is maintained in the range of 2.8 to 3.3, the temperature is 30 to 60 ° C, and the time is 30 to 90 min.
  • the beneficial effects of the invention are:
  • the material is mixed very uniformly and rapidly in the fluidized furnace, so the mass transfer and heat transfer effect are excellent, which can significantly shorten the roasting time and reduce the energy consumption and production cost of the roasting process.
  • the fluidized furnace with gas as the motion carrier is used as the roasting equipment, excess air or oxygen-enriched air can be introduced to enhance the oxidation effect, shorten the roasting time and reduce the energy consumption.
  • the capacity of the fluidized furnace is at least 6 to 10 times larger than that of the rotary kiln and multi-hearth furnace. Therefore, the application of the fluidized furnace can greatly increase the capacity of a single unit and reduce the equipment. Investment, improve the production capacity and economic benefits of enterprises.
  • Example 1 Effect of CaO V 2 0 5 weight ratio on vanadium leaching rate in high calcium vanadium slag 400 kg of high calcium vanadium slag (CaO/V 2 0 5 weight ratio is shown in Table 2) was ground to below 0.125 mm, wherein The -0.1mm portion accounts for 95%.
  • the above-mentioned vanadium slag was added from the upper portion by a fluidized roaster of ⁇ 100 ⁇ 2500 ⁇ in an upper feeding and lower discharging manner. After the gas is burned, it is mixed with excess air to form high-temperature oxidizing hot air, which is introduced from the lower part of the furnace tube to adjust the flow rate of hot air and the amount of vanadium slag to be kept, so that the vanadium slag maintains a good tumbling state in the furnace and controls fluidization.
  • the average temperature in the furnace was 900 ° C, and the average residence time of the vanadium slag in the furnace was controlled to be 30 min.
  • the clinker obtained by roasting is discharged from the lower discharge port of the fluidized roaster and rapidly cooled, the clinker is broken to below 40 mesh, and then 3 times the weight of water is added to prepare the slurry, and then the sulfuric acid having a concentration of 65% is added.
  • the pH of the solution was adjusted to carry out leaching, and the pH of the leaching process was maintained in the range of 2.8 to 3.3, the temperature was 30 to 60 ° C, and the time was 60 min.
  • the residue was filtered, washed and dried, and the vanadium content was analyzed to determine the leaching rate of high calcium vanadium slag vanadium. The results are shown in Table 2.
  • Example 2 Production of V 2 0 5 using high calcium vanadium slag 400 kg of high calcium vanadium slag (CaO/V 2 0 5 weight ratio of 0.91, V 2 0 5 content of 11.54%) was ground to 0.125 mm or less, wherein - The 0.1mm portion accounts for 95%.
  • the above-mentioned vanadium slag was added from the upper portion by a fluidized roaster of ⁇ 100 ⁇ 2500 ⁇ in an upper feeding and lower discharging manner. After the gas is burned, it is mixed with excess air to form high-temperature oxidizing hot air, which is introduced from the lower part of the furnace tube to adjust the flow rate of hot air and the amount of vanadium slag to be kept, so that the vanadium slag maintains a good tumbling state in the furnace and controls fluidization.
  • the average temperature in the furnace was 900 ° C, and the average residence time of the vanadium slag in the furnace was controlled to be 30 min.
  • the calcined clinker is discharged from the lower discharge port of the fluidized roaster and rapidly cooled, and the clinker is broken to
  • the filtrate was adjusted to pH 2.0 with sulfuric acid, then heated to boiling and held for 60 min.
  • the precipitate was filtered and washed, then the precipitate was dried and calcined to obtain V 2 0 5 29.49 g, and the V 2 0 5 grade was 94.01%.
  • Example 3 Production of V 2 0 5 using high calcium vanadium slag 500 kg of high calcium vanadium slag (CaO/V 2 0 5 weight ratio of 0.66, V 2 0 5 content of 12.84%) was ground to 0.125 mm or less, wherein - The 0.1mm portion accounts for 95%.
  • the above-mentioned vanadium slag is added from the lower portion by using a ⁇ 100 ⁇ 2500 ⁇ lower feed and upper discharge type fluidized roaster, and the gas is burned and mixed with excess air to form a high-temperature hot air, which is introduced from the lower portion of the furnace tube to adjust the hot air.
  • the flow rate and the amount of vanadium slag are added to keep the vanadium slag in a good tumbling state in the furnace.
  • the average temperature in the controlled fluidization furnace is 850 ° C, and the average residence time of the vanadium slag in the furnace is 150 min.
  • the calcined clinker is discharged from the upper discharge port of the fluidized roaster and rapidly cooled, and the clinker is broken to
  • the filtrate was adjusted to pH 2.0 with sulfuric acid, then heated to boiling and incubated for 60 min, filtered and washed. The precipitate was then dried and calcined to obtain V 2 0 5 44.57 g, and the V 2 0 5 grade was 93.2%.
  • the above-mentioned vanadium slag is added from the upper portion by using a ⁇ 100 ⁇ 2500 ⁇ upper feeding and lower discharging type fluidized roaster, and the gas is burned and mixed with excess air to form a high-temperature hot air, which is introduced from the lower portion of the furnace tube to adjust the hot air.
  • the flow rate and the amount of vanadium slag are added to keep the vanadium slag in a good tumbling state in the furnace.
  • the average temperature in the controlled fluidization furnace is 930 ° C, and the average residence time of the vanadium slag in the furnace is 90 min.
  • the calcined clinker is discharged from the lower discharge port of the fluidized roaster and rapidly cooled.
  • the pH of the sulfuric acid adjustment solution is added to a concentration of 32% to carry out leaching.
  • the pH of the leaching process is in the range of 2.8 to 3.3, the temperature is 30 to 60 ° C, and the time is 30 min.
  • the residue was filtered, washed and dried, and the vanadium content was analyzed.
  • the leaching rate of high calcium vanadium slag vanadium was 85.18%.
  • the filtrate was adjusted to pH 2.0 with sulfuric acid, then heated to boiling and held for 60 min.
  • the precipitate was filtered and washed, then the precipitate was dried and calcined to obtain V 2 0 5 21.89 g, and the V 2 0 5 grade was 93.65%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Furnace Details (AREA)

Description

利用流态化技术生产钒产品的方法
技术领域 本发明涉及一种利用流态化技术生产钒产品的方法, 属于钒提取技术领域。 背景技术 钒渣是用氧气或富氧空气等含氧气体从含钒铁水中吹炼出的一种钒富集物料。 普通钒渣中的钒主要以三价形式存在于钒铁尖晶石中, 其化学式可用 FeO.V203表 示, 少量的钙则存在于硅酸盐相中。
普通钒渣按五氧化二钒的品位分为 7个牌号, 其化学成分应符合表 1规定。
表 1
Figure imgf000003_0001
从上表可知, 普通钒渣标准对钒渣中的 CaO含量要求是十分严格的, 一级钒渣 的 CaO/V205要求不大于 0.11, 最多只能放宽到三级钒渣的 CaO/V205不大于 0.22。
以普通钒渣为原料生产钒产品,通常都采用传统的钒渣钠化焙烧一水浸提钒工 艺生产氧化钒、 钒铁、 氮化钒等产品, 如中国的攀钢, 承钢, 俄罗斯的下塔吉尔、 丘索夫钢铁联合企业、 南非海威尔德、 新西兰钢铁公司等。 该工艺将磨细的钒渣与 Na2C03等钠盐混合均匀后加入回转窑或多膛炉中, 从 200°C〜300°C的低温开始逐 步升高温度至 760°C〜850°C, 焙烧时间通常在 21!〜 5h。 焙烧后的产物从焙烧炉中 排出, 称为熟料或焙砂, 熟料用水进行溶浸, 使水溶性的钒酸钠转入溶液中, 进一 步制取钒产品。
另一种工艺是钙化焙烧一硫酸浸出工艺,俄罗斯钒一图拉冶金公司采用这种工 艺。该工艺以石灰类物质为添加剂,与磨细后的钒渣在回转窑或多膛炉中进行焙烧, 同样从 200°C〜300°C的低温开始逐步升温, 最后在 880°C〜950°C恒温 lh〜3h, 然 后排出焙烧炉, 称为钙化焙烧熟料。 熟料中的钒以钒酸钙或钒酸钙锰形式存在, 在 硫酸溶液的溶浸作用下进入溶液, 进一步制取钒产品。采用钙化焙烧一硫酸浸出工 艺的优点是其废水治理比钠化焙烧工艺更容易达到国家要求的排放标准。由于钙化 焙烧工艺采用石灰类物质作为焙烧添加剂,因此对钒渣中的 CaO含量要求不严, CaO 含量可以达到 4.5%〜5.5%。 俄罗斯钒一图拉冶金公司要求 CaO/V205为 0.7〜0.75, 焙烧温度为 800~860°C (俄罗斯专利 97113072/02),还需要配加适量的石灰和硫酸浸 出后的残渣。
世界上所有的钒厂,无论其采用钠化焙烧一水浸工艺还是钙化焙烧一硫酸浸出 工艺, 都以回转窑或多膛炉作为焙烧设备, 但没有采用流态化技术和设备焙烧钒渣 的厂家, 因为无论是钠化焙烧一水浸提钒工艺还是钙化焙烧一硫酸浸出工艺都必须 外配添加剂 (钠盐或钙盐), 由于添加剂与钒渣的流体力学性能差异较大, 在流态化 焙烧炉中含钒原料与添加剂不能均匀混合反应, 易出现偏析现象, 导致焙烧效果较 差, 远低于回转窑或多膛炉。 因此通常采用回转窑或多膛炉焙烧。 过去曾有人研究 过用流态化设备对钒钛磁铁矿与氯化钠的混合物进行焙烧的技术, 但偏析现象严 重, 效果很差, 因此未能应用于生产。
由于上述原因, 目前尚未出现利用流态化焙烧炉焙烧高钙钒渣, 生产钒产品的 相关报导。
由于流态化焙烧炉的传热效率极高, 颗粒混合均匀, 整个炉内的温度场较为均 匀, 与回转窑、 多膛炉和竖炉等相比, 在同样物理体积情况下, 反应时间短、 物料 与氧气接触充分、 能耗低、 生产效率高、 设备产能大。 因此若能使用流态化技术和 设备焙烧钒渣, 将比回转窑或多膛炉具有明显的优势。
要实现流态化焙烧, 必须解决含钒原料与添加剂的均匀混合问题。在含钒铁水 吹钒时加入足够量的石灰类物质, 得到富含钙的钒渣, 称为高钙钒渣。 高钙钒渣中 钒绝大部分仍然存在于钒铁尖晶石中, 而钙则主要存在于硅酸盐相中。对高钙钒渣 进行流态化焙烧, 将导致提钒技术的重大革新。 发明内容 本发明所要解决的技术问题是为了克服现有技术利用钒渣生产钒产品, 能耗 高, 效率低, 单位设备产能低等缺点, 提供一种高效、 节能、 氧化效果好的生产钒 产品的方法。 本发明以高钙钒渣为原料, 不外加任何添加剂进行流态化焙烧, 在流 态化炉中得到了物料的均匀混合和充分焙烧,使钒转化为钒酸钙和钒酸钙锰的反应 得以顺利完成, 导致了提钒技术的重大革新。 本发明通过以下技术方案来实现:
a、 准备高钙钒渣: 其中高钙钒渣按重量比计 CaO/V205= 0.5〜1.4 (即 0.5 CaO/V2O5 0.7和 0.7<CaO/V2O5 1.4)。
优选 0.66-1.3 (即 0.66 CaO/V2O5 0.7和 0.7<CaO/V2O5 1.3 )。
更优 0.8〜1.19。
b、 采用流态化炉焙烧高钙钒渣制得焙烧熟料: 流态化 炉内的平均温度为 850 V〜950V (优选 880-940°C ),钒渣在流态化炉中的平均停留时间为 30〜150min (优 选 50-120min) ;
流态化炉可以通入过量空气或富氧空气,强化氧化效果,如采用煤气、天然气、 燃油等燃烧, 然后与空气混合, 通入流态化炉中加热物料, 保证炉内有足够的氧化 性气氛, 使钒能够从三价氧化为五价, 进而生成钒酸盐;
c、 焙烧熟料用硫酸溶液浸出, 由浸出液进一步制取钒产品。 进一步的,为了使钒铁尖晶石更容易被氧化,步骤 a的高钙钒渣破碎至 0.125mm 以下, 其中 95%以上的颗粒小于 0.1mm。 步骤 c浸出可以采用以下方案: 焙烧熟料先加其重量 1〜4倍的水调成料浆后, 再加入浓度为 10%〜65% (优选 32%〜65% ) 的硫酸调节料浆 pH值进行浸出, 保 持浸出过程的 pH值在 2.8~3.3范围, 温度 30〜60°C, 时间 30〜90min。 本发明的有益效果为:
1、 物料在流态化炉内混合非常均匀、 迅速, 因此传质、 传热效果极好, 可显 著缩短焙烧时间, 降低焙烧过程的能耗和生产成本。
2、 由于采用以气体为运动载体的流态化炉为焙烧设备, 因此可以通入过量空 气或富氧空气, 强化氧化效果, 缩短焙烧时间, 降低能耗。 3、 相同容积的设备情况下, 流态化炉的产能比回转窑、 多膛炉至少要大 6〜 10 倍, 因此应用流态化炉可大幅度提高单台设备的产能, 减小设备的投资, 提高 企业的生产能力和经济效益。
4、 回转窑、 多膛炉和竖炉设备本身或设备的某一主要部件需要运动, 而沸腾 炉是以气体为载体, 只有物料在设备中运动, 设备本身的运动部件很少, 因此设备 的损坏和维修也将大大减少, 有利于生产的组织实施。 具体实施方式 以下结合实施例对本发明作进一步的阐述。 实施例仅用于说明本发明, 而不是 以任何方式来限制本发明。 实施例 1 高钙钒渣中 CaO V205重量比对钒转浸率的影响 将 400kg的高钙钒渣 (CaO/V205重量比见表 2) 磨细至 0.125mm以下, 其中 -0.1mm部分占 95%。
采用 Φ 100 Χ 2500ιηιη 的上加料、 下出料方式的流态化焙烧炉, 将上述钒渣从 上部加入。煤气燃烧后与过量的空气混合形成高温氧化性热风,从炉管的下部通入, 调整热风的流量和钒渣的加料量, 使钒渣在炉内保持较好的翻滚状态, 控制流态化 炉内的平均温度为 900°C, 控制钒渣在炉内的平均停留时间为 30min。
焙烧完成的熟料从流态化焙烧炉的下部出料口排出并迅速冷却, 熟料破碎至 40 目以下, 然后加 3倍重量的水调成料浆后, 再加入浓度为 65%的硫酸调节溶液 pH进行浸出, 保持浸出过程的 pH值在 2.8~3.3范围,温度 30〜60°C, 时间 60min。 残渣过滤、 洗涤后烘干, 分析其钒含量, 测定高钙钒渣钒的浸出率, 结果见表 2。
表 2
Figure imgf000006_0001
从表 2中可见,当高钙钒渣中的 CaO/V205为 0.8〜1.19时达到最佳的焙烧效果, CaO/V205低于 0.66和高于 1.19的高钙钒渣焙烧一浸出效果开始变差。
实施例 2 利用高钙钒渣生产 V205 将 400kg的高钙钒渣 (CaO/V205重量比为 0.91, V205含量为 11.54%) 磨细至 0.125mm以下, 其中 -0.1mm部分占 95%。
采用 Φ 100 Χ 2500ιηιη 的上加料、 下出料方式的流态化焙烧炉, 将上述钒渣从 上部加入。煤气燃烧后与过量的空气混合形成高温氧化性热风,从炉管的下部通入, 调整热风的流量和钒渣的加料量, 使钒渣在炉内保持较好的翻滚状态, 控制流态化 炉内的平均温度为 900°C, 控制钒渣在炉内的平均停留时间为 30min。
焙烧完成的熟料从流态化焙烧炉的下部出料口排出并迅速冷却, 熟料破碎至
40目以下, 取 200g熟料, 然后加 3倍重量的水调成料浆后, 再加入浓度为 65%的 硫酸调节溶液 pH进行浸出, 保持浸出过程的 pH值在 2.8~3.3范围, 温度 30〜60 °C, 时间 60min。 残渣过滤、 洗涤后烘干, 分析其钒含量, 测得高钙钒渣钒的浸出 率为 87.19%。
滤液用硫酸将 pH调整至 2.0, 然后加热至沸腾并保温 60min, 过滤并洗涤沉淀, 然后将沉淀物烘干、 煅烧, 得到 V205 29.49g, V205品位为 94.01%。
实施例 3 利用高钙钒渣生产 V205 将 500kg 的高钙钒渣(CaO/V205重量比为 0.66, V205含量为 12.84%)磨细至 0.125mm以下, 其中 -0.1mm部分占 95%。
采用 Φ 100 Χ 2500ιηιη 的下加料、 上出料方式的流态化焙烧炉, 将上述钒渣从 下部加入, 煤气燃烧后与过量的空气混合形成高温热风, 从炉管的下部通入, 调整 热风的流量和钒渣的加料量, 使钒渣在炉内保持较好的翻滚状态, 控制流态化炉内 的平均温度为 850°C, 控制钒渣在炉内的平均停留时间为 150min。
焙烧完成的熟料从流态化焙烧炉的上部出料口排出并迅速冷却, 熟料破碎至
40目以下, 取 400g熟料, 然后加 4倍水调成料浆后, 再加入浓度为 65%的硫酸调 节溶液 pH进行浸出, 保持浸出过程的 pH值在 2.8~3.3范围, 温度 30〜60°C, 时间 30min。残渣过滤、洗涤后烘干,分析其钒含量,测得高钙钒渣钒的浸出率为 84.74%。
滤液用硫酸将 pH调整至 2.0, 然后加热至沸腾并保温 60min, 过滤并洗涤沉淀, 然后将沉淀物烘干、 煅烧, 得到 V205 44.57g, V205品位为 93.2%。
实施例 4 利用高钙钒渣生产 V205
将 300kg 的高钙钒渣 (CaO/V205重量比为 0.7, V205含量为 12.68%) 磨细至
0.1mm以下。
采用 Φ 100 Χ 2500ιηιη 的上加料、 下出料方式的流态化焙烧炉, 将上述钒渣从 上部加入, 煤气燃烧后与过量的空气混合形成高温热风, 从炉管的下部通入, 调整 热风的流量和钒渣的加料量, 使钒渣在炉内保持较好的翻滚状态, 控制流态化炉内 的平均温度为 930°C, 控制钒渣在炉内的平均停留时间为 90min。
焙烧完成的熟料从流态化焙烧炉的下部出料口排出并迅速冷却, 取熟料 200g 加 2倍水调成料浆后, 再加入浓度为 32%的硫酸调节溶液 pH进行浸出, 保持浸出 过程的 pH值在 2.8~3.3范围, 温度 30〜60°C, 时间 30min。 残渣过滤、 洗涤后烘 干, 分析其钒含量, 测得高钙钒渣钒的浸出率为 85.18%。
滤液用硫酸将 pH调整至 2.0, 然后加热至沸腾并保温 60min, 过滤并洗涤沉淀, 然后将沉淀物烘干、 煅烧, 得到 V205 21.89g, V205品位为 93.65%。

Claims

权利要求书
1、 利用流态化技术生产钒产品的方法, 其特征在于经以下步骤完成:
a、 准备高钙钒渣: 其中高钙钒渣按重量比计 0.5 CaO/V2O5 0.7;
b、 采用流态化炉焙烧高钙钒渣制得焙烧熟料;
c、 焙烧熟料用硫酸溶液浸出, 由浸出液进一步制取钒产品。
2、 根据权利要求 1所述的利用流态化技术生产钒产品的方法, 其特征在于: a 步骤中高钙钒渣按重量比计 0.66 CaO/V2O5 0.7。
3、 利用流态化技术生产钒产品的方法, 其特征在于经以下步骤完成:
a、 准备高钙钒渣: 其中高钙钒渣按重量比计 0.7<CaO/V2O5 1.4。
b、 采用流态化炉焙烧高钙钒渣制得焙烧熟料;
c、 焙烧熟料用硫酸溶液浸出, 由浸出液进一步制取钒产品。
4、 根据权利要求 3所述的利用流态化技术生产钒产品的方法, 其特征在于: a 步骤中高钙钒渣按重量比计 0.7<CaO/V2O5 1.3。
5、根据权利要求 1〜4任一项所述的利用流态化技术生产钒产品的方法, 其特 征在于: a步骤中的高钙钒渣加入流态化炉前破碎至 0.125mm以下, 其中 95%以上 的颗粒小于 0.1mm。
6、根据权利要求 1〜4任一项所述的利用流态化技术生产钒产品的方法, 其特 征在于:
b步骤流态化炉内的平均温度为 850°C〜950°C,钒渣在流态化炉中的平均停留 时间为 30min〜150min。
7、 根据权利要求 6所述的利用流态化技术生产钒产品的方法, 其特征在于: b步骤流态化炉内的平均温度为优选 880-940°C, 钒渣在流态化炉中的平均停 留时间为 50-120min;
8、根据权利要求 1〜4任一项所述的利用流态化技术生产钒产品的方法, 其特 征在于: b步骤采用煤气、 天然气、 燃油等燃烧, 然后与空气混合, 通入流态化炉 中加热物料, 保证炉内有足够的氧化性气氛。
9、根据权利要求 1〜4任一项所述的利用流态化技术生产钒产品的方法, 其特 征在于: c步骤先将焙烧熟料加水调成料浆, 再加入浓度为 10%〜65%的硫酸调节 溶液 pH进行浸出,保持浸出过程的 pH值在 2.8~3.3范围,温度 30〜60°C, 时间 30〜 90min; 由浸出液进一步制取 V205
10、 根据权利要求 1〜4任一项所述的利用流态化技术生产钒产品的方法, 其 特征在于: c步骤调节溶液 pH的硫酸浓度为 32%〜65%。
PCT/CN2008/072759 2007-11-26 2008-10-21 Procédé de production de produits à base de vanadium par technologie de fluidisation WO2009071006A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NZ586447A NZ586447A (en) 2007-11-26 2008-10-21 Method for producing vanadium products by fluidization technique
ZA2010/02349A ZA201002349B (en) 2007-11-26 2010-04-01 Method for producing vanadium products by fluidization technique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710202682A CN100582257C (zh) 2007-11-26 2007-11-26 一种流态化设备焙烧高钙钒渣的方法
CN200710202682.4 2007-11-26

Publications (1)

Publication Number Publication Date
WO2009071006A1 true WO2009071006A1 (fr) 2009-06-11

Family

ID=39946088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072759 WO2009071006A1 (fr) 2007-11-26 2008-10-21 Procédé de production de produits à base de vanadium par technologie de fluidisation

Country Status (5)

Country Link
CN (1) CN100582257C (zh)
NZ (1) NZ586447A (zh)
RU (1) RU2441083C1 (zh)
WO (1) WO2009071006A1 (zh)
ZA (1) ZA201002349B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058279A (zh) * 2012-12-17 2013-04-24 攀钢集团攀枝花钢钒有限公司 一种流态化制取五氧化二钒的方法
CN112143892A (zh) * 2020-10-08 2020-12-29 湖南众鑫新材料科技股份有限公司 一种处理钒氮合金产品氧化的方法
CN113930609A (zh) * 2021-09-29 2022-01-14 重庆大学 流化床煅烧石煤提钒及综合利用新方法
CN114249306A (zh) * 2021-12-06 2022-03-29 武汉科技大学 一种基于富钒液的氮化钒及其制备方法
CN116273046A (zh) * 2023-04-11 2023-06-23 郑州中科新兴产业技术研究院 用于催化环己烷氧化反应的提钒尾渣处理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582257C (zh) * 2007-11-26 2010-01-20 攀枝花钢铁(集团)公司 一种流态化设备焙烧高钙钒渣的方法
CN102828019A (zh) * 2012-08-21 2012-12-19 攀钢集团研究院有限公司 一种高品位钒渣富氧钙化焙烧的方法
CN103667710B (zh) * 2013-12-04 2015-06-17 四川省川威集团有限公司 高钙钒渣清洁生产五氧化二钒工艺
CN103993161B (zh) * 2014-05-21 2016-11-16 攀钢集团攀枝花钢铁研究院有限公司 一种含钒物料的两段式钙化焙烧的方法
CN104694761A (zh) * 2015-02-17 2015-06-10 河北钢铁股份有限公司承德分公司 一种钒渣钠化焙烧提钒工艺钒液提钒的方法
CN109338103B (zh) * 2018-11-30 2020-08-04 攀钢集团研究院有限公司 钙化焙烧熟料逆流酸浸提钒的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656936A (en) * 1970-10-14 1972-04-18 Oil Shale Corp Vanadium recovery process
JPS58151328A (ja) * 1982-03-01 1983-09-08 ザ・ユニバ−シイテイ・オブ・コンセプシヨン バナジウム含有スラグ及び類似物からのバナジウム採取方法
CN86106595A (zh) * 1986-09-26 1988-04-20 乌拉尔黑色金属科学研究院 五氧化二钒的生产方法
RU2160786C1 (ru) * 1999-11-11 2000-12-20 Институт металлургии и материаловедения им. А.А. Байкова РАН Способ извлечения ванадия из высокоизвестковых шлаков
RU2193072C1 (ru) * 2001-11-28 2002-11-20 Открытое акционерное общество "Ванадий-Тула" Способ извлечения ванадия
RU2245936C1 (ru) * 2003-06-02 2005-02-10 Сирина Татьяна Петровна Способ извлечения ванадия
CN1782108A (zh) * 2004-11-30 2006-06-07 戴许斌 石煤复合钙化焙烧—低酸浸取—特种离子交换制钒方法
CN101067169A (zh) * 2007-06-12 2007-11-07 中南大学 一种钼钒多金属冶金物料分解方法
CN101245410A (zh) * 2007-11-26 2008-08-20 攀钢集团攀枝花钢铁研究院 一种流态化设备焙烧高钙钒渣的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724387A (zh) * 2005-06-22 2006-01-25 株洲市湘麒科技开发有限公司 从石煤钒矿中提取五氧化二钒的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656936A (en) * 1970-10-14 1972-04-18 Oil Shale Corp Vanadium recovery process
JPS58151328A (ja) * 1982-03-01 1983-09-08 ザ・ユニバ−シイテイ・オブ・コンセプシヨン バナジウム含有スラグ及び類似物からのバナジウム採取方法
CN86106595A (zh) * 1986-09-26 1988-04-20 乌拉尔黑色金属科学研究院 五氧化二钒的生产方法
RU2160786C1 (ru) * 1999-11-11 2000-12-20 Институт металлургии и материаловедения им. А.А. Байкова РАН Способ извлечения ванадия из высокоизвестковых шлаков
RU2193072C1 (ru) * 2001-11-28 2002-11-20 Открытое акционерное общество "Ванадий-Тула" Способ извлечения ванадия
RU2245936C1 (ru) * 2003-06-02 2005-02-10 Сирина Татьяна Петровна Способ извлечения ванадия
CN1782108A (zh) * 2004-11-30 2006-06-07 戴许斌 石煤复合钙化焙烧—低酸浸取—特种离子交换制钒方法
CN101067169A (zh) * 2007-06-12 2007-11-07 中南大学 一种钼钒多金属冶金物料分解方法
CN101245410A (zh) * 2007-11-26 2008-08-20 攀钢集团攀枝花钢铁研究院 一种流态化设备焙烧高钙钒渣的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG FUHUA ET AL.: "A METHOD OF EXTRACTING V FROM STONE COAL WITHOUT POLLUTION", CHEMICAL WORLD, 1992, pages 538 - 540 *
RAO SHUJUAN ET AL.: "RESEARCH ABOUT PROCESS OF EXTRACTING V FROM COAL SLAG CONTAINING V AND HIGH CA", INORGANIC CHEMICALS INOUSTRY, no. 6, 1991, pages 2 - 6 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058279A (zh) * 2012-12-17 2013-04-24 攀钢集团攀枝花钢钒有限公司 一种流态化制取五氧化二钒的方法
CN112143892A (zh) * 2020-10-08 2020-12-29 湖南众鑫新材料科技股份有限公司 一种处理钒氮合金产品氧化的方法
CN112143892B (zh) * 2020-10-08 2022-03-22 湖南众鑫新材料科技股份有限公司 一种处理钒氮合金产品氧化的方法
CN113930609A (zh) * 2021-09-29 2022-01-14 重庆大学 流化床煅烧石煤提钒及综合利用新方法
CN114249306A (zh) * 2021-12-06 2022-03-29 武汉科技大学 一种基于富钒液的氮化钒及其制备方法
CN116273046A (zh) * 2023-04-11 2023-06-23 郑州中科新兴产业技术研究院 用于催化环己烷氧化反应的提钒尾渣处理方法
CN116273046B (zh) * 2023-04-11 2024-04-12 郑州中科新兴产业技术研究院 用于催化环己烷氧化反应的提钒尾渣处理方法

Also Published As

Publication number Publication date
NZ586447A (en) 2011-10-28
RU2441083C1 (ru) 2012-01-27
CN101245410A (zh) 2008-08-20
ZA201002349B (en) 2011-06-29
CN100582257C (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2009071006A1 (fr) Procédé de production de produits à base de vanadium par technologie de fluidisation
CN101215005B (zh) 利用钒渣生产五氧化二钒的方法
CN102703688B (zh) 钒钛磁铁矿中回收钒的方法
CN103130279B (zh) 一种氯化生产高纯五氧化二钒的方法
CN108149022B (zh) 一种钒渣空白焙烧铵化提钒的方法
CN105886786B (zh) 一种强化转炉钒渣钙化提钒的方法
CN1319684C (zh) 微波辐射钒钛铁精矿制取天然微合金铁粉的方法
CN106477606B (zh) 一种基于硫酸熟化从粉煤灰中提取氧化铝的方法
CN102923774B (zh) 添加高钙钒渣进行钠化焙烧的方法
CN109055724B (zh) 从铬钒矿/渣中提取钒和铬的方法
CN102851507A (zh) 一种钠化焙烧钒渣的方法
CN109402380B (zh) 一种从钒渣中提钒的方法
CN110129587A (zh) 一种锂辉石真空冶炼提取金属锂并制备铝硅合金的方法
CN111733337B (zh) 钒溶液还原制备氧化钒的方法
CN104294055A (zh) 一种钒渣提钒的方法
CN107267766A (zh) 一种从改性钒渣中选择性分离钒、钛、铁的方法
CN114436300A (zh) 一种锂辉石酸化浸取锂的方法
CN107902925A (zh) 利用菱镁矿冶炼轻质氧化镁的方法
CN103266230B (zh) 一种含钒石煤竖炉富氧焙烧系统和方法
CN110331297B (zh) 钒渣短流程制备五氧化二钒的方法
WO2014183511A1 (zh) 一种湿法处理钒钛磁铁精矿的方法
CN114086004B (zh) 一种从富锰渣中选择性高效提取锰的方法
CN114835088B (zh) 一种黄铁矿热解-氧压浸出制备硫磺和铁精粉的方法
CN102534232A (zh) 一种氢氧化钠溶液添加含碳物质常压分解钒渣的方法
CN110195159A (zh) 一种锂辉石制备铝硅合金并富集锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08857992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 586447

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2010121753

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 08857992

Country of ref document: EP

Kind code of ref document: A1