WO2009070918A1 - Source lumineuse pour système de projection et appareil d'affichage par projection - Google Patents

Source lumineuse pour système de projection et appareil d'affichage par projection Download PDF

Info

Publication number
WO2009070918A1
WO2009070918A1 PCT/CN2007/003389 CN2007003389W WO2009070918A1 WO 2009070918 A1 WO2009070918 A1 WO 2009070918A1 CN 2007003389 W CN2007003389 W CN 2007003389W WO 2009070918 A1 WO2009070918 A1 WO 2009070918A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
laser
source device
mirror
Prior art date
Application number
PCT/CN2007/003389
Other languages
English (en)
French (fr)
Inventor
Yong Bi
Hua Cheng
Bin Wang
Guang Zheng
Yanwei Wang
Meiyan Feng
Zhongda Jia
Original Assignee
Phoebus Vision Opto-Electronics Technology Ltd.
The Academy Of Opto-Electronics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoebus Vision Opto-Electronics Technology Ltd., The Academy Of Opto-Electronics, Chinese Academy Of Sciences filed Critical Phoebus Vision Opto-Electronics Technology Ltd.
Priority to JP2010535190A priority Critical patent/JP5456688B2/ja
Priority to PCT/CN2007/003389 priority patent/WO2009070918A1/zh
Priority to KR1020107014522A priority patent/KR101179639B1/ko
Priority to CA2705863A priority patent/CA2705863A1/en
Priority to US12/745,008 priority patent/US20100309439A1/en
Priority to EP07845752.0A priority patent/EP2216679B1/en
Publication of WO2009070918A1 publication Critical patent/WO2009070918A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the present invention relates to a light source device and a projection display device, and more particularly to a light source device and a projection display device for a projection display system. Background technique
  • Ultra-high pressure mercury lamps, metal halide lamps, xenon lamps, halogen lamps, etc. used in the illumination of existing projection systems the spectrum of these illuminating sources are limited by the luminescent material and its state, and exhibits continuous or banded light characteristics.
  • the red light has a wide band and the peak value is low, and the red, green and blue primary colors have an unsatisfactory intensity distribution, which cannot meet the white field color balance requirement, so Better meet the requirements of projection system lighting.
  • the prior art generally adopts a method of selecting a broad spectrum to increase the luminous flux and brightness of red light, but this method will correspondingly cause a decrease in color saturation.
  • the prior art also increases the brightness of red at the expense of contrast and color saturation in the processing of video signals. Therefore, although these techniques can soften the color of the image, the overall quality of the image is degraded.
  • the existing light-emitting diode illumination technology has a disadvantage that the light energy that can be effectively utilized by the projection system is small and the total optical power output is low.
  • the luminous flux and brightness of LEDs have been greatly improved, they have not yet met the requirements of projector applications, especially in applications where high-brightness lighting applications are required.
  • the prior art relies on the arrangement of LEDs to increase the luminous flux and brightness, but since the LED is a Lambertian source, if the combined LED source is optically extended Exceeding the optical expansion of the projection system, this excess of light cannot be effectively coupled into the projection system.
  • the optical expansion of the LED is the optical expansion of the LED.
  • n the refractive index of the luminescent medium
  • the emission half angle of the light source
  • S the illuminating area of the light source.
  • the emission half angle of the light emitting diode is 90 degrees
  • the illuminating medium is air
  • the air refractive index is 1 for approximate calculation
  • the optical expansion of the 1 mm 2 light emitting diode is about 3. l 1 ⁇ 2ni 2 sr.
  • a certain light-emitting diode having a light-emitting area of 7 faces 2 is limited by the optical expansion of the projection system.
  • the maximum optical power of the green light is about 1. 6W
  • the maximum optical power of the blue light is about 1. 8W
  • red light, green light, blue light is approximately 1.
  • the ratio of the maximum optical power that can be coupled into the projection system is approximately 1:0.44: 1.13.
  • the white field with a color temperature of 6500 ⁇ requires the ratio of the optical power of the red, green and blue light of the light-emitting diode to be approximately 1: 0. 87: 1. 73.
  • the present invention provides a light source apparatus for projection display comprising a supplemental light source and a laser light source, the laser light emitted by the laser light source being mixed with the light emitted by the supplemental light source and mixed and output in the same direction.
  • the mode of the mixed output is preferably a coaxial mixed output.
  • the laser source may also be provided with a beam adjustment system.
  • the beam adjustment system may include an optical fiber and a coupling lens for coupling the laser into the optical fiber, and may further include a beam expander lens, a focus lens, and the like.
  • the supplemental light source includes various light sources for projection such as an LED lamp, an ultrahigh pressure mercury lamp, a metallization lamp, a xenon lamp, and a lamp.
  • the light source device further includes a beam shaping device, such as a wedge-shaped quadrangular pyramid, for compressing the output light divergence angle of the LED or the LED array.
  • a beam shaping device such as a wedge-shaped quadrangular pyramid
  • the supplemental light source is an LED light source
  • the LED light source is composed of a plurality of LEDs, and at least one laser hole is disposed between the LEDs, and the laser light source is emitted from the laser hole, and is The light from the LED source is directly mixed and output in the same direction.
  • the laser aperture is symmetrically disposed on the LED light source.
  • the light source device further includes a mirror for reflecting the supplemental light source output light or the laser light source output light, the mirror including a reflective portion for reflecting the light source output light and causing the Another type of light source outputs a transmitted portion through which the light beam is transmitted directly.
  • the reflecting portion may be a flat surface, or may be designed into various shapes as needed, such as a parabolic shape, a double curved surface or a spherical shape.
  • the surface of the reflecting portion of the mirror is plated with a high-reflection film which increases the efficiency of reflection of the reflected light beam.
  • the light source whose output light is reflected is the supplemental light source
  • the transmitting portion of the mirror is a laser hole through which the laser light emitted by the laser light source directly passes.
  • the light source whose output light is reflected is the laser light source, and the mirror is made of a transparent material.
  • the surface of the transmissive portion of the mirror is plated with an anti-reflection film that increases the transmission efficiency of the transmitted beam.
  • the mirror may be implemented by a reflective prism
  • the reflective prism is composed of two prisms, each prism includes an adhesive surface, and the bonding faces of the two prisms are optically glued except for the central portion. Closing, thereby forming an air gap in the central portion of the two bonding faces as described Reflected part.
  • the relative refractive index of the optical adhesive and the prism material is 0.98 - 1. 0 2 .
  • the prism is a right angle prism, the right angle prism is preferably a triangular prism, and the bonding surface is a bottom surface of the right angle prism.
  • the surface of the prism is coated, and the incident surface of the laser on the reflective prism is plated with an antireflection film corresponding to the wavelength of the laser, and the incident surface and the exit surface of the supplemental light source on the reflective prism are plated with corresponding budding.
  • the light source outputs an antireflection film of the wavelength of light.
  • the present invention also provides a projection apparatus that uses the above-described light source apparatus as a light source for projection display.
  • the invention intelligently bows the laser of the laser into the bulb of the projection system and the LED illuminating source, and proposes an idea that the laser and other light sources are mixed as the illumination source of the projection system.
  • the bulbs such as ultra-high pressure mercury lamps, metal materials, xenon lamps, xenon lamps, and 3 ⁇ 4 lamp lamps, improve the brightness of red light, and adjust the three primary colors of red, green and blue.
  • the intensity distribution improves the performance of color saturation and contrast, and has high practical value in the field of projection display.
  • the invention has the characteristics of wide color gamut, long life, no mercury and environmental protection, and has the advantages of relatively low cost, and has high practical value in the field of projection display.
  • Figure 1 is a schematic diagram of a light source device in which a laser and an LED are directly mixed and output;
  • FIG. 2 is schematic diagrams of another light source device in which a laser is directly mixed with an LED
  • FIG. 5 is a schematic diagram of a light source device for supplementing a bulb using a common mirror
  • FIG. 6 is a laser supplemental illumination using a common mirror.
  • FIG. 7 is a schematic diagram of an emission spectrum of an ultrahigh pressure mercury lamp
  • Figure 8 is a schematic plan view of a mirror;
  • Figure 9 is a schematic view of a light source device for a laser supplemental bulb for projection display using a mirror
  • Figure 10 is a spectrum of a mixture of a laser and an ultra-high pressure mercury lamp
  • Figure 1 is a schematic diagram of a light source device in which a laser and an LED light are mixed
  • Figure 12 is a schematic structural view of another mirror
  • Figure 13 is a schematic view of a light source device for a laser supplemental bulb for projection display using a mirror
  • Figure 14 is a schematic view of a light source device in which a laser and an LED light are mixed
  • Figure 15 and Figure 16 are a side view and a perspective view, respectively, of a novel reflective prism
  • Figure 17 is a schematic view of another reflecting prism
  • Figure 18 is a schematic view of a light source device for supplementing a bulb using a laser of a reflecting prism
  • Figure 19 is a schematic view of a light source device for supplementing a light-emitting diode with a laser using a reflecting prism
  • Figure 20 and Figure 21 are two LED lights of three primary colors respectively combined with RGB laser a schematic diagram of a beam as a projection display source;
  • Figure 22 is a schematic illustration of a projector optical path using a single-chip DLP
  • Figure 23 is a schematic view of a projector optical path using three pieces of DLP
  • 24 is a schematic diagram of a projector optical path of a single-chip DLP in which a three-primary LED lamp and an RGB laser are combined as a projection display light source;
  • 25 is a schematic diagram of a projector optical path of a monolithic DLP in which a three-primary LED lamp and a monochromatic laser are combined as a projection display light source;
  • 26 is a schematic diagram of a projector optical path of three LCDs in which a three-color LED lamp and a monochrome laser are combined as a projection display light source;
  • Figure 27 is a schematic diagram of a three-color LED lamp and a laser combined beam path of a three-piece LC0S as a projection display light source;
  • Figure 29 is a schematic illustration of a projector optical path using three LCOSs.
  • the optical spread of the laser is small.
  • the optical spread of the laser output from the fiber is determined by: Where r is the radius of the bundle and sin is the numerical aperture of the fiber.
  • a bundle of fibers is bundled from one or more fibers.
  • the optical expansion of the fiber bundle output laser is only 5.22 10"Wsr, which is two orders of magnitude smaller than that of the LED.
  • the luminous flux at the extended amount can reach thousands to tens of thousands of lumens. Therefore, for the laser, a very small optical expansion can obtain a very high luminous flux output.
  • the optical expansion of the light-emitting diode is set to E led
  • the optical expansion of the laser is E
  • the total optical expansion of the hybrid light source is E iotal
  • ⁇ and ⁇ are much smaller, they are almost negligible, so that most of the optical expansion of the hybrid light source can be distributed to the light-emitting diodes, in order to utilize as low-cost light-emitting diodes as possible.
  • Light energy while distributing a very small portion of the optical expansion of the hybrid light source to the laser, can achieve extremely high brightness characteristics with a small optical expansion of the laser, thereby increasing the total brightness of the hybrid light source.
  • Figure 1 shows a light source device for direct mixing of laser and LED output, comprising a laser source 106 and two LEDs 104 and 114, each of which has a wedge-shaped quadrangular pyramid as the output of the compressed LED output light.
  • the beam shaping device of the divergence angle, the laser light output by the laser light source 106 is first coupled into the optical fiber 108 through the lens assembly 107, and the laser light output by the optical fiber 108 passes through the focusing lens group 109 and is in the same direction as the LED light output through the wedge-shaped quadrangular pyramid.
  • the upper output realizes the mixing of laser and LED light.
  • the laser may use a solid laser, a gas laser, an optical fiber laser, a semiconductor laser or the like.
  • the aperture angle of the output light of the light source device is preferably equal to the aperture angle of the projection system. If it is larger, there is a waste of light energy. If it is less than too much, the aperture angle cannot be fully utilized.
  • Beam shaping devices 105 and 115 are used to compress the light divergence angle in the form of LED Lambert, so that the divergence angle after compression is less than or equal to the aperture angle of the projection system.
  • An angular function optical device; a focusing lens group may include a beam expanding lens, which functions to expand the laser beam to have better divergence, and can achieve better mixing effect.
  • the two LEDs shown in FIG. 1 can also be considered as LED arrays respectively, and can also be considered as part of the LED array, and it is considered that the laser 106 is in the laser array.
  • a laser hole 112 is disposed between adjacent LEDs, and the laser output from the laser or the laser array is mixed with the LED light through each corresponding laser hole, respectively, due to the LED array.
  • the illuminating area is limited by the amount of optical expansion of the subsequent projection system, so in order to increase the luminous flux, the arrangement density of the LEDs in the LED array must be increased, so that the laser aperture cannot be made very large, and the focusing lens group 109 is used to focus the laser beam to a small extent. After the spot diameter is incident on the laser hole, the LED array density of the LED array can be increased, and the luminous flux can be increased.
  • the cross section is larger than the LED.
  • a gap 111 is left between the wedge-shaped pyramids, and the focusing lens group 109 is required to be used. The laser beam is focused to the gap 111 between the output ends of the two wedge-shaped quadrangles, which maximizes the arrangement density of the LED array.
  • Figure 2 shows a schematic diagram of a light source device in which the laser is directly mixed with the LED.
  • a laser light source 206 and two LEDs 204 and 214 are included, and each of the LBDs is provided with a wedge-shaped quadrangular pyramid 205 and 215 as a beam shaping device for compressing the output light divergence angle of the LED, and the laser light output from the laser light source 206.
  • the LED light outputted through the wedge-shaped quadrangular pyramids 205 and 215 is mixed and output in the same direction.
  • Figure 2 no longer uses the coupling lens set and fiber in Figure 1, but also achieves the effect of a mixed output.
  • a beam expander lens may be included in the focus lens group.
  • different beam adjustment systems can be selected depending on the laser and the different optical paths.
  • Figure 3 shows a schematic diagram of a light source device in which laser and LED light are directly mixed.
  • the respective output lens groups 307 and 317 are respectively coupled into the optical fibers 308 and 318, and the laser light output from the optical fibers 308 and 318 is focused by the focusing lens groups 309 and 319, and then passed through the laser holes 302 and 312 and the wedge-shaped quadrangular pyramids 305 and 315.
  • the lights of the LEDs 304, 314, and 324 outputted by the 325 are output in the same direction to achieve mixing.
  • the purpose of the symmetrical arrangement of the laser apertures 302 and 312 is to make the combined light ejector effect better.
  • Figure 4 shows a schematic diagram of another light source device in which the laser is directly mixed with the LED light. It consists of an LED array consisting of four LEDs and a laser array consisting of two lasers. The laser and LED light are mixed in the same way as in Figure 1. Laser light from the laser 406 laser bore between the first and second LED404 LED414 408 through the third and fourth LED424 LED 4 3 4 between the laser 16 laser 4 The laser aperture 418 passes through and is directly mixed with the output light of the LED array. This laser can be mixed in a symmetrical manner with the LED array output light to obtain a relatively uniform mixed light.
  • a scheme of supplementing only one laser between the second LED 414 and the third LED 424 may be employed; or between the first LED 404 and the second LED 414, between the second LED 414 and the third LED « 4 , and the third LED 424
  • the laser hole between the fourth LED 434 and the fourth LED 434 are supplemented by a scheme of three lasers.
  • This embodiment mainly uses a scheme of laser hole symmetry setting.
  • the laser hole can also be arranged in an asymmetric manner according to the specific needs in practical applications, but whether the laser hole is symmetrically arranged or not, the patent belongs to this patent. Within the scope.
  • Figure 5 and Figure 6 show two light source devices that use a common mirror to mix the laser with the output light of the supplemental source, where
  • Figure 5 is a light source device for a laser supplemental bulb using a conventional mirror.
  • the light source device is mainly composed of a laser 502, a focusing lens 503, a mirror 504, and a bulb 501 as a supplemental light source, wherein the red laser beam emitted by the laser 502 passes through the focusing lens 503 and is focused on or near the surface of the mirror 504.
  • the surface of the mirror 504 is plated with a high-reflection film having a high wavelength opposite to the incident red laser light. After the laser beam is reflected by the mirror 504 on the surface of the mirror, the direction of the emission is the same as the direction in which the light beam emits the light beam.
  • the purpose of mixing the laser source with the output beam of the bulb is mainly composed of a laser 502, a focusing lens 503, a mirror 504, and a bulb 501 as a supplemental light source, wherein the red laser beam emitted by the laser 502 passes through the focusing lens 503 and is focused on or near the
  • the focus lens 503 can also use a focus lens group or other optical components that can achieve focusing.
  • the focusing lens group may also include a beam expander lens to expand the laser beam, because the laser light diverging at a certain divergence angle is better for mixing with the bulb, and the laser beam is reflected and the beam of the bulb is coaxial. good.
  • the laser 502 may be a solid laser, a semiconductor laser, a fiber laser, a gas laser, or the like.
  • the red laser selected by the laser 502 preferably has a wavelength of 630 nm to 670 nm.
  • the focus lens 503 should make the focus of the laser as close as possible to the surface of the mirror 504, so that it is possible to make the mirror 504. It is smaller in size to reduce the blockage of light output from the bulb due to its volume.
  • a light source device of a laser supplemental light emitting diode using a common mirror mainly comprising an LED light source 601, a beam shaping device 602, a mirror 603, a laser 607, a coupling lens group 606, an optical fiber 605, and a focusing lens group 604.
  • the LED light source 601 is shaped by the beam shaping device 602, the divergence angle of the Lambert form is compressed, and the divergence angle after compression can be determined according to the aperture angle of the subsequent projection system; the laser light emitted by the laser source 607 passes.
  • the coupling lens group 606 enters the optical fiber 605, and the outgoing light of the optical fiber 605 is focused by the focusing lens group 604.
  • the divergence angle is also controlled within the aperture angle of the projection system, and the optical path is adjusted so that the focus of the laser beam after focusing by the focusing lens group 604 is reflected.
  • the surface of the mirror 603 or its vicinity is reflected by the mirror 603, and the direction of the optical axis of the laser beam coincides with the optical axis direction of the LED beam output by the beam shaping device 602, thereby achieving a mixed output of the two light sources.
  • the LED light source may be a white light LED light source or other monochromatic LED light source, which is determined according to actual needs; and at the same time, beam shaping for compressing the output light divergence angle of the light emitting diode light source
  • the device can be implemented using a wedge-shaped quadrangular pyramid or other optics.
  • one of the disadvantages of using the mirror of Figure 5 or Figure 6 is that the part of the light emitted by the supplemental source will be blocked by the mirror, in order to minimize the amount of beam energy that the mirror blocks. Only the mirror is made as small as possible. In fact, as long as the reflecting surface of the mirror is equal to the cross section of the laser beam, in practical applications, the focal spot diameter of the laser beam is generally on the order of glutinous rice. Such a small mirror is not only expensive to manufacture, but also difficult to fix in the actual optical path due to its very small volume, and its fixing device also affects the optical path, even because its fixing device must appear in the optical path. Instead, it blocks more of the supplemented beam than the mirror.
  • Fig. 8 shows a schematic top view of a mirror.
  • the mirror includes a reflecting portion 801 for reflecting the output light of the supplemental light source and a light passing hole 802 for directly passing the laser light from the laser light source.
  • the reflective portion 801 of the mirror can also be plated with a high reflective film that increases the efficiency of reflection of the output beam from the supplemental source.
  • the mirror may have various planar shapes such as a disc shape, a rectangular shape, a flat plate shape, and a strip shape according to actual needs, and may be designed into various shapes as needed, such as a parabolic shape, a double curved surface, or a spherical shape. Wait.
  • the light passing holes 802 may be located at the center of the mirror or may be changed to other positions according to different needs.
  • Figures 9 and 11 show two light source devices using the structural mirror shown in Figure 8 for mixing the output of the laser and the supplemental source, wherein
  • the light source device for the laser supplemental bulb for projection display shown in FIG. 9 includes a laser light source 902, a focus lens 903, a bulb 901 and a mirror 904; wherein the laser source 902 is a red laser and the mirror 904 is circular.
  • the middle of the mirror 904 is a light-passing hole 905 having a diameter of 3 mm
  • the remaining portion of the mirror 904 is a reflecting portion
  • the reflecting portion is plated with a broadband high-reflection film of visible light.
  • the laser beam emitted by the red laser 902 passes through the focusing lens 903 and is directly output through the light passing hole 905 of the mirror 904.
  • the light beam emitted by the bulb 901 is reflected by the reflecting portion of the mirror 904 and directly passes through the light passing hole 905.
  • Laser beam loses in the same direction Out, thereby achieving mixing, and the optical axes of the two kinds of light in the mixed light coincide, thereby realizing the red light addition.
  • the focus lens 903 can also use a focus lens group or other optical components that can achieve focusing. In the focusing lens group, a beam expander lens can be added to increase the divergence of the laser, so that the mixing effect is better, and the beam of the bulb is reflected and then coaxial with the laser beam to optimize the mixing effect.
  • the laser 902 may be a solid laser, a semiconductor laser, a fiber laser, a gas laser, or the like.
  • the red laser selected for the laser 902 preferably has a wavelength of 630 legs to 670 nm.
  • the light bulb here can also be ultra-high pressure mercury lamp, metal! 3 ⁇ 4 chemistry lamp, ! 3 ⁇ 4 prime and xenon lamps.
  • the focus lens 9Q3 should be such that the focus of the laser light is at or near the surface of the light-passing aperture 905 of the mirror 904.
  • FIG. 10 and Fig. 7 A schematic diagram of the spectrum after mixing is shown in FIG. As can be seen from Fig. 10 and Fig. 7, in the distribution of the RGB three primary colors, the intensity of the red light is significantly improved, which is in line with the need for white field light distribution.
  • the light-passing hole 905 of the mirror 904 may be disposed in the middle of the mirror, or may be disposed at other suitable positions, and the thickness of the mirror may be small, and may be a disk shape, a rectangular shape, or a flat plate shape.
  • Various planar shapes such as strips can also be designed into various shapes as needed, such as parabolic shape, hyperboloid shape or spherical shape.
  • Fig. 11 is a light source device in which a light-emitting diode light source as a supplemental light source is mixed with a laser light source for projection display.
  • the structure of the mirror 1103 is the same as that of FIG. 8.
  • the light-emitting diode light source 1101 is a white light-emitting diode. After the light beam is passed through the beam shaping device 1102, the light divergence angle of the Lambert form is compressed, and the divergence angle after compression is the projection system.
  • the aperture angle is, for example, ⁇ 12°; the outgoing light of the beam shaping device 1102 is reflected by the reflective portion of the mirror 1103, and the reflected portion of the mirror 1103 is plated with a visible light broadband high-reflection film; the laser light source 1107 is a green laser.
  • the emitted laser light enters the optical fiber 1105 through the coupling lens group 1106, and the outgoing light of the optical fiber 1105 is focused by the focusing lens group 1104, and its divergence angle is controlled within the aperture angle of the projection system.
  • the laser beam directly passes through the light passing hole, and the concentrated beam is converted into a diverging beam; and the light of the white light emitting diode is reflected by the mirror, and directly
  • the green laser is mixed and output in the same direction to achieve mixing, which becomes a hybrid illumination source, which complements the green light of the LED, and the beam of the LED is reflected and coaxial with the laser beam to optimize the mixing effect.
  • the focal spot area of the laser beam after passing through the focusing lens group 1104 should be smaller than or equal to the size of the light passing hole, or the focus of the focusing lens group 1104 can be in the vicinity of the light passing hole, and the laser beam can be simultaneously made.
  • the area of the spot is less than or equal to the cross-sectional area of the light-passing hole, because if the spot area of the laser beam is larger than the cross-sectional area of the light-passing hole, the laser will waste light energy, and the spot area of the laser beam is smaller than that of the light-passing hole.
  • the beam shaping device can be implemented using a wedge-shaped quadrangular pyramid or other optics.
  • the LED light source may be a white LED light source or other monochromatic LED light sources.
  • the LED light source may also be an LED array, which is determined according to actual needs.
  • Figure 12 is a side elevational view of another mirror.
  • the mirror includes a reflective portion 1201 for reflecting laser light emitted by the laser light source and a transmissive portion for directing the transmitted light from the supplemental light source.
  • the outer surface 1202 and the lower surface 1203 are plated with an antireflection film that increases the transmission efficiency of the light emitted by the supplemental light source, except for the mirror removing the reflection portion 1201.
  • the reflective portion of the mirror 1201 is plated with a high-reflection film that increases the efficiency of laser reflection.
  • the mirror is made of a flat plate-shaped transparent material.
  • the transparent material may be glass, quartz, silicon wafer, transparent plastic or the like.
  • the reflective portion may be located in the center of the mirror, or at one end of the mirror, or may be changed to other locations as needed.
  • the reflecting portion may be a flat surface or may be designed into various shapes as needed, such as a parabolic shape, a hyperboloid shape, or a spherical shape.
  • FIG. 13 and FIG. 14 are two light source devices using the mirror shown in FIG. 12, wherein the light source device for the laser supplemental bulb for projection display shown in FIG. 13 includes a laser light source 1 308, a focus lens 1 305, The bulb 1 306 and the mirror 1 307; wherein, the laser source 1 308 is a red laser, the mirror 1 307 is a flat structure made of glass, and the middle portion 1 304 of the mirror is a reflective portion, plated with red light The high-reflection high-reflection film, the remainder of the mirror 1 307 is the transmissive portion.
  • the light source device for the laser supplemental bulb for projection display shown in FIG. 13 includes a laser light source 1 308, a focus lens 1 305, The bulb 1 306 and the mirror 1 307; wherein, the laser source 1 308 is a red laser, the mirror 1 307 is a flat structure made of glass, and the middle portion 1 304 of the mirror is a reflective portion, plated with red light The high-reflection high-
  • the laser beam emitted by the red laser 1308 is incident on the reflecting portion 1 304 of the mirror 1 307 through the focusing lens 1 305, and is output after being reflected; the light beam emitted from the bulb 1 306 is directly transmitted through the mirror. After 1307, the laser beam reflected by the reflected portion 1304 is mixed, and the optical axes of the two kinds of light in the mixed light are superposed, thereby realizing the red light.
  • the focusing lens 1 305 can also use a focusing lens group or other optical components that can achieve focusing.
  • a beam expander lens can be added to increase the divergence of the laser, so that the mixing effect is better, and the beam is coaxial with the bulb beam after the laser beam is reflected, so that the mixing effect is optimal.
  • the laser 1 308 may be a solid laser, a semiconductor laser, a fiber laser, a gas laser, or the like.
  • the red laser selected for the laser 1 308 preferably has a wavelength of 630 legs to 670 nm.
  • the light bulb here can also be ultra-high pressure mercury lamp, metal! 3 ⁇ 4 crystallization lamp, 13 ⁇ 4 lamp And neon lights.
  • the focusing lens 1305 should be such that the focus of the laser is at or near the surface of the reflecting portion 1304 of the mirror 1307.
  • the area of the reflecting portion of the mirror 1307 smaller to reduce the blocking of the light output from the reflecting portion.
  • the reflecting portion of the mirror 1307 may be disposed in the middle of the mirror, or may be disposed at an edge or other suitable position, and the surface shape of the reflecting portion may be a flat type as shown in FIG. 4)
  • the material of the mirror 1307 can be prepared using a transparent material including glass, quartz, silicon wafer and transparent plastic.
  • the mirror 1307 may have a small thickness, and its shape may be formed into various shapes such as a strip shape and a disk shape.
  • Fig. 14 is a light source device in which a light-emitting diode light source as a supplemental light source is mixed with a laser light source for projection display.
  • the LED light source 1401 is a white light emitting diode.
  • the beam shaping device 1402 After the light beam is passed through the beam shaping device 1402, the light divergence angle in the form of a Lambert is compressed, and the divergence angle after compression is an aperture angle of the projection system, for example, ⁇ 12°; beam shaping The emitted light of the device 1402 is directly transmitted through the mirror 1403, and the region other than the reflective portion on the surface of the mirror 1403 is plated with a visible light broadband anti-reflection film; the laser light source 1407 is a green laser, and the emitted laser light enters through the coupling lens group 1406.
  • the exiting light of the optical fiber 1405, the optical fiber 1405 is focused by the focusing lens group 1404, and its divergence angle is controlled within the aperture angle of the projection system.
  • the laser incident surface of the mirror 1403 is plated with a high reflection film which is highly reflective to the laser wavelength as a reflection portion of the mirror. Adjusting the optical path so that the focus of the laser beam is at the reflecting portion of the mirror 1403, the laser is reflected at the reflecting portion, and the concentrated beam is converted into a divergent beam; and the light of the white light emitting diode is transmitted through the mirror, and after the reflection
  • the green laser is mixed to become a hybrid illumination source, which complements the green light of the LED.
  • the focal spot area of the laser beam should be smaller than or equal to the size of the reflecting portion, or the focus of the laser beam can be in the vicinity of the surface of the reflecting portion, and the spot area of the laser beam at the reflecting portion is made smaller than Or equal to the area of the reflection part, because if the spot area of the laser beam is larger than the reflection part, there is a waste of light energy. If the spot area of the laser beam is less than the reflection part, it is better to reduce the size of the reflection part, and try to block as little as possible. The light of the LED, otherwise the maximum optical power of the LED cannot be utilized; at the same time, it is used to compress the LED light source.
  • the beam shaping device for the light divergence angle can be implemented using a wedge-shaped quadrangular pyramid or other optical device.
  • the LED light source may be a white LED light source or other monochromatic LED light source, which is determined according to the needs of actual use.
  • Figure 15 and Figure 16 show another reflecting prism with a novel structure consisting of two right-angle triangular prisms 1507 and 1508.
  • the bevels of the two right-angle triangular prisms 1507 and 1508 are optically bonded except for the central portion.
  • 1506 is bonded together, since the optical glue 1506 has a certain thickness, thereby forming an air gap 1505 in the central portion of the two bonding faces.
  • the air gap 1505 may be any shape as long as it can reflect the incident laser beam or the focused laser beam, and the cross-sectional shape may be any suitable shape such as a circle or a rectangle.
  • the circular air gap is more troublesome when bonding.
  • the rectangular air gap is relatively easy.
  • the surface of the prism can be plated with different film systems according to different needs of the beam passing.
  • the incident surface of the laser on the reflective prism needs to be coated with an anti-reflection film with a high laser wavelength, and is supplemented on the reflective prism.
  • Both the incident surface and the exit surface of the light source are plated with an anti-reflection coating that is highly transparent to the supplemental light source.
  • the thickness d of the reflecting prism should be minimized, which is still to reduce the interference of the output light of the supplemental light source.
  • the structure of such a reflective prism is easier to fix due to its increased volume, and the fixture does not have to appear in the optical path to avoid interference with the optical path.
  • Figure 17 shows the structure of another reflecting prism which is a variant of the reflecting prism structure shown in Figures 15 and 16, using two right-angled trapezoidal prisms instead of the right-angled triangular prisms of Figures 15 and 16.
  • the angle between the inclined surface of the right-angled trapezoidal prism and the right-angled surface is 45°, and other structures are the same as those of the reflective prisms of FIGS. 15 and 16.
  • the lengths of the edges b and c may be changed as shown in FIG. 6, and the shape of the edge a may be changed to any other shape without affecting the passage of the light of the supplemental light source.
  • Any change in the shape of the reflective prism should be covered by the patent without affecting the action of the prism body.
  • FIG. 18 is a light source device for a laser replenishing bulb using the novel structure reflecting prism shown in FIG. 15 and FIG. 16, comprising a laser light source 1808, a focusing lens 1805, an ultrahigh pressure mercury lamp 1806, and a reflecting prism 1807; wherein, the laser light source 1808 is 635 nm.
  • the red solid-state laser, the two right-angle prisms of the reflective prism are made of K9 glass with a refractive index of 1, 51, and the optical adhesive of the middle is made of a UV-curable adhesive with a refractive index of 1, 51.
  • the laser beam emitted by the red solid-state laser passes through the focusing lens 1805, it is perpendicularly incident from a right-angled surface of a right-angle prism, and the right-angled surface is plated with a pair of waves.
  • the antireflection film with a length of 635 nm laser (transmittance greater than 99%) the laser focal spot after convergence by the focusing lens 1805 is at the air gap 1804 and totally reflected at the air gap 1804, and the other right angle of the right angle prism
  • the surface of the ultrahigh pressure mercury lamp 1806 is incident on a right angle plane of another right angle prism and directly transmitted through the reflective prism 1807 to coincide with the optical axis of the laser beam, thereby realizing red light.
  • the two right-angle faces of the ultra-high pressure mercury lamp incident on the reflective prism 1807 are plated with a visible light broadband anti-reflection film.
  • the thickness d of the reflective prism can be small, and those skilled in the art should understand that the total reflection of the laser beam can be ensured as long as the thickness d is larger than the diameter of the incident spot of the laser beam on the air gap.
  • the thickness d can be made very thin, so that only a part of the light emitted by the supplemental light source is transmitted through the reflecting prism, and the other part is directly mixed with the laser beam without passing through the reflecting prism.
  • Fig. 19 is a light source device in which a light-emitting diode light source as a supplemental light source is mixed with a laser light source for projection display.
  • the structure of the light source device is similar to that of FIG. 14, except that the mirror uses the reflective prism of the structure shown in FIGS. 15 and 16, wherein the light-emitting diode light source 1901 is a white light-emitting diode, which is illuminated by the beam shaping device 1902, in the form of a Lambertian body.
  • the divergence angle of the light is compressed, and the divergence angle after compression is the aperture angle of the projection system, for example, ⁇ 12°; the outgoing light of the beam shaping device 1902 is directly transmitted through the reflective prism 19G3, and the corresponding incident and exit of the LED beam on the reflective prism 1903
  • the surface is coated with a visible light broadband anti-reflection film;
  • the laser light source 1907 is a 532 nm green solid-state laser, and the emitted laser light enters the optical fiber 1905 through the ray lens group 1906, and the outgoing light of the optical fiber 1905 is focused by the focusing lens group 1904, and the divergence angle is controlled.
  • the aperture angle of the projection system for example, ⁇ 12°; the outgoing light of the beam shaping device 1902 is directly transmitted through the reflective prism 19G3, and the corresponding incident and exit of the LED beam on the reflective prism 1903
  • the surface is coated with a visible light broadband anti-reflection film;
  • the laser light source 1907
  • the laser is coated on the laser incident surface of the reflecting prism 1903 with an antireflection film having a wavelength of 532 legs (transmittance greater than 99%). Adjusting the optical path so that the focus of the laser beam is at the air gap of the reflective prism 1903, the laser is totally reflected at the air gap, and the concentrated beam is converted into a diverging beam; and the light of the white light emitting diode is transmitted through the reflecting prism, and the reflection After the green laser is mixed, it becomes a hybrid illumination source, which complements the green light of the LED.
  • the focal spot area of the laser beam should be less than or equal to the size of the air gap, or the focus of the laser beam can be in the vicinity of the surface of the air gap, and the spot area of the laser beam at the air gap is smaller than Or equal to the air gap, because if the spot area of the laser beam is larger than the air gap, there will be waste of light energy. If the spot area of the laser beam is less than the air gap, it is better to reduce the size of the air gap and minimize the light emission. The light from the diode, otherwise the maximum optical power of the LED cannot be utilized.
  • Figure 20 and Figure 21 are two kinds of three primary color LED lights combined with RGB laser as projection display Schematic diagram of the light source.
  • the projection display source of FIG. 2G includes red, green, and blue LED lamps, red, green, and blue lasers, two dichroic mirrors, and three reflective prisms having the structures shown in FIGS. 15 and 16, wherein the red LEDs
  • the red light emitted by the lamp 2001 is mixed with the red laser emitted by the red laser 2007,
  • the green light emitted by the green LED lamp 2002 is mixed with the green laser emitted by the green laser 2008
  • the blue light emitted by the blue LED lamp 2003 is emitted by the blue laser 2009.
  • the blue laser is mixed, and the mixing method of the same color LED light and the laser is adopted in the manner shown in FIG. 19, and the mixed red light and the mixed green light are combined by the first dichroic mirror 2019, and then red.
  • the green mixed light is then combined with the mixed blue light through the second dichroic mirror 2020 to obtain white light required for projection display.
  • the positions of the red LED and the blue LED can also be exchanged with each other, and the supplemented red laser and blue laser should also exchange positions accordingly, and the corresponding changes of the first dichroic mirror and the second dichroic mirror should also be changed. Coating, which will be understood by those skilled in the art.
  • the projection display light source in Fig. 21 uses a color matching prism (X- cube) 2122 instead of the two dichroic mirrors in Fig. 20, and other structures are basically the same as those in Fig. 20, and the same color beam mixing manner is the same as that in Fig. 19.
  • the white light required for projection display can also be obtained.
  • the optical paths of red light and blue light can be shifted from each other, but green light must pass directly from the intermediate position of the X-cube color combining prism 2122 without reflection, which is well known to those skilled in the art.
  • the mirror structure used in the above FIG. 20 and FIG. 21 is the reflecting prism shown in FIG. 15 and FIG. 16.
  • the same color beam mixing method can also adopt FIG. 1-4, FIG. 6, FIG. 11, FIG. 14 or FIG.
  • the method and structure described in Figs. 20 and 21 above are used for combining light.
  • FIGS 22 through 29 illustrate several projector optical path configurations using the various light source devices described above.
  • FIG 22 is an embodiment of a single-chip DLP projector optical path.
  • An ultrahigh pressure mercury lamp 2209 as a supplemental light source, a laser light source 2208, a beam expander lens 2217, a focus lens 2218, a mirror 2207, a light bar 2210, a focus lens group 2211, a color wheel 2212, a relay lens group 2213, and a digital micro Mirror device (Digital ta l Micro-mirror Devi ce, DMD for short) 2214 and projection
  • the white light beam emitted by the ultrahigh pressure mercury lamp 2209 is incident on the reflection portion of the mirror 2207 and is reflected.
  • the laser 2208 is a solid laser that outputs 635 red laser light.
  • the red laser beam is expanded by the expanding lens 2217 and then incident on the focusing lens 2218. Then, it is incident on the light-passing hole of the mirror 2207, and its focus is at the light-passing hole of the mirror 2207.
  • the laser beam directly passes through the light-passing hole of the mirror 2207 and the light beam outputted by the reflected ultra-high pressure mercury lamp 2209. Coaxial output in the same direction, mixed and become the light source for the projection display.
  • the beam expander lens 2217 increases the degree of divergence of the laser light after passing through the focus lens 2218, enhancing the mixing effect.
  • the reflective portion of the mirror 2207 is plated with a wide reflective film for visible light.
  • the mixed light beam is shimmed by the light rod 2210 in the optical path, then concentrated by the focusing lens group 2211, and then enters the color wheel 2212 to make three colors of green light, blue light and red light.
  • the light is sequentially output in a certain order according to the color wheel setting, and then is rotated by the relay lens group 2231 to be irradiated onto the digital micromirror device 2214. After the light beam processed by the D2214 passes through the projection lens group 2215, the light is finally irradiated to the screen. Imaging on the 2216.
  • the laser light source 2208 in this embodiment emits a red laser light in order to improve the red light brightness in the projection display, adjust the intensity distribution of the three primary colors of red, green and blue, thereby improving the color saturation and contrast of the image.
  • Figure 23 is an embodiment of a three-chip DLP projector optical path.
  • a xenon lamp 2309 as a supplemental light source, a laser light source 2308, a coupling lens 2318, an optical fiber 2319, a focus lens 2311, a mirror 2307, a light bar 2 31 0, a focus lens group 2312, a plane mirror 2320, and an internal total reflection prism (Tota) are included.
  • TIR prism l Interface Ref l ect i on, referred to as TIR prism
  • color separation recoloring prism co l or sp litt ing/recorab ining pr i sm
  • the lens group 2315 in which a laser and a xenon lamp are used in combination with a mirror of the structure shown in Fig. 12.
  • the mirror 2307 has a thickness and width of only 2 mm. Due to the small width, only the light emitted by the xenon lamp 2309 is partially incident thereon.
  • Laser source 2308 is a semiconductor laser that emits a 635 nm red laser.
  • the laser first passes through the coupling lens 2318 and enters the optical fiber 2319.
  • the laser beam emitted from the optical fiber 2319 is incident on the reflective portion of the mirror 2307 through the focusing lens 2311, and is reflected and then emitted. Since the width of the mirror 2307 is small, A part of the light emitted by the xenon lamp 2309 supplemented with the light source is incident on the mirror 2307 and transmitted to be mixed with the laser beam, and the other portion is directly mixed with the laser beam.
  • the reflection portion of the mirror 2307 is plated with a high reflection film for a laser beam having a wavelength of 635 nm, and a broadband antireflection film having visible light is plated at the transmission portion of the mirror 2.
  • the mixed beam is hooked up by the light rod 2 31 0, then concentrated by the focusing lens group 2312, and then reflected by the plane mirror 2320 to enter the interior.
  • the TIR prism 2321 functions to separate the incident light from the emitted light, and does not interfere with each other, so that the incident light is totally reflected and the emitted light is transmitted.
  • the TIR prism 2321 reflects the incident mixed light into the color separation recoloring prism 2322, and the color separation recoloring prism 2322 divides the mixed light into blue, green, and red colors, and respectively enters the blue, green, and red DME) 2325.
  • the three beams are first red and green, the blue light is combined with the red and green mixed light, and finally output as the outgoing light through the TIR prism 2321, and then incident on the projection lens group 2315.
  • the TIR prism 2321 and the color separation recoloring prism 2322 are all optical devices well known to those skilled in the art, and the structure thereof can be referred to the second paragraph of the first page of the US Patent Specification No. US6863401B2.
  • the light source lamp as a projection display may be an LED lamp (including an LED array), an ultrahigh pressure mercury lamp, a metal halide lamp, a halogen lamp or the like in addition to the xenon lamp.
  • FIG. 24 is a schematic diagram of a projector optical path of a single-chip DLP as a projection display light source in which a three-primary LED lamp and an RGB laser are combined.
  • the portion of the combined light of the LED and the laser as the projection light source is the same as the optical path structure shown in FIG. 21, and the mixed light beam is first concentrated by the focusing lens group 2423 into the light bar 2424 for deinterlacing, and then rotated by the relay lens group 2425. after entering the TIR prism 2427 in Korea D2426 processed after the reflection, and finally again from the imaging light to the TIR prism 2427 projection lens group 2428 on the screen 29.
  • the color wheel in the traditional single-chip DLP optical path has been removed due to the method of electronically controlled timing.
  • the red, green and blue lasers can select lasers with different powers, especially for green light shortages.
  • FIG 25 is a schematic illustration of a projector optical path using a three-primary LED lamp in combination with a monochromatic laser as a single-chip DLP for a projection display source.
  • the combination of LED and laser as the projection source is basically the same as that of Fig. 20, except that only the green laser is used to supplement the green LED, the red and blue are not supplemented, and the green laser is supplemented as shown in Figure 8. Structure of the mirror.
  • the mixed white light first passes through the focusing lens group 2523 and then converges into the light bar 2524 to perform the debrieching. After being rotated by the relay lens group 2525, the white light is incident on the TIR prism 2527, processed on the DMD2526, and then reflected from the TIR prism.
  • a projection system of a projection lens having a 0.98 inch imaging chip and an F number of 2.4 is used at a color temperature of 6500 K, and the LED lamp adopts an LED array, and the light emitting area is 7 mm 2 , which is not added.
  • Green laser before red, green and blue LED The optical power of the array is about red light 0. 8W, green light 0. 7W, blue light 1. 4W, because the green light has reached the maximum optical power, the optical power of red and blue light is limited.
  • the light is about 1. 8W, and the blue light is about 1. 8W, and the red light is about 1.
  • the blue light is about 1. 8W.
  • the brightness of the white light output from the light source device after the addition of the green laser is increased by about 50% compared with the previous one. This method greatly increases the brightness of the green light and the color saturation of the green light, thereby increasing the overall brightness of the white light.
  • Fig. 26 is an embodiment of a projector optical path of a three-piece LCD using a three-primary LED and a monochromatic laser as a projection display light source.
  • the green LED array 2601 in the figure is beam mixed with the green laser 2604 in the manner shown in FIG. 1, while the red LED array 2611 and the blue LED array 2621 are no longer supplemented with laser light, and the red LED array 2611 and the direct light
  • Each of the two LEDs of the LED array 2621 is in parallel arrangement and each share a beam shaping device 2612 and 2622.
  • the mixed light of the green light is sequentially passed through the collimator lens 2631, the reflective polarizer 2632, the half-wave plate 2630, the focus lens 2633, the light bar 2634, and the relay lens group 2635, and the green LCD liquid crystal light valve 2608.
  • the color prisms 2638; and the red and blue LED arrays 2611 and 2621 pass through respective corresponding collimating lenses 2613 and 2623, reflective polarizers 2614 and 2624, half-wave plates 2610 and 2620, focusing lenses 2615 and 2625, and light.
  • the beam shaping device for compressing the divergence angle of the output beam of the LED lamp may use a wedge-shaped quadrangular pyramid, so that the reflective polarizer can also be used to pass the P light, and the passing P light passes through two points.
  • One of the wavelength plates is converted into S light; and the S light that has not passed through the reflective polarizer is reflected back to the wedge-shaped quadrangular pyramid, and is repeatedly reflected by the wedge-shaped quadrangular pyramid and the LED surface to be natural light, thereby realizing partial reuse of the S light. .
  • Figure 27 is an embodiment of a projector optical path of a three-piece LCOS using a three-primary LED lamp in combination with a laser as a projection display source.
  • the blue LED array 2701 and the green LED array 2702 are beam mixed with the blue laser 2704 and the green laser 2705, respectively, in the manner shown in FIG. 1, and the red LED array 2703 is no longer supplemented with laser light.
  • the mixed light of the blue light sequentially passes through the collimating lens 2711, the reflective polarizer mi, the focusing lens 2713, the light rod 2714, the relay lens group 2715, the PBS 2742, and the blue light LC0S2741, and enters the X-cube color combining prism 2740; the mixed light of the green light
  • the sequence passes through the collimating lens 2721, the reflective polarizer 2722, the focusing lens 2723, the light rod 2724, the relay lens group 2725, the plane mirror 2726, the PBS 2752, and the green light LC0S2751, and then enters the X-cube color combining prism 2740; Then the sequence is not directly approved by the laser.
  • the straight lens 2731, the reflective polarizer 2732, the focusing lens 2733, the light rod 2734, the relay lens group 2735, the PBS 2762, and the red light LC0S2761 enter the X-cube color combining prism 2740; the RGB three primary colors are re-lighted by the color combining prism 2740
  • the light is combined and projected onto the screen through the projection lens group 2750 to realize projection display of the image.
  • the beam shaping device for compressing the divergence angle of the output beam of the LED lamp may use a wedge-shaped quadrangular pyramid, so that the reflective polarizer can also be used to pass the P light, and the unpassed S light is reflected back.
  • the wedge-shaped quadrangular pyramid is repeatedly reflected by the wedge-shaped quadrangular pyramid and the surface of the LED to be natural light, and the S-light portion is reused.
  • the effect of PBS is to reflect the P-polarized light of the incident light.
  • the incident light is modulated on the surface of the LC0S and converted into s-polarized light.
  • the s-polarized light is transmitted through the PBS and then enters the X-cube color-changing prism.
  • Figure 28 is an embodiment of a projector optical path using three liquid crystal light valves. Wherein, the mixing of the light output by the supplemental light source and the laser light is still achieved by the reflective prism shown in FIGS. 15 and 16, the reflective prism uses K9 glass having a refractive index of 1.51, and the optical adhesive uses a UV-curable adhesive, and the refractive index thereof. Is 1. 51.
  • the laser light source 2808 is a solid-state laser that emits a 635 nm red laser. The laser is focused on the air gap of the reflective prism 2807 through the first focusing lens group 2811, and is totally reflected and then emitted.
  • the light source lamp used as the supplemental light source is an ultra-high pressure mercury lamp.
  • a beam expander lens may also be included in the first focus lens group.
  • An antireflection film for laser light having a wavelength of 635 nm is plated on the laser light incident surface of the reflection prism 2807, and a broadband antireflection film having visible light is applied to the incident surface and the output surface of the output light of the ultrahigh pressure mercury lamp 2809 corresponding to the reflection prism 2807.
  • the mixed beam passes through the second focusing lens group 2817 to become parallel light or quasi-parallel light, and then is dequenched by the first fly-eye lens 2826, and then sequentially passes through the first plane mirror 2827, the second fly-eye lens 2836, and the polarization beam splitter.
  • a PBS array 2834 and a third focusing lens group 2851 wherein the first planar mirror 2827 functions to reflect light, the second fly-eye lens 2836 still functions as a hooking field, and the PBS array 2834 will naturally mix light.
  • the first field lens 2841 and the first liquid crystal light valve 2831 enter the color combining prism 2830, and the red and green mixed light is further separated into green light and red light on the second dichroic mirror 2838, and the green light passes through the first
  • the two field lens 2842 and the second liquid crystal panel 2832 enter the color combining prism 2830, and the red light is sequentially reflected by the first relay lens 2829 and the third plane.
  • the mirror 285 0, the second relay lens 283 9 , the fourth plane mirror 2 8 2 0 , the third field mirror 2 8 4 3 , and the third liquid crystal panel 2833 enter the color combining prism 2830, thus, the RGB three beams
  • the recombined light in the color combining prism 2830 is projected onto the screen through the projection lens group 2815 to realize display of an image.
  • the function of the relay lens is to convert the red light into the same optical path as the blue-green light.
  • Figure 29 is an embodiment of a projector optical path using three LCOS (Liquid Crys s l on S i l icon ).
  • An ultrahigh pressure mercury lamp 2909 as a supplemental light source, a laser light source 2908 emitting 635 nm red light, a first focusing lens group 2911, a mirror 2907 having the structure shown in FIG.
  • a second focusing lens group 2917 first and second Two fly-eye lenses 2926 and 2936, a first planar mirror 2927, a PBS array 2934, a third focusing lens group 2921, first and second dichroic mirrors 2940 and 2960, first and second relay lenses 2929 and 2939, Three pieces of LC0S 2941, 2951 and 2961, three PBSs 2942, 2952 and 2962, a color combining prism 2930, and a projection lens group 2915, wherein the projection mode light source structure of the front half of the projection display light source in this embodiment is similar to that of FIG.
  • the latter optical path is converted into p-polarized light by the conventional three-chip LC0S scheme, that is, in the latter half of the optical path, and is incident on the first dichroic mirror 2940 after passing through the third focusing lens group 2921.
  • a dichroic mirror 2940 separates incident p-polarized light into red and blue-green mixed light, which passes through the first relay lens 2929 and the second planar mirror 295 in sequence. 0.
  • the second relay lens 2939 and the first field lens 2963 are incident on the first PBS 2962. After the first PBS 2962 reflects the incident p-polarized red light, the red light is modulated on the surface of the red light LCOS2961 to be converted into s-polarization.
  • the polarized red light is transmitted through the first PBS 2962 and enters the color combining prism 2930; the blue-green mixed light is separated into blue light and green light after passing through the second dichroic mirror 2960, and the p-polarized blue light passes through the second
  • the field lens 2943 is further reflected by the second PBS 2942 and modulated on the surface of the blue light LC0S2941 to be converted into s-polarization, and transmitted through the second PBS 2942 to enter the color combining prism 2930; similar to the blue light, the p-polarized green light passes first.
  • the third field mirror 2953 is further reflected by the third PBS 2952 and modulated to s-polarized on the surface of the green light LCOS2951, and transmitted through the third PBS 2952 to enter the color combining prism 2930, and the RGB three primary colors are re-lighted through the color combining prism 2930.
  • the projection lens group 2915 is projected onto the screen to realize the projection display of the image.
  • the role of the relay lens is to make the red light have the same optical path as the blue-green light.
  • Figures 22-29 above are merely illustrative of the structure of several projectors. Those skilled in the art should be able to use the various light source devices of the present invention to the projector as needed while keeping the projector's optical path unchanged. The light source portion is equivalently replaced or modified. Finally, it should be emphasized that in the above-mentioned various light source devices and projectors, in order to realize image display, it is also required that the optical paths of the red, green and blue three paths should satisfy the same effect of the same optical path or the optical path reaching the same optical path. The skilled person is well known.
  • the light source device of the present invention can also mix laser light of other wavelengths and colors with light emitted by the bulb and the LED.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Description

一种用于投影系统的光源装置及投影显示装 ¾ 技术领域
本发明涉及一种光源装置及投影显示装置, 特别是一种用于投影显示 系统的光源装置和投影显示装置。 背景技术
现有的投影系统照明所用的超高压汞灯、 金属卤化物灯、 氙灯、 卤素 灯等, 这些发光光源的光谱均受到发光物质及其状态的限制, 呈现出连续 或带状光 的特征。 以超高压汞灯的发光光谱图 7为例, 如图所示红光的 波段较宽, 峰值偏低, 红绿蓝三基色强度分布并不理想, 无法满足白场色 平衡的要求, 因此无法较好符合投影系统照明的要求。 目前现有技术通常 采用选择宽谱段的方法来提高红光的光通量和亮度, 但是采用此种方法会 相应地造成色饱和度的降低。 同时, 现有技术在视频信号的处理上, 也是 以牺牲对比度和色饱和度为代价来增加红色的亮度。 所以, 虽然这些技术 可以将图像色彩柔和化, 但是图像的整体质量却下降了。
近几年, 随着发光二极管技术的成熟, 也有人尝试用发光二极管作为 投影系统光源, 发光二极管投影显示与传统的显示技术相比, 具有更大的 色域范围, 而且发光二极管线宽较窄, 具有高的色饱和度, 可显示自然界 真实、 鲜艳的色彩。 同时发光二极管寿命长, 是一种无汞的环保光源。 发 光二极管投影显示已成为显示领域的重大发展方向。
但是, 由于发光二极管的光学扩展量较大和亮度较低的特性, 现有发 光二极管照明技术存在着能够被投影系统有效利用的光能较少、输出的总 光功率偏低的不足。
尽管发光二极管的光通量和亮度已经得到了很大的提高, 但是还没有 达到投影机应用的要求, 特别是一些需要高亮度照明应用的场合。 为了达 到投影机应用的要求, 提高照明亮度, 现有技术是靠发光二极管的排列组 合来提高光通量和亮度, 但是由于发光二极管是朗伯体发光光源, 如果组 合后的发光二极管光源的光学扩展量超出了投影系统的光学扩展量, 超出 的这部分光则不能有效耦合入投影系统。
发光二极管的光学扩展量为
ELed = η2 · π · sin2(a)■ S 其中 n为发光介质的折射率; α为光源的发射半角; S为光源的发光 面积。 发光二极管的发射半角为 90度, 取发光介质为空气, 并以空气折 射率为 1来做近似计算, 1mm2发光二极管光学扩展量约为 3. l ½ni2sr。
对于使用 0. 79英寸的成像芯片、 F数为 2. 4的投影镜头的投影系统,投 影系统的光学扩展量约为^ ^ ,。, = 22腿 2sr ,只有大概 7mm2的二极管组合阵列 输出的光可以耦合入投影系统, 可充分利用的光通量总数仅为几百个流明, 大于 7瞧 2的面积发出的光根本无法辆合进入投影系统,通过增大发光二极管 的面积来提高光通量的做法是行不通的。
此外, 现在市场上传统的超高压汞灯能在 6mm2上产生数千流明的光通 量,亮度也比发光二极管高十多倍。可是超高压汞灯由于对重金属汞的使用, 不是一种环保的光源。
目前市场上的发光二极管光源中, 对于使用 0. 79英寸的成像芯片、 F数 为 2. 的投影镜头的投影系统,发光面积为 7麵 2的某发光二极管, 受投影系 统光学扩展量的限制, 可以被耦合入投影系统的红光的最大光功率约为 1. 6W, 绿光的最大光功率约为 0. π, 蓝光的最大光功率约为 1. 8W, 红光、 绿光、 蓝光能被耦合进投影系统的最大光功率的比值约为 1 : 0. 44: 1. 13。 而色温为 6500Κ的白场要求发光二级管的红光、绿光与蓝光的光功率比值大 约为 1 : 0. 87: 1. 73。 由此可见, 当发光二极管红光或者蓝光满足最大光功 率时, 绿光的光功率都是不够的, 绿光最为不足。 由于绿光光功率的不足导 致总光功率受其制约而偏低,这是发光二极管投影显示亮度不够的其中一个 重要原因。现有的解决方法是提高绿光在整个白光中的时间占空比来提高亮 度, 这种方法没有充分利用红光及蓝光的光功率; 又或者采用减小红光和蓝 光的光功率来获得白平衡,这种方法又由于绿光光功率的限制导致了合成白 光的光功率偏低。 白场需求上的差别, 从而使得色饱和度、 亮度与对比度均有不足, 无法同 时达到提高色饱和度、 提高亮度、 提高对比度与控制成本的综合效果。 发明内容
因此, 本发明的任务是提供一种使用激光光源作为补充光源来提高投 影显示图像的亮度、 对比度与色饱和度的用于投影系统的光源装置。 本发明的另一任务是提供一种投影显示装置。
一方面, 本发明提供了一种用于投影显示的光源装置, 包括被补充光 源和激光光源,所述激光光源发出的激光与所述被补充光源发出的光混合后 在同一方向上混合输出。
上述光源装置中, 所述混合输出的方式优选共轴混合输出。
所述激光光源还可以设有光束调整系统。
进一步地, 所述光束调整系统可以包括光纤以及用于将所述激光耦合 进所述光纤的耦合透镜, 还可以包括扩束透镜和聚焦透镜等。
上述光源装置中, 所述被补充光源包括各种投影用光源, 如 LED灯、 超高压汞灯、 金属 化物灯、 氙灯和 素灯等。
当所述被补充光源为 LED或 LED阵列时, 所述光源装置还包括用于压 缩所述 LED或 LED阵列输出光发散角的光束整形装置, 如楔形四棱锥等。
上述光源装置中,所述被补充光源为 LED光源,所述 LED光源由多个 LED 构成,且 LED之间设有至少一个激光孔,所述激光光源由所述激光孔出射, 并与所述 LED光源发出的光在同一方向上直接混合输出。
进一步地, 所述激光孔对称设置于所述 LED光源上。
上述光源装置中,还包括用于反射所述被补充光源输出光或所述激光 光源输出光的反射镜, 所述反射镜包括用于反射所述一种光源输出光的反 射部分和使所述另一种光源输出光束直接透射通过的透射部分。
进一步地, 所述反射部分可以为平面, 也可以根据需要设计成各种不 同的形状, 如抛物面形、 双曲面形或球面形等。
上述光源装置中, 所述反射镜的反射部分表面镀有增加被反射光束反 射效率的高反膜。
进一步地, 所述输出光被反射的光源为所述被补充光源, 所述反射镜 的透射部分为使所述激光光源发出的激光直接通过的激光孔。
进一步地, 所述输出光被反射的光源为所述激光光源, 所述反射镜由 透明材料制成。
进一步地, 所述反射镜的透射部分表面镀有增加透射光束透射效率的 增透膜。
进一步地, 所述反射镜可以采用反射棱镜实现, 所述反射棱镜由两块 棱镜组成, 每块棱镜包括一个粘合面, 所述两块棱镜的粘合面除中心部分 外都用光学胶粘合, 从而在两个粘合面的中心部分形成空气间隙作为所述 反射部分。
进一步地, 所述空气间隙的大小在让激光束焦斑通过的前提下, 尽可 能地小, 空气间隙的截面可以为圆形、 矩形等形状。
进一步地, 所述光学胶与所述棱镜材料的相对折射率为 0. 98- 1. 02。 进一步地, 所述棱镜为直角棱镜, 所述直角棱镜优选三角棱镜, 所述 粘合面为所述直角棱镜的底面。
进一步地, 所述棱镜的表面有镀膜, 在反射棱镜上激光的入射面需镀 对应激光波长的增透膜, 而被补充光源在反射棱镜上的入射面和出射面均 镀有对应被 卜充光源输出光波长的增透膜。
另一方面, 本发明还提供了一种投影装置, 所述投影装置使用上述光 源装置作为投影显示的光源。 本发明将激光器的激光巧妙地弓 1入投影系统的灯泡和 LED发光光源, 提出了一种激光和其他光源混合作为投影系统照明光源的想法。
釆取上述技术方案, 可以成功地弥补超高压汞灯、 金属! ¾化物灯、 氙 灯、 |¾素灯等灯泡的红光照明不足的缺陷, 提高了红光亮度, 调整了红绿 蓝三基色的强度分布, 提高了色饱和度与对比度等性能, 在投影显示领域 具有很高的实用价值。
采取上述技术方案, 还可以利用高亮度、 光学扩展量较小的激光来补 充低亮度、 光学扩展量较大的发光二极管光源, 不仅提高了发光二极管的 光功率, 明显地提高了光源亮度及光能的有效利用率, 而且成功地解决了 发光二极管绿光照明不足与红光蓝光未被充分利用或者浪费的缺陷。 此 外, 本发明同时具有广色域、 长寿命、 无汞环保的特点, 且兼备相对廉价 的优势, 在投影显示领域具有很高的实用价值。 附图说明
以下, 结合附图来详细说明本发明的实施例, 其中:
图 1 是一种激光与 LED直接混合输出的光源装置示意图;
图 2、 图 3、 图 4是另一种激光与 LED直接混合的光源装置示意图; 图 5是使用普通反射镜的激光补充灯泡的光源装置的示意图; 图 6是使用普通反射镜的激光补充发光二极管的光源装置的示意图; 图 7是超高压汞灯的发光光谱的示意图; . 图 8是反射镜的俯视结构示意图;
图 9 是使用反射镜的用于投影显示的激光补充灯泡的光源装置示意 图;
图 1 0是用激光和超高压汞灯混合后的光谱图;
图 1 1是激光和发光二极管灯光混合的光源装置示意图;
图 12是另外一种反射镜的结构示意图;
图 1 3是使用反射镜的用于投影显示的激光补充灯泡的光源装置示意 图;
图 14是激光和发光二极管灯光混合的光源装置示意图;
图 15和图 16分别是一种新型反射棱镜的侧视图和立体图;
图 17是另外一种反射棱镜的示意图;
图 18是使用反射棱镜的激光补充灯泡的光源装置的示意图; 图 19是使用反射棱镜的激光补充发光二极管的光源装置的示意图; 图 20和图 21是两种三基色 LED灯分別与 RGB激光合束作为投影显示 光源的示意图;
图 22是一种使用单片 DLP的投影仪光路的示意图;
图 23是一种使用三片 DLP的投影仪光路的示意图;
图 24是一种三基色 LED灯与 RGB激光合束作为投影显示光源的单片 DLP的投影仪光路的示意图;
图 25是一种三基色 LED灯与单色激光合束作为投影显示光源的单片 DLP的投影仪光路的示意图;
图 26是一种三基色 LED灯与单色激光合束作为投影显示光源的三片 LCD的投影仪光路的示意图;
图 27是一种三基色 LED灯与激光合束作为投影显示光源的三片 LC0S 的投影仪光路的示意图;
图 28是一种使用三片 LCD的投影仪光路的示意图;
图 29是一种使用三片 LC0S的投影仪光路的示意图。
具体实施方式
由于激光的光斑和发散角都很小, 所以激光的光学扩展量很小。 从光纤 输出的激光的光学扩展量由下式决定: 其中, r 为光纤束的半径, sin 是光纤的数值孔径。 光纤束由一个或多根光 纤合束而成。
例如, 对于光纤束半径为 0. 35mm, 数值孔径为 0. 22的光纤束输出激光 的光学扩展量仅为 5. 22 10"Wsr ,和发光二极管比起来要小 2个数量级以 上。在此光学扩展量下的光通量可达数千至上万流明。 因此,对于激光来说, 很小的光学扩展量就能得到极高的光通量输出。
在某发光二极管和激光的混合光源中,设定发光二极管的光学扩展量为 Eled, 激光的光学扩展量为 E, 混合光源的总光学扩展量为 Eiotal, 混合光源 的总光学扩展量为发光二极管的光学扩展量和激光光学扩展量的总和,如果 BtataI= Eled+Elsser <EP Ojsctor, 则此时该混合光源的光功率能够全部有效地耦合进 投影系统。 由于^ ^和 ^相比要小得多, 几乎可以忽略不计, 因此, 可以 让该混合光源的光学扩展量的绝大部分分配给发光二极管, 目的是尽可能地 利用成本较为低廉的发光二极管的光能, 而将混合光源的光学扩展量的极少 部分分配给激光,利用激光在很小的光学扩展量下就能获得极高的亮度的特 性, 从而提高了混合光源的总亮度。
下面结合附图和具体实施例对本发明作进一步详细描述。
图 1给出了一种激光与 LED直接混合输出的光源装置, 包括一个激光光 源 106和两个 LED 104和 114 , 每个 LED的输出光路上都分别设有一个楔形 四棱锥作为压缩 LED输出光发散角的光束整形装置,所述激光光源 106输出 的激光首先经过輛合透镜组 107耦合进入光纤 108 , 由光纤 108输出的激光 经过聚焦透鏡組 109后与经楔形四棱锥输出的 LED光同一方向上输出, 实现 了激光与 LED光的混合。 所述激光器可以使用固体激光器、 气体激光器、 光 纤激光器、 半导体激光器等。
一般来说, 光源装置输出光的孔径角最好等于投影系统的孔径角, 如果 大于的话, 会有光能的浪费, 如果小于过多的话, 则不能充分利用孔径角的 大小, 因此本实施例中使用了光束整形装置 105和 115来压缩 LED朗伯体形 式的光发散角, 使压縮后的发散角小于或等于投影系统的孔径角, 除了楔形 四棱锥外, 还可以采用其他具有压缩发散角功能的光学器件; 聚焦透镜组中 可以包括有扩束透镜, 其作用是将激光扩束, 使其具有更好的发散性, 可以 取得较好的混合效果, 当然, 实际应用中根据需要来增加或去掉扩束透镜; 将激光通过耦合透镜组 107耦合进光纤 108是本领域的常规技术, 同样, 本 领域技术人员可以根据实际需要选择是否将激光耦合进光纤; 如图 1所示的 两个 LED也可以认为分别为 LED阵列, 也可以认为是 LED阵列的一部分, 并 认为激光器 106为激光器阵列中的一个, 为了激光与 LED阵列的光混合, 在 相邻的 LED之间设有激光孔 112 , 所述激光器或激光器阵列输出的激光分别 通过各个对应的激光孔与所述 LED光混合, 由于 LED阵列的发光面积受到后 续投影系统的光学扩展量的限制, 所以为了增加光通量, 必须增加 LED阵列 中 LED的排列密度, 因此激光孔不能做的很大, 使用聚焦透镜组 109将激光 束聚焦至较小的光斑直径后再入射激光孔,可以提高 LED阵列的 LED排列密 度, 提高光通量。 在如图 1所示的结构中, 由于使用了楔形四棱锥作为光束 整形装置, 其截面要大于 LED , 为了激光能够顺利出射, 楔形四棱锥之间留 有空隙 111 , 需要使用聚焦透镜组 109将激光束聚焦至两个楔形四棱镜输出 端之间的空隙 111处, 这样可以使 LED阵列的排列密度达到最大。
图 2所示为激光与 LED直接混合的光源装置示意图。 包括一个激光光源 206和两个 LED204和 214,每个 LBD的输出光路上都分别设有一个楔形四棱 锥 205和 215作为压缩 LED输出光发散角的光束整形装置,所述激光光源 206 输出的激光经过聚焦透镜组 209后与经楔形四棱锥 205和 215输出的 LED光 混合在一起在同一方向上输出。 图 2不再使用图 1中的耦合透镜組和光纤, 也可以实现混合输出的效果。 同样, 聚焦透镜组中也可以包括有扩束透镜。 此外, 在实际应用中, 根据激光器的不同和光路的不同需要可以选择不同的 光束调整系统。
图 3所示为激光与 LED光直接混合的光源装置示意图。 包括两个相同的 激光光源和三个 LED, 每个 LED的输出光路上都分别设有一个楔形四棱锥作 为压缩 LED输出光发散角的光束整形装置,所述激光光源 306与 316输出的 激光首先分别经过各自的耦合透镜组 307和 317分別耦合进入光纤 308和 318 , 由光纤 308和 318输出的激光再经过聚焦透镜组 309和 319聚焦后经 激光孔 302和 312与经楔形四棱锥 305、 315、 325输出的 LED304、 314、 324 的光在同一方向上输出, 实现混合。 激光孔 302和 312对称设置的目的是使 混合后的光勾场效果更好。
图 4所示为激光与 LED光直接混合的另一种光源装置示意图。 包括由四 个 LED组成的 LED阵列和由 2个激光器组成的激光器阵列,激光与 LED光的 混合方式与图 1相同。激光器 406的激光从第一 LED404与第二 LED414之间 的激光孔 408通过, 激光器 416的激光从第三 LED424和第四 LED4 34之间的 激光孔 418通过, 并与 LED阵列的输出光直接混合, 这种激光以对称方式与 LED阵列输出光混合的方式可以得到较均匀的混合光。
此外,也可以采用在第二 LED414和第三 LED424之间只补入一个激光器 的方案;或者在第一 LED404和第二 LED414之间、第二 LED414和第三 LED«4 之间、 第三 LED424和第四 LED434之间的激光孔补入三个激光器的方案。 本 实施例主要使用了激光孔对称设置的方案, 本领域技术人员可以理解, 根据 实际应用中的具体需要, 也可以非对称方式设置激光孔, 但无论激光孔是否 对称设置, 都应属于本专利范围之内。
图 5和图 6给出了两种使用普通反射镜实现激光与被补充光源输出光 混合的光源装置, 其中,
图 5是一种使用普通反射镜的激光补充灯泡的光源装置。 该光源装置 主要由激光器 502、 聚焦透镜 503、 反射镜 504 以及作为被补充光源的灯 泡 501组成, 其中, 激光器 502发射的红光激光束经过聚焦透镜 503后, 聚焦于反射镜 504的表面或者附近上, 反射镜 504的表面镀有对入射的红 色激光的波长高反的高反膜, 激光束在反射镜的表面经过反射镜 504反射 后, 出射的方向与灯泡发出光束的方向相同, 就实现了激光光源与灯泡的 输出光束混合的目的。 聚焦透镜 503还可以使用聚焦透镜组或其他可以实 现聚焦作用的光学元器件。 聚焦透镜组中也可以包括扩束透镜, 将激光扩 束, 因为以一定发散角发散的激光与灯泡混合的效果会更好, 且激光束反 射后与灯泡的光束共轴则会使混合效果最佳。 所述激光器 502可以为固体 激光器, 也可以为半导体激光器、 光纤激光器、 气体激光器等。 所述激光 器 502选用的红光激光器, 选择 630nm到 670nm的波长较好。 而这里的灯 泡也可以为超高压汞灯、 金属! ¾化物灯、 1¾素灯和氙灯, 这对本领域技术 人员是熟知的。 为了减小反射镜对灯泡输出光束的影响, 同时又能够将全 部入射的激光反射, 聚焦透镜 503应尽量使激光的焦点处于反射镜 504的 表面或附近位置, 这样才有可能将反射镜 504制作的体积更小, 以减小因 其体积而对灯泡输出光的阻挡。
图 6是一种使用普通反射镜的激光补充发光二极管的光源装置, 主要 包括发光二极管光源 601、 光束整形装置 602、 反射镜 603、 激光器 607、 耦合透镜组 606、 光纤 605和聚焦透镜组 604 , 发光二极管光源 601所发光 通过光束整形装置 602整形后, 朗伯体形式的光发散角被压缩, 压缩后的发 散角可以根据后续投影系统的孔径角而定; 激光光源 607所发射的激光通过 耦合透镜组 606进入光纤 605,光纤 605的出射光通过聚焦透镜组 604聚焦, 发散角同样要控制在投影系统的孔径角内,调整光路,使经过聚焦透镜组 604 聚焦后的激光束焦点位于反射镜 603的表面或其附近,经过反射镜 603反射 后,激光束光轴的方向与所述光束整形装置 602输出的 LED光束的光轴方向 一致, 从而实现两种光源的混合输出。 本领域技术人员应当理解, LED光源 可以为白光 LED光源, 也可以为其他单色 LED光源, 这是根据实际使用的需 要来确定的; 同时, 用于压缩发光二极管光源输出光发散角的光束整形装置 可以使用楔形四棱锥或其他光学器件来实现。
然而, 使用图 5或图 6中的反射镜的一个缺点显而易见, 那就是被补 充光源发出的光束会有一部分光被反射镜所阻挡, 为了尽可能的减小反射 镜阻挡过多的光束能量, 只有尽可能的将反射镜制作的更小, 实际上, 只 要反射镜的反射面大小与激光束的截面相等就够了, 实际应用中, 激光束 的焦斑直径一般为亳米量级, 然而, 这样小的反射镜不但制作成本高, 而 且由于其非常微小的体积在实际光路中也很难固定, 而且其固定装置也会 对光路有所影响, 甚至由于其固定装置必然出现在光路之中, 反而比反射 镜阻挡了更多的被补充光束。
因此, 图 8给出了一种反射镜的俯视结构示意图。 该反射镜包括用于 反射所述被补充光源输出光的反射部分 801和使所述激光光源发出激光直 接通过的通光孔 802。 反射镜的反射部分 801还可以镀有增加被补充光源 输出光束反射效率的高反膜。 根据实际使用的需要, 该反射镜可以为圓盘 形、 矩形、 平板形、 条形等各种平面形状, 也可以根据需要设计成各种不 同的形状, 如抛物面形、 双曲面形或球面形等。 所述通光孔 802可以位于 反射镜的中央, 或者根据不同需要改为其他位置。
图 9和图 11给出了两种使用图 8所示结构反射镜进行激光与被补充 光源混合输出的光源装置, 其中,
图 9所示的用于投影显示的激光补充灯泡的光源装置, 包括激光光源 902、 聚焦透镜 903、 灯泡 901和反射镜 904; 其中, 激光光源 902为红光 激光器, 反射镜 904为圓形的平板结构, 反射镜 904的中间是直径为 3毫 米的通光孔 905 , 反射镜 904的其余部分为反射部分, 反射部分镀有可见 光的宽带高反膜。 红光激光器 902发射的激光束经聚焦透镜 903后直接通 过反射镜 904的通光孔 905输出; 所述灯泡 901发出的光束则经过反射镜 904反射部分反射后与所述直接通过通光孔 905的激光束在同一方向上输 出,从而实现混合,且混合光中两种光的光轴重合,从而实现红光的补入。 聚焦透镜 903还可以使用聚焦透镜组或其他可以实现聚焦作用的光学元器 件。 聚焦透镜组中可以增加扩束透镜, 增大激光的发散程度, 使混合的效 果更好, 且灯泡的光束反射后与激光束共轴则会使混合效果最佳。 所述激 光器 902可以为固体激光器, 也可以为半导体激光器、 光纤激光器、 气体 激光器等。 所述激光器 902选用的红光激光器, 选择 630腿到 670nm的波 长较好。 而这里的灯泡也可以为超高压汞灯、 金属! ¾化物灯、 !¾素灯和氙 灯。 为了减小反射镜的通光孔 905对灯泡 901输出光束的影响, 同时又能 够使全部入射的激光通过, 聚焦透镜 9Q3应尽量使激光的焦点处于反射镜 904的通光孔 905的表面或附近位置处, 这样才有可能将反射镜 904的通 光孔制作的面积更小, 以减小通光孔对灯泡输出光反射的影响, 增加灯泡 反射的光线。 混合后的光谱示意图如图 10所示。 图 10与图 7比较可见, RGB三基色的分布中, 红光的强度明显提高,较好地符合白场配光的需要。
本光源装置中, 所述反射镜 904的通光孔 905可以设在反射镜中间, 也可以设在其他合适的位置, 而反射镜的厚度可以很小, 可以为圆盘形、 矩形、 平板形、 条形等各种平面形状, 也可以根据需要设计成各种不同的 形状, 如抛物面形、 双曲面形或球面形等。
图 11 是作为被补充光源的发光二极管光源与激光光源混合进行投影 显示的光源装置。 其中, 反射镜 1103的结构与图 8相同, 发光二极管光源 1101为白光发光二极管, 所发光通过光束整形装置 1102后, 朗伯体形式的 光发散角被压缩,压缩后的发散角为投影系统的孔径角, 例如 ± 12°; 光束整 形装置 1102 的出射光经过反射镜 1103 的反射部分反射后输出, 且反射镜 1103的反射部分镀有可见光宽带高反膜; 激光光源 1107为绿光激光器, 所 发射的激光通过耦合透镜组 1106进入光纤 1105 ,光纤 1105的出射光通过聚 焦透镜组 1104聚焦, 且其发散角控制在投影系统的孔径角内。 调整光路, 使激光束的焦点处于反射镜 1103的通光孔处, 激光束直接通过通光孔, 并 由会聚光束转为发散光束; 而白光发光二极管的光线则经过反射镜反射之 后, 和直接通过的绿色激光混合, 在同一方向上输出, 从而实现混合, 成 为混合照明光源, 实现对发光二极管绿光进行补足, 且发光二极管的光束反 射后与激光束共轴则会使混合效果最佳。 当然, 上述光源装置中, 应当使 激光束经过聚焦透镜组 1104后的焦斑面积小于或等于通光孔的大小, 也可 以使聚焦透镜组 1104的焦点处于通光孔的附近, 同时使激光束在通光孔处 的光斑面积小于或等于通光孔横截面积, 因为如果激光束的光斑面积大于通 光孔横截面积的话, 激光会有光能的浪费, 同样激光束的光斑面积如杲小于 通光孔横截面积过多的话, 则最好縮小通光孔横截面积大小, 尽量增加发光 二极管光线的反射, 否则不能使发光二极管的最大光功率得以利用; 同时, 用于压缩发光二极管光源输出光发散角的光束整形装置可以使用楔形四棱 锥或其他光学器件来实现。 本领域技术人员应当理解, LED光源可以为白光 LED光源, 也可以为其他单色 LED光源, 此外, LED光源也可以为 LED阵列, 这是根据实际使用的需要来确定的。
图 12是另一种反射镜的侧视结构示意图。 该反射镜包括用于反射所 述激光光源发射的激光的反射部分 1201 和使所述被补充光源发出光束直 接透射通过的透射部分。 反射镜除去反射部分 1201外, 上表面 1202和下 表面 1203都镀有增加被补充光源发出光束透射效率的增透膜。 反射镜的 反射部分 1201 表面镀有增加激光反射效率的高反膜。 该反射镜由平板形 透明材料制成。 所述透明材料可以为玻璃、 石英、 硅片和透明塑料等。 所 述反射部分可以位于反射镜的中央, 也可以在反射镜的一端, 或者根据不 同需要改为其他位置。 所述反射部分可以为平面, 也可以根据需要设计成 各种不同的形状, 如抛物面形、 双曲面形或球面形等。
图 13和图 14 为两种使用图 12所示反射镜的光源装置, 其中, 图 1 3所示的用于投影显示的激光补充灯泡的光源装置, 包括激光光 源 1 308、 聚焦透镜 1 305、灯泡 1 306和反射镜 1 307 ; 其中, 激光光源 1 308 为红光激光器, 反射镜 1 307 为由玻璃制成的平板状结构, 反射镜的中间 部分 1 304为反射部分, 镀有对红光波长高反的高反膜, 反射镜 1 307的其 余部分为透射部分。 红光激光器 1308发射的激光束经聚焦透镜 1 305后入 射到反射镜 1 307的反射部分 1 304上, 经过反射后输出; 所述灯泡 1 306 发出的光束则直接透射, 穿过所述反射镜 1307后与所述经反射部分 1304 反射后的激光束混合, 且混合光中两种光的光轴重合, 从而实现红光的补 入。 聚焦透镜 1 305还可以使用聚焦透镜组或其他可以实现聚焦作用的光 学元器件。 聚焦透镜组中可以增加扩束透镜, 增大激光的发散程度, 使混 合效果更佳, 且激光束反射后与灯泡的光束共轴则会使混合效果最佳。 所 述激光器 1 308可以为固体激光器, 也可以为半导体激光器、 光纤激光器、 气体激光器等。 所述激光器 1 308选用的红光激光器,选择 630腿到 670mn 的波长较好。 而这里的灯泡也可以为超高压汞灯、 金属! ¾化物灯、 1¾素灯 和氙灯。 为了减小反射镜的反射部分对灯泡 1 306输出光束的影响, 同时 又能够将全部入射的激光反射, 聚焦透镜 1305应尽量使激光的焦点处于 反射镜 1 307的反射部分 1304的表面或附近位置, 这样才有可能将反射镜 1307的反射部分制作的面积更小, 以减小反射部分对灯泡输出光的阻挡。
本光源装置中, 所述反射镜 1307 的反射部分可以设在反射镜中间, 也可以设在边缘或其他合适的位置, 反射部分的表面形状可以为如图 1 0 所示的平面型, 也可以 4艮据需要设计成各种不同的形状, 如抛物面形、 双 曲面形或球面形等, 反射镜 1307 的材料可以使用透明材料制备, 所述透 明材料包括玻璃、 石英、 硅片和透明塑料等; 所述反射镜 1307 的厚度可 以很小, 其形状也可以制作成条状、 圓盘状等各种形状, 本领域普通技术 人员应当理解, 只要反射部分的面积大于入射激光束的截面直径, 就可以 保证激光束的反射, 在此条件下, 被补充光源发出的光也可以只有一部分 经过所述反射镜透射, 另一部分则不经过反射镜而直接与所述激光束混 合。
图 14是作为被补充光源的发光二极管光源与激光光源混合进行投影 显示的光源装置。 其中, 发光二极管光源 1401为白光发光二极管, 所发光 通过光束整形装置 1402后, 朗伯体形式的光发散角被压缩, 压缩后的发散 角为投影系统的孔径角, 例如 ± 12°; 光束整形装置 1402的出射光直接透射 通过反射镜 1403, 在反射镜 1403表面除去反射部分以外的区域都镀有可见 光宽带增透膜; 激光光源 1407为绿光激光器, 所发射的激光通过耦合透镜 组 1406进入光纤 1405 , 光纤 1405的出射光通过聚焦透镜组 1404聚焦, 且 其发散角控制在投影系统的孔径角内。 反射镜 1403的激光入射面上镀有对 激光波长高反的高反膜作为反射镜的反射部分。 调整光路, 使激光束的焦点 处于反射镜 1403的反射部分处, 激光在反射部分处发生反射, 并由会聚光 束转为发散光束; 而白光发光二极管的光线则透过反射镜之后, 和反射后的 绿色激光混合,成为混合照明光源, 实现对发光二极管绿光进行补足。 当然, 上述光源装置中, 应当使激光束的焦斑面积小于或等于反射部分的大小, 也 可以使激光束的焦点处于反射部分的表面的附近, 同时使激光束在反射部分 处的光斑面积小于或等于反射部分面积, 因为如果激光束的光斑面积大于反 射部分的话, 会有光能的浪费, 同样激光束的光斑面积如果小于反射部分过 多的话, 则最好缩小反射部分大小, 尽量少阻挡发光二极管的光线, 否则不 能使发光二极管的最大光功率得以利用; 同时, 用于压缩发光二极管光源输 出光发散角的光束整形装置可以使用楔形四棱锥或其他光学器件来实现。本 领域技术人员应当理解, LED光源可以为白光 LED光源, 也可以为其他单色 LED光源, 这是根据实际使用的需要来确定的。
图 15和图 16给出了又一种具有新型结构的反射棱镜, 该反射棱镜由 两块直角三角棱镜 1507和 1508组成, 两个直角三角棱镜 1507和 1508的 斜面除中心部分外都用光学胶 1506粘合在一起, 由于光学胶 1506具有一 定厚度,从而在两个粘合面的中心部分形成空气间隙 1505。空气间隙 1505 的大小只要能够让入射的激光束或聚焦后的激光束全部反射即可, 截面形 状可以为圆形或矩形等各种合适的形状。 圓形空气隙在粘合时比较麻烦, 矩形空气隙相对比较容易, 有两面与空气直通, 但圆形空气隙由于粘合面 积比矩形多出一部分, 可以使被补充光源通过更多的光线, 所以可以根据 情况选择不同的空气隙形状。 在应用中, 棱镜的表面可以根据光束通过的 不同需要分别镀有不同的膜系, 例如在反射棱镜上激光的入射面需镀对激 光波长高透的增透膜, 而在反射棱镜上被补充光源的入射面和出射面均镀 有对被补充光源高透的增透膜。 在保证空气间隙 1505 的截面大于激光束 入射光斑的条件下, 应当尽可能减小反射棱镜的厚度 d, 这仍然是出于减 小对被补充光源输出光干扰的考虑。 而这种反射棱镜的结构由于其体积上 的增大更容易实现固定, 而固定装置则不必出现在光路中, 避免了对光路 的干扰。
图 17给出了另外一种反射棱镜的结构, 该反射棱镜是图 15和图 16 所示反射棱镜结构的一种变形, 使用两块直角梯形棱镜替代图 15和图 16 中的直角三角棱镜, 所述直角梯形棱镜的斜面与直角面的夹角为 45° , 其 他结构与图 15和图 16的反射棱镜相同。 当然, 还可以有其他的变形, 如 图 6中边 b和边 c的长度可以改变, 而边 a的形状在不影响被补充光源光线 通过的前提下可以改为其他任意形状, 原则上, 在不影响棱镜主体作用的情 况下, 反射棱镜在形状上的任何变化, 都应涵盖于本专利的内容之中。
图 18为采用上述图 15和图 16所示新型结构反射棱镜的激光补充灯 泡的光源装置, 包括激光光源 1808、 聚焦透镜 1805、 超高压汞灯 1806和 反射棱镜 1807; 其中, 激光光源 1808为 635nm的红光固体激光器, 反射 棱镜的两个直角棱镜都由折射率为 1, 51的 K9玻璃制成, 而中间的光学胶 则采用折射率为 1, 51 的紫外固化胶。 红光固体激光器发射的激光束经聚 焦透镜 1805后, 从一个直角棱镜的直角面垂直入射, 此直角面镀有对波 长为 635mn激光的增透膜(透过率大于 99 % ), 经过聚焦透镜 1805会聚后 的激光焦斑处于空气间隙 1804处并在空气间隙 1804处发生全反射, 由该 直角棱镜的另一个直角面垂直出射; 所述超高压汞灯 1806发出的光束由 另一个直角棱镜的直角面入射, 并直接透射, 穿过所述反射棱镜 1807后 与所述激光束的光轴重合, 从而实现红光的补入, 反射棱镜 1807上超高 压汞灯入射和出射的两个直角面均镀有可见光宽带增透膜。
本光源装置中, 所述反射棱镜的厚度 d可以很小, 本领域普通技术人 员应当理解, 只要厚度 d大于激光束在空气隙上的入射光斑直径, 就可以 保证激光束的全反射, 在此条件下, 厚度 d可以做得非常薄, 这样, 被补 充光源发出的光只有一部分经过所述反射棱镜透射, 另一部分则不经过反 射棱镜而直接与所述激光束混合。
图 19是作为被补充光源的发光二极管光源与激光光源混合进行投影 显示的光源装置。 该光源装置的结构与图 14相似, 只是反射镜使用图 15 和图 16所示结构的反射棱镜, 其中, 发光二极管光源 1901为白光发光二 极管, 所发光通过光束整形装置 1902后, 朗伯体形式的光发散角被压缩, 压缩后的发散角为投影系统的孔径角, 例如 ± 12°; 光束整形装置 1902的出 射光直接透射通过反射棱镜 19G3, LED光束在反射棱镜 1903上入射和出射 的相应表面上镀有可见光宽带增透膜; 激光光源 1907为 532nm的绿光固体 激光器,所发射的激光通过賴合透镜组 1906进入光纤 1905 ,光纤 1905的出 射光通过聚焦透镜组 1904聚焦, 发散角控制在投影系统的孔径角内。 激光 在反射棱镜 1903的激光入射面上镀有对波长为 532腿激光的增透膜(透过 率大于 99 % )。调整光路,使激光束的焦点处于反射棱镜 1903的空气间隙处, 激光在空气间隙处发生全反射, 并由会聚光束转为发散光束; 而白光发光二 极管的光线则透过反射棱镜之后, 和反射后的绿色激光混合, 成为混合照明 光源, 实现对发光二极管绿光进行补足。 当然, 上述光源装置中, 应当使激 光束的焦斑面积小于或等于空气间隙的大小,也可以使激光束的焦点处于空 气间隙的表面的附近, 同时使激光束在空气间隙处的光斑面积小于或等于空 气间隙, 因为如果激光束的光斑面积大于空气间隙的话, 会有光能的浪费, 同样激光束的光斑面积如果小于空气间隙过多的话, 则最好縮小空气隙大 小, 尽量少阻挡发光二极管的光线, 否则不能使发光二极管的最大光功率得 以利用。
图 20和图 21是两种三基色 LED灯分別与 RGB激光合束作为投影显示 光源的示意图。
其中, 图 2G的投影显示光源包括红、 绿、 蓝 LED灯, 红、 绿、 蓝光 激光器, 两个二向色镜和三个具有图 15和图 16所示结构的反射棱镜, 其 中,红色 LED灯 2001发出的红光与红光激光器 2007发射的红色激光混合, 绿色 LED灯 2002发出的绿光与绿光激光器 2008发射的绿色激光混合, 蓝 色 LED灯 2003发出的蓝光与蓝光激光器 2009发射的蓝色激光混合, 上迷 同色 LED灯光与激光的混合方式都采用图 19所示的方式, 同时, 混合后 的红光与混合后的绿光通过第一二向色镜 2019 合束后, 红绿混合光再通 过第二二向色镜 2020 与混合后的蓝光合束, 得到投影显示所需的白光。 此外, 红光 LED和蓝光 LED的位置也可以彼此交换, 补入的红光激光器和 蓝光激光器也要相应地交换位置, 同时也要更改第一二向色镜和第二二向 色镜的相应镀膜, 这对本领域技术人员是可以理解的。
图 21中的投影显示用光源使用合色棱镜(X- cube ) 2122来替代图 20 中的两个二向色镜, 其他结构与图 20 基本相同, 同颜色的光束混合方式 与图 19相同, 同样可以得到投影显示所需的白光。 此外, 同图 20相同, 红光和蓝光的光路可以彼此换位, 但是绿光必须从 X- cube合色棱镜 2122 的中间位置不经反射直接通过, 这对本领域技术人员是熟知的。
图 20 和图 21 的合成白光可用于单片 DLP ( digi tal l ight proces s ing )、单片 LCOS及单片 LCD的投影光源,而且由于光源全部由 LED 灯和激光器提供, 因此可以采用电控时序的方法, 从而可以去掉传统技术 中使用的色轮。 此外, 根据具体需要, 可以选择性补入某一种或某几种颜 色的光。
上述图 20和图 21中使用的反射镜结构为图 15和图 16所示的反射棱 镜, 当然, 同颜色的光束混合方式也可以采用图 1-4、 图 6、 图 11、 图 14 或图 19等所示的方式, 利用上面图 20和图 21介绍的方法和结构进行合 光。
图 22 -图 29给出了几种使用本发明上述各种光源装置的投影仪光路结 构。
图 22是一种单片 DLP投影仪光路的实施例。 包括作为被补充光源的 超高压汞灯 2209、 激光光源 2208、 扩束透镜 2217、 聚焦透镜 2218、 反射 镜 2207、 光棒 2210、 聚焦透镜组 2211、 色轮 2212、 中继透镜组 2213、 数 字微镜器件 ( Digi ta l Micro-mirror Devi ce, 简称 DMD ) 2214 和投影透 镜组 2215及屏幕 2216, 其中, 反射镜 2207结构与图 8所示相同。 超高压 汞灯 2209发射的白色光束入射到反射镜 2207 的反射部分上并被反射出 去, 激光器 2208为输出 635皿红色激光的固体激光器, 红色激光经过扩 束透镜 2217扩束后入射到聚焦透镜 2218后, 再入射到反射镜 2207的通 光孔上, 并且其焦点在反射镜 2207 的通光孔处, 激光束直接通过反射镜 2207通光孔后与反射后的超高压汞灯 2209输出的光束同一方向共轴输出, 混合并成为投影显示的光源。扩束透镜 2217增大了激光经过聚焦透镜 2218 后的发散程度, 增强了混合效果。 但是如果激光器的光斑本身就可以满足 混合要求, 则不必加入扩束透镜。 反射镜 2207 的反射部分镀有对可见光 的宽帝高反膜。 混合后的光束在光路中由光棒 221 0对其进行匀场处理, 然后由所述聚焦透镜组 2211对其进行会聚, 再进入色轮 2212 , 使绿光、 蓝光和红光三种颜色的光按照色轮设置的一定顺序依序输出, 接着通过中 继透镜组 221 3转像后照射到数字微镜器件 2214上, 由應 D2214处理过后 的光束经过投影透镜组 2215后, 最后照射到屏幕 2216上成像。 本实施例 中的激光光源 2208发射红色激光是为了提高投影显示中的红光亮度, 调 整红绿蓝三基色的强度分布, 从而提高了图像的色饱和度与对比度。
图 23是一种三片 DLP投影仪光路的实施例。 包括作为被补充光源的 氙灯 2309、 激光光源 2308、 耦合透镜 2318、 光纤 2319、 聚焦透镜 2311、 反射镜 2307、 光棒 2 31 0、 聚焦透镜组 2312、 平面反射镜 2320、 内部全反 射棱镜 ( Tota l Interface Ref l ect i on, 简称 TIR棱镜) 2321、 分色再合 色棱镜( co l or sp l i t t ing/recorab ining pr i sm ) 2322、红、绿、蓝画 2323、 2324和 2325、 以及投影透镜组 2315 , 其中, 激光与氙灯混合使用图 12所 示结构的反射镜。 但是反射镜 2307的厚度和宽度仅为 2毫米。 由于宽度 较小, 氙灯 2309发射的光只有部分射到上面。 激光器光源 2308 为发射 635nm红色激光的半导体激光器。激光首先通过耦合透镜 2318后进入光纤 2319 , 从光纤 2319出射的激光束再通过聚焦透镜 2311入射并聚焦于反射 镜 2307的反射部分上, 经过反射后出射, 由于反射镜 2307的宽度很小, 作为被补充光源的氙灯 2309发射的光一部分入射到所述反射镜 2307上并 透射后与所述激光束混合, 另一部分则直接与所述激光束混合。 在反射镜 2307的反射部分镀有对波长 635nm激光的高反膜, 在反射镜 2 的透射 部分镀有可见光的宽带增透膜。 混合后的光束通过光棒 231 0进行勾场后, 再通过聚焦透镜组 2312会聚, 然后经过平面反射镜 2320反射, 进入内部 全反射 TIR棱镜 ( To ta l Interface Ref l ect i on, 简称 TIR棱镜) 2321 , TIR棱镜 2321的作用是实现入射光与出射光分离, 互不干扰,使入射光全 反射, 出射光透过。 TIR棱镜 2321将入射混合光反射进入分色再合色棱镜 2322 , 分色再合色棱镜 2322使混合光顺序分为蓝、 绿、 红三色, 并分别 入射到蓝、 绿、 红 DME)2325、 2324和 2323上, 之后三束光先红绿合色, 蓝光再与红绿混合光进行合色, 最后再次作为出射光通过 TIR棱镜 2321 输出后, 入射到投影透镜組 2315后成像。 其中, TIR棱镜 2321和分色再 合色棱镜 2322都是本领域技术人员熟知的光学器件, 其结构可以参考专 利号为 US6863401B2的美国专利说明书第一页第二段。
本领域普通技术人员应当理解, 作为投影显示的光源灯除了氙灯外, 还可以为 LED灯(包括 LED阵列)、 超高压汞灯、 金属卤化物灯、 卤素灯 等。
24是一种三基色 LED灯与 RGB激光合束作为投影显示光源的单片 DLP 的投影仪光路的示意图。 LED与激光的合光作为投影光源的部分与图 21所示的光路结构相同, 混合后的光束先经聚焦透镜组 2423会聚到光棒 2424中进行勾场,再经由中继透镜组 2425转像后入射到 TIR棱镜 2427中, 在丽 D2426上处理后被反射,再从 TIR棱镜 2427出射到投射透镜组 2428, 最后在屏幕 2 9 上成像。 本光路中由于采用电控时序的方法, 已去掉传 统单片 DLP光路中的色轮, 经激光混合补充后, 投影系统的红绿蓝三色的 亮度均比先前有了较大的提高。 此外, 根据白光配光比的不同, 红绿蓝激 光器可以选择功率不同的激光器, 尤其针对绿光不足的情况, 可以选择使 用功率较大的绿光激光器。
25是一种使用三基色 LED灯与单色激光合束作为投影显示光源的 单片 DLP的投影仪光路的示意图。 LED与激光的合光作为投影光源的部分 同图 20基本相同, 只是这里仅采用绿光激光器补充绿光 LED灯, 红蓝两 路未进行补入, 并且绿光激光器的补充使用图 8所示结构的反射镜。 混合 后的白光先经过聚焦透镜组 2523后会聚到光棒 2524中进行勾场, 再经由 中继透镜组 2525转像后入射到 TIR棱镜 2527中 , 在 DMD2526上处理后被 反射,再从 TIR棱镜 2527出射到投射透镜組 2528 , 最后在屏幕 2529上成 像。本光路仍然采用电控时序的方法。上述投影显示光源中,在色温 6500K 下使用 0. 79英寸的成像芯片、 F数为 2. 4的投影镜头的投影系统, 所述 LED 灯都采用 LED阵列, 发光面积为 7mm2, 在未加入绿光激光器前红绿蓝 LED 阵列的光功率分別约为红光 0. 8W、 绿光 0. 7W、 蓝光 1. 4W, 由于绿光已达最 大光功率, 所以限制了红光和蓝光的光功率。 采用上述投影显示光源, 加入 光功率为 0. 65W的 532mn绿光激光器的激光后,红绿蓝的光功率分别提高到 红光约 11 绿光约 1. 1W、 蓝光约 1. 8W。 加入绿光激光器后的光源装置 输出白光的亮度比先前提高了大约 50 %。 这种方法大大提高了绿光的亮 度, 及绿光的色饱和度, 从而提高了白光的整体亮度。
图 26是一种使用三基色 LED与单色激光合束作为投影显示光源的三 片 LCD的投影仪光路的实施例。 图中绿光 LED阵列 2601按图 1所示方式 与绿光激光器 2604进行光束混合, 而红光 LED阵列 2611和蓝光 LED阵列 2621则不再用激光进行补充,并且红光 LED阵列 2611和直光 LED阵列 2621 各自的两个 LED均为并行排列各自共用一个光束整形装置 2612和 2622。 绿光的混合光顺序经过准直透镜 2631、 反射式偏光片 2632、 二分之一波 长板 2630、 聚焦透镜 2633、 光棒 2634和中继透镜组 2635和绿光 LCD液 晶光阀 2608后进入合色棱镜 2638; 而红光和蓝光 LED阵列 2611和 2621 经过各自对应的准直透镜 2613和 2623、 反射式偏光片 2614和 2624、 二 分之一波长板 2610和 2620、 聚焦透镜 2615和 2625、 光棒 2616和 2626、 中继透镜组 2617和 2627及 LCD液晶光阀 2618和 2628后进入合色棱镜 2638 , 由合色棱镜 2638将 RGB三基色光重新合光, 通过投影透镜组 2639 在屏幕 2640上成像。 其中, 为了提高光束的利用效率, 用于压缩 LED灯 输出光束发散角的光束整形装置可以使用楔形四棱锥, 这样, 还可以利用 反射式偏振片使 P光通过,通过的 P光再经过二分之一波长板转换为 S光; 而没通过反射式偏振片的 S光被反射回楔型四棱锥 , 经楔型四棱锥和 LED 表面多次反射后退偏为自然光, 实现 S光的部分再次利用。
图 27是一种使用三基色 LED灯与激光合束作为投影显示光源的三片 LC0S的投影仪光路的实施例。图中蓝光 LED阵列 2701和绿光 LED阵列 2702 按图 1所示方式分别与蓝光激光器 2704和绿光激光器 2705进行光束混合, 而红光 LED阵列 2703则不再用激光进行补充。 蓝光的混合光顺序经过准 直透镜 2711、 反射式偏光片 mi、 聚焦透镜 2713、 光棒 2714、 中继透镜 组 2715、 PBS2742和蓝光 LC0S2741后进入 X- cube合色棱镜 2740; 绿光的 混合光顺序经过准直透镜 2721、 反射式偏光片 2722、 聚焦透镜 2723、 光 棒 2724、 中继透镜组 2725、 平面反射镜 2726、 PBS2752和绿光 LC0S2751 后进入 X- cube合色棱镜 2740; 而红光则未经激光器补充直接顺序经过准 直透镜 2731、 反射式偏光片 2732、 聚焦透镜 2733、 光棒 2734、 中继透镜 组 2735、 PBS2762和红光 LC0S2761后进入 X-cube合色棱镜 2740; 由合色 棱镜 2740将 RGB三基色光重新合光,通过投影透镜组 2750投射到屏幕上, 实现图像的投影显示。 其中, 为了提高光束的利用效率, 用于压缩 LED灯 输出光束发散角的光束整形装置可以使用楔形四棱锥, 这样, 还可以利用 反射式偏振片使 P光通过, 没通过的 S光被反射回楔型四棱锥, 经楔型四 棱锥和 LED表面多次反射后退偏为自然光,实现 S光的部分再次利用。 PBS 的作用为将入射光的 P偏振光反射后,入射光在 LC0S表面经调制转换为 s 偏振, s偏振光再透射穿过 PBS后进入 X- cube合色棱镜。
图 28是一种使用三片液晶光阀的投影仪光路的实施例。 其中, 被补 充光源输出的光与激光的混合仍然通过图 15和图 16所示的反射棱镜来实 现, 反射棱镜使用折射率为 1. 51的 K9玻璃, 光学胶使用紫外固化胶, 其 折射率为 1. 51。 激光光源 2808为发射 635nm红光激光的固体激光器, 激 光经过第一聚焦透镜组 2811被聚焦在反射棱镜 2807的空气间隙上, 经过 全反射后出射,作为被补充光源的光源灯采用超高压汞灯 2809 ,调整输出 会聚光束的超高压汞灯 2809的焦平面 F, 使激光束的焦点也落在焦平面 F 上, 且激光束的焦点与超高压汞灯 2809输出光的焦点距离尽可能的接近, 但超高压汞灯 2809输出光的焦点不能位于反射棱镜 2807的空气间隙上, 两束光经过反射棱镜 2807后同方向输出, 实现混合。 其中第一聚焦透镜 组中也可以包括扩束透镜。 在反射棱镜 2807 的激光入射面镀有对波长 635nm激光的增透膜, 在反射棱镜 2807对应超高压汞灯 2809输出光的入 射面和出射面上镀有可见光的宽带增透膜。 混合光束经过第二聚焦透镜组 2817后成为平行光或准平行光, 再经过第一复眼透镜 2826进行勾场, 然 后顺序经过第一平面反射镜 2827、第二复眼透镜 2836、偏极化分光镜 PBS 阵列 2834和第三聚焦透镜组 2851 , 其中, 第一平面反射镜 2827的作用是 将光线反射, 所述第二复眼透镜 2836仍然是起勾场的作用, 所述 PBS阵 列 2834将自然混合光转换为偏振光; 由第三聚焦透镜组 2851出射的偏振 光在第一二向色镜 2828上将混合偏振光分离为蓝光和红绿混合光, 所述 蓝光顺序经过第二平面反射镜 2840、 第一场镜 2841和第一液晶光阀 2831 后进入合色棱镜 2830, 所迷红绿混合光在第二二向色镜 2838上进一步被 分离为绿光和红光, 所述绿光经过第二场镜 2842和第二液晶板 2832后进 入合色棱镜 2830, 所述红光顺序经过第一中继透镜 2829、 第三平面反射 镜 2850、 第二中继透镜 2839、 第四平面反射镜 2820、 第三场镜 284 3、 以 及第三液晶板 2833后进入合色棱镜 2830, 这样, RGB三束光在所述合色 棱镜 2830中重新合光经投影透镜組 2815投射到屏幕上,实现图像的显示。 其中, 由于蓝光与绿光的光程相同, 而红光的光程较长, 中继透镜的作用 是使红光转为与蓝绿光相同光程的效果。
图 29是一种使用三片 LCOS ( Liquid Crys ta l on S i l icon ) 的投影仪 光路的实施例。 包括作为被补充光源的超高压汞灯 2909、发射 635nm红光 的激光光源 2908、 第一聚焦透镜組 2911、 具有图 12 所示结构的反射镜 2907、 第二聚焦透镜组 2917、 第一和第二复眼透镜 2926和 2936、 第一平 面反射镜 2927、 PBS阵列 2934、 第三聚焦透镜组 2921、 笫一和第二二向 色镜 2940和 2960、 第一和第二中继透镜 2929和 2939、 三片 LC0S2941、 2951和 2961、 三个 PBS2942、 2952和 2962、 合色棱镜 2930 , 以及投影透 镜组 2915 , 其中, 本实施例中的投影显示光源前半部分的混合方式光路结 构与图 28类似, 其后的光路釆用传统的三片 LC0S方案, 即后半部分光路 中, PBS阵列 2934将自然光转换为 p偏振光, 经过第三聚焦透镜组 2921 后入射到第一二向色镜 2940上, 第一二向色镜 2940将入射 p偏振光分离 为红光和蓝绿混合光, 所述红光顺序经过第一中继透镜 2929、第二平面反 射镜 2950、第二中继透镜 2939、第一场镜 2963后入射到第一 PBS2962中, 第一 PBS2962将入射的 p偏振红光反射后, 红光在红光 LCOS2961表面经 调制转换为 s偏振, s偏振的红光透射穿过第一 PBS2962后进入合色棱镜 2930; 所述蓝绿混合光经过第二二向色镜 2960后被分离为蓝光和绿光, 所述 p偏振的蓝光先经过第二场镜 2943,再经过第二 PBS2942反射并在蓝 光 LC0S2941表面经调制转换为 s偏振, 并透射穿过第二 PBS2942后进入 合色棱镜 2930; 同蓝光相类似, 所述 p偏振的绿光先经过第三场镜 2953, 再经过第三 PBS2952的反射并在绿光 LCOS2951表面经调制为 s偏振, 并 透射穿过第三 PBS2952后进入合色棱镜 2930, 经过合色棱镜 2930将 RGB 三基色光重新合束后通过投影透镜組 2915投射到屏幕上, 实现图像的投 影显示。 其中, 由于蓝光与绿光的光程相同, 而红光的光程较长, 中继透 镜的作用是使红光具有与蓝绿光相同光程的效果。
上述图 22-29只是示例性的给出了几种投影仪的结构, 在保持后边投 影仪光路不变的情况下, 本领域技术人员应当能够根据需要使用本发明的 各种光源装置对投影仪光源部分进行等同替换或修改。 最后需要强调的是, 上述各个光源装置和投影仪中, 为了实现图像显 示, 还要求红绿蓝三路的光路应满足光程相同或使光路达到光程相同的效 杲的条件, 这对本领域技术人员是公知的。
当然, 根据实际应用中的需要, 本发明的光源装置还可以将其他波长 和颜色的激光与灯泡与 LED发出的光相混合。 最后应说明的是, 以上各附 图中的实施例仅用以说明本发明的光源装置的结构和技术方案, 但非限 制。 尽管参照实施例对本发明进行了详细说明, 本领域的普通技术人员应 当理解, 对本发明的技术方案进行修改或者等同替换, 都不脱离本发明技 术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求
1. 一种用于投影显示的光源装置, 包括被补充光源和激光光源, 所 述激光光源发出的激光与所述被补充光源发出的光混合后在同一方向上混 合输出。
2. 根据权利要求 1 所述的光源装置, 其特征在于, 所述被补充光源 和所述激光光源共轴混合输出。
3. 根据权利要求 1或 2所述的光源装置, 其特征在于, 所述激光光 源设有光束调整系统。
4. 根据权利要求 3 所述的光源装置, 其特征在于, 所述光束调整系 统包括光纤以及用于将所述激光耦合进所述光纤的耦合透镜。
5. 根据权利要求 3所述的光源装置, 其特征在于, 所述光束调整系 统还包括聚焦透镜。
6. 根据权利要求 5 所述的光源装置, 其特征在于, 所述光束调整系 统还包括扩束透镜。
7. 根据权利要求 1 所述的光源装置, 其特征在于, 所述被补充光源 为 LED灯、 超高压汞灯、 金属! ¾化物灯、 氙灯或 素灯。
8. 根据权利要求 7 所述的光源装置, 其特征在于, 所述被补充光源 为 LED或 LED阵列, 所述光源装置还包括用于压缩所述 LED或 LED阵列输 出光发散角的光束整形装置。
9. 根据权利要求 8 所述的光源装置, 其特征在于, 所述光束整形装 置为楔形四棱锥。
10. 根据权利要求 1-9任一项所述的光源装置, 其特征在于, 所述被 补充光源为 LED光源,所述 LED光源由多个 LED构成,且 LED之间设有至少 一个激光孔, 所述激光光源由所述激光孔出射, 并与所述 LED光源发出的 光在同一方向上直接混合输出。
11. 根据权利要求 10所述的光源装置, 其特征在于, 所述激光孔对 称设置于所述 LED光源上。
12. 根据权利要求 1-9任一项所述的光源装置, 其特征在于, 还包括
13. '根据权利要求 ^ 2所述 光源装置 、特征在 ,、所述反射镜包 括用于反射所述一种光源输出光的反射部分和使所述另一种光源输出光 束直接透射通过的透射部分。
14. 根据权利要求 1 3所述的光源装置, 其特征在于, 所述反射部分 形^ i为平面、 抛物面、 双曲面或球面。
15. 根据权利要求 1 3所述的光源装置, 其特征在于, 所述反射镜的 反射部分表面镀有增加被反射光束反射效率的高反膜。
16. 根据权利要求 1 3- 1 5任一项所述的光源装置, 其特征在于, 所述 输出光被反射的光源为所述被补充光源, 所述反射镜的透射部分为使所述 激光光源发出的激光直接通过的通光孔。
17. 根据权利要求 1 3- 1 5任一项所述的光源装置, 其特征在于, 所述 输出光被反射的光源为所述激光光源, 所述反射镜由透明材料制成。
18. 根据权利要求 17所述的光源装置, 其特征在于, 所述透明材料 为玻璃、 石英、 硅片和透明塑料。
19. 根据权利要求 17所述的光源装置, 其特征在于, 所述反射镜的 透射部分表面镀有增加透射光束透射效率的增透膜。
20. 根据权利要求 1 3或 14所述的光源装置, 其特征在于, 所述反射 镜采用反射棱镜实现。
21. 根据权利要求 20所述的光源装置, 其特征在于, 所述反射棱镜 由两块棱镜组成, 每块棱镜包括一个粘合面, 所述两块棱镜的粘合面除中 心部分外都用光学胶粘合, 从而在两个粘合面的中心部分形成空气间隙作 为所述反射部分。
22. 根据权利要求 21所述的光源装置, 其特征在于, 所述空气间隙 的截面为圆形或矩形。
2 3. 根据权利要求 21 所述的光源装置, 其特征在于, 所述光学胶与 所述棱镜材料的相对折射率为 0. 98-1. 02。
24. 根据权利要求 21 所述的光源装置, 其特征在于, 所述棱镜为直 角棱镜, 所述粘合面为所述直角棱镜的底面。
25. 根据权利要求 21所述的光源装置, 其特征在于, 所述棱镜的表 面有镀膜, 在反射棱镜上激光的入射面需镀对应激光波长的增透膜, 而被 补充光源在反射棱镜上的入射面和出射面均镀有对应被补充光源输出光 波长的增透膜。
26.—种投影装置, 其特征在于, 所述投影仪使用上述权利要求 1-25 任一项所述的光源装置作为投影仪的光源。
PCT/CN2007/003389 2007-11-30 2007-11-30 Source lumineuse pour système de projection et appareil d'affichage par projection WO2009070918A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010535190A JP5456688B2 (ja) 2007-11-30 2007-11-30 投影システムに用いる光源装置並びに投影表示装置
PCT/CN2007/003389 WO2009070918A1 (fr) 2007-11-30 2007-11-30 Source lumineuse pour système de projection et appareil d'affichage par projection
KR1020107014522A KR101179639B1 (ko) 2007-11-30 2007-11-30 프로젝션 시스템을 위한 광원 및 프로젝션 디스플레이 장치
CA2705863A CA2705863A1 (en) 2007-11-30 2007-11-30 Light source device and projection display device for projection system
US12/745,008 US20100309439A1 (en) 2007-11-30 2007-11-30 Light source for projection system and projection display apparatus
EP07845752.0A EP2216679B1 (en) 2007-11-30 2007-11-30 Light source for projection system and projection display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003389 WO2009070918A1 (fr) 2007-11-30 2007-11-30 Source lumineuse pour système de projection et appareil d'affichage par projection

Publications (1)

Publication Number Publication Date
WO2009070918A1 true WO2009070918A1 (fr) 2009-06-11

Family

ID=40717251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003389 WO2009070918A1 (fr) 2007-11-30 2007-11-30 Source lumineuse pour système de projection et appareil d'affichage par projection

Country Status (6)

Country Link
US (1) US20100309439A1 (zh)
EP (1) EP2216679B1 (zh)
JP (1) JP5456688B2 (zh)
KR (1) KR101179639B1 (zh)
CA (1) CA2705863A1 (zh)
WO (1) WO2009070918A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075562A (ja) * 2010-09-30 2012-04-19 Fujifilm Corp 内視鏡用光源装置
EP2524263A1 (en) * 2010-01-11 2012-11-21 3M Innovative Properties Company Reflective display system with enhanced color gamut
CN111780053A (zh) * 2019-04-03 2020-10-16 阳睐(上海)光电科技有限公司 一种发光装置
CN112578617A (zh) * 2019-09-30 2021-03-30 深圳光峰科技股份有限公司 一种光学引擎系统及投影系统

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742349B2 (ja) * 2009-06-30 2011-08-10 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4711156B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP4711021B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 投影装置
WO2011037057A1 (ja) * 2009-09-28 2011-03-31 日本電気株式会社 光源装置およびそれを用いた投射型表示装置
US8502926B2 (en) * 2009-09-30 2013-08-06 Apple Inc. Display system having coherent and incoherent light sources
JP2011221504A (ja) * 2010-03-26 2011-11-04 Panasonic Corp 照明装置及びそれを用いた投写型画像表示装置
JP5672861B2 (ja) * 2010-08-27 2015-02-18 セイコーエプソン株式会社 プロジェクター
JP5633695B2 (ja) 2010-11-29 2014-12-03 ソニー株式会社 照明装置、投影型表示装置および直視型表示装置
TW201232153A (en) * 2011-01-26 2012-08-01 Hon Hai Prec Ind Co Ltd Laser projecting device
CN104267506B (zh) 2011-08-29 2017-02-15 深圳市绎立锐光科技开发有限公司 光源、合光装置及带该光源的投影装置
CN102722073B (zh) * 2011-12-18 2014-12-31 深圳市光峰光电技术有限公司 光源系统及投影装置
WO2013132634A1 (ja) * 2012-03-08 2013-09-12 Necディスプレイソリューションズ株式会社 プロジェクタ
JP5982915B2 (ja) * 2012-03-21 2016-08-31 カシオ計算機株式会社 光源装置及びプロジェクタ
JP6311219B2 (ja) * 2012-07-26 2018-04-18 株式会社リコー 照明光形成装置、照明光源装置および画像表示装置
JPWO2014020728A1 (ja) * 2012-08-01 2016-07-11 Necディスプレイソリューションズ株式会社 照明光学系及び投射型表示装置
US8905548B2 (en) * 2012-08-23 2014-12-09 Omnivision Technologies, Inc. Device and method for reducing speckle in projected images
JP6024289B2 (ja) * 2012-08-27 2016-11-16 コニカミノルタ株式会社 投射型表示装置
JP5922781B2 (ja) * 2012-09-10 2016-05-24 三菱電機株式会社 光源装置
CN102967604B (zh) * 2012-11-06 2014-11-05 广州标旗电子科技有限公司 一种用于宝石检测的反射光谱测量取样系统及方法
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN104765230A (zh) * 2014-01-02 2015-07-08 光宝科技股份有限公司 微型投影固定模块
CN104793451B (zh) * 2014-01-20 2016-07-13 光宝科技股份有限公司 微型投影固定模块
US9753298B2 (en) 2014-04-08 2017-09-05 Omnivision Technologies, Inc. Reducing speckle in projected images
US10051209B2 (en) * 2014-04-09 2018-08-14 Omnivision Technologies, Inc. Combined visible and non-visible projection system
US9784899B2 (en) * 2015-06-01 2017-10-10 U-Technology Co., Ltd. LED illumination apparatus
CN106707693B (zh) * 2015-07-29 2019-03-12 上海微电子装备(集团)股份有限公司 一种led光源照明装置
CN205350946U (zh) * 2015-12-16 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源系统及照明系统
US10480719B2 (en) 2016-08-16 2019-11-19 King Abdullah University Of Science And Technology Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications
CN106526874B (zh) * 2016-12-09 2023-07-07 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统
WO2019091107A1 (zh) * 2017-11-07 2019-05-16 青岛海信电器股份有限公司 量子点led及其制备方法以及显示装置
CN107703636A (zh) * 2017-11-17 2018-02-16 北京大族天成半导体技术有限公司 抗反射的激光匀光装置
US10476611B2 (en) * 2017-12-29 2019-11-12 Rohde & Schwarz Gmbh & Co. Kg Compact antenna range reflector with reduced edge diffraction
JP7003678B2 (ja) * 2018-01-17 2022-01-20 セイコーエプソン株式会社 照明装置およびプロジェクター
CN109960099B (zh) 2019-04-30 2024-03-15 成都极米科技股份有限公司 一种非共轴的投影光源系统
WO2020227528A1 (en) * 2019-05-07 2020-11-12 The Regents Of The University Of Colorado, A Body Corporate Video projection-based distraction therapy system for radiation therapy
CN110347009A (zh) * 2019-06-13 2019-10-18 广州光联电子科技有限公司 一种激光光源的光学系统
US11586101B2 (en) * 2020-02-14 2023-02-21 Texas Instruments Incorporated LED illumination with red laser assist
CN112162356B (zh) * 2020-09-29 2023-06-27 武汉中科医疗科技工业技术研究院有限公司 光耦合装置、光源系统及其光通量的控制方法
CN219389500U (zh) * 2022-11-08 2023-07-21 深圳市绎立锐光科技开发有限公司 一种照明装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561654B2 (en) * 2001-04-02 2003-05-13 Sony Corporation Image display device
JP2004226460A (ja) * 2003-01-20 2004-08-12 Fuji Photo Optical Co Ltd 照明光学系およびこれを用いた投写型表示装置
US6863401B2 (en) 2001-06-30 2005-03-08 Texas Instruments Incorporated Illumination system
CN1734347A (zh) * 2004-08-09 2006-02-15 北京万方同辉科技有限公司 一种提高投影光源寿命、色利用效率、光亮度的方法
JP2006301114A (ja) * 2005-04-18 2006-11-02 Sony Corp 照明装置及び画像表示装置
JP2006337941A (ja) * 2005-06-06 2006-12-14 Sony Corp 画像投影装置及び画像投影方法
JP2007206359A (ja) * 2006-02-01 2007-08-16 Sony Corp 画像投影装置及び画像投影方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027781A (ja) * 1999-07-13 2001-01-30 Minolta Co Ltd 照明装置および投射型表示装置
US6398389B1 (en) * 1999-12-03 2002-06-04 Texas Instruments Incorporated Solid state light source augmentation for SLM display systems
US6733139B2 (en) * 2000-06-05 2004-05-11 Hewlett-Packard Development Company, L.P. Projector with narrow-spectrum light source to complement broad-spectrum light source
US20030169503A1 (en) * 2001-01-19 2003-09-11 Chih-Kung Lee Light beam polarization converter
US6688747B2 (en) * 2001-06-08 2004-02-10 Infocus Corporation Achieving color balance in image projection systems by injecting compensating light
US7520624B2 (en) * 2001-12-21 2009-04-21 Bose Corporation Light enhancing
CN1435388A (zh) * 2002-01-30 2003-08-13 保谷株式会社 棱镜用光学玻璃及其制造方法以及棱镜用光学部件
JP2003255465A (ja) * 2002-02-28 2003-09-10 Toshiba Corp 照明装置とこれを用いた投写型表示装置
TWI235263B (en) * 2002-05-14 2005-07-01 Sony Corp Illuminating optical system, image display unit and method of illuminating space modulation element
JP4211969B2 (ja) * 2002-11-07 2009-01-21 フジノン株式会社 照明光学系およびこれを用いた投写型表示装置
CN100383660C (zh) * 2003-01-22 2008-04-23 三洋电机株式会社 照明装置和投影型图像显示器
JP3757221B2 (ja) * 2003-08-14 2006-03-22 Necビューテクノロジー株式会社 投写型表示装置
JP2006003799A (ja) * 2004-06-21 2006-01-05 Seiko Epson Corp プロジェクタ
US7652823B2 (en) * 2005-10-11 2010-01-26 Konica Minolta Opto, Inc. Non-polarizing beam splitter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561654B2 (en) * 2001-04-02 2003-05-13 Sony Corporation Image display device
US6863401B2 (en) 2001-06-30 2005-03-08 Texas Instruments Incorporated Illumination system
JP2004226460A (ja) * 2003-01-20 2004-08-12 Fuji Photo Optical Co Ltd 照明光学系およびこれを用いた投写型表示装置
CN1734347A (zh) * 2004-08-09 2006-02-15 北京万方同辉科技有限公司 一种提高投影光源寿命、色利用效率、光亮度的方法
JP2006301114A (ja) * 2005-04-18 2006-11-02 Sony Corp 照明装置及び画像表示装置
JP2006337941A (ja) * 2005-06-06 2006-12-14 Sony Corp 画像投影装置及び画像投影方法
JP2007206359A (ja) * 2006-02-01 2007-08-16 Sony Corp 画像投影装置及び画像投影方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2216679A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2524263A1 (en) * 2010-01-11 2012-11-21 3M Innovative Properties Company Reflective display system with enhanced color gamut
EP2524263A4 (en) * 2010-01-11 2015-02-18 3M Innovative Properties Co REFLECTIVE DISPLAY SYSTEM WITH ENHANCED COLOR RANGE
JP2012075562A (ja) * 2010-09-30 2012-04-19 Fujifilm Corp 内視鏡用光源装置
CN102440750A (zh) * 2010-09-30 2012-05-09 富士胶片株式会社 内窥镜光源单元和内窥镜系统
CN111780053A (zh) * 2019-04-03 2020-10-16 阳睐(上海)光电科技有限公司 一种发光装置
CN112578617A (zh) * 2019-09-30 2021-03-30 深圳光峰科技股份有限公司 一种光学引擎系统及投影系统
CN112578617B (zh) * 2019-09-30 2023-08-29 深圳光峰科技股份有限公司 一种光学引擎系统及投影系统
US12007677B2 (en) 2019-09-30 2024-06-11 Appotronics Corporation Limited Optical engine unit and projection system

Also Published As

Publication number Publication date
KR101179639B1 (ko) 2012-09-05
JP5456688B2 (ja) 2014-04-02
KR20100102630A (ko) 2010-09-24
US20100309439A1 (en) 2010-12-09
CA2705863A1 (en) 2009-06-11
EP2216679B1 (en) 2014-07-30
EP2216679A4 (en) 2011-01-05
EP2216679A1 (en) 2010-08-11
JP2011505019A (ja) 2011-02-17

Similar Documents

Publication Publication Date Title
WO2009070918A1 (fr) Source lumineuse pour système de projection et appareil d&#39;affichage par projection
CN201134006Y (zh) 一种用于投影系统的光源装置及投影显示装置
TWI471603B (zh) 光學元件、色彩結合器、結合光之方法及影像投影機
TWI235263B (en) Illuminating optical system, image display unit and method of illuminating space modulation element
WO2020137749A1 (ja) 光源装置および投写型映像表示装置
US20180314141A1 (en) Light source device and projection type display apparatus
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
US20190369479A1 (en) Projection system
JP3646597B2 (ja) 投写型画像表示装置
US10634981B2 (en) Light source device and projection type display apparatus
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
TW201833655A (zh) 光源裝置
JP2007065412A (ja) 照明装置及び投写型映像表示装置
TWI726073B (zh) 光學系統
JP2017032631A (ja) プロジェクタ
WO2020199670A1 (zh) 光源系统及投影设备
JP2007163619A (ja) 照明光学部、これを用いた投射型表示装置及び映像表示方法
JP4382503B2 (ja) 投写型表示装置の光源装置と投写型表示装置
JP2006337428A (ja) 照明光学系、光学エンジン及び投射型映像表示装置
WO2021037239A1 (zh) 一种投影光学系统
WO2022188307A1 (zh) 激光光路系统和投影设备
WO2020259619A1 (zh) 光学引擎系统及显示设备
JP2005292283A (ja) 光源装置及びプロジェクタ
JP2008203467A (ja) 光学素子、照明装置及び投写型映像表示装置
JP2005258469A (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2705863

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007845752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12745008

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010535190

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107014522

Country of ref document: KR

Kind code of ref document: A