WO2019091107A1 - 量子点led及其制备方法以及显示装置 - Google Patents

量子点led及其制备方法以及显示装置 Download PDF

Info

Publication number
WO2019091107A1
WO2019091107A1 PCT/CN2018/090063 CN2018090063W WO2019091107A1 WO 2019091107 A1 WO2019091107 A1 WO 2019091107A1 CN 2018090063 W CN2018090063 W CN 2018090063W WO 2019091107 A1 WO2019091107 A1 WO 2019091107A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
led
colloid
led chip
Prior art date
Application number
PCT/CN2018/090063
Other languages
English (en)
French (fr)
Inventor
李富琳
宋志成
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711081559.1A external-priority patent/CN107706289B/zh
Priority claimed from CN201711297954.3A external-priority patent/CN108110120B/zh
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2019091107A1 publication Critical patent/WO2019091107A1/zh
Priority to US16/673,830 priority Critical patent/US11508882B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present application relates to the field of display technologies, and in particular, to a quantum dot LED, a method of manufacturing the same, and a display device.
  • LED Light-emitting diode
  • white LED is gradually attracting people's attention as a new generation of illumination source.
  • quantum dot LEDs are used to achieve high color gamut backlighting, that is, blue light LEDs are used to excite quantum dot materials to produce white light, and the color gamut can reach 100% NTSC or more.
  • an embodiment of the present application provides a quantum dot LED, including: an LED bracket, an LED chip, a filling layer, and a quantum dot layer, wherein
  • the LED bracket is provided with a sinking cavity
  • the LED chip is disposed on a bottom surface of the accommodating cavity
  • the filling layer covers a bottom surface of the accommodating cavity and the LED chip, and the filling layer is compatible with the accommodating cavity wall;
  • the quantum dot layer is disposed at an opening position of the top surface of the accommodating cavity, and a light incident side of the quantum dot layer abuts a surface of the filling layer away from a bottom surface of the accommodating cavity, and the The shortest distance h between the LED chip and the quantum layer satisfies h ⁇ 0.03 mm.
  • the embodiment of the present application further provides a method for preparing a quantum dot LED, comprising the following steps:
  • the filling layer is covered on the bottom surface of the LED chip and the LED holder by means of dispensing, and the filling layer is matched with the wall of the accommodating cavity;
  • the quantum dot layer is baked to cure it.
  • the embodiment of the present application further provides a display device, where the display device includes a quantum dot LED, and the quantum dot LED includes: an LED bracket, an LED chip, a filling layer, and a quantum dot layer, wherein
  • the LED chip is disposed on a bottom surface of the accommodating cavity
  • the filling layer covers a bottom surface of the accommodating cavity and the LED chip, and the filling layer is compatible with the accommodating cavity wall;
  • the quantum dot layer is disposed at an opening position of the top surface of the accommodating cavity, and a light incident side of the quantum dot layer abuts a surface of the filling layer away from a bottom surface of the accommodating cavity, and the The shortest distance h between the LED chip and the quantum layer satisfies h ⁇ 0.03 mm.
  • FIG. 1 is a schematic structural view of a quantum dot LED according to some embodiments of the present application.
  • FIG. 3 is a schematic structural view of a shortest distance between an LED chip and a quantum layer in the quantum dot LED shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a quantum dot LED according to some embodiments of the present application.
  • FIG. 5 is a schematic structural view of a shortest distance between an LED chip and a quantum layer in the quantum dot LED shown in FIG. 4;
  • FIG. 6 is a flow chart of a method of fabricating a quantum dot LED of some embodiments of the present application.
  • the quantum dot material directly above the LED chip is more susceptible to high intensity blue light.
  • the quantum dot material is exposed to the highest blue light power of 60 W/cm 2 to 100 W/cm 2 (Watts/cm 2 ), and the quantum power limit of the quantum dot material is generally 5 W/cm 2 , which is recommended for normal use. It is below 2W/cm 2 , that is, beyond the limit optical power range that the quantum dot material can withstand, the quantum dot of the LED chip directly fails, and the light intensity far from the LED chip is low, which is not conducive to the realization of quantum dots.
  • the high color gamut of the LED is displayed. Therefore, on the premise of ensuring that the quantum dot material does not fail during use, and on the basis of not reducing the high color gamut of the quantum dot LED, it is necessary to increase the power consumption of the LED chip and the quantum dot LED. Reliability.
  • the quantum dot LED 10 includes an LED bracket 110 , an LED chip 120 , a filling layer 130 , and a quantum dot layer 140 .
  • the surface of the accommodating cavity 111 is disposed at a bottom surface of the accommodating cavity 111, and the filling layer 130 covers the bottom surface of the accommodating cavity.
  • the LED chip 120, and the filling layer 130 is matched with the accommodating cavity wall; and the quantum dot layer 140 is disposed at an opening position of the top surface of the accommodating cavity, the quantum dot layer 140
  • the light incident side abuts the surface of the filling layer 130 away from the bottom surface of the accommodating cavity, and the shortest distance h between the LED chip 120 and the quantum layer 140 satisfies h ⁇ 0.03 mm (mm).
  • the filling layer 130 and the accommodating cavity wall are adapted to mean that the filling layer 130 abuts on a sidewall of the accommodating cavity.
  • the bottom surface of the sinker-shaped accommodating cavity 111 may be a flat plate (not limited in this application), and the sidewall of the sinker-shaped accommodating cavity 111 has high reflectivity and blue light resistance in the full visible light band.
  • the characteristics of radiation and high temperature resistance may be materials with high reflectivity, and in some embodiments may be specially treated EMC or PC materials.
  • the filling layer 130 covers the bottom surface of the entire sinker-shaped accommodating cavity 111 and all the light-emitting surfaces of the LED chip 120.
  • the upper surface may be parallel to the bottom surface of the sinker-shaped accommodating cavity 111, and the sidewalls of the surrounding groove-shaped accommodating cavity 111. Closely fit.
  • the LED bracket 110 can be of a central symmetry type, the central axis can be located at the geometric center of the bracket, and the center of the LED chip 120 can be located on the central axis of the LED bracket 110.
  • the LED chip 120 can be a blue chip that emits blue light from 400 nm to 480 nm (nanometers).
  • the quantum dot layer 140 is disposed at an opening position of the top surface of the accommodating cavity, and the quantum dot layer 140 is disposed in the accommodating cavity and close to the opening of the top surface of the accommodating cavity.
  • the position of the quantum dot layer 140 is disposed at a position of the interface between the accommodating cavity and the outside, which is not limited herein.
  • the quantum dot layer 140 comprises a red quantum dot material and a green quantum dot material, wherein the green quantum dot material may have a wavelength ranging from 520 to 550 nm, which is excited to generate a wavelength of 520 to 550 nm.
  • the red quantum dot material may have a wavelength range of 610 to 650 nm, which is excited to generate red light having a wavelength in the range of 610 to 650 nm, and the blue light emitted by the LED chip 120 is excited in the quantum dot layer. Mix white light.
  • the red quantum dot material and the green quantum dot material included in the quantum dot layer may be respectively located in different layers, that is, the quantum dot layer may include a red quantum dot material layer and a green quantum dot material layer.
  • the filling layer 130 includes a colloid layer, that is, the filling layer is composed of the colloid layer, and the colloid layer is away from the surface of the accommodating cavity and the quantum dots.
  • the light incident side of the layer 140 abuts.
  • the colloid layer is filled with a colloid mixed with a phosphor and scattering particles.
  • the phosphor is a red phosphor, and the phosphor is made of a common nitride or a KSF phosphor. Under the irradiation of blue light, the red phosphor can absorb 20% to 40%. The blue light energy is excited to produce red light, and the remaining 60% to 80% of the blue light energy.
  • the scattering particles comprise at least one of SiO 2 , CaCO 3 , TiO 2 , BaSO 4 , and glass microbeads.
  • the scattering particles can destroy the Lambertian distribution of the blue light intensity, so that the blue light can be more uniformly irradiated to the respective positions of the quantum dot layer 140, instead of being concentrated on the quantum dot layer 140 corresponding to the LED chip 110 having a small light-emitting angle.
  • the maximum blue light irradiation energy per unit area is reduced by 40% to 60%, and the maximum blue light irradiation energy per unit area is changed to 40% to 60%, as shown in FIG. 2,
  • FIG. 2 is a quantum dot LED 10 in the embodiment of the present application.
  • the optical power distribution diagram of the blue light illuminating quantum dot layer with or without scattering particles wherein the left side of FIG. 2 is the optical power distribution of the blue light illuminating quantum dot layer 140 when there is no scattering particle, and the blue light illuminating the quantum dot layer 140 when there is scattering particles on the right side.
  • the temperature is high, so that the quantum dot layer LED can work normally, and the light can pass through.
  • the filling layer is included, so the colloid layer included in the filling layer should be a material having good light transmittance and high temperature resistance.
  • the material of the colloid in the colloid layer includes at least one of silica gel and epoxy resin.
  • the quantum dot material in the quantum dot layer will fail under the action of air moisture and oxygen, which is not conducive to the reliability and service life of the quantum dot LED. Therefore, in some implementations
  • the damage of the quantum dot material is blocked from the top water to enhance the effectiveness of the quantum dot LED, and the quantum dot LED further includes a water and oxygen barrier layer 150.
  • the water oxygen barrier layer is attached to the light exiting side of the quantum dot layer 140.
  • FIG. 3 is a schematic view showing the shortest distance between the LED chip and the quantum layer in the quantum dot LED shown in FIG. 1. As shown in FIG. 3, the shortest distance between the LED chip 120 and the quantum layer 140 is h.
  • the relationship between the maximum blue light intensity per unit area of the ordinary blue LED and the distance x from the LED chip at different distances may be as follows:
  • y is the blue light energy (unit: watts/cm 2 , W/cm 2 ) emitted by the LED chip received per unit area of the quantum dot material
  • a Pe/0.55
  • a is the conversion rate of the filling layer 150 to the light energy In some embodiments, 0.24 ⁇ a ⁇ 0.48
  • Pe is the optical power of the selected LED chip.
  • the blue light power of the maximum unit area that the quantum dot layer 140 can withstand is 5 W/cm 2
  • the shortest distance h of the LED chip to the quantum dot layer is calculated as an example, and the blue light emitted by the quantum dot LED chip is obtained.
  • the shortest distance h between the optical power Pe and the LED chip to the quantum dot layer can be determined by the following relationship:
  • the general use range of Pe is: 0.62W to 4.23W, and the optical power Pe of the commonly used LED chips is in the range of 0.05W to 1.8W.
  • the thinner the thickness of the LED the higher the light extraction efficiency, and thus the shortest distance that satisfies the reliability, and the corresponding value range of h is: h ⁇ 0.03 mm. It is worth noting that when the h distance is too large, the overall thickness of the display device is increased, and the light intensity of the LED chip 110 having a large light exit angle is insufficient, which has no practical significance, so h should generally be less than 2.5 mm.
  • the optical power P e of the LED chip and the LED chip to the quantum dot layer are The distance h satisfies the relationship:
  • the optical power Pe of the LED chip 110 ranges from 0.17 W to 1.69 W, and the minimum value thereof is also reduced with respect to the optical power range of the conventional LED chip of 0.05 W-1.8 W.
  • the blue light power of the maximum unit area that the quantum dot layer 140 can withstand is 5 W/cm 2
  • the shortest distance h of the LED chip to the quantum dot layer is calculated as an example, and the blue light emitted by the quantum dot LED chip is obtained.
  • the shortest distance h between the optical power Pe and the LED chip to the quantum dot layer can be determined by the following relationship:
  • a is the conversion rate of the light energy of the filling layer 150.
  • the general usage range of Pe is 0.62W-4.23W, and currently used LED chips
  • the optical power Pe is used in the range of 0.05W-1.8W.
  • the thinner the thickness of the LED the higher the light extraction efficiency, and thus the shortest distance that satisfies the reliability, and the corresponding value range of h is: h ⁇ 0.03 mm. It is worth noting that when the h distance is too large, the overall thickness of the display device is increased, and the light intensity of the LED chip 110 having a large light exit angle is insufficient, which has no practical significance, so h should generally be less than 2.5 mm.
  • the optical power P e of the LED chip and the LED chip to the quantum dot layer are The distance h satisfies the relationship:
  • the quantum power limit of the quantum dot material can be 5W/cm2, but the distribution of the cavity of the LED chip is Lambertian distribution, and the smaller the exit angle, the higher the unit area and the optical power.
  • the quantum dot material directly above the LED chip is more susceptible to high-intensity illumination. This distance causes the quantum dot to be exposed to the highest value of 60W/cm2 to 100W/cm2 of blue light power, which easily causes quantum dot failure in the upper part of the LED chip. .
  • the quantum dot LED prevents the quantum dot material from directly contacting the LED chip by placing a filling layer including the colloid layer between the quantum dot layer and the LED chip, and by causing the LED chip to the quantum
  • the point layer is separated by a certain distance h and the distance satisfies h ⁇ 0.03mm, which reduces the maximum blue light power received by the quantum dot material directly above the LED chip, so that the quantum dot material controls the LED positive within the limit range of the blue power it can withstand.
  • the problem of quantum dot failure in the upper part prolongs the lifetime of the quantum dot LED, improves the reliability of the quantum dot LED, and can also realize the high color gamut display of the quantum dot LED.
  • the quantum dot LED 20 similar to the quantum dot LED shown in FIG. 1, includes an LED holder 210, an LED chip 220, and a filling layer.
  • a quantum dot layer 240 wherein the LED holder 210 is provided with a sinker-shaped receiving cavity 211; an LED chip 220 disposed on a bottom surface of the receiving cavity 211; a filling layer 230 covering a bottom surface of the receiving cavity and The LED chip 120, and the filling layer 230 is matched with the accommodating cavity wall; and the quantum dot layer 240 is disposed at an opening position of the top surface of the accommodating cavity, and the quantum dot layer 240 The light incident side abuts the surface of the filling layer 230 away from the bottom surface of the accommodating cavity, and the shortest distance h between the LED chip 220 and the quantum layer 240 satisfies h ⁇ 0.03 mm, wherein FIG. 1 The quantum dot LEDs shown are different:
  • the filling layer 230 includes a colloid layer 231 and a scattering layer 232, that is, the filling layer 230 is composed of the colloid layer 231 and the scattering layer 232, and the scattering layer 232 is located at the colloid layer 231 and the quantum. Between the dot layers 240, one side of the scattering layer 232 abuts a side of the colloid layer 231 away from the bottom surface of the accommodating cavity 211, and the other side of the scattering layer 232 and the quantum dot layer 240 The light entrance side abuts.
  • quantum dot LEDs of this embodiment similar to the quantum dot LEDs of the embodiment shown in FIG. 1, reference may be made to the description of the quantum dot LEDs shown in FIG. 1, and details are not described herein again.
  • FIG. 5 is a schematic structural view of the shortest distance between the LED chip and the quantum layer in the quantum dot LED shown in FIG. 4, and the filling layer 230 including the colloid layer 231 and the scattering layer 232 is placed on the quantum dot layer 240 and the LED chip 220. Keep the two at a certain distance h.
  • the thinner the thickness of the LED the higher the light extraction efficiency. Therefore, the minimum distance that satisfies the reliability is taken, and the corresponding value range of h is generally: h ⁇ 0.03 mm.
  • the h is 0.03mm, and the above formula is taken.
  • the maximum blue light power received by the quantum dot material is 0.2W, which is smaller than the limit value of the blue light power that the quantum dot material can withstand, ensuring the reliability of the quantum dot LED.
  • the quantum dot LED prevents the quantum dot material from directly contacting the LED chip by placing the filling layer including the colloid layer and the scattering layer between the quantum dot layer and the LED chip, and by making the LED chip
  • the quantum dot layer is spaced apart by a distance h and the distance satisfies h ⁇ 0.03 mm, which reduces the maximum blue light power received by the quantum dot material directly above the LED chip, so that the quantum dot material is within the limit of its tolerable blue power.
  • the problem of quantum dot failure in the upper part of the LED is controlled, and the lifetime of the quantum dot LED is prolonged.
  • FIG. 6 is a flow chart of a method for fabricating a quantum dot LED according to some embodiments of the present application. As shown in FIG. 6 , the method for preparing the quantum dot LED includes the following steps:
  • S501 controlling the mold, forming a bottom plate of the LED bracket, and extending upwardly to form a sinking cavity having a hollow cavity;
  • S502 soldering and fixing the LED chip to the bottom of the LED bracket
  • S503 covering the LED chip and the bottom surface of the LED holder by using a filling method, wherein the filling layer is matched with the wall of the accommodating cavity;
  • S505 disposing a quantum dot material over the filling layer away from the bottom surface of the accommodating cavity by using a dispensing method, forming a quantum dot layer at an opening position of the top surface of the accommodating cavity, and the LED chip and the LED chip The shortest distance h between the quantum dot layers satisfies h ⁇ 0.03 mm;
  • the filling layer as shown in FIG. 1 , is composed of a colloid layer, and step 503 includes:
  • a colloid layer is coated on the bottom surface of the LED chip and the LED holder by means of dispensing, and the colloid layer comprises a colloid mixed with phosphor and scattering particles.
  • the colloid layer is filled with a colloid mixed with a phosphor and a scattering particle
  • the phosphor is a red phosphor
  • the material of the phosphor is a common nitride or a KSF phosphor
  • the scattering particles include SiO 2 , At least one of CaCO 3 , TiO 2 , BaSO 4 and glass microbeads. Since the quantum dot layer generates a large amount of heat during the excitation process and the temperature is high, the filler layer should be made of a material having good light transmittance and high temperature resistance.
  • the material of the colloid in the colloid layer includes silica gel and a ring. At least one of oxygen resins.
  • the filling layer as shown in FIG. 4, is composed of a colloid layer and a scattering layer, and step 503 includes:
  • the colloid layer Coating a colloid layer on the bottom surface of the LED chip and the LED holder by means of dispensing, the colloid layer comprising a colloid mixed with phosphor;
  • a scattering layer is coated on the colloid layer by dispensing, the scattering layer comprising scattering particles.
  • the colloid layer is filled with a colloid mixed with a phosphor, and the scattering layer is provided with scattering particles, the phosphor is a red phosphor, and the material of the phosphor is a common nitride or KSF phosphor.
  • the material of the colloid includes at least one of an epoxy resin and a silica gel, and the scattering particles include at least one of SiO 2 , CaCO 3 , TiO 2 , BaSO 4 , and glass microbeads.
  • the above preparation method may further include the following steps:
  • a water-oxygen barrier layer is formed on the surface on the light-emitting side of the quantum dot layer by magnetron sputtering or vapor deposition to adhere to the surface on the light-emitting side of the quantum dot layer.
  • the device in step S501, can be made of a material that is resistant to blue light radiation, high temperature, high visibility, high reflectivity, EMC or PC, and the bottom of the bracket is made into a flat plate, and the periphery is extended upward to form a sinking cavity;
  • the bottom portion may be integrally formed with the periphery;
  • the LED chip in step S502, the LED chip is soldered and fixed on the bottom of the LED holder, wherein the center of the LED chip may be located on the central axis of the LED holder; in step S503, the phosphor may be mixed by means of dispensing.
  • Silicone or epoxy resin with scattering particles is coated on the bottom of the LED chip and the support to form a filling layer, or a silica gel or epoxy resin mixed with phosphor may be coated on the bottom of the LED chip and the support to form a colloid layer, and then in the colloid.
  • a scattering layer provided with scattering particles is formed on the layer in a dispensing manner to form a filling layer; and in step S504, the filling layer is baked to be solidified.
  • the water-oxygen barrier layer is attached to the light-emitting side of the quantum dot layer by sputtering or evaporation, and the damage of the quantum dot material is blocked from the top by moisture and oxygen.
  • the main component of the water-oxygen barrier layer includes at least one of Al 2 O 3 and SiO 2 .
  • An embodiment of the present application further provides a display device including a quantum dot LED, wherein the quantum dot LED includes: an LED bracket, an LED chip, a filling layer, and a quantum dot layer, wherein the LED bracket is provided with a sink a slot-shaped accommodating cavity; the LED chip is disposed on a bottom surface of the accommodating cavity; the filling layer covers a bottom surface of the accommodating cavity and the LED chip, and the filling layer and the receiving layer a cavity wall is engaged; and the quantum dot layer is disposed at an opening position of the top surface of the accommodating cavity, and a light incident side of the quantum dot layer is offset from a surface of the filling layer away from a bottom surface of the accommodating cavity And the shortest distance h between the LED chip and the quantum layer satisfies h ⁇ 0.03 mm.
  • the damage of the quantum dot material is blocked from the top water to enhance the effectiveness of the quantum dot LED
  • the quantum dot LED further includes a water and oxygen barrier.
  • a layer, the water oxygen barrier layer is attached to a light exiting side of the quantum dot layer.
  • the main component of the water oxygen barrier layer comprises at least one of Al 2 O 3 and SiO 2 .
  • the colloid layer is filled with a colloid mixed with a phosphor, and the scattering layer is provided with scattering particles, the phosphor is a red phosphor, and the material of the phosphor is a common nitride or KSF phosphor.
  • the material of the colloid includes at least one of an epoxy resin and a silica gel, and the scattering particles include at least one of SiO 2 , CaCO 3 , TiO 2 , BaSO 4 , and glass microbeads.
  • the quantum dot LED in the display device may be the quantum dot LED shown in FIG. 1 or FIG. 4, which has similar structure and technical effects. For details, refer to the related description of the quantum dot LED shown in FIG. 1 or FIG. 4 above. No longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本申请公开了一种量子点LED及其制造方法以及显示装置,属于LED光源技术领域。所述量子点LED包括:LED支架,LED芯片,填充层以及量子点层,其中,所述LED支架设有沉槽状容置腔;所述LED芯片,设置在所述容置腔的底面;所述填充层,覆盖所述容置腔的底面和所述LED芯片,并且所述填充层与所述容置腔壁契合;以及所述量子点层,设置在所述容置腔顶面的开口位置处,所述量子点层的入光侧与所述填充层的远离所述容置腔底面的表面相抵接,并且所述LED芯片与所述量子层之间的最短距离h满足h≥0.03mm。本申请还公开了一种量子点LED的制备方法,以及包括上述量子点LED的显示装置。

Description

量子点LED及其制备方法以及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种量子点LED及其制造方法以及显示装置。
背景技术
发光二极管(light-emitting diode,LED)是一种新型固态光源,具有亮度高、光效高、寿命长等优点,其中,白光LED作为新一代的照明光源正逐步受到人们的关注,目前显示技术领域内,应用量子点LED来实现高色域的背光,即采用蓝光LED激发量子点材料产生白光,色域可达100%NTSC以上。
在应用这种量子点LED时,量子点材料在高温及空气中的水和氧气的作用下会导致其失效,需要对量子点材料进行封装。在芯片封装技术中,将量子点直接放置在LED芯片上方,相对于采用膜片的形式,将量子点材料涂布在整个出光面,比较节省量子点材料。
发明内容
第一方面,本申请实施例提供一种量子点LED,包括:LED支架,LED芯片,填充层以及量子点层,其中,
所述LED支架设有沉槽状容置腔;
所述LED芯片,设置在所述容置腔的底面;
所述填充层,覆盖所述容置腔的底面和所述LED芯片,并且所述填充层与所述容置腔壁契合;以及
所述量子点层,设置在所述容置腔顶面的开口位置处,所述量子点层的入光侧与所述填充层的远离所述容置腔底面的表面相抵接,并且所述LED芯片与所述量子层之间的最短距离h满足h≥0.03mm。
第二方面,本申请实施例还提供一种量子点LED的制备方法,包括以下步骤:
控制模具,将LED支架底部制成平板,四周向上延伸形成具有中空腔的 沉槽状容置腔;
将LED芯片焊接固定在所述LED支架底部;
利用点胶的方式将填充层覆盖于所述LED芯片及所述LED支架底面上,所述填充层与所述容置腔壁相契合;
烘烤所述填充层以使其固化;
利用点胶的方式将量子点材料设置在所述填充层远离所述容置腔底面的上方,形成量子点层,并且所述LED芯片与所述量子点层之间的最短距离h满足h≥0.03mm;
烘烤所述量子点层以使其固化。
第三方面,本申请实施例还提供一种显示装置,所述显示装置包括量子点LED,所述量子点LED包括:LED支架,LED芯片,填充层以及量子点层,其中,
所述LED支架设有沉槽状容置腔;
所述LED芯片,设置在所述容置腔的底面;
所述填充层,覆盖所述容置腔的底面和所述LED芯片,并且所述填充层与所述容置腔壁契合;以及
所述量子点层,设置在所述容置腔顶面的开口位置处,所述量子点层的入光侧与所述填充层的远离所述容置腔底面的表面相抵接,并且所述LED芯片与所述量子层之间的最短距离h满足h≥0.03mm。
附图说明
为了更清楚地说明本申请实施方式,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一些实施例的量子点LED的结构示意图;
图2是本申请一些实施例量子点LED光功率分布图;
图3是图1所示量子点LED中LED芯片与量子层之间的最短距离的结构示意图;
图4是本申请一些实施例的量子点LED的结构示意图;
图5是图4所示的量子点LED中LED芯片与量子层之间的最短距离的结构示意图;以及
图6是本申请一些实施例的量子点LED的制造方法的流程图。
具体实施方式
为使本申请的技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。除非另有定义,本申请实施例所用的所有技术术语均具有与本领域技术人员通常理解的相同的含义。
相关技术中,由于LED芯片的光强分布呈朗伯分布,出光角度越小,单位面积的光功率也就越高,即在LED芯片正上方的量子点材料更容易受到高强度蓝光的照射,会使得量子点材料受到最高值60W/cm 2~100W/cm 2(瓦/平方厘米)的蓝光光功率的照射,而量子点材料可承受的蓝光功率极限一般在5W/cm 2,推荐正常使用是在2W/cm 2以下,即超出量子点材料可承受的极限光功率范围会造成LED芯片正上方部位的量子点失效,而距离LED芯片较远处的光强较低,不利于实现量子点LED的高色域显示,因此,在保证量子点材料在使用过程中不失效的前提下,以及在不降低量子点LED实现高色域的基础上,需要提高LED芯片的使用功率以及量子点LED的可靠性。
图1是本申请一些实施例的量子点LED的结构示意图,如图1所示,该量子点LED 10包括LED支架110、LED芯片120、填充层130以及量子点层140,其中,LED支架110设有沉槽状容置腔111;LED芯片120,设置在所述容置腔111的底面,可以位于所述容置腔111底面的中心位置;填充层130,覆盖所述容置腔的底面和所述LED芯片120,并且所述填充层130与所述容置腔壁契合;以及所述量子点层140,设置在所述容置腔顶面的开口位置处,所述量子点层140的入光侧与所述填充层130的远离所述容置腔底面的表面相抵接,并且所述LED芯片120与所述量子层140之间的最短距离h满足h≥0.03mm(毫米)。在一些实施例中,所述填充层130和所述容置腔壁相契合指的是所述填充层130抵接在所述容置腔的侧壁上。
在一些实施例中,该沉槽状容置腔111的底面可以为平板(本申请对此不作限定),该沉槽状容置腔111的侧壁具有全可见光波段的高反射性、耐蓝 光辐射以及耐高温等特性,可以是具有高反射性的材质,一些实施例中可以为特殊处理的EMC或PC材质。填充层130覆盖整个沉槽状容置腔111的底面和LED芯片120的所有发光面,上表面可以平行于沉槽状容置腔111的底面,四周与沉槽状容置腔111的侧壁紧密契合。
在一些实施例中,LED支架110可以为中心对称型,中心轴可以位于支架的几何中心,LED芯片120的中心可以位于LED支架110的中心轴上。在一些实施例中,LED芯片120可以为蓝光芯片,可发出400nm~480nm(纳米)的蓝光。
上述所述量子点层140,设置在所述容置腔顶面的开口位置处,可以是,所述量子点层140设置在所述容置腔内且接近所述容置腔顶面的开口位置处,或者,所述量子点层140设置在所述容置腔和外界的分界面位置处,对此本申请不作限定。在一些实施例中,所述量子点层140包含红色量子点材料和绿色量子点材料,其中,所述绿色量子点材料,波长范围可以为520~550nm,其受激发可以产生波长在520~550nm范围内的绿光,所述红色量子点材料波长范围可以为610~650nm,其受激发可以产生波长在610~650nm范围内的红光,用于LED芯片120发出的蓝光在量子点层激发形成混合白光。在一些实施例中,所述量子点层包含的所述红色量子点材料和绿色量子点材料可以分别位于不同的层,即量子点层可以包括红色量子点材料层和绿色量子点材料层。
在一些实施例中,如图1所示,填充层130包括胶体层,也即所述填充层由所述胶体层组成,此时所述胶体层远离所述容置腔底面的表面与量子点层140的入光侧相抵接。其中,所述胶体层由混有荧光粉和散射粒子的胶体填充。
在一些实施例中,上述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物,也可以为KSF荧光粉,在蓝光的照射下,上述红色荧光粉可以吸收20%~40%的蓝光能量并激发产生红光,以及剩余60%~80%的蓝光能量。
在一些实施例中,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。上述散射粒子能破坏蓝光光强的朗伯分布,使蓝光能更加均匀照射到量子点层140的各个位置,而不是集中在量子点层140上对应的LED芯片110出光角度较小的区域,可以使单位面积的最大蓝光照射能 量降低40%~60%,单位面积的最大蓝光照射能量变为原来的40%~60%,如图2所示,图2为本申请实施例中量子点LED 10有无散射粒子时蓝光照射量子点层的光功率分布图,其中,图2左边为无散射粒子时蓝光照射量子点层140的光功率分布,右边为有散射粒子时蓝光照射量子点层140的光功率分布。
在一些实施例中,由于LED芯片在发光过程中会产生大量的热量,并且量子点层在激发过程中产生大量热量,温度较高,为保证量子点层LED能正常工作,且光线能够透过填充层,所以填充层所包含的胶体层应选用透光性好、耐高温的材料,在一些实施例中,所述胶体层中的胶体的材质包括硅胶和环氧树脂的至少一种。
如果量子点材料长时间暴露在空气中,在空气的水分和氧气的作用下,量子点层中的量子点材料会失效,不利于量子点LED使用的可靠性以及使用寿命,因此,在一些实施例中,为增加量子点层中的量子点材料的工作寿命,从顶部阻隔水氧对量子点材料的破坏,以增强量子点LED有效性,上述量子点LED还包括水氧阻隔层150,所述水氧阻隔层贴附在所述量子点层140的出光侧。其中,所述水氧阻隔层的主要材料可以包括Al 2O 3和SiO 2的至少一种,并且通过溅射或者蒸镀的方式设置在量子点层140的出光侧(即量子点层140与空气接触的一侧),以从顶部阻隔空气中水和氧对量子点材料的破坏。
图3是图1所示的量子点LED中LED芯片与量子层之间的最短距离的结构示意图,如图3所示,LED芯片120与量子层140之间的最短距离为h。
在一些实施方式中,根据LED芯片的出光朗伯分布,不同距离下,普通蓝光LED单位面积的最大蓝光强度与离LED芯片的距离x的关系,可以采用如下关系式:
y=a×(0.0338x 4-0.5712x 3+3.6895x 2-11.213x+14.77)
其中,y为单位面积的量子点材料接收到的LED芯片发出的蓝光能量(单位:瓦/平方厘米,W/cm 2),a=Pe/0.55,a为填充层150对光能量的转换率,在一些实施例中,0.24≤a≤0.48,Pe为选用的LED芯片的光功率。
在一些实方式中,以量子点层140可承受的最大单位面积的蓝光功率为5W/cm 2,且LED芯片到量子点层的最短距离h为例来计算,则量子点LED芯片出射的蓝光光功率Pe与LED芯片到量子点层的最短距离h,可以采用一 下关系式:
a×(0.0338h 4-0.5712h 3+3.6895h 2-11.213h+14.77)≤5
即:
Pe×(0.0338h 4-0.5712h 3+3.6895h 2-11.213h+14.77)≤2.75
其中,Pe一般的使用范围为:0.62W~4.23W,而目前常用的LED芯片的光功率Pe的使用范围为:0.05W~1.8W。一般来说,LED的厚度越薄,出光效率越高,因而取满足可靠性的最短距离,对应的h的取值范围为:h≥0.03mm。值得注意的是,h距离太大时,增加了显示装置的整体厚度,且会导致LED芯片110出光角度较大的光强不够,不具有现实意义,因此h一般应小于2.5mm。
在一些实施例中,若按照推荐正常使用时,量子点层可承受的最大单位面积的蓝光光功率在2W/cm 2以下计算,则LED芯片的光功率P e与LED芯片到量子点层的距离h满足关系式:
Pe×(0.0338h 4-0.5712h 3+3.6895h 2-11.213h+14.77)≤1.1
此时,LED芯片110的光功率Pe范围介于0.17W-1.69W之间,相对于常用的LED芯片的光功率范围0.05W-1.8W,其最小值也有所降低。
在一些实施方式中,根据LED芯片的出光朗伯分布,不同距离下,普通蓝光LED单位面积的最大蓝光强度与离LED芯片的距离x的关系,还可以采用如下关系式:
y=(P e/0.55)×(-0.0001x 6+0.0018x 5-0.0107x 4+0.0277x 3-0.0136x 2-0.0776x+0.1399)
其中,y为单位面积的量子点材料接收到的LED芯片发出的蓝光能量(单位:瓦/平方厘米,W/cm 2),Pe为选用的LED芯片的光功率。
在一些实方式中,以量子点层140可承受的最大单位面积的蓝光功率为5W/cm 2,且LED芯片到量子点层的最短距离h为例来计算,则量子点LED芯片出射的蓝光光功率Pe与LED芯片到量子点层的最短距离h,可以采用一下关系式:
a×P e(-0.0001h 6+0.0018h 5-0.0107h 4+0.0277h 3-0.0136h 2-0.0776h+0.1399)≤2.75*10 -2
其中,a为填充层150对光能量的转换率,在一些实施方式中,0.24≤a ≤0.48(前面已经论述),Pe一般的使用范围为:0.62W-4.23W,而目前常用的LED芯片的光功率Pe的使用范围为:0.05W-1.8W。一般来说,LED的厚度越薄,出光效率越高,因而取满足可靠性的最短距离,对应的h的取值范围为:h≥0.03mm。值得注意的是,h距离太大时,增加了显示装置的整体厚度,且会导致LED芯片110出光角度较大的光强不够,不具有现实意义,因此h一般应小于2.5mm。
在一些实施例中,若按照推荐正常使用时,量子点层可承受的最大单位面积的蓝光光功率在2W/cm 2以下计算,则LED芯片的光功率P e与LED芯片到量子点层的距离h满足关系式:
Pe×(-0.0001h 6+0.0018h 5-0.0107h 4+0.0277h 3-0.0136h 2-0.0776h+0.1399)≤1.1*10 -2
此时,LED芯片110的光功率Pe范围介于0.17W-1.69W之间,相对于常用的LED芯片的光功率范围0.05W-1.8W,其最小值也有所降低。
相关技术中,量子点材料可承受的蓝光功率极限在5W/cm2下,但是LED芯片的光腔分布呈朗伯分布,出射角度越小,单位面积及光功率越高。LED芯片正上方的量子点材料更易受高强度的照射,这种距离会使量子点受到最高值60W/cm2~100W/cm2的蓝光光功率的照射,容易造成LED芯片正上方部位的量子点失效。
根据本申请实施例选取填充层中心处最小距离(即LED芯片与量子点层之间的最短距离)为0.03mm,带入该另一些实施例中的上述公式,此时,量子点材料接收的最大蓝光光功率为0.2W,小于量子点材料可承受的蓝光光功率的极限值,不会造成量子点材料失效。
本申请实施例提供的量子点LED,通过将包括胶体层的填充层置于量子点层和LED芯片之间,避免量子点材料与LED芯片直接接触,并且通过使得所述LED芯片到所述量子点层间隔一定距离h且该距离满足h≥0.03mm,降低了LED芯片正上方量子点材料接收的最大蓝光功率,使量子点材料在其可承受的蓝光功率的极限范围内,控制了LED正上方部位量子点失效的问题,延长了量子点LED的寿命,提高了量子点LED的可靠性,同时也可以实现量子点LED的高色域显示。
图4是本申请一些实施例的量子点LED的结构示意图,如图4所示,该 量子点LED 20,与图1所示量子点LED类似地,包括LED支架210、LED芯片220、填充层230以及量子点层240,其中,LED支架210设有沉槽状容置腔211;LED芯片220,设置在所述容置腔211的底面;填充层230,覆盖所述容置腔的底面和所述LED芯片120,并且所述填充层230与所述容置腔壁契合;以及所述量子点层240,设置在所述容置腔顶面的开口位置处,所述量子点层240的入光侧与所述填充层230的远离所述容置腔底面的表面相抵接,并且所述LED芯片220与所述量子层240之间的最短距离h满足h≥0.03mm,其中与图1所示的量子点LED不同的是:
所述填充层230包括胶体层231和散射层232,也即所述填充层230由所述胶体层231和散射层232组成,此时所述散射层232位于所述胶体层231与所述量子点层240之间,所述散射层232的一侧与所述胶体层231远离容置腔211的底面的一侧相抵接,并且所述散射层232的另一侧与所述量子点层240的入光侧相抵接。其中,所述胶体层由混有荧光粉的胶体填充,所述散射层内设置有散射粒子,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉,所述胶体的材质包括环氧树脂和硅胶的至少一种,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。
该实施例所述的量子点LED,与图1所示实施例量子点LED类似的地方,可以参考图1所示量子点LED相关的描述,此处不再赘述。
图5是图4所示的量子点LED中LED芯片与量子层之间的最短距离的结构示意图,将包括胶体层231和散射层232的填充层230置于量子点层240和LED芯片220之间,使二者保持一定距离h。
具体原理,可参见图3部分相关描述,此处不再赘述。一般来说,LED的厚度越薄,出光效率越高。因而取满足可靠性的最小距离,对应的h的取值范围一般为:h≥0.03mm。选取h为0.03mm,带入上述公式,此时,量子点材料接收的最大蓝光光功率为0.2W,小于量子点材料可承受的蓝光功率的极限值,确保了量子点LED的可靠性。
本申请实施例提供的量子点LED,通过将包括胶体层和和散射层的填充层置于量子点层和LED芯片之间,避免量子点材料与LED芯片直接接触,并且通过使得所述LED芯片到所述量子点层间隔一定距离h且该距离满足h≥0.03mm,降低了LED芯片正上方量子点材料接收的最大蓝光功率,使量 子点材料在其可承受的蓝光功率的极限范围内,控制了LED正上方部位量子点失效的问题,延长了量子点LED的寿命。
图6是本申请一些实施例的量子点LED的制造方法的流程图,如图6所示,该量子点LED的制备方法,包括以下步骤:
S501:控制模具,将LED支架底部制成平板,四周向上延伸形成具有中空腔的沉槽状容置腔;
S502:将LED芯片焊接固定在所述LED支架底部;
S503:利用点胶的方式将填充层覆盖于所述LED芯片及所述LED支架底面上,所述填充层与所述容置腔壁相契合;
S504:烘烤所述填充层以使其固化;
S505:利用点胶的方式将量子点材料设置在所述填充层远离所述容置腔底面的上方,在所述容置腔顶面的开口位置处形成量子点层,并且所述LED芯片与所述量子点层之间的最短距离h满足h≥0.03mm;以及
S506:烘烤所述量子点层以使其固化。
在一些实施例中,填充层,如图1所示,由胶体层组成时,步骤503,包括:
利用点胶的方式将胶体层覆盖于所述LED芯片及所述LED支架底面上,所述胶体层包括混有荧光粉和散射粒子的胶体。
其中,所述胶体层由混有荧光粉和散射粒子的胶体填充,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。由于量子点层在激发过程中产生大量热量,温度较高,所以填充层应选用透光性好、耐高温的材料,在一些实施例中,所述胶体层中的胶体的材质包括硅胶和环氧树脂的至少一种。
在一些实施例中,填充层,如图4所示,由胶体层和散射层组成时,步骤503,包括:
利用点胶的方式将胶体层覆盖于所述LED芯片及所述LED支架底面上,所述胶体层包括混有荧光粉的胶体;以及
利用点胶的方式将散射层覆盖于所述胶体层上,所述散射层包括散射粒子。
其中,所述胶体层由混有荧光粉的胶体填充,所述散射层内设置有散射粒子,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉,所述胶体的材质包括环氧树脂和硅胶的至少一种,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。
在一些实施例中,上述制备方法,还可以包括以下步骤:
S507:利用磁控溅射的方式或者蒸镀的方式在所述量子点层出光侧的表面形成水氧阻隔层,以贴附在所述量子点层出光侧的表面。
在一些实施例中,步骤S501,可以采用耐蓝光辐射、耐高温、全可见波段高反射性的EMC或PC为材质,将支架底部制成平板,四周向上延伸形成沉槽状容置腔;支架底部可以与四周一体成型;步骤S502,将LED芯片焊接固定在LED支架底部,其中,LED芯片的中心可以位于LED支架的中心轴上;步骤S503中,可以利用点胶的方式将混有荧光粉和散射粒子的硅胶或环氧树脂覆盖于LED芯片及支架底部上,形成填充层,或者可以将混有荧光粉的硅胶或环氧树脂覆盖于LED芯片及支架底部上形成胶体层,然后在胶体层之上以点胶的方式形成设置有散射粒子的散射层,从而形成填充层;步骤S504,烘烤填充层以固化。
在一些实施例中,步骤S107,通过溅射或者蒸镀的方式,将水氧阻隔层贴附设置在量子点层出光侧,从顶部阻隔水分和氧气对量子点材料的破坏。其中,水氧阻隔层的主要成分包括Al 2O 3和SiO 2的至少一种。
需说明的是,本申请实施例中具体的制备步骤,如,焊接、点胶、烘烤等,可参考相关技术中的制备工艺,此处不再赘述。
本申请实施例,还提供一种显示装置,该显示装置包括量子点LED,其中所述量子点LED包括:LED支架,LED芯片,填充层以及量子点层,其中,所述LED支架设有沉槽状容置腔;所述LED芯片,设置在所述容置腔的底面;所述填充层,覆盖所述容置腔的底面和所述LED芯片,并且所述填充层与所述容置腔壁契合;以及所述量子点层,设置在所述容置腔顶面的开口位置处,所述量子点层的入光侧与所述填充层的远离所述容置腔底面的表面相抵接,并且所述LED芯片与所述量子层之间的最短距离h满足h≥0.03mm。
在一些实施例中,上述填充层可以包括胶体层(如图1所示),也即所述 填充层由所述胶体层组成,此时所述胶体层远离所述容置腔底面的表面与量子点层的入光侧相抵接。其中,所述胶体层由混有荧光粉和散射粒子的胶体填充,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。由于量子点层在激发过程中产生大量热量,温度较高,所以填充层应选用透光性好、耐高温的材料,在一些实施例中,所述胶体层中的胶体的材质包括硅胶和环氧树脂的至少一种。
在一些实施例中,为增加量子点层中的红绿量子点的工作寿命,从顶部阻隔水氧对量子点材料的破坏,以增强量子点LED有效性,上述量子点LED还包括水氧阻隔层,所述水氧阻隔层贴附在所述量子点层的出光侧。其中,所述水氧阻隔层的主要成分包括Al 2O 3和SiO 2的至少一种。
在一些实施例中,上述填充层可以包括胶体层和散射层(如图4所示),也即所述填充层由所述胶体层和散射层组成,此时所述散射层位于所述胶体层与所述量子点层之间,所述散射层的一侧与所述胶体层远离容置腔的底面的一侧相抵接,并且所述散射层的另一侧与所述量子点层的入光侧相抵接。其中,所述胶体层由混有荧光粉的胶体填充,所述散射层内设置有散射粒子,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉,所述胶体的材质包括环氧树脂和硅胶的至少一种,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。
该显示装置中的量子点LED可以是图1或者图4所示的量子点LED,其具有相似的结构与技术效果,具体参见上述图1或图4所示量子点LED的相关描述,此处不再赘述。
以上所述仅是为了便于本领域的技术人员理解本申请的技术方案,并不用以限制本申请。对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种量子点发光二极管LED,其特征在于,包括:LED支架,LED芯片,填充层以及量子点层,其中,
    所述LED支架设有沉槽状容置腔;
    所述LED芯片,设置在所述容置腔的底面;所述填充层,覆盖所述容置腔的底面和所述LED芯片,并且所述填充层与所述容置腔壁契合;以及
    所述量子点层,设置在所述容置腔顶面的开口位置处,所述量子点层的入光侧与所述填充层的远离所述容置腔底面的表面相抵接,并且所述LED芯片与所述量子层之间的最短距离h满足h≥0.03mm。
  2. 根据权利要求1所述的量子点LED,其特征在于,所述填充层包括胶体层,所述胶体层由混有荧光粉和散射粒子的胶体填充;或者,
    所述填充层包括胶体层和散射层,其中所述胶体层由混有荧光粉的胶体填充,所述散射层内设置有散射粒子,所述散射层的一侧与所述胶体层相抵接,并且所述散射层的另一侧与所述量子点层的入光侧相抵接。
  3. 根据权利要求2所述的量子点LED,其特征在于,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉。
  4. 根据权利要求2所述的量子点LED,其特征在于,所述胶体的材质包括环氧树脂和硅胶的至少一种。
  5. 根据权利要求2所述的量子点LED,其特征在于,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。
  6. 根据权利要求1所述的量子点LED,其特征在于,还包括水氧阻隔层,所述水氧阻隔层贴附在所述量子点层的出光侧。
  7. 根据权利要求6所述的量子点LED,其特征在于,所述水氧阻隔层的主要成分包括Al2O3和SiO2的至少一种。
  8. 根据权利要求1所述的量子点LED,其特征在于,所述量子点层包含红色量子点材料和绿色量子点材料。
  9. 根据权利要求8所述的量子点LED,其特征在于,所述量子点层包含的所述红色量子点材料和绿色量子点材料分别位于不同的层。
  10. 一种量子点发光二极管LED的制备方法,其特征在于,包括以下步 骤:
    控制模具,将LED支架底部制成平板,四周向上延伸形成具有中空腔的沉槽状容置腔;
    将LED芯片焊接固定在所述LED支架底部;
    利用点胶的方式将填充层覆盖于所述LED芯片及所述LED支架底面上,所述填充层与所述容置腔壁相契合;
    烘烤所述填充层以使其固化;
    利用点胶的方式将量子点材料设置在所述填充层远离所述容置腔底面的上方,在所述容置腔顶面的开口位置处形成量子点层,并且所述LED芯片与所述量子点层之间的最短距离h满足h≥0.03mm;
    烘烤所述量子点层以使其固化。
  11. 根据权利要求10所述的制备方法,其特征在于,所述利用点胶的方式将填充层覆盖于所述LED芯片及所述LED支架底面上,包括:
    利用点胶的方式将胶体层覆盖于所述LED芯片及所述LED支架底面上,所述胶体层包括混有荧光粉和散射粒子的胶体;或者,
    所述利用点胶的方式将填充层覆盖于所述LED芯片及所述LED支架底面上,包括:
    利用点胶的方式将胶体层覆盖于所述LED芯片及所述LED支架底面上,所述胶体层包括混有荧光粉的胶体;以及
    利用点胶的方式将散射层覆盖于所述胶体层上,所述散射层包括散射粒子。
  12. 根据权利要求10所述的制备方法,其特征在于,还包括以下步骤:
    利用磁控溅射的方式或者蒸镀的方式在所述量子点层出光侧的表面形成水氧阻隔层,以贴附在所述量子点层出光侧的表面。
  13. 一种显示装置,其特征在于,所述显示装置包括量子点发光二极管LED,所述量子点LED包括:LED支架,LED芯片,填充层以及量子点层,其中,
    所述LED支架设有沉槽状容置腔;
    所述LED芯片,设置在所述容置腔的底面;
    所述填充层,覆盖所述容置腔的底面和所述LED芯片,并且所述填充层 与所述容置腔壁契合;以及
    所述量子点层,设置在所述容置腔顶面的开口位置处,所述量子点层的入光侧与所述填充层的远离所述容置腔底面的表面相抵接,并且所述LED芯片与所述量子层之间的最短距离h满足h≥0.03mm。
  14. 根据权利要求13所述的显示装置,其特征在于,所述填充层包括胶体层,所述胶体层由混有荧光粉和散射粒子的胶体填充;或者,
    所述填充层包括胶体层和散射层,其中所述胶体层由混有荧光粉的胶体填充,所述散射层内设置有散射粒子,所述散射层的一侧与所述胶体层相抵接,并且所述散射层的另一侧与所述量子点层的入光侧相抵接。
  15. 根据权利要求14所述的显示装置,其特征在于,所述荧光粉为红色荧光粉,所述荧光粉的材料为普通氮化物或KSF荧光粉。
  16. 根据权利要求14所述的显示装置,其特征在于,所述胶体的材质包括环氧树脂和硅胶的至少一种。
  17. 根据权利要求14所述的显示装置,其特征在于,所述散射粒子包括SiO 2、CaCO 3、TiO 2、BaSO 4和玻璃微珠中的至少一种。
  18. 根据权利要求13所述的显示装置,其特征在于,所述量子点层LED还包括水氧阻隔层,所述水氧阻隔层贴附在所述量子点层的出光侧。
  19. 根据权利要求18所述的显示装置,其特征在于,所述水氧阻隔层的主要成分包括Al 2O 3和SiO 2的至少一种。
  20. 根据权利要求13所述的显示装置,其特征在于,所述量子点层包含红色量子点材料和绿色量子点材料。
PCT/CN2018/090063 2017-11-07 2018-06-06 量子点led及其制备方法以及显示装置 WO2019091107A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/673,830 US11508882B2 (en) 2017-11-07 2019-11-04 Quantum dot LED, manufacturing method thereof and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711081559.1 2017-11-07
CN201711081559.1A CN107706289B (zh) 2017-11-07 2017-11-07 量子点led及其制备方法
CN201711297954.3 2017-12-08
CN201711297954.3A CN108110120B (zh) 2017-12-08 2017-12-08 量子点led以及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,830 Continuation US11508882B2 (en) 2017-11-07 2019-11-04 Quantum dot LED, manufacturing method thereof and display device

Publications (1)

Publication Number Publication Date
WO2019091107A1 true WO2019091107A1 (zh) 2019-05-16

Family

ID=66438119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090063 WO2019091107A1 (zh) 2017-11-07 2018-06-06 量子点led及其制备方法以及显示装置

Country Status (2)

Country Link
US (1) US11508882B2 (zh)
WO (1) WO2019091107A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681147B (zh) * 2018-03-20 2019-11-19 青岛海信电器股份有限公司 量子点背光模组、量子点led和液晶显示装置
WO2022000480A1 (zh) * 2020-07-03 2022-01-06 深圳市思坦科技有限公司 显示模组的制作方法及显示屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150314276A1 (en) * 2014-05-02 2015-11-05 National Cheng Kung University Preparation and application of carbon nanoparticle diode
WO2016139954A1 (en) * 2015-03-05 2016-09-09 Nichia Corporation Light emitting device
CN106058015A (zh) * 2016-06-16 2016-10-26 青岛海信电器股份有限公司 量子点发光装置、背光模组及液晶显示装置
CN107507901A (zh) * 2017-07-31 2017-12-22 南方科技大学 一种基于表面等离激元增强的led光电器件及其制备方法
CN107706289A (zh) * 2017-11-07 2018-02-16 青岛海信电器股份有限公司 量子点led及其制备方法
CN108110120A (zh) * 2017-12-08 2018-06-01 青岛海信电器股份有限公司 量子点led以及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401536C (zh) 2004-06-18 2008-07-09 江苏稳润光电有限公司 白光发光二极管的制造方法
US20100309439A1 (en) * 2007-11-30 2010-12-09 Phoebus Vision Opto-Elec Tech Co., Ltd. Light source for projection system and projection display apparatus
CN102257646A (zh) 2008-12-19 2011-11-23 三星Led株式会社 发光器件封装、背光单元、显示器件和发光器件
US8444275B2 (en) * 2010-08-12 2013-05-21 Eastman Kodak Company Light source control for projector with multiple pulse-width modulated light sources
CN103456865B (zh) 2013-09-03 2016-08-17 易美芯光(北京)科技有限公司 一种led封装
WO2016056727A1 (en) * 2014-10-10 2016-04-14 Lg Electronics Inc. Light emitting device package and method of fabricating the same
CN106299075B (zh) 2015-05-18 2019-06-25 青岛海信电器股份有限公司 一种量子点发光元件、背光模组和显示装置
CN205452347U (zh) 2015-09-29 2016-08-10 易美芯光(北京)科技有限公司 一种支架型量子点led封装结构
US20170125650A1 (en) * 2015-11-02 2017-05-04 Nanoco Technologies Ltd. Display devices comprising green-emitting quantum dots and red KSF phosphor
CN105867026A (zh) * 2016-06-03 2016-08-17 青岛海信电器股份有限公司 量子点光源器件、背光模组及液晶显示装置
CN106098906B (zh) 2016-06-13 2019-08-16 青岛海信电器股份有限公司 量子点发光装置封装件、背光模组及液晶显示装置
DE102016212070A1 (de) * 2016-07-04 2018-01-04 Osram Gmbh Beleuchtungseinrichtung und fahrzeugscheinwerfer mit beleuchtungseinrichtung
CN106653985A (zh) 2017-02-20 2017-05-10 天津市中环量子科技有限公司 一种多层封装的量子点led结构
KR102302401B1 (ko) * 2017-03-21 2021-09-17 삼성디스플레이 주식회사 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
TWI702362B (zh) * 2017-07-13 2020-08-21 東貝光電科技股份有限公司 Led發光裝置
CN107394028A (zh) 2017-08-14 2017-11-24 天津中环电子照明科技有限公司 量子点led及灯具
CN109557714A (zh) * 2017-09-27 2019-04-02 群创光电股份有限公司 光源装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150314276A1 (en) * 2014-05-02 2015-11-05 National Cheng Kung University Preparation and application of carbon nanoparticle diode
WO2016139954A1 (en) * 2015-03-05 2016-09-09 Nichia Corporation Light emitting device
CN106058015A (zh) * 2016-06-16 2016-10-26 青岛海信电器股份有限公司 量子点发光装置、背光模组及液晶显示装置
CN107507901A (zh) * 2017-07-31 2017-12-22 南方科技大学 一种基于表面等离激元增强的led光电器件及其制备方法
CN107706289A (zh) * 2017-11-07 2018-02-16 青岛海信电器股份有限公司 量子点led及其制备方法
CN108110120A (zh) * 2017-12-08 2018-06-01 青岛海信电器股份有限公司 量子点led以及显示装置

Also Published As

Publication number Publication date
US20200075817A1 (en) 2020-03-05
US11508882B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
TWI529348B (zh) 發光模組、燈、燈具及顯示裝置
US9599292B2 (en) Light emitting module, a lamp, a luminaire and a display device
KR100880638B1 (ko) 발광 소자 패키지
JP5515992B2 (ja) 発光装置
CN108110120B (zh) 量子点led以及显示装置
JP7235944B2 (ja) 発光装置及び発光装置の製造方法
TW200814364A (en) Light emitting apparatus and screen
JP5374332B2 (ja) 照明装置
WO2019091107A1 (zh) 量子点led及其制备方法以及显示装置
JP6212989B2 (ja) 発光装置およびその製造方法
JP5853441B2 (ja) 発光装置
TWI741339B (zh) 發光裝置及其製造方法
CN107706289B (zh) 量子点led及其制备方法
JP2015225910A (ja) 発光モジュール及び照明装置
WO2024016697A1 (zh) 光源、光源模组和显示装置
JP2006269487A (ja) 発光装置および照明装置
JP2013026485A (ja) 発光装置
JP2014132677A (ja) 発光装置
JP2022087001A (ja) 発光装置及び面状光源
JP2013016566A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876031

Country of ref document: EP

Kind code of ref document: A1