WO2022000480A1 - 显示模组的制作方法及显示屏 - Google Patents

显示模组的制作方法及显示屏 Download PDF

Info

Publication number
WO2022000480A1
WO2022000480A1 PCT/CN2020/100186 CN2020100186W WO2022000480A1 WO 2022000480 A1 WO2022000480 A1 WO 2022000480A1 CN 2020100186 W CN2020100186 W CN 2020100186W WO 2022000480 A1 WO2022000480 A1 WO 2022000480A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
opening
quantum dot
substrate
Prior art date
Application number
PCT/CN2020/100186
Other languages
English (en)
French (fr)
Inventor
刘召军
吴国才
莫炜静
Original Assignee
深圳市思坦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市思坦科技有限公司 filed Critical 深圳市思坦科技有限公司
Priority to PCT/CN2020/100186 priority Critical patent/WO2022000480A1/zh
Publication of WO2022000480A1 publication Critical patent/WO2022000480A1/zh
Priority to US18/090,494 priority patent/US20230134241A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • Embodiments of the present application relate to the field of semiconductor technology, for example, to a method for fabricating a display module and a display screen.
  • LED (Light Emitting Diode, light-emitting diode) display is an electronic display composed of LED dot matrix, used to display text, images, videos and other information.
  • the LED display screen is divided into single-color screen, double-color screen and full-color screen.
  • the single-color screen refers to the LED display screen that uses one color
  • the two-color screen refers to the LED display screen that uses two colors (red and green)
  • the full-color screen is Refers to the LED display using three colors (red, green and blue), and the full-color display has the widest range of colors, so it is widely used.
  • LEDs are combined with quantum dots to achieve full-color display.
  • the production method in the related art is to spray the quantum dots on the surface of the blue LED or deep violet LED device by inkjet printing.
  • the deep violet LED light source excites the quantum dots, so that the quantum dots emit red and green light, so as to realize the full color of the display screen.
  • the printing accuracy is usually only in the micron size range, and inkjet printing cannot be achieved for sub-micron level printing.
  • Embodiments of the present application provide a method for manufacturing a display module and a display screen, so as to improve the printing accuracy of quantum dots in the method for manufacturing an LED display screen.
  • an embodiment of the present application provides a method for manufacturing a display module, including:
  • the first quantum dot layer outside the first opening is etched away by plasma etching, so as to retain the first quantum dot layer inside the first opening;
  • a DBR film layer that filters out blue light is formed.
  • an embodiment of the present application provides a display screen, comprising a plurality of display modules, and the display module is prepared by the manufacturing method of a display module provided by any embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a display module provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic flowchart of a method for manufacturing a display module provided in Embodiment 2 of the present application;
  • FIG. 3A is a schematic structural diagram of a semiconductor epitaxial wafer provided in Embodiment 2 of the present application.
  • 3B is a schematic structural diagram of a semiconductor epitaxial wafer for initially forming a blue LED array according to Embodiment 2 of the present application;
  • 3C is a schematic structural diagram of a semiconductor epitaxial wafer for forming a current diffusion layer according to Embodiment 2 of the present application;
  • 3D is a schematic structural diagram of a semiconductor epitaxial wafer for forming a reflective electrode according to Embodiment 2 of the present application;
  • 3E is a schematic structural diagram of a semiconductor epitaxial wafer for forming a passivation layer and a bonding hole according to Embodiment 2 of the present application;
  • 3F is a schematic structural diagram of a semiconductor epitaxial wafer for forming a protective film according to Embodiment 2 of the present application;
  • 3G is a schematic structural diagram of a semiconductor epitaxial wafer for forming a first transparent layer according to Embodiment 2 of the present application;
  • 3H is a schematic structural diagram of a semiconductor epitaxial wafer for forming a first quantum dot layer according to Embodiment 2 of the present application;
  • 3I is a schematic structural diagram of the semiconductor epitaxial wafer after the plasma etching is completed according to the second embodiment of the present application;
  • 3J is a schematic structural diagram of a semiconductor epitaxial wafer after etching of the second quantum dot layer according to the second embodiment of the present application;
  • 3K is a schematic structural diagram of a semiconductor epitaxial wafer for forming a DBR film layer provided in Embodiment 2 of the present application;
  • 3L is a schematic structural diagram of a semiconductor epitaxial wafer for forming a transparent protective layer according to Embodiment 2 of the present application;
  • FIG. 3M is a schematic structural diagram of a display module provided by Embodiment 2 of the present application.
  • 3N is a top view of the display module provided in Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a display screen provided in Embodiment 3 of the present application.
  • first may be used herein to describe various directions, acts, steps or elements, etc., but are not limited by these terms. These terms are only used to distinguish a first direction, act, step or element from another direction, act, step or element.
  • a first opening could be referred to as a second opening, and similarly, a second opening could be referred to as a first opening, without departing from the scope of this application. Both the first opening and the second opening are openings, but they are not the same opening.
  • the terms “first”, “second” and the like should not be understood as indicating or implying relative importance or implying the number of technical features indicated.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • a plurality” and “batch” mean at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a display module provided in Embodiment 1 of the present application, and this embodiment can be applied to the manufacture of an LED display screen.
  • the manufacturing method of the display module provided by the first embodiment of the present application includes:
  • the semiconductor epitaxial wafer refers to a blue LED epitaxial structure, which includes, from the substrate upward, a sapphire substrate, a first channel layer, a blue light layer and a second channel layer, wherein the first channel layer
  • the layer is usually blue N-type GaN
  • the blue layer is blue QW (Quantum Well, quantum well)
  • the second channel layer is usually blue P-type GaN.
  • the blue LED array refers to that a plurality of blue light units are arranged in an array, and when these blue light units are energized, they can emit blue light.
  • a semiconductor device with a blue LED array is the basis for making an LED display module. Therefore, the semiconductor epitaxial wafer needs to be pretreated to form a blue LED array.
  • the first transparent layer can be formed on the surface of the substrate of the semiconductor device by means of deposition.
  • the first transparent layer is mainly used to transmit light, and its material can be SiO 2 , MgF 2 , ITO, or the like. It should be noted that the surface of the substrate refers to the surface on which the first channel layer is not provided.
  • steps such as sizing, pre-baking, photolithography, developing, and post-baking are sequentially performed on the semiconductor device, a first opening pattern is defined in the first transparent layer, and then the first opening pattern is defined by plasma etching.
  • the first transparent layer at the opening pattern is etched away, thereby forming a first opening in the first transparent layer exposing the substrate.
  • the first quantum dots are quantum dots capable of emitting light of a color other than blue light, such as red light quantum dots or green light quantum dots.
  • the first quantum dot layer may be formed on the surface of the substrate exposed by the first opening and the surface of the first transparent layer by spin coating or deposition.
  • the semiconductor device processed in the above steps may be placed in an ICP (Inductive Coupled Plasma Emission Spectrometer) or RIE (Reactive Ion Etching, reactive ion etcher) equipment, and the plasma
  • the first quantum dot layer outside the first opening is etched away by bulk etching, so that the first quantum dot layer inside the first opening remains, so that the first quantum dots are printed inside the first opening.
  • the principle of plasma etching is that the gas exposed to the electron region forms plasma, and the resulting ionized gas and the gas composed of the release of high-energy electrons form plasma or ions. When the ionized gas atoms are accelerated by an electric field, they will release enough force to interact with Surface repelling force, tightly bonding materials or etching surfaces.
  • the plasma etching method the printing of the first quantum dots can achieve submicron size or even nanometer size.
  • the DBR (Distributed Bragg Reflector, Distributed Bragg Reflector) film is a periodic structure formed by alternately arranging two materials with different refractive indices, and the DBR film can be changed by changing the reflectivity, thickness and gap of the material. Transparency.
  • a DBR film layer that filters out blue light can be formed on the surface of the first quantum dot layer.
  • the method for manufacturing the display module provided in the first embodiment of the present application uses the plasma etching method, so that the printing of the first quantum dots can achieve sub-micron size or even nano-size, which improves the printing accuracy of the quantum dots in the LED display screen manufacturing method .
  • FIG. 2 is a schematic flowchart of a manufacturing method of a display module provided in Embodiment 2 of the present application, and this embodiment is a modification of the above-mentioned embodiment.
  • the manufacturing method of the display module provided in the second embodiment of the present application includes:
  • the structure of the semiconductor epitaxial wafer is shown in FIG. 3A , including a sapphire substrate 10 , a first channel layer 11 , a blue light layer 12 and a second channel layer 13 , wherein the first channel layer 11 is blue light N-type GaN, the blue light layer 12 is blue light QW, and the second channel layer 13 is blue light P-type GaN.
  • the mesa etching of the semiconductor epitaxial wafer is to use photolithography and plasma etching to initially form a blue light LED array on the semiconductor.
  • the structure of the etched semiconductor epitaxial wafer is shown in FIG. 3B .
  • the current spreading layer is mainly used to form ohmic contact with the P-type GaN, and therefore, the current spreading layer is formed on the surface of the second channel layer.
  • the current diffusion layer can be formed through the steps of photolithography, metal evaporation and photoresist stripping in sequence, wherein the material of the current diffusion layer can be ITO or Ni/Au.
  • the structure of the semiconductor epitaxial wafer on which the current diffusion layer 14 is formed is shown in FIG. 3C .
  • the reflective electrode is mainly used to improve the luminous efficiency of the LED.
  • the production of the reflective electrode can also be formed by the steps of photolithography, metal evaporation and photoresist stripping, and the material of the reflective electrode can be metal materials such as Ti/AL/Ti/Au, Cr/Ti/Au or Pt/Au.
  • the structure of the semiconductor epitaxial wafer forming the reflective electrode 15 is shown in FIG. 3D .
  • the passivation layer is mainly used to prevent foreign impurities from entering the interior of the epitaxial wafer, and its material may be SiO 2 or Si 3 N 4 , and the passivation layer may be formed by deposition.
  • the structure of the semiconductor epitaxial wafer on which the passivation layer 16 is formed is shown in FIG. 3E .
  • a semiconductor device usually needs to be combined with a driving substrate to form a display module, the driving substrate supplies power to the semiconductor device, and the quantum dots in the semiconductor device emit light of a corresponding color after being energized, and the bonding hole is where the display module and the display module are connected. Where the driver board is connected. Bonding holes can be formed by photolithography and plasma etching. Exemplarily, the structure of the semiconductor epitaxial wafer in which the bonding holes 17 are formed is shown in FIG. 3E .
  • the semiconductor epitaxial wafer has been processed to form a semiconductor device with a blue LED array.
  • the protective film is made of materials that are easy to tear off, such as blue film, photoresist or UV (Ultraviolet Rays, ultraviolet) film.
  • the structure of the semiconductor device in which the protective film 18 is formed is shown in FIG. 3F .
  • the thickness of the sapphire substrate meets the requirements. If the sapphire substrate is too thick, the sapphire substrate needs to be thinned to improve the heat dissipation performance of the device. Then, the sapphire substrate with the required thickness is polished into a mirror surface, so that the surface of the sapphire substrate is brighter and smoother, so as to remove the surface damage layer formed by the damage to the sapphire substrate in the preceding process, eliminate residual stress, and prevent semiconductor devices. Bending deformation or chipping in subsequent processes.
  • a first transparent layer capable of transmitting light is formed on the polished surface of the substrate by deposition, and the material of the first transparent layer may be SiO 2 , MgF 2 , ITO or the like.
  • the structure of the semiconductor device in which the first transparent layer 19 is formed is shown in FIG. 3G .
  • steps such as sizing, pre-baking, photolithography, developing, and post-baking are sequentially performed on the semiconductor device, a first opening pattern is defined in the first transparent layer, and then the first opening pattern is defined by plasma etching.
  • the first transparent layer at the opening pattern is etched away, thereby forming a first opening in the first transparent layer exposing the substrate.
  • the structure of the first opening 20 is shown in FIG. 3G .
  • the first quantum dots are quantum dots capable of emitting light of a color other than blue light, such as red light quantum dots or green light quantum dots.
  • the first quantum dot layer may be formed on the surface of the substrate exposed by the first opening and the surface of the first transparent layer by spin coating or deposition.
  • the first quantum dots are red light quantum dots, and the semiconductor device forming the first quantum dot layer 21 is shown in FIG. 3H .
  • the semiconductor device processed in the above steps may be put into an ICP or RIE device, and the first quantum dot layer outside the first opening is etched away by plasma etching, so that the first quantum dot layer inside the first opening is etched away. Once the quantum dot layer remains, printing the first quantum dots inside the first opening is achieved.
  • the semiconductor device after the plasma etching is completed is shown in FIG. 3I .
  • the fabrication methods of steps S212-S215 are similar to the fabrication methods of steps S208-S2011, the difference is that the positions of the quantum dots and the second opening are different, and the description of steps S208-S2011 can be referred to for the process process.
  • the second quantum dots are green light quantum dots. Referring to FIG. 3J , a second transparent layer 22 is formed on the first transparent layer 19 and the first quantum dot layer 21 , and the second transparent layer 22 is etched to form the exposed substrate 10 For the second opening 23 on the surface, a second quantum dot layer 24 is formed inside the second opening 23 by deposition and plasma etching.
  • a DBR film that filters out blue light may be formed on the surface of the second quantum dot layer and the surface of the second transparent layer.
  • the semiconductor device in which the DBR film layer 25 is formed is shown in FIG. 3K .
  • the DBR film layer formed in step S216 completely covers the light-transmitting surface of the semiconductor device, that is, the blue-light array part is also covered. Therefore, the DBR film layer needs to be etched to form light-transmitting holes.
  • the holes are used to transmit the blue light emitted by the blue light array.
  • the semiconductor device forming the light-transmitting hole 26 is shown in FIG. 3K .
  • a transparent protective layer is formed on the surface of the semiconductor device with the DBR film layer, which not only plays a protective role, but also has light transmittance.
  • the semiconductor device on which the transparent protective layer 27 is formed is shown in FIG. 3L.
  • the protective film on the surface of the blue LED array is removed, and the bonding holes of the semiconductor device are bonded to the bonding metal of the driving substrate, so that the semiconductor device and the driving substrate are combined to form a display module, and the driving substrate is a semiconductor device
  • the quantum dots in the semiconductor device will emit light of the corresponding color after being energized.
  • An LED display screen is composed of a plurality of such display modules.
  • FIG. 3M after the bonding hole 17 is bonded with the bonding metal 29 on the driving substrate 28, the structure of the display module is shown in FIG. 3M, the top view of the display module is shown in FIG. 3N, and it can be seen from FIG. 3N , the left and right sides of the display module are the first quantum dot layer 21 (red light quantum dots) and the second quantum dot layer 24 (green light quantum dots), and the middle is the blue light layer 12 (blue light QW), realizing full color.
  • the manufacturing method of the display module provided by the second embodiment of the present application uses the plasma etching method, so that the printing of quantum dots can achieve sub-micron size or even nano-size, which improves the printing accuracy of quantum dots in the LED display screen manufacturing method.
  • the display screen 400 provided by Embodiment 3 of the present application includes a plurality of display modules 410, and the display modules 410 display the display provided by any embodiment of the present application.
  • the production method of the module is prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

一种显示模组的制作方法及显示屏,该方法包括:对半导体外延片进行预处理以形成半导体器件;在所述半导体器件的衬底(10)表面形成第一透明层(19);刻蚀所述第一透明层(19)以形成暴露所述衬底(10)的第一开口(20);在所述第一开口(20)暴露的所述衬底(10)表面以及所述第一透明层(19)表面形成第一量子点层(21);刻蚀掉所述第一开口(20)外部的所述第一量子点层(21),以保留所述第一开口(20)内部的所述第一量子点层(21);形成滤除蓝光的DBR膜层(25)。

Description

显示模组的制作方法及显示屏 技术领域
本申请实施例涉及半导体技术领域,例如涉及一种显示模组的制作方法及显示屏。
背景技术
LED(Light Emitting Diode,发光二极管)显示屏是经LED点阵组成的电子显示屏,用来显示文字、图像、视频等各种信息。LED显示屏分为单色屏、双色屏和全彩屏,单色屏是指使用一种颜色的LED显示屏,双色屏是指使用两种颜色(红色和绿色)的LED显示屏,全彩屏是指使用三种颜色(红色、绿色和蓝色)的LED显示屏,全彩屏显示的颜色范围最广,因此被广泛应用。
相关技术中,将LED与量子点结合来实现显示屏的全彩化,相关技术中的制作方法是通过喷墨打印的方式将量子点喷涂到蓝光LED或深紫LED器件表面,通过蓝光LED或深紫LED光源激发量子点,使量子点发出红光和绿光,从而实现显示屏的全彩化。但是这种喷墨打印量子点的方式,其打印精度通常仅在微米尺寸范围内,对于亚微米级别的打印,喷墨打印无法实现。
发明内容
本申请实施例提供一种显示模组的制作方法及显示屏,以提高LED显示屏制作方法中量子点的打印精度。
第一方面,本申请实施例提供一种显示模组的制作方法,包括:
对半导体外延片进行预处理以形成具备蓝光LED阵列的半导体器件;
在所述半导体器件的衬底表面形成第一透明层;
刻蚀所述第一透明层以形成暴露所述衬底的第一开口;
在所述第一开口暴露的所述衬底表面以及所述第一透明层表面形成第一量子点层;
通过等离子体刻蚀方式刻蚀掉所述第一开口外部的所述第一量子点层,以保留所述第一开口内部的所述第一量子点层;
形成滤除蓝光的DBR膜层。
第二方面,本申请实施例提供一种显示屏,包括多个显示模组,所述显示 模组通过本申请任意实施例提供的显示模组的制作方法制备。
附图说明
图1为本申请实施例一提供的显示模组的制作方法的流程示意图;
图2为本申请实施例二提供的显示模组的制作方法的流程示意图;
图3A为本申请实施例二提供的半导体外延片的结构示意图;
图3B为本申请实施例二提供的初步形成蓝光LED阵列的半导体外延片的结构示意图;
图3C为本申请实施例二提供的形成电流扩散层的半导体外延片的结构示意图;
图3D为本申请实施例二提供的形成反射电极的半导体外延片的结构示意图;
图3E为本申请实施例二提供的形成钝化层和键合孔的半导体外延片的结构示意图;
图3F为本申请实施例二提供的形成保护膜的半导体外延片的结构示意图;
图3G为本申请实施例二提供的形成第一透明层的半导体外延片的结构示意图;
图3H为本申请实施例二提供的形成第一量子点层的半导体外延片的结构示意图;
图3I为本申请实施例二提供的等离子体刻蚀完成后的半导体外延片的结构示意图;
图3J为本申请实施例二提供的完成第二量子点层刻蚀的半导体外延片的结构示意图;
图3K为本申请实施例二提供的形成DBR膜层的半导体外延片的结构示意图;
图3L为本申请实施例二提供的形成透明保护层的半导体外延片的结构示意图;
图3M为本申请实施例二提供的显示模组的结构示意图;
图3N为本申请实施例二提供的显示模组的俯视图;
图4为本申请实施例三提供的显示屏的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一开口称为第二开口,且类似地,可将第二开口称为第一开口。第一开口和第二开口两者都是开口,但其不是同一开口。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”、“批量”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
实施例一
图1为本申请实施例一提供的显示模组的制作方法的流程示意图,本实施例可适用于LED显示屏的制作。如图1所示,本申请实施例一提供的显示模组的制作方法包括:
S110、对半导体外延片进行预处理以形成具备蓝光LED阵列的半导体器件。
在一些实施例中,半导体外延片是指蓝光LED外延结构,从衬底往上,依次包括:蓝宝石衬底、第一沟道层、蓝光层和第二沟道层,其中,第一沟道层通常为蓝光N型GaN,蓝光层为蓝光QW(Quantum Well,量子阱),第二沟道层通常为蓝光P型GaN。蓝光LED阵列是指多个蓝光单元以阵列的形式排列,当这些蓝光单元被通电以后,能够发出蓝光。具备蓝光LED阵列的半导体器件 是制作LED显示模组的基础,因此,需要对半导体外延片进行预处理,使其形成蓝光LED阵列。
S120、在所述半导体器件的衬底表面形成第一透明层。
在一些实施例中,可以通过沉积的方式在半导体器件的衬底表面形成第一透明层,第一透明层主要用于透过光线,其材料可以是SiO 2、MgF 2、ITO等。需要说明的是,衬底的表面是指没有设置第一沟道层的表面。
S130、刻蚀所述第一透明层以形成暴露所述衬底的第一开口。
在一些实施例中,对半导体器件依次进行匀胶、前烘、光刻、显影、后烘等步骤,在第一透明层定义第一开口图形,然后通过等离子体刻蚀的方式,将第一开口图形处的第一透明层刻蚀掉,从而在第一透明层中形成暴露衬底的第一开口。
S140、在所述第一开口暴露的衬底表面以及所述第一透明层表面形成第一量子点层。
在一些实施例中,第一量子点是能够发出不同于蓝光的颜色光的量子点,如红光量子点或绿光量子点。可以通过旋涂或沉积的方式,在第一开口暴露的衬底表面以及第一透明层表面形成第一量子点层。
S150、通过等离子体刻蚀方式刻蚀掉所述第一开口外部的第一量子点层,以保留所述第一开口内部的第一量子点层。
在一些实施例中,可以将上述步骤处理好的半导体器件放入ICP(Inductive Coupled Plasma Emission Spectrometer,感应耦合离子刻蚀机)或RIE(Reactive Ion Etching,反应离子刻蚀机)设备中,通过等离子体刻蚀方式刻蚀掉第一开口外部的第一量子点层,使第一开口内部的第一量子点层保留,就实现了在第一开口的内部打印第一量子点。等离子体刻蚀的原理是暴露在电子区域的气体形成等离子体,由此产生的电离气体和释放高能电子组成的气体形成了等离子或离子,电离气体原子通过电场加速时,会释放足够的力量与表面驱逐力,紧紧粘合材料或蚀刻表面。本实施例中,通过使用等离子体刻蚀方式,使得第一量子点的打印能够实现亚微米尺寸甚至纳米尺寸。
S160、形成滤除蓝光的DBR膜层。
在一些实施例中,DBR(Distributed Bragg Reflector,分散式布拉格反射器)膜是由两种不同折射率的材料交替排列形成的周期结构,通过改变材料的反射率、厚度和间隙可以改变DBR膜的透光性。为了避免蓝光在第一量子点层处透 过,可以在第一量子点层表面形成一层滤除蓝光的DBR膜层。
本申请实施例一提供的显示模组的制作方法通过使用等离子体刻蚀方式,使得第一量子点的打印能够实现亚微米尺寸甚至纳米尺寸,提高了LED显示屏制作方法中量子点的打印精度。
实施例二
图2为本申请实施例二提供的显示模组的制作方法的流程示意图,本实施例是对上述实施例的改动。如图2所示,本申请实施例二提供的显示模组的制作方法包括:
S201、对半导体外延片进行台面刻蚀,暴露部分第一沟道层,以形成蓝光LED阵列。
本实施例中,半导体外延片的结构如图3A所示,包括蓝宝石衬底10、第一沟道层11、蓝光层12和第二沟道层13,其中,第一沟道层11为蓝光N型GaN,蓝光层12为蓝光QW,第二沟道层13为蓝光P型GaN。
对半导体外延片进行台面刻蚀,就是使用光刻和等离子体刻蚀,使半导体初步形成蓝光LED阵列,刻蚀后的半导体外延片结构如图3B所示。
S202、在所述蓝光阵列的第二沟道层表面形成电流扩散层。
在一些实施例中,电流扩散层主要用于与P型GaN之间形成欧姆接触,因此,在第二沟道层表面形成电流扩散层。电流扩散层可以依次通过光刻、金属蒸镀和光刻胶剥离的步骤形成,其中,电流扩散层的材料可以是ITO或Ni/Au。示例性的,形成电流扩散层14的半导体外延片结构如图3C所示。
S203、在所述电流扩散层表面以及暴露的第一沟道层表面形成反射电极。
在一些实施例中,反射电极主要用于提高LED的发光效率。反射电极的制作同样可以采用光刻、金属蒸镀和光刻胶剥离的步骤形成,反射电极的材料可以是Ti/AL/Ti/Au、Cr/Ti/Au或Pt/Au等金属材料。示例性的,形成反射电极15的半导体外延片结构如图3D所示。
S204、形成覆盖所述反射电极的钝化层。
在一些实施例中,钝化层主要用于防止外界杂质进入到外延片内部,其材料可以是SiO 2或Si 3N 4,可以通过沉积的方式形成钝化层。示例性的,形成钝化层16的半导体外延片结构如图3E所示。
S205、刻蚀所述钝化层以形成暴露部分所述反射电极的键合孔。
在一些实施例中,通常半导体器件需要与驱动基板结合形成显示模组,驱动基板为半导体器件供电,半导体器件中的量子点通电后就会发出相应颜色的光,键合孔就是显示模组与驱动基板连接的地方。键合孔可以采用光刻和等离子体刻蚀的方式形成。示例性的,形成键合孔17的半导体外延片结构如图3E所示。
S206、在形成键合孔后的蓝光LED阵列表面形成保护膜。
在一些实施例中,经过上述步骤S201~S205,半导体外延片已经被加工形成了具备蓝光LED阵列的半导体器件,为了避免在后续制备步骤中对蓝光LED阵列产生影响,故在蓝光LED阵列表面形成一层保护膜,该保护膜采用容易撕除的材料,如蓝膜、光刻胶或UV(Ultraviolet Rays,紫外线)膜。示例性的,形成保护膜18的半导体器件结构如图3F所示。
S207、将所述半导体器件的衬底抛光成镜面。
在一些实施例中,确定蓝宝石衬底的厚度是否符合要求,若蓝宝石衬底过厚,还需对蓝宝石衬底减薄,以提高器件的散热性能。然后将厚度符合要求的蓝宝石衬底抛光成镜面,使得蓝宝石衬底的表面更加光亮、平整,以去除在前述工序中对蓝宝石衬底造成损伤而形成的表面损伤层,消除残余应力,防止半导体器件弯曲变形或在后继工序中碎裂。
S208、在所述半导体器件的衬底表面形成第一透明层。
在一些实施例中,通过沉积的方式在抛光后的衬底表面形成能够透过光线的第一透明层,第一透明层的材料可以是SiO 2、MgF 2、ITO等。示例性的,形成第一透明层19的半导体器件结构如图3G所示。
S209、刻蚀所述第一透明层以形成暴露所述衬底的第一开口。
在一些实施例中,对半导体器件依次进行匀胶、前烘、光刻、显影、后烘等步骤,在第一透明层定义第一开口图形,然后通过等离子体刻蚀的方式,将第一开口图形处的第一透明层刻蚀掉,从而在第一透明层中形成暴露衬底的第一开口。示例性的,第一开口20的结构如图3G所示。
S210、在所述第一开口暴露的衬底表面以及所述第一透明层表面形成第一量子点层。
在一些实施例中,第一量子点是能够发出不同于蓝光的颜色光的量子点,如红光量子点或绿光量子点。可以通过旋涂或沉积的方式,在第一开口暴露的衬底表面以及第一透明层表面形成第一量子点层。示例性的,第一量子点为红 光量子点,形成第一量子点层21的半导体器件如图3H所示。
S211、通过等离子体刻蚀方式刻蚀掉所述第一开口外部的第一量子点层,以保留所述第一开口内部的第一量子点层。
在一些实施例中,可以将上述步骤处理好的半导体器件放入ICP或RIE设备中,通过等离子体刻蚀方式刻蚀掉第一开口外部的第一量子点层,使第一开口内部的第一量子点层保留,就实现了在第一开口的内部打印第一量子点。示例性的,等离子体刻蚀完成后的半导体器件如图3I所示。
S212、在所述第一透明层表面和所述第一量子点层表面形成第二透明层。
S213、刻蚀所述第二透明层以形成暴露所述衬底的第二开口。
S214、在所述第二开口暴露的衬底表面以及所述第二透明层表面形成第二量子点层。
S215、通过等离子体刻蚀方式刻蚀掉所述第二开口外部的第二量子点层,以保留所述第二开口内部的第二量子点层。
在一些实施例中,步骤S212~S215的制作方式和步骤S208~S2011的制作方式类似,区别在于量子点和第二开口的位置不同,工艺过程可参考步骤S208~S2011的描述。示例性的,第二量子点为绿光量子点,参考图3J,在第一透明层19以及第一量子点层21形成第二透明层22,刻蚀第二透明层22以形成暴露衬底10表面的第二开口23,通过沉积和等离子体刻蚀在第二开口23内部形成第二量子点层24。
S216、在所述第二量子点层表面和所述第二透明层表面形成滤除蓝光的DBR膜层。
在一些实施例中,为了避免蓝光在第一量子点层和第二量子点层处透过,可以在第二量子点层表面和第二透明层表面形成一层滤除蓝光的DBR膜层。示例性的,形成DBR膜层25的半导体器件如图3K所示。
S217、刻蚀所述DBR膜层以形成暴露部分所述第二透明层的透光孔。
在一些实施例中,步骤S216中形成的DBR膜层是将半导体器件的透光表面全部覆盖了,即蓝光阵列部分也被覆盖了,因此需要刻蚀DBR膜层形成透光孔,该透光孔用于透过蓝光阵列发出的蓝光。示例性的,形成透光孔26的半导体器件如图3K所示。
S218、在所述DBR膜层表面和所述透光孔暴露的第二透明层表面形成透明保护层。
在一些实施例中,为了防止半导体器件内部结构受损,在半导体器件的有DBR膜层的表面形成一层透明保护层,既起到保护作用,又具有透光性。示例性的,形成透明保护层27的半导体器件如图3L所示。
S219、去除所述蓝光LED阵列表面的保护膜,以暴露所述键合孔。
S220、将所述键合孔与驱动基板的键合金属键合。
在一些实施例中,去除蓝光LED阵列表面的保护膜,将半导体器件的键合孔与驱动基板的键合金属键合,从而使得半导体器件与驱动基板结合形成显示模组,驱动基板为半导体器件供电,半导体器件中的量子点通电后就会发出相应颜色的光,一个LED显示屏由多个这样的显示模组组成。示例性的,键合孔17与驱动基板28上的键合金属29键合后,显示模组的结构如图3M所示,显示模组的俯视图如图3N所示,从图3N可以看出,显示模组的左右两侧分别为第一量子点层21(红光量子点)和第二量子点层24(绿光量子点),中间为蓝光层12(蓝光QW),实现了全彩化。
本申请实施例二提供的显示模组的制作方法通过使用等离子体刻蚀方式,使得量子点的打印能够实现亚微米尺寸甚至纳米尺寸,提高了LED显示屏制作方法中量子点的打印精度。
实施例三
图4为本申请实施例三提供的一种显示屏的结构示意图,本申请实施例三提供的显示屏400,包括多个显示模组410,显示模组410通过本申请任意实施例提供的显示模组的制作方法制备。

Claims (10)

  1. 一种显示模组的制作方法,包括:
    对半导体外延片进行预处理以形成具备蓝光LED阵列的半导体器件;
    在所述半导体器件的衬底表面形成第一透明层;
    刻蚀所述第一透明层以形成暴露所述衬底的第一开口;
    在所述第一开口暴露的所述衬底表面以及所述第一透明层表面形成第一量子点层;
    通过等离子体刻蚀方式刻蚀掉所述第一开口外部的所述第一量子点层,以保留所述第一开口内部的所述第一量子点层;
    形成滤除蓝光的DBR膜层。
  2. 如权利要求1所述的方法,其中,所述半导体外延片包括在所述衬底上依次设置的第一沟道层、蓝光层和第二沟道层。
  3. 如权利要求2所述的方法,其中,对半导体外延片进行预处理以形成具备蓝光LED阵列的半导体器件,包括:
    对半导体外延片进行台面刻蚀,暴露部分所述第一沟道层,以形成蓝光LED阵列;
    在所述蓝光LED阵列的所述第二沟道层表面形成电流扩散层;
    在所述电流扩散层表面以及暴露的所述第一沟道层表面形成反射电极;
    形成覆盖所述反射电极的钝化层;
    刻蚀所述钝化层以形成暴露部分所述反射电极的键合孔;
    在形成所述键合孔后的所述蓝光LED阵列表面形成保护膜。
  4. 如权利要求3所述的方法,在所述半导体器件的衬底表面形成第一透明层之前,所述方法还包括:
    将所述半导体器件的衬底抛光成镜面。
  5. 如权利要求3所述的方法,形成滤除蓝光的DBR膜层之前,所述方法还包括:
    在所述第一透明层表面和所述第一量子点层表面形成第二透明层;
    刻蚀所述第二透明层以形成暴露所述衬底的第二开口;
    在所述第二开口暴露的所述衬底表面以及所述第二透明层表面形成第二量子点层;
    通过等离子体刻蚀方式刻蚀掉所述第二开口外部的所述第二量子点层,以保留所述第二开口内部的所述第二量子点层。
  6. 如权利要求5所述的方法,其中,形成滤除蓝光的DBR膜层,包括:
    在所述第二量子点层表面和所述第二透明层表面形成滤除蓝光的DBR膜层;
    刻蚀所述DBR膜层以形成暴露部分所述第二透明层的透光孔。
  7. 如权利要求6所述的方法,形成滤除蓝光的DBR膜层之后,所述方法还包括:
    在所述DBR膜层表面和所述透光孔暴露的所述第二透明层表面形成透明保护层。
  8. 如权利要求3所述的方法,形成滤除蓝光的DBR膜层之后,所述方法还包括:
    去除所述蓝光LED阵列表面的所述保护膜,以暴露所述键合孔;
    将所述键合孔与驱动基板的键合金属键合。
  9. 如权利要求1所述的方法,其中,在所述第一开口暴露的所述衬底表面以及所述第一透明层表面形成第一量子点层,包括:
    通过旋涂或沉积的方式在所述第一开口暴露的所述衬底表面以及所述第一透明层表面形成第一量子点层。
  10. 一种显示屏,包括多个显示模组,所述显示模组通过如权利要求1~9任一项所述的显示模组的制作方法制备。
PCT/CN2020/100186 2020-07-03 2020-07-03 显示模组的制作方法及显示屏 WO2022000480A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/100186 WO2022000480A1 (zh) 2020-07-03 2020-07-03 显示模组的制作方法及显示屏
US18/090,494 US20230134241A1 (en) 2020-07-03 2022-12-29 Display module manufacturing method and display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100186 WO2022000480A1 (zh) 2020-07-03 2020-07-03 显示模组的制作方法及显示屏

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/090,494 Continuation-In-Part US20230134241A1 (en) 2020-07-03 2022-12-29 Display module manufacturing method and display screen

Publications (1)

Publication Number Publication Date
WO2022000480A1 true WO2022000480A1 (zh) 2022-01-06

Family

ID=79317273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100186 WO2022000480A1 (zh) 2020-07-03 2020-07-03 显示模组的制作方法及显示屏

Country Status (2)

Country Link
US (1) US20230134241A1 (zh)
WO (1) WO2022000480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245352A1 (zh) * 2022-06-20 2023-12-28 京东方科技集团股份有限公司 芯片结构及其制备方法、显示基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155276A (zh) * 2017-12-25 2018-06-12 上海集成电路研发中心有限公司 光电器件及其制作方法
CN108987613A (zh) * 2018-07-06 2018-12-11 致晶科技(北京)有限公司 钙钛矿量子点阵列的制备方法
CN110492013A (zh) * 2019-08-27 2019-11-22 深圳市思坦科技有限公司 一种量子点显示屏的制作方法
CN110854257A (zh) * 2019-12-12 2020-02-28 佛山市国星半导体技术有限公司 一种可转换颜色的倒装led芯片及其制作方法
US20200075817A1 (en) * 2017-11-07 2020-03-05 Qingdao Hisense Electronics Co., Ltd. Quantum dot led, manufacturing method thereof and display device
CN111326621A (zh) * 2020-04-03 2020-06-23 深圳雷曼光电科技股份有限公司 一种倒装Micro LED全彩量子点芯片、其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200075817A1 (en) * 2017-11-07 2020-03-05 Qingdao Hisense Electronics Co., Ltd. Quantum dot led, manufacturing method thereof and display device
CN108155276A (zh) * 2017-12-25 2018-06-12 上海集成电路研发中心有限公司 光电器件及其制作方法
CN108987613A (zh) * 2018-07-06 2018-12-11 致晶科技(北京)有限公司 钙钛矿量子点阵列的制备方法
CN110492013A (zh) * 2019-08-27 2019-11-22 深圳市思坦科技有限公司 一种量子点显示屏的制作方法
CN110854257A (zh) * 2019-12-12 2020-02-28 佛山市国星半导体技术有限公司 一种可转换颜色的倒装led芯片及其制作方法
CN111326621A (zh) * 2020-04-03 2020-06-23 深圳雷曼光电科技股份有限公司 一种倒装Micro LED全彩量子点芯片、其制备方法和用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245352A1 (zh) * 2022-06-20 2023-12-28 京东方科技集团股份有限公司 芯片结构及其制备方法、显示基板和显示装置

Also Published As

Publication number Publication date
US20230134241A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
CN111883633B (zh) 显示模组的制作方法及显示屏
US10862010B2 (en) Integrated colour LED micro-display
US11923348B2 (en) Light emitting device with LED stack for display and display apparatus having the same
US11239213B2 (en) In-situ curing of color conversion layer in recess
US20120112218A1 (en) Light Emitting Diode with Polarized Light Emission
CN115483327B (zh) Micro LED微显示芯片及其制造方法
WO2022000480A1 (zh) 显示模组的制作方法及显示屏
US20230207755A1 (en) Spacer led architecture for high efficiency micro led displays
US20230207753A1 (en) Spacer micro-led architecture for microdisplay applications
WO2021198003A1 (en) Monolithic led pixel
US20230125929A1 (en) Spacer led architecture for high efficiency micro led displays
US20240096854A1 (en) Pixel isolation structures and methods of making them
CN116529897A (zh) 微型led射束准直

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20943261

Country of ref document: EP

Kind code of ref document: A1