WO2014020728A1 - 照明光学系及び投射型表示装置 - Google Patents
照明光学系及び投射型表示装置 Download PDFInfo
- Publication number
- WO2014020728A1 WO2014020728A1 PCT/JP2012/069610 JP2012069610W WO2014020728A1 WO 2014020728 A1 WO2014020728 A1 WO 2014020728A1 JP 2012069610 W JP2012069610 W JP 2012069610W WO 2014020728 A1 WO2014020728 A1 WO 2014020728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical system
- illumination optical
- wavelength
- light source
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2013—Plural light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/206—Control of light source other than position or intensity
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B33/00—Colour photography, other than mere exposure or projection of a colour film
- G03B33/10—Simultaneous recording or projection
- G03B33/12—Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3161—Modulator illumination systems using laser light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3164—Modulator illumination systems using multiple light sources
Definitions
- the present invention relates to an illumination optical system including a coherent light source and an incoherent light source, and a projection display device including the illumination optical system.
- LEDs and LDs are known as light sources that emit monochromatic light.
- laser light has high directivity, monochromaticity, and coherence, it is possible to realize a projector with high luminance and good color reproducibility.
- “monochromatic light” is not limited to light having only a single wavelength, but includes light having a wavelength distribution that is recognized by a person as a single color. That is, in this specification, “monochromatic light” includes light having a certain wavelength distribution centering on the peak wavelength.
- an illumination optical system capable of emitting monochromatic light with high brightness while taking safety into consideration.
- the illumination optical system includes a first light source that emits monochromatic coherent light having a first peak wavelength belonging to the wavelength region of visible light, and a second light source that belongs to a wavelength region that exhibits the same color as the coherent light.
- a dichroic mirror that mainly reflects one of the coherent light and the incoherent light and mainly transmits the other, the second light source emitting monochromatic incoherent light having a peak wavelength of A dichroic mirror that synthesizes the optical path and the optical path of the incoherent light.
- the projection display device of the present invention includes the illumination optical system described above.
- the illumination optical system configured as described above, it is possible to realize monochromatic light with high luminance while suppressing the output of coherent light by synthesizing coherent light and incoherent light. As a result, it is possible to provide an illumination optical system capable of emitting monochromatic light with high luminance while considering safety.
- FIG. 1 It is a figure which shows schematic structure of the illumination optical system in one Embodiment of this invention. It is a graph which shows an example of the characteristic of the dichroic mirror shown in FIG. It is a graph which shows an example of the relationship between the characteristic of a dichroic mirror, and the intensity
- FIG. 1 shows a schematic configuration of an illumination optical system according to an embodiment of the present invention.
- the illumination optical system 10 includes a first light source 11, a second light source 12, and a dichroic mirror 13.
- the first light source 11 is a polarized coherent light source.
- the second light source 12 is a non-polarized incoherent light source.
- the first light source 11 may be a laser light source such as a laser diode.
- the second light source 12 may be, for example, a light emitting diode (LED).
- LED light emitting diode
- the first light source 11 emits monochromatic coherent light having a first peak wavelength ⁇ 1 belonging to the wavelength region of visible light. This coherent light is polarized light.
- the second light source 12 emits monochromatic incoherent light having a second peak wavelength ⁇ ⁇ b> 2 belonging to a wavelength region showing the same color as the coherent light. This incoherent light is unpolarized light, that is, unpolarized light.
- the first light source 11 and the second light source 12 emit light belonging to the wavelength region of the same color.
- the first light source 11 and the second light source 12 emit, for example, one of light in the red wavelength region, light in the blue wavelength region, and light in the green wavelength region.
- the blue wavelength region ranges from 440 nm to 500 nm
- the green wavelength region ranges from 500 to 580 nm
- the red wavelength region ranges from 580 nm to 750 nm.
- the first light source 11 and the second light source 12 emit monochromatic light such as red light, blue light, or green light, for example.
- the “monochromatic light” is not limited to light having only a single wavelength, but includes light having a wavelength distribution that is recognized as a single color by humans. That is, in this specification, “monochromatic light” includes light having a wavelength distribution centering on the peak wavelength.
- the dichroic mirror 13 combines the coherent light emitted from the first light source 11 and the incoherent light emitted from the second light source 12.
- the coherent light emitted from the first light source 11 is reflected by the dichroic mirror 13.
- the incoherent light emitted from the second light source 12 passes through the dichroic mirror 13.
- the coherent light reflected by the dichroic mirror 13 and the incoherent light transmitted through the dichroic mirror 13 are combined and travel in the same direction.
- the dichroic mirror 13 mainly reflects the coherent light emitted from the first light source 11 and mainly transmits the incoherent light emitted from the second light source 12.
- both the incident angle of the coherent light to the dichroic mirror 13 and the incident angle of the incoherent light to the dichroic mirror 13 are both 45 degrees.
- Coherent light such as laser light may cause damage to the human body even when the laser output is low.
- the illumination optical system 10 can emit high-intensity monochromatic light by combining coherent light and incoherent light, even if the output of the light source 11 of coherent light is small. For this reason, it is possible to reduce the output of the light source 11 in consideration of safety to the human body while maintaining high luminance monochromatic light.
- FIG. 2 shows the reflection / transmission characteristics of the dichroic mirror 13.
- the dichroic mirror having the characteristics shown in FIG. 2 mainly reflects S-polarized light having a wavelength longer than the wavelength ⁇ 3 and mainly transmits S-polarized light having a wavelength shorter than the wavelength ⁇ 3.
- the dichroic mirror mainly reflects unpolarized light having a wavelength longer than the wavelength ⁇ 4 and mainly transmits unpolarized light having a wavelength shorter than the wavelength ⁇ 4. Further, this dichroic mirror mainly reflects P-polarized light having a wavelength longer than the wavelength ⁇ 5 and mainly transmits P-polarized light having a wavelength shorter than the wavelength ⁇ 5.
- ⁇ 3 to ⁇ 5 are separation wavelengths at which the transmittance is 50%, and there is a relationship of ⁇ 3 ⁇ 4 ⁇ 5.
- the wavelength ⁇ 3 is the shortest wavelength and the wavelength ⁇ 5 is the longest wavelength.
- S-polarized light or P-polarized light corresponds to coherent light
- non-polarized light corresponds to incoherent light.
- FIG. 3 is a graph showing an example of the relationship between the characteristics of the dichroic mirror and the intensity of light emitted from each light source.
- the wavelength ⁇ 1 of the coherent light emitted from the first light source (LD) 11 is longer than the wavelength ⁇ 2 of the incoherent light emitted from the second light source (LED) 12.
- the polarization direction of the coherent light emitted from the first light source (LD) 11 may be S-polarized with respect to the reflection surface of the dichroic mirror 13.
- the dichroic mirror 13 has a characteristic that the separation wavelength ⁇ 3 for S-polarized light (coherent light) is shorter than the separation wavelength ⁇ 4 for non-polarized light (incoherent light). In this case, as shown in FIG.
- FIG. 4 is a graph showing another example of the relationship between the characteristics of the dichroic mirror and the intensity of light emitted from each light source.
- the wavelength ⁇ 1 of the coherent light emitted from the first light source (LD) 11 is shorter than the wavelength ⁇ 2 of the incoherent light emitted from the second light source (LED) 12.
- the dichroic mirror having the characteristics shown in FIG. 4 mainly transmits S-polarized light having a wavelength longer than the wavelength ⁇ 6 and mainly reflects S-polarized light having a wavelength shorter than the wavelength ⁇ 6.
- the dichroic mirror mainly transmits unpolarized light having a wavelength longer than the wavelength ⁇ 7 and mainly reflects unpolarized light having a wavelength shorter than the wavelength ⁇ 7.
- this dichroic mirror mainly transmits P-polarized light having a wavelength longer than the wavelength ⁇ 8 and mainly reflects P-polarized light having a wavelength shorter than the wavelength ⁇ 8.
- ⁇ 6 to ⁇ 8 are separation wavelengths at which the transmittance is 50%, and there is a relationship of ⁇ 6> ⁇ 7> ⁇ 8.
- the wavelength ⁇ 6 is the longest wavelength and the wavelength ⁇ 8 is the shortest wavelength.
- the coherent light emitted from the first light source (LD) 11 is S-polarized light.
- the dichroic mirror 13 has a characteristic that the separation wavelength ⁇ 6 for S-polarized light (coherent light) is longer than the separation wavelength ⁇ 7 for non-polarized light (incoherent light).
- the first light source (LD) 11 when the first light source (LD) 11 is rotated 90 degrees, P-polarized coherent light can be obtained.
- the P-polarized coherent light (wavelength ⁇ 1P) and the non-polarized incoherent light (wavelength ⁇ 2) can be combined.
- it is preferable that non-polarized incoherent light is reflected by the dichroic mirror and P-polarized coherent light is transmitted by the dichroic mirror.
- dichroic mirrors having the characteristics shown in FIGS. 2 and 3 may be used and the relationship of “ ⁇ 1P ⁇ 5, ⁇ 2> ⁇ 4, ⁇ 1P> ⁇ 2” may be satisfied.
- the dichroic mirror having the characteristics shown in FIG. 4 when the dichroic mirror having the characteristics shown in FIG. 4 is used, the relationship of “ ⁇ 1P> ⁇ 8, ⁇ 2 ⁇ 7, ⁇ 1P ⁇ 2” may be satisfied. This also makes it possible to make the peak wavelengths of coherent light and incoherent light closer to each other.
- FIG. 5 shows a configuration of a projector as a projection display device according to an embodiment.
- the projection display device includes a first illumination optical system 10a, a second illumination optical system 10b, and third illumination optical systems 21 and 23.
- the first illumination optical system 10a and the second illumination optical system 10b have the same configuration as the illumination optical system shown in FIG.
- the first illumination optical system 10a includes a first light source 11a, a second light source 12a, and a first dichroic mirror 13a.
- the first light source 11a is a laser light source that emits monochromatic coherent light having a wavelength in the red region.
- the second light source 12a emits monochromatic incoherent light having a wavelength in the red region.
- the first dichroic mirror 13a combines the coherent light emitted from the first light source 11a and the incoherent light emitted from the second light source 12a.
- the first dichroic mirror 13a may have the characteristics shown in FIG. In this case, the coherent light emitted from the first light source 11a is S-polarized light.
- the second illumination optical system 10b includes a third light source 11b, a fourth light source 12b, and a second dichroic mirror 13b.
- the third light source 11b is a laser light source that emits coherent light having a wavelength in the blue region.
- the second light source 12b emits incoherent light having a wavelength in the blue region.
- the second dichroic mirror 13b combines the coherent light emitted from the third light source 11b and the incoherent light emitted from the fourth light source 12b.
- the coherent light emitted from the second light source 11b is S-polarized light.
- the third illumination optical system emits green light.
- the third illumination optical system includes a laser diode 21 that emits blue laser light, and a green phosphor 23 that emits green fluorescence when irradiated with light.
- the laser diode 21 only needs to be able to emit light having a wavelength that excites the green phosphor 23, and may be light having a shorter wavelength than green (for example, blue or ultraviolet light).
- Blue laser light emitted from the laser diode 21 passes through the dichroic mirror 22 and is irradiated on the green phosphor 23. As a result, the green phosphor 23 is excited and emits green light having a wavelength corresponding to green.
- the projection display device includes combining optical systems 22 and 24 that combine the optical path of red light, the optical path of blue light, and the optical path of green light.
- the combining optical system is composed of dichroic mirrors 22 and 24.
- the dichroic mirror 22 has a characteristic of transmitting light in the red wavelength region and blue wavelength region and reflecting light in the green wavelength region.
- the dichroic mirror 24 has a characteristic of transmitting light in the red wavelength region and green wavelength region and reflecting light in the blue wavelength region. Note that the synthesis optical system is not limited to the specific configuration shown in FIG. 5, and may be any configuration that can synthesize three colors of light.
- the red combined light emitted from the first illumination optical system 10 a passes through the dichroic mirror 22 and the dichroic mirror 24.
- the green light emitted from the phosphor 23 of the third illumination optical system is reflected by the dichroic mirror 22. Thereby, the green light is combined with the red light emitted from the first illumination optical system 10a.
- the combined light of green light and red light passes through the dichroic mirror 24.
- the blue combined light emitted from the second illumination optical system 10 b is reflected by the dichroic mirror 24. Thereby, red light, green light, and blue light are combined.
- the combined light obtained by combining the three colors of light passes through the lens group 31 and enters the TIR prism 32.
- the combined light incident on the TIR prism 32 is reflected by the total reflection surface of the TIR prism 32 and enters the reflective image element 33.
- a digital mirror device DMD can be used as the reflective image element 33.
- DMD is a semiconductor type projection device provided with a large number of micromirrors arranged in a matrix. Each micromirror corresponds to a pixel of the projected image. Each micromirror is configured such that its mirror surface can be inclined at a predetermined angle, for example, ⁇ 12 degrees or ⁇ 10 degrees around the torsion axis.
- each micromirror By driving the electrode provided below each micromirror, each micromirror can be switched between an ON state (+12 degrees tilt) and an OFF state ( ⁇ 12 degrees).
- the light incident on the micro mirror in the ON state is reflected in the direction of the projection lens 34 and is projected on the screen in an enlarged manner.
- the light incident on the micro mirror in the OFF state is reflected in a direction different from that of the projection lens 34 and is not projected on the screen.
- the ON state and the OFF state are switched at high speed, and the temporal ratio between the ON state and the OFF state is changed. Thereby, the gradation of each pixel can be expressed.
- the pulses of light emitted from the first to third illumination optical systems are controlled so that the pulses of each color do not overlap in time.
- the micromirror is turned on only at the moment when the red light strikes.
- the light reflected by the micro mirror in the ON state passes through the TIR prism 32 and forms an image on the screen through the projection lens 34. Thereby, a color image is displayed on the screen.
- the first illumination optical system 10a, the second illumination optical system, and the 10b third illumination optical system 21 and 23 emit light pulses of each color at a frequency of 240 Hz, for example.
- Light pulses of different colors are not emitted at the same time. That is, the red pulse, the green pulse, and the blue pulse are temporally separated and are lit in order.
- the lighting sequence of blue light can be 15% and the lighting sequence of red can be 25%.
- the safety of the laser is defined in the international standard IEC 60825-1 established by the International Electrotechnical Commission.
- IEC 60825-1 established by the International Electrotechnical Commission.
- lasers are classified according to wavelength and intensity.
- an “exposure release limit” which is the maximum allowable release level is defined.
- the calculation formula for obtaining the exposure radiation limit is determined in detail according to the wavelength of the laser beam and the exposure time.
- the above classification is performed based on the following three requirements. Of the three requirements, the most restrictive exposure limit value is used. ⁇ Requirement 1 Exposure from any single pulse in the pulse train must not exceed the radiation exposure limit for a single pulse.
- the exposure radiation limits A1 to A3 of the respective requirements are expressed as follows.
- C5 and C6 are correction coefficients
- t represents the release duration (exposure time).
- pulse widths (time widths) tp blue and tp red of each pulse of blue light or red light emitted from a blue laser light source or a red laser light source are calculated.
- the blue light lighting sequence is 15%
- the red lighting sequence is 25%. Therefore, the pulse widths tp blue and tp red of each pulse of blue light and red light are obtained as follows.
- correction coefficient C6 ⁇ / ⁇ min (3) It can ask for.
- ⁇ is a viewing angle, that is, an angle formed by two straight lines from both ends of the projected object to the eyes.
- ⁇ min represents a minimum viewing angle that can be generally considered.
- the lens is squeezed the smallest, the size of the image on the eyeball retina is 25 to 30 [ ⁇ m], and the focal length of the eyeball is about 17 [mm].
- ⁇ min ⁇ 1.5.
- the visual ⁇ blue and ⁇ red for each light are obtained as follows.
- correction coefficient C5 is obtained.
- the correction coefficient C5 is given by the following mathematical formula.
- N the number of pulses emitted within the emission duration.
- the radiation limit A1 blue of requirement 1 for blue laser light is expressed as follows.
- the exposure time limit tp blue 0.625 ⁇ 10 ⁇ 3 [sec] and the exposure radiation limit A1 blue is converted into a unit, 70.23 [mW] is obtained.
- the radiation limit A2 blue of requirement 2 for blue laser light is expressed as follows.
- the units 1 to 3 of each requirement 1 to 3 are converted in the same manner as described above, 57.22 [mW] for requirement 1, 58.9 [mW] for requirement 2, and requirement 3 A value of 20.6 [mW] is obtained. Therefore, the most severe requirement for red laser light is requirement 3.
- the exposure radiation limit of each color laser light is 25.23 [mW]
- the exposure radiation limit of the red laser light is 25.23 [mW].
- This value is an emission limit value in a range in which it is ensured that the retina is not damaged within a human blinking time of 0.25 [sec] immediately after emission from the projection lens 34.
- the exposure radiation limit obtained here is a value that can be incident on an aperture having a human pupil diameter of ⁇ 7 [mm]. This is converted into a radiation limit value in an area where light can be transmitted immediately after emission from the projection lens 34. In the present example, the light transmission area of the projection lens 34 was 274.3 [mm 2 ].
- the radiation limit of exposure immediately after exiting the projection lens is obtained by multiplying the above value by “projection lens light transmission area / ⁇ 7 aperture area”. That is, for blue laser light, the exposure limit immediately after exiting the projection lens is 179.75 [mW], and for red laser light, the exposure limit immediately after exiting the projection lens is 144.63 [mW]. is there.
- the first to third illumination optical systems are not simultaneously turned on even when white is displayed on the screen. Therefore, the exposure limit of the projection display device is the same as the exposure limit of the illumination optical system corresponding to each color.
- the visual sensitivity at the peak wavelength of the red laser light emitted from the first light source (LD) 11a actually used is 109.2 [lm / W].
- the visibility at the peak wavelength of the blue laser light emitted from the third light source (LD) 11b is 32.8 [lm / W]. Using these values, the brightness limit of blue light immediately after exiting the projection lens 34 is 5.90 [lm], and the brightness limit of red light immediately after exiting the projection lens 34 is 15.8 [lm]. .
- the brightness at the radiation limit is calculated.
- a blue LED (fourth light source 12b) that emits light of 20 [lm] when driven at 15% of the lighting time is used. Since the light use efficiency of the projection display device is 30%, the light from the blue LED becomes 6 [lm] when emitted from the projection lens 34.
- the light from the laser light source (third light source) 11b that is, the light of 5.90 [lm] and the light of the blue LED are combined, the combined light becomes 11.9 [lm]. Therefore, the brightness at the radiation limit is approximately doubled.
- the power of the laser light source 11b is 362 [mW] in consideration of the visibility of the laser light source 11b of 32.8 [lm / W]. . This greatly exceeds the range in which it is ensured that the retina is not damaged with respect to the blinking time of 0.25 [sec], and it becomes potentially dangerous when the beam is directly observed.
- a red LED (second light source 12a) that emits light of 20 [lm] when driven at 25% of the lighting time is used. Since the light utilization efficiency is 25%, the light from the red LED is 5 [lm] when emitted from the projection lens 34.
- the light from the laser light source (first light source) 11a that is, the light of 15.8 [lm] and the light of the red LED are combined, the combined light becomes 20.8 [lm]. Therefore, the brightness at the radiation limit is about 1.3 times.
- the power of the red laser light source 11a is calculated by using the visual sensitivity 109.2 [lm / W] of the red laser light source (LD) 11a. Is 190 [mW]. This greatly exceeds the range in which it is ensured that the retina is not damaged for a blinking time of 0.25 [sec], and direct beam observation is potentially dangerous.
- the first illumination optical system 10a that emits red light in the red wavelength region and the second illumination optical system 10b that emits blue light in the blue wavelength region have the configuration shown in FIG. Have.
- the present invention provides a first illumination optical system that emits red light in the red wavelength region, a second illumination optical system that emits blue light in the blue wavelength region, and a first illumination optical system that emits green light in the green wavelength region. It is sufficient that at least one of the three illumination optical systems has the configuration shown in FIG.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
・要求事項1
パルス列内のどの単一パルスからの露光も、単一パルスに対する被ばく放射限界を超えてはならない。
・要求事項2
放出持続時間T内のパルス列の平均パワーの被ばく放射限界は、放出持続時間Tの時間幅を有する単一パルスの被ばく放射限界に対応するパワーを超えてはならない。
・要求事項3
パルス当たりのエネルギーは、補正係数C5を乗じた単一パルスに対する被ばく放射限界を超えてはならない。ただし、パルスの持続時間が0.25秒未満の場合だけ、補正係数C5を乗じる。
・要求事項1:A1=7×10-4×t0.75×C6[J]
(波長λ=400~700nm,t<0.25[sec])
・要求事項2:A2=C6×10-3[W]
(波長λ=400~700nm,t≧0.25[sec])
・要求事項3:A3=(要求事項1の計算結果)×C5
ここで、C5,C6は補正係数であり、tは放出持続時間(被ばくする時間)を表す。
tpred=(1/240[Hz])×0.25=1.04×10-3[s] (2)
これらの値tpblue,tpredが、要求事項1における放出持続時間に相当する。
C6=α/αmin (3)
により求めることができる。
cos(α/2)=L/b (4)
という関係式が導かれる。
b=((a/2)2+L2)1/2 (5)
で表される。
a=d/21/2 (6)
で表される。
α=2×cos-1(L/(d2/8+L2)1/2) (7)
で表される。
αblue≒23.8[mrad] (8)
αred≒22.0[mrad] (9)
これらの視覚の値と、上記のαmin=1.5の値を上記数式に代入することで、それぞれの色のレーザ光に対する補正係数C6blue,C6redが、
C6blue=15.9 (10)
C6red=14.7 (11)
のように求められる。
ここで、Nは、放出持続時間内に放出されるパルス数である。本実施例では、人間の瞬きの時間(0.25[sec])に対して網膜が損傷しない安全が確保される範囲を考慮するため、発生する可能性のある全ての放出持続時間は0.25[sec]である。したがって、放出持続時間内の各色のレーザ光のパルス数Nは、
N=0.25[sec]×240[Hz]=60 (12)
となる。
C5=60-0.25 (13)
によって表される。
A1blue=7×10-4×tpblue 0.75×C6blue[J]=43.90×10-6[J]
ここで、被ばく時間tpblue=0.625×10-3[sec]で割って、被ばく放射限界A1blueを単位換算すると、70.23[mW]となる。
A2=C6×10-3[W]=15.9×10-3[W]
上記のA2の値は、時間基準(T=0.25[sec])での放出パワーを指している。そこで、T=0.25[sec]を掛けて、被ばく放射限界A1blueを単位換算すると、3.975[J]となる。さらに、この値を、一パルス当りのエネルギーを求めるためにパルス数Nで割り、一パルスの被ばく時間tpで割って単位換算すると、105.8[mW]となる。
11,11a 第1の光源
12,12a 第2の光源
11b 第3の光源
12b 第4の光源
13,13a,13b ダイクロイックミラー
21 レーザダイオード
22,24 ダイクロイックミラー
23 蛍光体
31 レンズ群
32 TIRプリズム
33 反射型画像素子
34 投写レンズ
Claims (9)
- 可視光の波長領域に属する第1のピーク波長を有する単色のコヒーレント光を出射する第1の光源と、
前記コヒーレント光と同一の色を示す波長領域に属する第2のピーク波長を有する単色のインコヒーレント光を出射する第2の光源と、
前記コヒーレント光と前記インコヒーレント光のうちの一方を主に反射し、他方を主に透過するダイクロイックミラーであって、前記コヒーレント光の光路と前記インコヒーレント光の光路を合成するダイクロイックミラーと、を備えた照明光学系。 - 請求項1に記載の照明光学系であって、
前記ダイクロイックミラーは、コヒーレント光に対する透過率が50%になる第1の分離波長が、インコヒーレント光に対する透過率が50%になる第2の分離波長よりも小さいという特性を有し、
前記第1のピーク波長が前記第1の分離波長よりも大きく、
前記第2のピーク波長が前記第2の分離波長よりも小さい、照明光学系。 - 請求項1に記載の照明光学系であって、
前記ダイクロイックミラーは、コヒーレント光に対する透過率が50%になる第1の分離波長が、インコヒーレント光に対する透過率が50%になる第2の分離波長よりも大きいという特性を有し、
前記第1のピーク波長が前記第1の分離波長よりも小さく、
前記第2のピーク波長が前記第2の分離波長よりも大きい、照明光学系。 - 請求項1から3のいずれか1項に記載の照明光学系であって、
前記ダイクロイックミラーは前記コヒーレント光を主に反射し、前記コヒーレント光は前記ダイクロイックミラーに対してS偏光である、照明光学系。 - 請求項1から4のいずれか1項に記載の照明光学系であって、
前記コヒーレント光源はレーザ光源である、照明光学系。 - 赤色波長領域の赤色光を出射する第1の照明光学系と、
青色波長領域の青色光を出射する第2の照明光学系と、
緑色波長領域の緑色光を出射する第3の照明光学系と、を備え、
前記第1の照明光学系、前記第2の照明光学系及び前記第3の照明光学系のうちの少なくとも1つは、
可視光の波長領域に属する第1のピーク波長を有する単色のコヒーレント光を出射する第1の光源と、
前記コヒーレント光と同一の色を示す波長領域に属する第2のピーク波長を有する単色のインコヒーレント光を出射する第2の光源と、
前記コヒーレント光と前記インコヒーレント光のうちの一方を主に反射し、他方を主に透過するダイクロイックミラーであって、前記コヒーレント光の光路と前記インコヒーレント光の光路を合成するダイクロイックミラーと、を備えている、照明光学系。 - 請求項6に記載の照明光学系であって、
前記第1の照明光学系、前記第2の照明光学系及び前記第3の照明光学系は、前記赤色光のパルスと前記青色光のパルスと前記緑色光のパルスとが時間的に重ならないように、それぞれ前記赤色光、前記青色光及び前記緑色光を出射する、照明光学系。 - 請求項6又は7に記載の照明光学系であって、
前記赤色光の光路と前記青色光の光路と前記緑色光の光路とを合成する合成光学系をさらに有する、照明光学系。 - 請求項1から8のいずれか1項に記載の照明光学系を備えた投射型表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280074776.7A CN104520767B (zh) | 2012-08-01 | 2012-08-01 | 照明光学系统和投影显示装置 |
JP2014527898A JPWO2014020728A1 (ja) | 2012-08-01 | 2012-08-01 | 照明光学系及び投射型表示装置 |
PCT/JP2012/069610 WO2014020728A1 (ja) | 2012-08-01 | 2012-08-01 | 照明光学系及び投射型表示装置 |
US14/414,648 US9557013B2 (en) | 2012-08-01 | 2012-08-01 | Illumination optical system and projection display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/069610 WO2014020728A1 (ja) | 2012-08-01 | 2012-08-01 | 照明光学系及び投射型表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014020728A1 true WO2014020728A1 (ja) | 2014-02-06 |
Family
ID=50027458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069610 WO2014020728A1 (ja) | 2012-08-01 | 2012-08-01 | 照明光学系及び投射型表示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9557013B2 (ja) |
JP (1) | JPWO2014020728A1 (ja) |
CN (1) | CN104520767B (ja) |
WO (1) | WO2014020728A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016162579A (ja) * | 2015-03-02 | 2016-09-05 | ウシオ電機株式会社 | 蛍光光源装置および照明装置 |
CN106133596A (zh) * | 2014-03-31 | 2016-11-16 | Nec显示器解决方案株式会社 | 光源设备和投影仪 |
JP2017059396A (ja) * | 2015-09-16 | 2017-03-23 | ウシオ電機株式会社 | 蛍光光源装置および照明装置 |
JP2018045111A (ja) * | 2016-09-15 | 2018-03-22 | カシオ計算機株式会社 | 光源装置及び投影装置 |
WO2021095517A1 (ja) * | 2019-11-13 | 2021-05-20 | ソニー・オリンパスメディカルソリューションズ株式会社 | 光源装置及び被検体観察システム |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105116679B (zh) * | 2015-10-08 | 2017-08-25 | 杭州中科极光科技有限公司 | 激光照明装置、激光投影系统及激光显示系统 |
CN108227353B (zh) * | 2016-12-14 | 2020-12-22 | 中强光电股份有限公司 | 光源模块以及投影装置 |
CN108255008A (zh) * | 2018-01-24 | 2018-07-06 | 杭州昌松光学有限公司 | 一种多波长复用投影仪rgb合色装置 |
CN110365953B (zh) * | 2018-04-11 | 2021-11-26 | 深圳光峰科技股份有限公司 | 投影系统 |
CN111766757B (zh) * | 2019-04-02 | 2021-10-29 | 中强光电股份有限公司 | 照明系统与投影装置 |
CN110262174A (zh) * | 2019-06-14 | 2019-09-20 | 山西莱柏莱特电子科技有限公司 | 一种基于波带拓宽的激光投影消散斑光路装置 |
CN110244505B (zh) * | 2019-07-01 | 2022-07-22 | 福建省锐驰物联网股份有限公司 | 一种解散斑混合光源 |
CN110297384B (zh) * | 2019-07-25 | 2022-06-07 | 福建省锐驰物联网股份有限公司 | 一种用于投影的光源 |
CN110824821A (zh) * | 2019-11-21 | 2020-02-21 | 四川长虹电器股份有限公司 | 一种基于激光光源和led光源的混合光源耦合系统 |
US11586101B2 (en) * | 2020-02-14 | 2023-02-21 | Texas Instruments Incorporated | LED illumination with red laser assist |
CN111624841B (zh) * | 2020-06-24 | 2022-02-01 | 成都极米科技股份有限公司 | 一种混合光源系统以及投影显示设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002296680A (ja) * | 2001-04-02 | 2002-10-09 | Sony Corp | 画像表示装置 |
JP2005091610A (ja) * | 2003-09-16 | 2005-04-07 | Sony Corp | 画像表示装置 |
JP2005250088A (ja) * | 2004-03-04 | 2005-09-15 | Mitsubishi Electric Corp | 照明装置及び映像表示装置 |
JP2006301114A (ja) * | 2005-04-18 | 2006-11-02 | Sony Corp | 照明装置及び画像表示装置 |
JP2010286521A (ja) * | 2009-06-09 | 2010-12-24 | Mitsubishi Electric Corp | 映像表示装置 |
JP2011505019A (ja) * | 2007-11-30 | 2011-02-17 | ポイボス ビジョン オプト−エレクトロニクス テクノロジー リミテッド | 投影システムに用いる光源装置並びに投影表示装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4590647B2 (ja) * | 1999-07-30 | 2010-12-01 | 日東光学株式会社 | 光源装置およびプロジェクタ装置 |
US6807010B2 (en) | 2002-11-13 | 2004-10-19 | Eastman Kodak Company | Projection display apparatus having both incoherent and laser light sources |
JP3944648B2 (ja) * | 2003-11-28 | 2007-07-11 | セイコーエプソン株式会社 | 照明装置及びプロジェクタ |
US7159987B2 (en) * | 2003-04-21 | 2007-01-09 | Seiko Epson Corporation | Display device, lighting device and projector |
JP2006301208A (ja) | 2005-04-19 | 2006-11-02 | Sony Corp | 画像投影装置及び画像投影方法 |
US20060274284A1 (en) * | 2005-05-31 | 2006-12-07 | Infocus Corporation | Illumination arrangements for colored light sources |
CN101430492B (zh) * | 2007-11-08 | 2011-05-18 | 北京中视中科光电技术有限公司 | 一种用于投影系统的光源装置及投影显示装置 |
CN102449550B (zh) | 2009-05-29 | 2016-06-08 | 天空激光二极管有限公司 | 一种投影系统 |
CN102549492B (zh) * | 2009-09-28 | 2014-12-24 | 日本电气株式会社 | 光源装置以及使用该光源装置的投射型显示装置 |
JP2012008549A (ja) * | 2010-05-27 | 2012-01-12 | Panasonic Corp | 光源装置およびこれを用いた照明装置ならびに画像表示装置 |
WO2011161931A1 (ja) | 2010-06-22 | 2011-12-29 | パナソニック株式会社 | レーザプロジェクタ |
JP2012073496A (ja) * | 2010-09-29 | 2012-04-12 | Sony Corp | 照明装置、投影型表示装置、直視型表示装置 |
JP5581958B2 (ja) * | 2010-10-12 | 2014-09-03 | ソニー株式会社 | 照明装置、投影型表示装置、直視型表示装置 |
JP5682813B2 (ja) * | 2010-11-30 | 2015-03-11 | セイコーエプソン株式会社 | 照明装置及びプロジェクター |
-
2012
- 2012-08-01 JP JP2014527898A patent/JPWO2014020728A1/ja active Pending
- 2012-08-01 US US14/414,648 patent/US9557013B2/en active Active
- 2012-08-01 CN CN201280074776.7A patent/CN104520767B/zh not_active Expired - Fee Related
- 2012-08-01 WO PCT/JP2012/069610 patent/WO2014020728A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002296680A (ja) * | 2001-04-02 | 2002-10-09 | Sony Corp | 画像表示装置 |
JP2005091610A (ja) * | 2003-09-16 | 2005-04-07 | Sony Corp | 画像表示装置 |
JP2005250088A (ja) * | 2004-03-04 | 2005-09-15 | Mitsubishi Electric Corp | 照明装置及び映像表示装置 |
JP2006301114A (ja) * | 2005-04-18 | 2006-11-02 | Sony Corp | 照明装置及び画像表示装置 |
JP2011505019A (ja) * | 2007-11-30 | 2011-02-17 | ポイボス ビジョン オプト−エレクトロニクス テクノロジー リミテッド | 投影システムに用いる光源装置並びに投影表示装置 |
JP2010286521A (ja) * | 2009-06-09 | 2010-12-24 | Mitsubishi Electric Corp | 映像表示装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106133596A (zh) * | 2014-03-31 | 2016-11-16 | Nec显示器解决方案株式会社 | 光源设备和投影仪 |
JP2016162579A (ja) * | 2015-03-02 | 2016-09-05 | ウシオ電機株式会社 | 蛍光光源装置および照明装置 |
JP2017059396A (ja) * | 2015-09-16 | 2017-03-23 | ウシオ電機株式会社 | 蛍光光源装置および照明装置 |
JP2018045111A (ja) * | 2016-09-15 | 2018-03-22 | カシオ計算機株式会社 | 光源装置及び投影装置 |
US10133166B2 (en) | 2016-09-15 | 2018-11-20 | Casio Computer Co., Ltd. | Light source unit including a light source with multiple light emitting elements, different numbers of which can be turned on, and projector |
WO2021095517A1 (ja) * | 2019-11-13 | 2021-05-20 | ソニー・オリンパスメディカルソリューションズ株式会社 | 光源装置及び被検体観察システム |
CN114650764A (zh) * | 2019-11-13 | 2022-06-21 | 索尼奥林巴斯医疗解决方案公司 | 光源设备与被检体观察系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104520767B (zh) | 2017-06-09 |
US9557013B2 (en) | 2017-01-31 |
JPWO2014020728A1 (ja) | 2016-07-11 |
CN104520767A (zh) | 2015-04-15 |
US20150184810A1 (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014020728A1 (ja) | 照明光学系及び投射型表示装置 | |
US10379431B2 (en) | Projection apparatus and illumination system having wavelength conversion modules | |
TWI448806B (zh) | 螢光劑裝置及其所適用之光源系統及投影設備 | |
US9509966B2 (en) | Projector in illumination optical system including phosphor wheel driver | |
US8523367B2 (en) | Light source unit including a laser as a light source and a light emitting wheel with a diffusion layer opposite to the laser | |
US8926098B2 (en) | Illumination system and projection apparatus | |
JP6537103B2 (ja) | 光源装置、投写型表示装置及び光生成方法 | |
TWI448804B (zh) | 光源系統及包含該光源系統之投影裝置 | |
KR101502679B1 (ko) | 광원 장치 및 프로젝터 | |
US8833946B2 (en) | Light source module and projection apparatus | |
US20130321777A1 (en) | Illumination system and projection apparatus | |
JP4944769B2 (ja) | 照明装置及びそれを用いた投写型表示装置 | |
JP2007529035A (ja) | 単色光源を有するフレーム順次方式のカラー投影型ディスプレイシステム用の光エンジン、システム及び駆動方法 | |
US10866498B2 (en) | Wavelength conversion element, light source apparatus, and image projection apparatus | |
CN111198475A (zh) | 一种蓝光产生方法及照明系统 | |
TWI479253B (zh) | 光源系統及包含該光源系統之投影裝置 | |
TWI490627B (zh) | 光學投影裝置 | |
JP2006301208A (ja) | 画像投影装置及び画像投影方法 | |
JP2008176083A (ja) | 画像表示装置 | |
US11199766B1 (en) | Illumination system and projection device | |
JP2001264880A (ja) | 投写型表示装置 | |
JP7108901B2 (ja) | 照明装置及び投写型表示装置 | |
KR100606775B1 (ko) | Led 조명장치 및 이를 이용한 광학계 | |
TWM420737U (en) | Light source module of micro projector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12882308 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14414648 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014527898 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12882308 Country of ref document: EP Kind code of ref document: A1 |