WO2022188307A1 - 激光光路系统和投影设备 - Google Patents

激光光路系统和投影设备 Download PDF

Info

Publication number
WO2022188307A1
WO2022188307A1 PCT/CN2021/103533 CN2021103533W WO2022188307A1 WO 2022188307 A1 WO2022188307 A1 WO 2022188307A1 CN 2021103533 W CN2021103533 W CN 2021103533W WO 2022188307 A1 WO2022188307 A1 WO 2022188307A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
area
light beam
path system
Prior art date
Application number
PCT/CN2021/103533
Other languages
English (en)
French (fr)
Inventor
李巍
顾晓强
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2022188307A1 publication Critical patent/WO2022188307A1/zh
Priority to US18/319,740 priority Critical patent/US20230288793A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors

Definitions

  • the present application relates to the technical field of projection display, and in particular, to a laser light path system and projection equipment.
  • the light sources of projection equipment are mainly divided into three types, namely traditional bulb light source, LED light source and laser light source.
  • laser light source as the light source of projection equipment, has high brightness, bright colors, low energy consumption and long life, which makes the projection equipment It has the characteristics of high picture contrast and clear imaging.
  • a laser light path system including: a laser, a light combiner, a circuit component, and a fluorescent component;
  • the light combining mirror includes a first area and a second area, and the included angle between the light-emitting direction of the laser and the mirror surface of the first area is an acute angle;
  • the light beam emitted by the laser includes a first light beam that passes through the first area and is directed to the fluorescent component.
  • the fluorescent component generates fluorescence under the excitation of the first light beam, and reflects the fluorescent light to the second area, and the second area reflects the fluorescent light to the fluorescent component. light exit direction;
  • the light beam emitted by the laser also includes a second light beam reflected from the first area to the loop component, the loop component reflects the second light beam to the first area again, passes through the first area, and emits to the light outlet in synchronization with the fluorescence direction.
  • Another aspect of the embodiments of the present application provides a projection device including at least two light valves and the above-mentioned laser light path system.
  • FIG. 1 is a schematic structural diagram of a laser light path system in the related art
  • FIG. 2 is a schematic structural diagram of a laser optical path system shown in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a light combining mirror and a mirror group in the laser optical path system shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of another light combining mirror shown in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another light combining mirror and a reflecting mirror group shown in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a mirror group in the laser optical path system shown in FIG. 2;
  • FIG. 7 is a schematic structural diagram of a second lens group and a fluorescent component in the laser optical path system shown in FIG. 2;
  • FIG. 8 is a structural schematic diagram of a fluorescent component in the laser optical path system shown in FIG. 2;
  • FIG. 9 is a schematic structural diagram of another fluorescent component shown in this embodiment.
  • FIG. 10 is a top view of the fixed fluorescent sheet shown in FIG. 9;
  • FIG. 11 is a schematic structural diagram of another mirror group shown in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • Laser-excited fluorescent materials are used in the laser light path system to generate different colors of fluorescent light as a light source for projection display systems. Compared with projection display light sources using traditional bulb light sources, laser-excited fluorescent light sources have high brightness and bright colors. Low energy consumption and long service life make the projection equipment have the characteristics of high contrast and clear imaging.
  • Fluorescence is the light emitted by a substance when it absorbs light or other electromagnetic radiation. That is, when a substance at room temperature is irradiated by incident light of a certain wavelength (usually ultraviolet or X-ray), it enters an excited state after absorbing the light energy, and immediately de-excites and emits outgoing light with a wavelength longer than that of the incident light (usually the wavelength is Visible light band); once many fluorescent substances stop the incident light, the luminescence phenomenon will disappear immediately. Outgoing light with this property is called fluorescence. In general, the stronger the irradiated light, the more the number of molecules excited to the excited state on the fluorescent material, and the stronger the generated fluorescence intensity.
  • FIG. 1 is a schematic structural diagram of a laser light path system in the related art.
  • the laser light path system includes a monochromatic laser 101 , a fluorescent component 102 , a circuit component 103 , an output component 104 and a light collecting component 105 .
  • the fluorescent component 102 includes a plurality of fluorescent regions for exciting different colors of fluorescent light
  • the circuit component 103 is used to provide different color fluorescent light paths, so that the different colors of fluorescent light can be projected to the output component in a time-sharing manner and then output the laser light path system.
  • the loop component 103 in the above-mentioned laser optical path system is used to provide optical paths of different colors of fluorescence. It can be clearly seen that the structure of the optical path is relatively complex and the volume is large, which in turn leads to the complex structure of the laser optical path system, the volume is large, and the projection The brightness of the picture is also generally lower.
  • the embodiments of the present application provide a laser optical path system.
  • FIG. 2 is a schematic structural diagram of a laser light path system shown in an embodiment of the present application.
  • the laser light path system includes: a laser 11 , a light combiner 12 , a circuit component 13 , a fluorescent component 14 and a light outlet 15 ,
  • the light outlet 15 is used to output light beams to a plurality of light valves.
  • the light combining mirror 12 includes a first area 121 and a second area 122, and the included angle between the light exit direction f1 of the laser 11 and the mirror surface of the first area 121 is an acute angle.
  • the included angle ⁇ between the light-emitting direction f1 of the laser 11 and the mirror surface p of the first region 121 is 45 degrees.
  • the loop assembly 13 includes a mirror group 131 .
  • the light beam S emitted by the laser 11 includes a first light beam S1 that passes through the first region 121 and is directed toward the fluorescent component 14.
  • the fluorescent component 14 generates fluorescent light S3 under the excitation of the first light beam S1, and reflects the fluorescent light S3 toward the fluorescent component 14.
  • the second area 122, the second area 122 reflects the fluorescent light S3 toward the light outlet
  • the light beam S emitted by the laser 11 includes the second light beam S2 reflected by the first area 121 to the mirror group 131, and the mirror group 131
  • the light beam S2 is reflected toward the first area 121 , passes through the first area 121 , and is emitted toward the light exit port 15 in synchronization with the fluorescent light S3 .
  • the laser 11 may be a monochromatic laser, and the fluorescent component 12 may contain a fluorescent material.
  • the first light beam S1 in the light beam S emitted by the laser 11 generates a monochromatic fluorescent light S3 under the excitation of the fluorescent component.
  • the fluorescent light S3 and the light beam S The second light beam S2 in the above can be converged at the light outlet 15 to form a combined light beam, and output the laser light path system.
  • the laser light path system provided in the embodiments of the present application can use the monochromatic laser light source and the monochromatic fluorescence excited by the fluorescent component to synchronously emit to the light exit port and output a white light beam after being converged, without setting up light paths for different color fluorescent light.
  • the optical path structure is relatively simple, which solves the problem of complex structure and large volume of the laser optical path system due to the time-division output of different colors of fluorescence through different optical paths in the related art, and realizes the effect of miniaturization of the laser optical path system. Conducive to improve the brightness of the projection screen.
  • the fluorescent component 14 and the laser 11 are respectively located on opposite sides of the light combining mirror 12 in the first direction f2.
  • the first direction f2 is parallel to the light exit direction f1.
  • the mirror group 131 and the light outlet 15 are located on opposite sides of the light combining mirror 12 in the second direction f3, and the second direction f3 and the first direction f2 are not parallel.
  • the second direction f3 is perpendicular to the first direction f2, which can make the laser optical path system more compact, thereby making the laser optical path system miniaturized.
  • the laser, the mirror group in the circuit assembly, the fluorescent assembly and the light outlet are arranged around the light combining mirror, and the structure is relatively compact, and the light combining light source generated by the laser optical path system can also be adapted to a light source with at least two light valves. projection equipment.
  • the first area is used to transmit a% of the light and b% of the light to be reflected in the light beam directed to the surface of the first area, wherein a+b ⁇ 100.
  • the first area is specifically a transflective sheet
  • the transflective sheet is used to make a% of the light beams incident on the transflective sheet pass through the transflective sheet and reflect b% of the light light, a+b ⁇ 100.
  • the transflective lens includes a transparent base substrate and a transflective film arranged on the transparent base substrate.
  • the transflective lens includes a transparent base substrate and a polarizer disposed on the transparent base substrate.
  • the first area includes a transmission area and a reflection area, the transmission area is used for receiving the first light beam, and the reflection area is used for receiving the second light beam.
  • the transmission area has a dichroic selection function, and an exemplary transmission area may include a dichroic lens, the dichroic lens is used to transmit the light of the first color emitted by the laser, and reflect the light of the first color other than the light of the first color. Light.
  • the reflector group in the loop assembly includes a first lens group and a first reflector, the first lens group includes a first part and a second part separated by a first plane, and the main light of the first lens group the axis lies in the first plane;
  • the first part is used to receive the second light beam reflected by the first area and direct the second light beam to the first reflecting mirror
  • the second part is used to receive the light beam reflected by the first reflecting mirror and direct the light beam to the first area.
  • the loop assembly includes a second lens group, the second lens group includes a third portion and a fourth portion separated by a second plane, and the principal optical axis of the second lens group is located in the second plane;
  • the third part is used for receiving the first light beam passing through the first area, and guiding the first light beam to the fluorescent component, the fluorescent component is used for emitting fluorescent light under the excitation of the first light beam, and reflecting the fluorescent light toward the fourth part, the fourth A portion is used to direct the received fluorescence to the second zone.
  • the fluorescent component is used to excite yellow fluorescence, and the laser emits blue laser light;
  • the fluorescent component is used to excite white fluorescence, and the laser emits blue laser light.
  • the mirror group includes a triangular prism
  • the triangular prism includes a side surface, a first surface, and a second surface; wherein the side surface is used to receive the second light beam reflected by the first area, and guide the second light beam to the first surface, and the first surface One side is used to reflect the received light beam to the second side, and the second side is used to reflect the received light beam to the side surface, and transmit the received light beam to the first area through the side surface.
  • the first area and the second area are arranged adjacent to each other, and both are arranged at an acute angle with the direction of the optical axis of the light beam emitted by the laser. Therefore, the first region and the second region can achieve different functional divisions by coating on a transparent substrate.
  • the first region can also achieve different transmittance and reflectance ratios through coating, so that the light amount of the transmitted first beam and the reflected second beam can be changed by adjusting the transmittance and reflectance ratio.
  • the first surface of the laser beam incident on the first area has a coating or a polarizing film or a polarizer, and the second surface opposite to the first surface, that is, the surface close to the fluorescent component, can also be set to transmit blue light. and a dichroic film that reflects the fluorescence wavelength range.
  • the second area facing or close to the first surface of the fluorescent component has a light reflecting function
  • the second area can be a mirror
  • a total reflection film can be coated on the first surface of the second area or the fluorescent Reflective film for the wavelength range.
  • the beam width of the blue laser beam is narrow, while the fluorescence exhibits Lambertian divergence, the beam area is large, and the divergence angle is also large, the area of the first area is smaller than that of the second area, and the Collect fluorescence and improve light efficiency.
  • the optical axis of the blue laser beam and the optical axis of the fluorescence can be made as close as possible, which can reduce the difficulty of converging and collecting light in the subsequent optical paths.
  • the first area 121 includes a transmissive mirror 1211 .
  • the transflective sheet is used to make a% of the light pass through the transflective sheet and reflect b% of the light in the light beam S directed to the transflective sheet, a+b ⁇ 100.
  • the ratio of the transmitted a% light to the reflected b% light can be determined by the color ratio of the red, green and blue color mode.
  • the red green blue color mode (English: red green blue color mode) is a color standard in the industry, which is obtained by changing the three color channels of red, green and blue and superimposing them on each other.
  • the color of red, green and blue is the color representing the three channels of red, green and blue. This standard includes almost all the colors that human vision can perceive and is one of the most widely used color systems.
  • Color temperature is a unit of measurement that expresses the color components contained in light. Illustratively, red has the lowest color temperature, followed by orange, yellow, white, and blue, with blue being the highest color temperature; the higher the color temperature, the more blue and red components in the spectrum.
  • the light color of incandescent lamps is warm white, and its color temperature is expressed as 2700K, while the color temperature of daylight fluorescent lamps is expressed as 6000K.
  • the transflective sheet 1211 includes a transparent base substrate 12111 and a transflective film 12112 disposed on the transparent base substrate 12111 .
  • the transparent base substrate 12111 can be colorless optical glass with high transparency.
  • the transflective film 12112 is a kind of beam splitting film, which is coated on the transparent substrate substrate 12111.
  • the beam can be divided into two through reflection and refraction. bundle. It can be used to distribute the luminous flux of the incident light and control the splitting ratio as a:b, that is, a% of the incident light is transmitted and b% of the light is reflected.
  • Luminous flux refers to the radiant power of light that the human eye can perceive.
  • FIG. 4 is a schematic structural diagram of another light combining mirror shown in an embodiment of the present application.
  • the transflective sheet 1211 includes a transparent base substrate 12111 and a polarizer 12113 disposed on the transparent base substrate 12111 .
  • the polarizer 12113 can be an optical filter, in which the transmittance of light is directly related to its polarization direction, the polarizer 12113 can pass the polarized light in a certain direction, and the light whose polarization direction is perpendicular to it will be reflected to other directions , i.e. the laser will transmit a% of the light and reflect b% of the light.
  • the color temperature of the combined light beam incident on the light outlet can be adjusted.
  • Polarization refers to the asymmetry of the vibration direction to the propagation direction. It is the most obvious sign that the shear wave is different from other longitudinal waves. Only the shear wave has the phenomenon of polarization.
  • Light waves are electromagnetic waves, so the direction of propagation of light waves is the direction of propagation of electromagnetic waves.
  • the vibration direction of the light wave is perpendicular to the propagation speed, so the light wave is a transverse wave, and it has polarization, and the light with polarization is called polarized light.
  • the laser has polarization.
  • the polarization direction of the laser and the polarization direction of the polarizer have a certain angle.
  • the angle is a preset angle
  • the laser will transmit a% of the light and reflect b% light.
  • the preset angle is 45 degrees, the laser transmits 50% of the light and reflects 50% of the light.
  • the light valve may be a digital micromirror device (English: digital micromirror device; abbreviation: DMD), and the DMD may include a rectangular functional area, wherein the polarization direction of the laser is parallel or perpendicular to the long axis direction of the functional area.
  • DMD digital micromirror device
  • FIG. 5 is a schematic structural diagram of another light combining mirror 12 and a mirror group 131 shown in an embodiment of the present application.
  • the first area 121 includes a transmission area 1212 and a reflection area 1213 , the transmission area 1212 is used to receive the first light beam S1, and the reflection area 1213 is used to receive the second light beam S2.
  • the length ratio of the transmissive region 1212 and the reflective region 1213 is a:b. That is, the light beam emitted by the laser includes the first light beam S1 and the second light beam S2, and the ratio of the first light beam S1 transmitted through the transmission area 1212 to the reflected S2 is a:b.
  • This setting can adjust the color temperature of the combined light beam entering the light outlet.
  • the transmissive area 1212 includes a dichroic lens, which is used to transmit the light of the first color emitted by the laser and reflect the light other than the light of the first color.
  • the provision of the dichroic lens can prevent the fluorescent light excited by the fluorescent component from entering the laser through the transmission area, thereby reducing the damage to the laser and improving the reflection effect of the fluorescent light on the light combining mirror.
  • the mirror group 131 includes a first lens group 1311 and a first reflection mirror
  • the mirror 1312, the first lens group 1311 includes a first part 13111 and a second part 13112 separated by a first plane, the main optical axis C1 of the first lens group 1311 is located in the first plane; the first lens group 1311 may include two convex lenses .
  • the first part 13111 is used to receive the second light beam S2 reflected by the first area and direct the second light beam S2 to the first mirror 1312, and the second part 13112 is used to receive the light beam reflected by the first mirror 1312 and guide the light beam District 1.
  • Setting the first lens group 1311 can separate the optical path before the second light beam S2 enters the mirror group 131 and the light path after being reflected by the mirror group 131, so that the incident light path of the second light beam S2 and the reflected light path are not in the same light path, Avoid the reflected S2 returning to the laser along the incident light path and causing damage to the laser.
  • the second light beam reflected from the first region enters the first lens group 1311 and does not pass through the optical axis of the first lens group 1311 , that is, the second light beam enters the first lens group 1311 off-axis.
  • the first reflecting mirror 1312 receives and reflects the second light beam converged by the first lens group 1311, the second light beam passes through the first lens group 1311 again, and then enters the first area; at this time, the second beam enters the first area
  • the position of the first region does not completely coincide with the position where the second light beam is reflected from the first region. In the specific implementation, the two positions do not coincide, so that the second light beam is transmitted through the new position of the first region.
  • the circuit assembly 13 includes a second lens group 132 , and the second lens group 132 includes two convex lenses.
  • FIG. 7 is a schematic structural diagram of a second lens group 132 and the fluorescent component 14 in the laser optical path system shown in FIG. 2 .
  • the second lens group 132 includes a third portion 1321 separated by a second plane. and the fourth portion 1322, the main optical axis C2 of the second lens group 132 is located in the second plane.
  • the third part 1321 is used for receiving the first light beam S1 passing through the first area, and guiding the first light beam S1 to the fluorescent component 14, and the fluorescent component 14 is used for emitting fluorescent light S3 under the excitation of the first light beam S1, and transferring the fluorescent light S3 The reflection is towards the fourth portion 1322, which serves to direct the received fluorescence S3 towards the second zone.
  • Setting the second lens group 132 can separate the optical paths of the first light beam S1 and the fluorescent light S3, so that the first light beam S1 and the fluorescent light S3 are not in the same light path, so as to prevent the fluorescent light S3 from exiting the laser along the light path of the first light beam S1. damage to the laser.
  • the fluorescent component is used to excite yellow fluorescent light, and the laser emits blue laser light; the yellow fluorescent light excited by the fluorescent component and part of the blue laser light beam emitted by the laser converge at the light outlet to generate a white light beam.
  • an additional blue laser can be added.
  • the fluorescent component is used to excite white fluorescent light
  • the laser emits blue laser light
  • the white fluorescent light excited by the fluorescent component and part of the blue laser light emitted by the laser converge at the light outlet to generate a white light beam.
  • Part of the beam of the blue laser is used to adjust the color temperature.
  • the fluorescent component includes a fluorescent wheel 141
  • the fluorescent wheel 141 includes a fluorescent ring 1411 and a rotating shaft 1412
  • the rotating shaft 1412 passes through the fluorescent ring 1411 and the fluorescent ring. 1411 to connect.
  • the rotating shaft 1412 can rotate along the rotation direction w, and the fluorescent ring 1411 is rotated to dissipate heat while continuously exciting fluorescence, which can avoid the phenomenon of light saturation of the fluorescent material caused by the high-power excitation light of the fluorescent ring 1411.
  • the fluorescent ring 1411 can be prevented from being damaged due to excessive heat generated by the fluorescent ring 1411 under the irradiation of the laser light.
  • the light efficiency and reliability of the fluorescent material can be improved.
  • the side of the fluorescent ring 1411 close to the light-combining mirror may have white fluorescent powder or yellow fluorescent powder, and the side of the fluorescent ring 1411 near the light-combining mirror may also be a fluorescent ceramic structure, which can be excited to generate white light or yellow fluorescence.
  • the phenomenon of light saturation refers to the phenomenon that when the light intensity increases to a certain value, if the light intensity is increased again, the photosynthetic rate will no longer increase accordingly.
  • the fluorescent component includes a fixed fluorescent sheet 142
  • the fixed fluorescent sheet 142 includes a fluorescent sheet 1421 and a metal base 1422 .
  • the fluorescent sheet 1421 is disposed on the side of the metal base 1422 close to the light combining mirror.
  • the fluorescent sheet 1421 and the metal base 1422 can be connected by welding, and a heat sink can also be provided on the metal base 1422.
  • the heat sink can be a finned heat sink, that is, fins are added on the metal base 1422 to strengthen heat transfer. It is avoided that the fluorescent sheet 1421 is damaged due to excessive heat generated under the irradiation of the laser light.
  • FIG. 10 is a plan view of the fixed fluorescent sheet 142 shown in FIG. 9 .
  • the phosphor sheet 1421 may have white phosphors or yellow phosphors on the side close to the light combining lens.
  • the mirror group includes a triangular prism 1313 , and the triangular prism includes a side surface 13131 , a first surface 13132 and a third Two sides 13133.
  • the side surface 13131 is used to receive the second light beam S2 reflected by the first area, and guide the second light beam S2 to the first surface 13132.
  • the first surface 13132 is used to reflect the received light beam to the second surface 13133, and the second surface 13133 is used for It reflects the received light beam to the side surface 13131 and transmits it to the first area through the side surface 13131 .
  • the triangular prism 1313 separates the optical path of the second light beam S2 before entering the triangular prism 1313 and the light path reflected by the triangular prism 1313, so that the incident light path of the second light beam S2 and the reflected light path are not in the same light path, so as to prevent the reflected S2 from following the incident light path back into the laser causing damage to the laser.
  • the light outlet 15 is provided with a lens 151 and a light homogenizing component 152.
  • the lens 151 is used for condensing the fluorescent light and the second light beam projected to the light outlet 15, and then exiting to the light homogenizing component 152, and the light homogenizing component 152 .
  • the light pipe is a tubular device formed by splicing four plane reflection sheets, that is, a hollow light pipe. The light is reflected multiple times inside the light pipe to achieve the effect of uniform light.
  • the light pipe can also be made of solid
  • the light pipe, the light entrance and the light exit of the light pipe are rectangles with the same shape and area. The light beam enters from the light entrance of the light pipe, and then shoots from the light exit port of the light pipe to the light valve assembly. During the process of passing through the light pipe Complete beam homogenization and spot optimization.
  • Beam homogenization refers to transforming a beam with an uneven intensity distribution into a beam with a uniform cross-sectional distribution.
  • Speckle refers to when a laser light source is used to illuminate a rough surface such as a screen or any other object that produces diffuse reflection or diffuse transmission of light, the beams interfere to form bright or dark spots, creating a random granular intensity pattern.
  • the homogenizing component 152 can also be a fly-eye lens.
  • the fly-eye lens is usually formed by a combination of a series of small lenses. Two rows of fly-eye lens arrays are arranged in parallel to divide the spot of the input laser beam. The focusing lens accumulates the divided light spots, so as to obtain the effect of homogenization of the light beam and optimization of the light spot.
  • the embodiments of the present application provide a laser optical path system including a laser, a light combiner, a circuit component, a fluorescent component, and a light outlet.
  • the laser optical path system can use a monochromatic laser light source and a monochromatic fluorescence excited by a fluorescent component to synchronously emit to the light outlet and converge to output a white light beam.
  • the optical path structure is relatively simple. Fluorescence of different colors is output by different optical paths in time division, which leads to the problems of complicated structure and large volume of the laser optical path system, and the effect of miniaturization of the laser optical path system is realized.
  • the laser, the mirror group in the circuit assembly, the fluorescent assembly and the light outlet are arranged around the light combining mirror, and the structure is relatively compact, and the light combining light source generated by the laser optical path system can also be adapted to a projection device with at least two light valves .
  • FIG. 12 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • the projection device may include a laser light path system 10, an optomechanical lighting system 20 and a projection lens 30.
  • the optomechanical lighting system may include a lens group 201, a light valve assembly and a prism group 203, wherein the laser light path system 10 emits light beams to the optomechanical lighting In the system 20, the light beam enters the light valve assembly after being adjusted by the lens group 201 and the prism group 203.
  • the light valve assembly modulates the light beam and emits an image beam.
  • the image beam passes through the prism group 203 and enters the projection lens 30, and the projection lens 30 emits laser light projection equipment.
  • the prism group 203 includes four prisms (the four prisms are located in the upper left corner, upper right corner, lower left corner and lower right corner of FIG. 12 respectively), and each prism includes two oppositely arranged triangular prisms, wherein,
  • the prism in the lower left corner and the prism in the upper right corner may be a polarization beam splitter (English: polarization beam splitter; abbreviation: PBS) 2031 and a polarization beam splitter 2032 .
  • Polarizing beamsplitter prisms can split incident unpolarized light into two perpendicular linearly polarized beams.
  • the laser light path system 10 in the projection device can refer to the laser light path system provided in the above-mentioned embodiment, which includes a laser, a light combiner, a circuit component, a fluorescent component and a light outlet.
  • the fluorescent component excites fluorescence, and the other part of the light beam emitted by the laser is synchronously emitted to the light outlet and converges at the light outlet to form a synthetic white light beam.
  • the light valve assembly in the projection device may include at least two light valves and the laser light path system in the above embodiment.
  • the two light valves can be used to process the fluorescence and the laser light provided by the laser light path system, respectively.
  • FIG. 12 shows the case where the projection apparatus includes three light valves.
  • the number of light valves is three, and the three light valves ( 2021 , 2022 , and 2023 ) are used to respectively process three color lights in the white light provided by the laser light path system. That is, the light valve assembly includes a light valve 2021, a light valve 2022, and a light valve 2023, which are used to process the multi-primary color light provided by the laser light path system respectively.
  • the light valve may include a digital micromirror element, a liquid crystal on silicon (English: Liquid Crystal on Silicon; abbreviated: LCOS) chip or a liquid crystal display device (English: Liquid Crystal Display; abbreviated LCD) chip.
  • a digital micromirror element a liquid crystal on silicon (English: Liquid Crystal on Silicon; abbreviated: LCOS) chip or a liquid crystal display device (English: Liquid Crystal Display; abbreviated LCD) chip.
  • the light valve assembly may include three LCDs, and LCD refers to a liquid crystal display micro-device that uses the electro-optic effect of liquid crystal to control the transmittance and reflectivity of the liquid crystal cell through a circuit, thereby generating images with different grayscale levels and colors.
  • LCD refers to a liquid crystal display micro-device that uses the electro-optic effect of liquid crystal to control the transmittance and reflectivity of the liquid crystal cell through a circuit, thereby generating images with different grayscale levels and colors.
  • the three-piece LCD projector may use three liquid crystal panels of red, green and blue as control layers for the red, green and blue light respectively.
  • the white light emitted by the laser light path system passes through the lens group and then converges to the dichroic mirror group.
  • the red light is first separated and projected onto the red liquid crystal panel, which forms the red light information in the image.
  • the green light is projected onto the green liquid crystal panel to form the green light information in the image.
  • the blue light passes through the blue liquid crystal panel to generate the blue light information in the image.
  • the three colors of light converge in the prism group and are projected by the projection lens. onto the projection screen to form a full-color image.
  • the above embodiments of the present application provide a projection device including at least two light valves and a laser light path system.
  • the laser optical path system can use a monochromatic laser light source and a monochromatic fluorescence excited by a fluorescent component to synchronously emit to the light outlet and converge to output a white light beam.
  • the optical path structure is relatively simple. Since the fluorescence of different colors is outputted through different optical paths in time division, the structure of the laser optical path system is complicated and the volume is relatively large, and the effect of miniaturization of the laser optical path system is realized.
  • the combined light source generated by the laser light path system can also be adapted to a projection device having at least two light valves, thereby improving the projection performance of the projection device.

Abstract

一种激光光路系统(10)和投影设备,属于投影显示技术领域。激光光路系统(10)包括:激光器(11)、合光镜(12)、回路组件(13)、荧光组件(14),合光镜(12)包括第一区(121)以及第二区(122),激光器(11)的出光方向(f1)与第一区(121)的镜面之间的夹角为锐角;激光器(11)发出的光束(S)中,包括透过第一区(121)并射向荧光组件(14)的第一光束(S1),荧光组件(14)在第一光束(S1)的激发下产生荧光(S3),并将荧光(S3)反射向第二区(122),第二区(122)将荧光(S3)反射向出光口(15)方向;以及,激光器(11)发出的光束(S)中,还包括由第一区(121)反射向回路组件(13)的第二光束(S2),回路组件(13)将第二光束(S2)再次反射向第一区(121),并透过第一区(121),与荧光(S3)同步射向出光口(15)方向。

Description

激光光路系统和投影设备
相关申请的交叉引用
本申请要求在2021年3月11日提交中国专利局、申请号为202110266343.2,发明名称为“激光光源系统和投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示技术领域,特别涉及一种激光光路系统和投影设备。
背景技术
目前,投影设备的光源主要分为三种,即传统灯泡光源、LED光源和激光光源,其中,激光光源作为投影设备的光源,具有亮度高,色彩鲜艳,能耗低且寿命长,使得投影设备具有画面对比度高,成像清晰的特点。
发明内容
本申请实施例一方面提供了一种激光光路系统,包括:激光器、合光镜、回路组件、荧光组件;
合光镜包括第一区以及第二区,激光器的出光方向与第一区的镜面之间的夹角为锐角;
激光器发出的光束中,包括透过第一区并射向荧光组件的第一光束,荧光组件在第一光束的激发下产生荧光,并将荧光反射向第二区,第二区将荧光反射向出光口方向;
以及,激光器发出的光束中,还包括由第一区反射向回路组件的第二光束,回路组件将第二光束再次反射向第一区,并透过第一区,与荧光同步射向出光口方向。
本申请实施例的另一方面,提供了一种投影设备,包括至少两个光阀以及上述的激光光路系统。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申 请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中一种激光光路系统的结构示意图;
图2是本申请实施例示出的一种激光光路系统的结构示意图;
图3是图2所示的激光光路系统中的一种合光镜与反射镜组的结构示意图;
图4是本申请实施例示出的另一种合光镜的结构示意图;
图5是本申请实施例示出的另一种合光镜与反射镜组的结构示意图;
图6是图2所示的激光光路系统中的一种反射镜组的结构示意图;
图7为图2所示的激光光路系统中的一种第二透镜组与荧光组件的结构示意图;图8是图2所示的激光光路系统中的一种荧光组件的结构示意图;
图9是本实施例示出的另一种荧光组件的结构示意图;
图10是图9所示的固定荧光片的俯视图;
图11是本申请实施例示出的另一种反射镜组的结构示意图;
图12是本申请实施例提供的一种投影设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
激光光路系统中使用激光激发荧光材料,产生不同颜色的荧光作为光源,用于投影显示系统,与使用传统的灯泡光源的投影显示光源相比,激光激发产生荧光的光源具有亮度高,色彩鲜艳,能耗低且寿命长,使得投影设备具有画面对比度高,成像清晰的特点。
荧光是物质吸收光照或者其他电磁辐射后发出的光。即当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的波长长的出射光(通常波长在可见光波段);很多荧光物质一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。一般情况下,照射光越强,荧光材料上被激发到激发态的分子数量越多,从而产生的荧光强度越强。
如图1所示,图1是相关技术中一种激光光路系统的结构示意图,该激光光路系统包括单色激光器101、荧光组件102、回路组件103、输出组件104以及聚光组件105。该荧光组件102包括多个荧光区,用于激发出不同颜色的荧光,回路组件103用于提供不同颜色荧光的光路,以使不同颜色的荧光可以分时投射至输出组件后输出激光光路系统。
上述激光光路系统中的回路组件103用于提供不同颜色荧光的光路,可以明显看出,该光路的结构较为复杂,体积较大,进而导致激光光路系统的结构较为复杂,体积较大,并且投影画面的亮度也通常较低。
本申请实施例提供了一种激光光路系统。
如图2所示,图2是本申请实施例示出的一种激光光路系统的结构示意图,该激光光路系统包括:激光器11、合光镜12、回路组件13、荧光组件14及出光口15,出光口15用于将光束输出至多个光阀。
合光镜12包括第一区121以及第二区122,激光器11的出光方向f1与第一区121的镜面之间的夹角为锐角。
示例性的,激光器11的出光方向f1与第一区121的镜面p之间的夹角α为45度。
回路组件13包括反射镜组131。
其中,激光器11发出的光束S中,包括透过第一区121并射向荧光组件14的第一光束S1,荧光组件14在第一光束S1的激发下产生荧光S3,并将荧光S3反射向第二区122,第二区122将荧光S3反射向出光口,激光器11发出的光束S中,包括由第一区121反射向反射镜组131的第二光束S2,反射镜组131将第二光束S2反射向第一区121,并透过第一区121,与荧光S3同步射向出光口15。
其中,激光器11可以为单色激光器,荧光组件12可以包含一种荧光材料,激光器11发出的光束S中的第一光束S1在荧光组件的激发下产生单色的荧光S3,荧光S3与光束S中的第二光束S2可以在出光口15处汇聚合成 合光光束,输出激光光路系统。
综上所述,本申请实施例提供的激光光路系统,可以用单色激光光源以及荧光组件激发的单色荧光,同步射向出光口并汇聚后输出白色光束,无需设置不同颜色荧光的光路,光路结构较为简洁,解决了相关技术中由于不同颜色的荧光通过不同的光路分时输出,导致激光光路系统的结构较为复杂,体积较大的问题,实现了激光光路系统小型化的效果,同时还利于提高投影画面亮度。
在一种具体实施中,荧光组件14和激光器11分别位于合光镜12在第一方向f2上相对的两侧。第一方向f2平行于出光方向f1。反射镜组131和出光口15位于合光镜12在第二方向f3上相对的两侧,第二方向f3和第一方向f2不平行。
示例性的,第二方向f3和第一方向f2垂直,可以使得激光光路系统较为紧凑,进而使得激光光路系统小型化。
如此结构下,激光器、回路组件中的反射镜组、荧光组件以及出光口围绕合光镜设置,结构较为紧凑,且该激光光路系统产生的合光光源还可以适配具有至少两个光阀的投影设备。
其中,第一区用于使射向该第一区表面的光束中,a%的光透过,b%的光被反射,其中,a+b≤100。
在一种具体实施中,第一区具体为透射反射镜片,该透射反射镜片用于使射向所述透射反射镜片的光束中,a%的光透过所述透射反射镜片,并反射b%的光,a+b≤100。透射反射镜片包括透明衬底基板以及设置在透明衬底基板上的半透半反膜。
在一种具体实施中,透射反射镜片包括透明衬底基板以及设置在透明衬底基板上的偏振片。
在一种具体实施中,第一区包括透射区以及反射区,透射区用于接收第一光束,反射区用于接收第二光束。其中,透射区具有二向色选择功能,示例性的透射区可以包括二向色镜片,二向色镜片用于透过激光器发出的第一色的光,并反射除第一色的光外的光。
在一种具体实施中,回路组件中的反射镜组包括第一透镜组以及第一反射镜,第一透镜组包括由第一平面分隔的第一部分以及第二部分,第一透镜组的主光轴位于第一平面中;
第一部分用于接收第一区反射的第二光束,并将第二光束射向第一反射镜,第二部分用于接收第一反射镜反射的光束,并将光束导向第一区。
在一种具体实施中,回路组件包括第二透镜组,第二透镜组包括由第二平面分隔的第三部分和第四部分,第二透镜组的主光轴位于第二平面中;
第三部分用于接收透过第一区的第一光束,并将第一光束导向荧光组件,荧光组件用于在第一光束的激发下发出荧光,并将荧光反射向第四部分,第四部分用于将接收到的荧光导向第二区。
在一种具体实施中,荧光组件用于激发出黄色荧光,激光器发出的为蓝色激光;
或者,荧光组件用于激发出白色荧光,激光器发出的为蓝色激光。
在一种具体实施中,反射镜组包括三棱镜,三棱镜包括侧面、第一面以及第二面;其中侧面用于接收第一区反射的第二光束,并将第二光束导向第一面,第一面用于将接收到的光束反射向第二面,第二面用于将接收到的光束反射向侧面,并透过侧面射向第一区。
在一种具体实施中,第一区和第二区相邻设置,且均与激光器发出的光束的光轴方向呈锐角设置。从而第一区和第二区可以通过在一个透明基板上通过镀膜实现不同的功能分区。
在一种具体实施中,第一区也可以通过镀膜实现不同的透反比,从而透射通过的第一光束和被反射的第二光束的光量通过调整透反比进行变化。
在一具体实施中,激光器发出的光束入射至第一区的第一表面具有镀膜或偏振膜或偏振片,而与第一表面相对的第二表面,即靠近荧光组件的表面还可以设置透射蓝光和反射荧光波段范围的二向色膜。
在一具体实施中,第二区面向或者靠近荧光组件的第一表面具有光反射功能,第二区可以为一片反射镜,也可以通过在第二区的第一表面镀全反膜或者针对荧光波段范围的反射膜。
在一种具体实施中,蓝色激光光束的光束宽度较窄,而荧光呈朗伯体发散,光束面积较大,发散角度也大,第一区的面积小于第二区的面积,可以尽可能收集荧光,提高光效。以及,可以通过调整回路组件对第二光束反射向第一区的位置,可以使蓝色激光光束的光轴和荧光的光轴尽量靠近,可以降低后面光路会聚收光的难度。
在一种具体实施中,如图3所示,图3是图2所示的激光光路系统中一种合光镜12与反射镜组131的结构示意图,第一区121包括透射反射镜片1211,透射反射镜片用于使射向透射反射镜片的光束S中,a%的光透过透射反射镜片,并反射b%的光,a+b≤100。
示例性的,a=80,b=20,即80%的光透过透射反射镜片并入射到荧光组件,用于激发产生单色的荧光,并反射20%的光用于作为激光的基色光,与产生的单色荧光合光。
透射的a%的光和反射的b%光的比例可以由红绿蓝色彩模式的色彩配比决定,不同比例时光束的色温不同,比如设置色温9000-10000K的时候,a=80,b=20,当设置的色温较低的情况下,可以通过增加透射的光,减少反射的光来实现;当设置的色温较高时,可以通过减少透射的光,增加反射的光来实现。
红绿蓝色彩模式(英文:red green blue color mode)是工业界的一种颜色标准,是通过对红、绿和蓝三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,红、绿和蓝即是代表红、绿和蓝三个通道的颜色,这个标准几乎包括了人类视力所能感知的所有颜色,是运用最广的颜色系统之一。
色温是表示光线中包含颜色成分的一个计量单位。示例性的,红色的色温最低,然后逐步增加的是橙色、黄色、白色和蓝色,蓝色是最高的色温;色温越高,光谱中蓝色的成份则越多,而红色的成份则越少,白炽灯的光色是暖白色,其色温表示为2700K,而日光色荧光灯的色温表示方法则是6000K。
在一种具体实施中,如图3所示,透射反射镜片1211包括透明衬底基板12111以及设置在透明衬底基板12111上的半透半反膜12112。
透明衬底基板12111可以是无色光学玻璃,具有较高的透明度。
半透半反膜12112是分束膜的一种,将其镀在透明衬底基板12111上,当一束光投射到透射反射镜片1211上后,通过反射和折射,光束就可以被分为两束。可用来分配入射光的光通量,控制分光比为a:b,即对a%的入射光线透过,对b%的光进行反射。光通量指人眼所能感觉到的光的辐射功率。
在一种具体实施中,如图4所示,图4是本申请实施例示出的另一种合光镜的结构示意图。透射反射镜片1211包括透明衬底基板12111以及设置在透明衬底基板12111上的偏振片12113。偏振片12113可以为一种光滤波器,其中光的透射率与其偏振方向直接相关,偏振片12113可以使某一方向的偏振光通过,而偏振方向与其垂直的光则会被反射到其它的方向上,即激光会透射的a%的光和反射的b%光。可以调节入射至出光口的合光光束的色温。
偏振是指振动方向对于传播方向的不对称性,它是横波区别于其他纵波的一个最明显的标志,只有横波才有偏振现象。光波是电磁波,因此,光波的传播方向就是电磁波的传播方向。光波的振动方向与传播速度垂直,因此 光波是横波,它具有偏振性,具有偏振性的光则称为偏振光。
激光具有偏振性,当激光器发出的光束照射至偏振片上时,激光的偏振方向与偏振片的偏振方向具有一定的夹角,在夹角为预设角度时,激光会透射a%的光和反射b%的光。示例性的,当预设角度为45度时,激光会透射50%的光和反射50%的光。
光阀可以为数字微镜元件(英文:digital micromirror device;简写:DMD),DMD可以包括长方形的功能区,其中,激光的偏振方向与功能区的长轴方向平行或者垂直。
在一种具体实施中,如图5所示,图5是本申请实施例示出的另一种合光镜12与反射镜组131的结构示意图,第一区121包括透射区1212以及反射区1213,透射区1212用于接收第一光束S1,反射区1213用于接收第二光束S2。透射区1212以及反射区1213的长度比例为a:b。即为激光器发出的光束包括第一光束S1以及第二光束S2,透过透射区1212的第一光束S1与反射后的S2的比例为a:b。如此设置可以调节入射出光口的合光光束的色温。
在一种具体实施中,透射区1212包括二向色镜片,二向色镜片用于透过激光器发出的第一色的光,并反射除第一色的光外的光。设置二向色镜片可以避免荧光组件激发的荧光透过透射区入射至激光器,减小对激光器的损害的同时,提高荧光在合光镜上的反射效果。
在一种具体实施中,如图6所示,图6是图2所示的激光光路系统中的一种反射镜组131的结构示意图,反射镜组131包括第一透镜组1311以及第一反射镜1312,第一透镜组1311包括由第一平面分隔的第一部分13111以及第二部分13112,第一透镜组1311的主光轴C1位于第一平面中;第一透镜组1311可以包括两个凸透镜。
第一部分13111用于接收第一区反射的第二光束S2,并将第二光束S2射向第一反射镜1312,第二部分13112用于接收第一反射镜1312反射的光束,并将光束导向第一区。
设置第一透镜组1311可以把第二光束S2进入反射镜组131之前的光路与经反射镜组131反射后的光路分离开来,使得第二光束S2的入射光路与反射光路不在一个光路中,避免反射后的S2沿入射光路返回至激光器中而对激光器造成损害。
在上述光路中,第一区反射的第二光束入射第一透镜组1311且不通过第一透镜组1311的光轴,即第二光束偏轴入射第一透镜组1311。第一反射镜1312接收并反射经第一透镜组1311会聚后的第二光束,第二光束再次透过第 一透镜组1311后,入射至第一区;此时第二光束入射至第一区的位置与第一区反射第二光束的位置不完全重合,在具体实施时,两个位置不重合,这样第二光束从第一区的新的位置透射通过。
在一种具体实施中,如图2所示,回路组件13包括第二透镜组132,第二透镜组132包括两个凸透镜。
如图7所示,图7为图2所示的激光光路系统中的一种第二透镜组132与荧光组件14的结构示意图,第二透镜组132包括由第二平面分隔的第三部分1321和第四部分1322,第二透镜组132的主光轴C2位于第二平面中。
第三部分1321用于接收透过第一区的第一光束S1,并将第一光束S1导向荧光组件14,荧光组件14用于在第一光束S1的激发下发出荧光S3,并将荧光S3反射向第四部分1322,第四部分1322用于将接收到的荧光S3导向第二区。
设置第二透镜组132,可以把第一光束S1与荧光S3的光路分离开来,使得第一光束S1与荧光S3不在一个光路中,避免荧光S3沿第一光束S1的光路出射至激光器中而对激光器造成损害。
在一种具体实施中,荧光组件用于激发出黄色荧光,激光器发出的为蓝色激光;荧光组件激发的黄色荧光与激光器发出的蓝色激光的部分光束,在出光口处汇聚产生白色光束。现有的蓝色激光的部分光束与黄色荧光形成的白色光束的色温达不到在色温比例要求时,可以额外再增加蓝色激光。
或者,荧光组件用于激发出白色荧光,激光器发出的为蓝色激光,荧光组件激发的白色荧光与激光器发出的蓝色激光的部分光束,在出光口处汇聚产生白色光束。蓝色激光的部分光束用于调节色温。
如图8所示,图8所示的激光光路系统中的荧光组件的结构示意图,荧光组件包括荧光轮141,荧光轮141包括荧光环1411以及转轴1412,转轴1412穿过荧光环1411与荧光环1411连接。荧光轮141在使用时,转轴1412可以沿转动方向w转动,在持续激发出荧光的同时,使得荧光环1411转动散热,可以避免荧光环1411高功率的激发光造成的荧光材料的光饱和现象,同时,也可以避免荧光环1411在激光的照射下产生过多的热量而造成荧光环1411损坏。可以提高荧光材料的光效和可靠性。荧光环1411靠近合光镜一侧可以具有白色荧光粉或者黄色荧光粉,荧光环1411靠近合光镜一侧也可以为荧光陶瓷结构,该荧光陶瓷结构可以受到激发产生白光或黄色荧光。
光饱和现象是指当光照强度增加到某一数值,如果再度增高光照强度,光合速率不再随之增加的现象。
如图9所示,图9是本实施例示出的另一种荧光组件的结构示意图,荧光组件包括固定荧光片142,固定荧光片142包括荧光片1421以及金属基座1422。
其中荧光片1421设置于金属基座1422靠近合光镜的一侧。荧光片1421与金属基座1422之间可以通过焊连接,金属基座1422上还可以设置散热器,散热器可以是翅片式散热器,即在金属基座1422上加装翅片用以加强传热。避免了荧光片1421在激光的照射下产生过多的热量而造成荧光片1421损坏。
如图10所示,图10是图9所示的固定荧光片142的俯视图。荧光片1421靠近合光镜一侧可以具有白色荧光粉或者黄色荧光粉。
在一种具体实施中,如图11所示,图11是本申请实施例示出的另一种反射镜组的结构示意图,反射镜组包括三棱镜1313,三棱镜包括侧面13131、第一面13132以及第二面13133。
侧面13131用于接收第一区反射的第二光束S2,并将第二光束S2导向第一面13132,第一面13132用于将接收到的光束反射向第二面13133,第二面13133用于将接收到的光束反射向侧面13131,并透过侧面13131射向第一区。
三棱镜1313把第二光束S2进入三棱镜1313之前的光路与经过三棱镜1313反射后的光路分离开来,使得第二光束S2的入射光路与反射光路不在同一个光路中,避免反射后的S2沿入射光路返回至激光器中而对激光器造成损害。
如图2所示,出光口15处设置有包括透镜151以及匀光组件152,透镜151用于汇聚投射至出光口15的荧光以及第二光束,并出射至匀光组件152,匀光组件152包括光导管,光导管是一种由四片平面反射片拼接而成的管状器件,也即为空心光导管,光线在光导管内部多次反射,达到匀光的效果,光导管也可以采用实心光导管,光导管的入光口和出光口为形状面积均一致的矩形,光束从光导管的入光口进入,再从光导管的出光口射向光阀组件,在经过光导管的过程中完成光束匀化以及光斑优化。
光束匀化是指将强度分布不均匀的光束通过光束变换,整形成横截面分布均匀的光束。光斑是指当激光光源用来照亮例如屏幕的粗糙表面或产生漫反射或漫射透光的任何其它物体时,这些光束干涉形成亮点或者暗点,产生随机的粒状强度图案。
在一种具体实施中,匀光组件152还可以为复眼透镜,复眼透镜通常由一系列小透镜组合形成,将两列复眼透镜阵列平行排列,以对输入的激光光束的光斑分割,在通过后续聚焦透镜将分割的光斑累加,从而得到对光束的 匀化以及光斑优化的效果。
综上所述,本申请实施例提供了一种包括激光器、合光镜、回路组件、荧光组件及出光口的激光光路系统。该激光光路系统可以用单色激光光源以及荧光组件激发的单色荧光,同步射向出光口并汇聚后输出白色光束,无需设置不同颜色荧光的光路,光路结构较为简洁,解决了相关技术中由于不同颜色的荧光通过不同的光路分时输出,导致激光光路系统的结构较为复杂,体积较大的问题,实现了激光光路系统小型化的效果。
此外,激光器、回路组件中的反射镜组、荧光组件以及出光口围绕合光镜设置,结构较为紧凑,且该激光光路系统产生的合光光源还可以适配具有至少两个光阀的投影设备。
如图12所示,图12是本申请实施例提供的一种投影设备的结构示意图。该投影设备可以包括激光光路系统10,光机照明系统20以及投影镜头30,光机照明系统可以包括透镜组201、光阀组件以及棱镜组203,其中,激光光路系统10出射光束至光机照明系统20,光束经过透镜组201以及棱镜组203调整后进入光阀组件,光阀组件对光束进行调制后射出影像光束,影像光束经过棱镜组203后进入投影镜头30,并由投影镜头30射出激光投影设备。
在一种具体实施中,棱镜组203包括四个棱镜(这四个棱镜分别位于图12的左上角,右上角、左下角以及右下角),每个棱镜包括相对设置的两个三棱镜,其中,左下角的棱镜以及右上角的棱镜可以为偏振分光棱镜(英文:polarization beam splitter;简写:PBS)2031以及偏振分光棱镜2032。偏振分光棱镜可以把入射的非偏振光分成两束垂直的线偏光。
在一种具体实施中,该投影设备中的激光光路系统10可以参照上述实施例中提供的激光光路系统,包括激光器、合光镜、回路组件、荧光组件及出光口,激光器发出的部分光束经荧光组件激发出荧光,与激光器发出的另一部分光束,同步射向出光口并在出光口处汇聚成合成白色光束。
该投影设备中的光阀组件可以包括至少两个光阀以及上述实施例中的激光光路系统。当该投影设备包括两个光阀时,这两个光阀可以分别用于处理激光光路系统提供的荧光以及激光。图12示出的是投影设备包括三个光阀的情况。
在一种具体实施中,光阀的数量为三,三个光阀(2021、2022、2023)用于分别处理激光光路系统提供的白光中的三种色光。即光阀组件包括光阀2021、光阀2022以及光阀2023,用于分别处理激光光路系统提供的多基色光。
其中,光阀可以包括数字微镜元件,硅基液晶(英文:Liquid Crystal on Silicon;简写:LCOS)芯片或液晶显示器件(英文:Liquid Crystal Display;简写LCD)芯片。
示例性的,光阀组件可以包括三块LCD,LCD是指利用液晶的电光效应,通过电路控制液晶单元的透射率及反射率,从而产生不同灰度层次及色彩的图像的液晶显示微型器件。
三片式LCD投影机可以是用红、绿和蓝三块液晶板分别作为红、绿和蓝三色光的控制层。激光光路系统发射出来的白色光经过镜头组后会聚到分色镜组,红色光首先被分离出来,投射到红色液晶板上,液晶板形成图像中的红色光信息。绿色光被投射到绿色液晶板上,形成图像中的绿色光信息,同样蓝色光经蓝色液晶板后生成图像中的蓝色光信息,三种颜色的光在棱镜组中会聚,由投影镜头投射到投影幕上形成一幅全彩色图像。
综上所述,本申请上述实施例提供了一种包括至少两个光阀以及激光光路系统的投影设备。其中,激光光路系统可以用单色激光光源以及荧光组件激发的单色荧光,同步射向出光口并汇聚后输出白色光束,无需设置不同颜色荧光的光路,光路结构较为简洁,解决了相关技术中由于不同颜色的荧光通过不同的光路分时输出,导致激光光路系统的结构较为复杂,体积较大的问题,实现了激光光路系统小型化的效果。该激光光路系统产生的合光光源还可以适配具有至少两个光阀的投影设备,提高投影设备的投影性能。
在本申请中,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围。

Claims (14)

  1. 一种激光光路系统,其特征在于,所述激光光路系统包括:激光器、合光镜、回路组件、荧光组件;
    所述合光镜包括第一区以及第二区,所述激光器的出光方向与所述第一区的镜面之间的夹角为锐角;
    所述激光器发出的光束中,包括透过所述第一区并射向所述荧光组件的第一光束,所述荧光组件在所述第一光束的激发下产生荧光,并将所述荧光反射向所述第二区,所述第二区将所述荧光反射向出光口方向;
    以及,所述激光器发出的光束中,还包括由所述第一区反射向所述回路组件的第二光束,所述回路组件将所述第二光束再次反射向所述第一区,并透过所述第一区,与所述荧光同步射向出光口方向。
  2. 根据权利要求1所述的激光光路系统,其特征在于,所述第一区用于使射向所述第一区表面的光束中,a%的光透过,b%的光被反射,其中,a+b≤100。
  3. 根据权利要求2所述的激光光路系统,其特征在于,所述第一区包括透明衬底基板以及设置在所述透明衬底基板上的半透半反膜。
  4. 根据权利要求2所述的激光光路系统,其特征在于,所述第一区包括透明衬底基板以及设置在所述透明衬底基板上的偏振片。
  5. 根据权利要求1所述的激光光路系统,其特征在于,所述第一区包括透射区以及反射区,所述透射区用于接收所述第一光束,所述反射区用于接收所述第二光束,所述透射区和反射区相邻。
  6. 根据权利要求5所述的激光光路系统,其特征在于,所述透射区包括二向色镜片,所述二向色镜片用于透过所述激光器发出的第一色的光,并反射除所述第一色的光外的光。
  7. 根据权利要求1所述的激光光路系统,其特征在于,所述第一区和第二区相邻设置,且均与所述激光器发出的光束的光轴方向呈锐角设置。
  8. 根据权利要求1-7任一项所述的激光光路系统,其特征在于,所述第一区的面积小于所述第二区的面积。
  9. 根据权利要求1所述的激光光路系统,其特征在于,所述回路组件包括第一透镜组以及第一反射镜;
    所述第一区反射的第二光束入射所述第一透镜组且不通过所述第一透镜组的光轴,
    所述第一反射镜接收并反射经第一透镜组会聚后的第二光束,所述第二光束再次透过所述第一透镜组后,入射至所述第一区;
    所述第二光束入射至所述第一区的位置与所述第一区反射所述第二光束的位置不完全重合。
  10. 根据权利要求1所述的激光光路系统,其特征在于,所述荧光组件用于激发出黄色荧光,所述激光器发出的为蓝色激光;
    或者,所述荧光组件用于激发出白色荧光,所述激光器发出的为蓝色激光。
  11. 根据权利要求1所述的激光光路系统,其特征在于,所述回路组件包括三棱镜,所述三棱镜包括侧面、第一面以及第二面;
    所述侧面用于接收所述第一区反射的第二光束,并将所述第二光束导向所述第一面,所述第一面用于将接收到的光束反射向所述第二面,所述第二面用于将接收到的光束反射向所述侧面,并透过所述侧面射向所述第一区。
  12. 根据权利要求1所述的激光光路系统,其特征在于,在所述出光口方向上还设置有会聚透镜和集光部件,所述会聚透镜用于将经所述第一区透射的第二光束和经所述第二区反射的荧光会聚后入射至所述集光部件。
  13. 一种投影设备,其特征在于,所述投影设备包括至少两个光阀以及权利要求1-12任一所述的激光光路系统。
  14. 根据权利要求13所述的投影设备,其特征在于,所述光阀的数量为三,三个所述光阀用于分别处理所述激光光路系统提供的多基色光。
PCT/CN2021/103533 2021-03-11 2021-06-30 激光光路系统和投影设备 WO2022188307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/319,740 US20230288793A1 (en) 2021-03-11 2023-05-18 Laser light system and projection equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110266343.2A CN115079497A (zh) 2021-03-11 2021-03-11 激光光源系统和投影设备
CN202110266343.2 2021-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/319,740 Continuation US20230288793A1 (en) 2021-03-11 2023-05-18 Laser light system and projection equipment

Publications (1)

Publication Number Publication Date
WO2022188307A1 true WO2022188307A1 (zh) 2022-09-15

Family

ID=83226165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103533 WO2022188307A1 (zh) 2021-03-11 2021-06-30 激光光路系统和投影设备

Country Status (3)

Country Link
US (1) US20230288793A1 (zh)
CN (1) CN115079497A (zh)
WO (1) WO2022188307A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453448A (zh) * 2012-05-30 2013-12-18 日立视听媒体股份有限公司 光源装置以及图像显示装置
CN104698729A (zh) * 2013-12-03 2015-06-10 欧司朗有限公司 投影装置,dlp投影仪的光模块和用于制造二向色镜的方法
US20160077419A1 (en) * 2014-09-16 2016-03-17 Texas Instruments Incorporated Laser illumination on phosphor for projection display
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备
CN108153089A (zh) * 2016-12-02 2018-06-12 中强光电股份有限公司 照明系统及使用其的投影装置
US20180246400A1 (en) * 2017-02-24 2018-08-30 Seiko Epson Corporation Illuminator and projector
JP2018194819A (ja) * 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 光源装置および投写型映像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453448A (zh) * 2012-05-30 2013-12-18 日立视听媒体股份有限公司 光源装置以及图像显示装置
CN104698729A (zh) * 2013-12-03 2015-06-10 欧司朗有限公司 投影装置,dlp投影仪的光模块和用于制造二向色镜的方法
US20160077419A1 (en) * 2014-09-16 2016-03-17 Texas Instruments Incorporated Laser illumination on phosphor for projection display
CN108153089A (zh) * 2016-12-02 2018-06-12 中强光电股份有限公司 照明系统及使用其的投影装置
US20180246400A1 (en) * 2017-02-24 2018-08-30 Seiko Epson Corporation Illuminator and projector
JP2018194819A (ja) * 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 光源装置および投写型映像表示装置
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备

Also Published As

Publication number Publication date
US20230288793A1 (en) 2023-09-14
CN115079497A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
JP6383937B2 (ja) 光源装置および投写型映像表示装置
US9357187B2 (en) Projector and image display method
JP2024023800A (ja) 光源装置、画像投射装置及び光源光学系
US9645481B2 (en) Light source apparatus and projection display apparatus
WO2009070918A1 (fr) Source lumineuse pour système de projection et appareil d'affichage par projection
US9977316B2 (en) Projection apparatus and illumination system thereof
US11677914B2 (en) Light-source device and image forming apparatus including same
JP2022084619A (ja) 光源光学系、光源装置及び画像投射装置
US11422450B2 (en) Light source apparatus and display device
JP2021092761A (ja) 光源装置及び画像投射装置
JP2016153878A (ja) 光源装置および投写型表示装置
WO2009110081A1 (ja) 投光光学系、及びこれを用いた投写型表示装置
TW201833653A (zh) 投影系統
JP2020024318A (ja) 光源装置およびプロジェクター
CN114563906B (zh) 光源光学系统,光源单元,光源装置以及图像显示装置
JP2017015966A (ja) 光源装置およびプロジェクター
WO2023179661A9 (zh) 激光光源系统和投影设备
US10634981B2 (en) Light source device and projection type display apparatus
TWI730146B (zh) 光學系統
WO2022188307A1 (zh) 激光光路系统和投影设备
JP2022146401A (ja) 光源装置およびプロジェクター
CN114265273A (zh) 光源装置和投影仪
JP2006337428A (ja) 照明光学系、光学エンジン及び投射型映像表示装置
US20230251558A1 (en) Light source device and projection apparatus
JPS63216025A (ja) 投写型カラ−表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929777

Country of ref document: EP

Kind code of ref document: A1