JP5633695B2 - 照明装置、投影型表示装置および直視型表示装置 - Google Patents

照明装置、投影型表示装置および直視型表示装置 Download PDF

Info

Publication number
JP5633695B2
JP5633695B2 JP2010265379A JP2010265379A JP5633695B2 JP 5633695 B2 JP5633695 B2 JP 5633695B2 JP 2010265379 A JP2010265379 A JP 2010265379A JP 2010265379 A JP2010265379 A JP 2010265379A JP 5633695 B2 JP5633695 B2 JP 5633695B2
Authority
JP
Japan
Prior art keywords
light
light emitting
solid
fly
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010265379A
Other languages
English (en)
Other versions
JP2012118122A (ja
JP2012118122A5 (ja
Inventor
幸治 三浦
幸治 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010265379A priority Critical patent/JP5633695B2/ja
Priority to US13/281,553 priority patent/US8888300B2/en
Priority to CN201110373625.9A priority patent/CN102540677B/zh
Publication of JP2012118122A publication Critical patent/JP2012118122A/ja
Publication of JP2012118122A5 publication Critical patent/JP2012118122A5/ja
Priority to US14/279,885 priority patent/US8905554B2/en
Application granted granted Critical
Publication of JP5633695B2 publication Critical patent/JP5633695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • G02B27/1033Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • G02B27/1053Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、レーザダイオード(LD)などの固体発光素子を用いた照明装置、ならびにそれを備えた投影型表示装置および直視型表示装置に関する。
近年、オフィスだけでなく、家庭でも、スクリーンに映像を投影するプロジェクタが広く利用されている。プロジェクタは、光源からの光をライトバルブで変調することにより画像光を生成し、スクリーンに投射して表示を行うものである。最近では、手のひらサイズの超小型プロジェクタや、超小型プロジェクタ内蔵の携帯電話機などが普及し始めている。
特開2008−134324号公報
ところで、プロジェクタに用いられる光源としては、高輝度の放電ランプが主流である。しかし、放電ランプでは、サイズが比較的大きく、消費電力も大きいことから、放電ランプに代わる光源として、近年では、発光ダイオード(LED)や、レーザダイオード(LD)、有機EL(OLED)などの固体発光素子が注目されている。これらの固体発光素子は、サイズや消費電力だけでなく、高信頼性という点でも、放電ランプよりも有利である。
ここで、このようなプロジェクタでは一般に、赤(R),緑(G),青(B)の3原色の光を用いてカラー表示がなされるようになっている。ところが、これらの各原色光を発するデバイス(固体発光素子内のチップ)では、色ごとに発光強度(輝度)が異なっている場合があり、その場合、照明装置からの照明光(照射光)全体としての輝度向上を図るのが困難であった。これは、例えば上記3原色のうちの1色(例えばG)の発光強度が他の2色(例えばR,B)の発光強度と比べて相対的に低い場合、照明光全体としてのホワイトバランスを調整しようとすると、相対的に低いほうの発光強度を基準に合わせ込まざるを得ないからである。これらのことから、照明光の輝度を向上させるための手法の提案が望まれていた。
本発明はかかる問題点に鑑みてなされたものであり、その目的は、照明光の輝度を向上させることが可能な照明装置、ならびにそのような照明装置を用いた投影型表示装置および直視型表示装置を提供することにある。
本発明の照明装置は、単一もしくは複数の発光スポットを含む光射出領域から光を発する固体発光素子をそれぞれ含む複数の光源と、短軸および長軸を有すると共に固体発光素子側から入射した光が通過して出射する光学部材とを備えたものである。上記固体発光素子は、光を発する単一または複数のチップを含んでいる。上記複数の光源全体として、互いに異なる2以上の波長帯の光が発せられるように、上記発光スポットが3つ以上設けられている。上記複数の光源のうちの2以上の光源間で、同一の波長帯の光が発せられる発光スポットが設けられている。また、上記複数の光源全体として、チップの少なくとも1つがレーザダイオードを含み、上記複数の光源のうちの少なくとも1つの光源におけるレーザダイオードからなるチップに、発光スポットが複数設けられている。このレーザダイオードからなるチップの各発光スポットから発せられる光におけるファーフィールドパターン(FFP)の向きが、上記光学部材の光路中において互いに略一致している。
本発明の投射型表示装置は、照明光学系と、入力された映像信号に基づいて照明光学系からの光を変調することにより、画像光を生成する空間変調素子と、空間変調素子で生成された画像光を投射する投影光学系とを備えたものである。この投射型表示装置に搭載された照明光学系は、上記本発明の照明装置と同一の構成要素を有している。
本発明の直視型表示装置は、照明光学系と、入力された映像信号に基づいて照明光学系からの光を変調することにより、画像光を生成する空間変調素子と、空間変調素子で生成された画像光を投射する投影光学系と、投影光学系から投射された画像光を映し出す透過型スクリーンとを備えたものである。この直視型表示装置に搭載された照明光学系は、上記本発明の照明装置と同一の構成要素を有している。
本発明の照明装置、投射型表示装置および直視型表示装置では、上記複数の光源全体として互いに異なる2以上の波長帯の光が発せられるように、上記発光スポットが3つ以上設けられていると共に、上記複数の光源のうちの2以上の光源間で、同一の波長帯の光が発せられる発光スポットが設けられている。これにより、照明装置から2以上の波長帯の光を照明光として出射する際に、各波長帯の光同士での発光強度が調整可能となる。
本発明の照明装置、投射型表示装置および直視型表示装置では、上記光学部材が、固体発光素子側から入射した光の指向角を変換する1または複数の指向角変換素子と、この指向角変換素子を透過した光が照明する所定の照明範囲における光の照度分布を均一化するインテグレータとを含むようにするのが望ましい。また、この場合において、上記インテグレータが、指向角変換素子側からの光が入射する第1のフライアイレンズと、この第1のフライアイレンズ側からの光が入射する第2のフライアイレンズとからなり、上記第1のフライアイレンズの各セルによって第2のフライアイレンズに形成される各光源像のサイズが第2のフライアイレンズの1セルのサイズを超えない大きさとなるように、指向角変換素子と、第1および第2のフライアイレンズとからなる光学系の光学倍率が設定されているようにするのが望ましい。このように構成した場合、第2のフライアイレンズに入射した光が、効率良く照明範囲にまで到達する。したがって、1つの光源像が複数のセルにまたがって形成されることがなくなり、照明装置における光利用効率を改善することができる。
本発明の照明装置、投射型表示装置および直視型表示装置によれば、複数の光源全体として互いに異なる2以上の波長帯の光が発せられるように、発光スポットが3つ以上設けられると共に、複数の光源のうちの2以上の光源間で、同一の波長帯の光が発せられる発光スポットが設けられるようにしたので、照明装置から2以上の波長帯の光を照明光として出射する際に、各波長帯の光同士での発光強度を調整することができ、照明光の輝度を向上させることが可能となる。
本発明の第1の実施の形態に係るプロジェクタの概略構成を表す図である。 図1のプロジェクタ内の光路の一例を示す図である。 図1の光源ユニットの詳細構成の一例を示す図である。 図1の光源においてチップが上面発光型の素子の場合の上面構成および断面構成の一例を示す図である。 図1の光源においてチップが上面発光型の素子の場合の上面構成および断面構成の他の例を示す図である。 図1の光源においてチップが上面発光型の素子の場合の上面構成および断面構成のその他の例を示す図である。 図1の光源においてチップが上面発光型の素子の場合の発光スポットの一例を示す図である。 図1の光源においてチップが端面発光型の素子の場合の断面構成および固体発光素子を光出射面側から見たときの構成の一例を示す図である。 図1の光源においてチップが端面発光型の素子の場合の断面構成および固体発光素子を光出射面側から見たときの構成の他の例を示す図である。 図1の光源においてチップが端面発光型の素子の場合の断面構成および固体発光素子を光出射面側から見たときの構成のその他の例を示す図である。 図7の光源をXY平面で90度回転させたときの構成例を示す図である。 図8の光源をXY平面で90度回転させたときの構成例を示す図である。 図9の光源をXY平面で90度回転させたときの構成例を示す図である。 図1のフライアイレンズの概略構成を表す図である。 図1の各光源における各色光発光スポットの配置構成例を示す模式図である。 図1の光源における発光スポットの配置構成とFFPとの関係の一例を表す図である。 図1のプロジェクタにおいて後段のフライアイレンズに現れる光源像の一例を表す模式図である。 図1の照明範囲のサイズについて説明するための模式図である。 第2の実施の形態に係る光源ユニットおよび位相差板アレイの構成例を表す図である。 図19のダイクロイックプリズムの作用の一例を示す図である。 図19の位相差板アレイの概略構成例を示す図である。 図19のインテグレータおよび位相差板アレイの作用の一例を示す図である。 図19のインテグレータにおける後段のフライアイレンズに現れる光源像の一例を表す模式図である。 変形例1に係るプロジェクタの概略構成を表す図である。 変形例2に係るプロジェクタの概略構成を表す図である。 上記各実施の形態等の照明光学系を用いたリアプロジェクション表示装置の概略構成例を表す図である。 その他の変形例に係る各光源における各色光発光スポットの配置構成例を示す模式図である。
以下、発明を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.第1の実施の形態(光源ユニット内の光路合成部としてプリズムを用いた例)
2.第2の実施の形態(光源ユニット内の光路合成部として、ダイクロイックプリズムおよび位相差板アレイ等を用いた例)
3.変形例
変形例1(空間変調素子として反射型の素子を用いた例)
変形例2(照明光学系内からインテグレータおよびコンデンサレンズを省いた例)
その他の変形例(リアプロジェクション表示装置への適用例等)
<第1の実施の形態>
[プロジェクタ1の全体構成]
図1(A),(B)は、本発明の第1の実施の形態に係るプロジェクタ(プロジェクタ1)の概略構成を表すものである。なお、このプロジェクタ1が、本発明の「投射型表示装置」の一具体例に相当する。図1(A)はプロジェクタ1を上から(y軸方向から)見たときの構成例を表し、図1(B)はプロジェクタ1を横から(x軸方向から)見たときの構成例を表す。また、図2(A),(B)は、図1のプロジェクタ1内の光路の一例を表すものである。図2(A)は、プロジェクタ1を上から(y軸方向から)見たときの光路の一例を表し、図2(B)はプロジェクタ1を横から(x軸方向から)見たときの光路の一例を表す。更に、図3は、図1および図2に示した後述する光源ユニット10−1の詳細構成例を表したものである。
典型的には、y軸は垂直方向を向き、x軸は水平方向を向いているが、その逆に、y軸が水平方向を向き、x軸が垂直方向を向いていてもよい。なお、以下では、便宜的に、y軸は垂直方向を向き、x軸は水平方向を向いているものとして説明するものとする。また、以下において、「横方向」とはx軸方向を指しており、「縦方向」とはy軸方向を指しているものとする。
プロジェクタ1は、例えば、照明光学系1Aと、入力された映像信号に基づいて照明光学系1Aからの光を変調することにより画像光を生成する空間変調素子60と、この空間変調素子60で生成された画像光を反射型のスクリーン2に投射する投影光学系70とを備えている。ここで、照明光学系1Aが、本発明の「照明装置」の一具体例に相当する。
[照明光学系1Aの構成]
照明光学系1Aは、空間変調素子60の照明範囲60A(被照射面)を照射する光束を供給するものである。なお、必要に応じて、照明光学系1Aの光が通過する領域上に、何らかの光学素子が設けられていてもよい。例えば、照明光学系1Aの光が通過する領域上に、照明光学系1Aからの光のうち可視光以外の光を減光するフィルタなどが設けられていてもよい。
照明光学系1Aは、例えば、図1(A),(B)に示したように、2つの光源10A,10Dを含む光源ユニット10−1と、2つの光源10B,10Cと、カップリングレンズ(指向角変換素子)20B,20Cと、光路合成素子30と、インテグレータ40と、コンデンサレンズ50とを有している。また、光源ユニット10−1は、例えば図3に示したように、上記した光源10A,10Dに加え、カップリングレンズ20A,20D(指向角変換素子)およびプリズム30Cを有している。なお、このプリズム30Cが、本発明の「光路合成部」の一具体例に相当する。
プリズム30Cは、光源ユニット10−1内の2つの光源10A,10Dからの光を合成するものである。また、光路合成素子30は、光源ユニット10−1からの光(光源10A,10Dからそれぞれ発せられたのち、プリズム30Cにより光路合成がなされた光)と、光源10B,10Cからの光とを合成するものであり、例えば、2つのダイクロイックミラー30A,30Bからなる。インテグレータ40は、照明範囲60Aにおける光の照度分布を均一化するものであり、例えば、一対のフライアイレンズ40A,40Bからなる。
光源10Aの光軸上には、カップリングレンズ20Aと、プリズム30Cと、光路合成素子30と、インテグレータ40と、コンデンサレンズ50とが、光源10A側からこの順に配列されている。光源10Dの光軸上には、カップリングレンズ20Dと、プリズム30Cと、光路合成素子30と、インテグレータ40と、コンデンサレンズ50とが、光源10A側からこの順に配列されている。光源10Bの光軸は、光源10A,10Dの光軸とダイクロイックミラー30Aにおいて直交しており、光源10Bの光軸上には、カップリングレンズ20Bおよびダイクロイックミラー30Aが、光源10B側からこの順に配列されている。光源10Cの光軸は、光源10A,10Dの光軸とダイクロイックミラー30Bにおいて直交しており、光源10Cの光軸上には、カップリングレンズ20Cおよびダイクロイックミラー30Bが、光源10C側からこの順に配列されている。ここで、これらのうち、カップリングレンズ(指向角変換素子)20A,20B,20C,20Dおよびインテグレータ40が、本発明の「光学部材(後述する固体発光素子側から入射した光が通過して出射する光学部材)」の一具体例に相当する。
なお、図1(A),(B)では、プロジェクタ1の各構成要素(光源10B,10C、カップリングレンズ20B,20Cを除く)がz軸と平行な線分上に配列されている場合が例示されているが、プロジェクタ1の各構成要素の一部がz軸と非平行な線分上に配列されていてもよい。例えば、図示しないが、照明光学系1A全体を図1(A),(B)の状態から90°回転させて照明光学系1Aの光軸がz軸と直交する方向を向くように照明光学系1Aがレイアウトされていてもよい。ただし、このようにした場合には、照明光学系1Aから出力された光を空間変調素子60に導く光学素子(例えばミラー)を設けることが必要である。また、例えば、光源10A、カップリングレンズ20Aおよび光路合成素子30を図1(A),(B)の状態から90°回転させて、これらの光軸をz軸と直交する方向を向くように光源ユニット10−1および光路合成素子30がレイアウトされていてもよい。ただし、このようにした場合にも、光路合成素子30から出力された光をインテグレータ40に導く光学素子(例えばミラー)を設けることが必要である。
(光源10A,10B,10C,10D:チップ11Aが上面発光型の素子の場合)
光源10A,10B,10C,10Dは、それぞれ、例えば、図4(A),(B)〜図6(A),(B)に示したように、固体発光素子11と、固体発光素子11を支持するパッケージ12(固体発光素子11を実装するための基材)とを有している。換言すると、ここでは、各光源10A,10B,10C,10Dは、固体発光素子11を基材上に支持するパッケージとなっている。固体発光素子11は、単一もしくは複数の点状、または単一もしくは複数の非点状の発光スポットからなる光射出領域から光を発するようになっている。固体発光素子11は、例えば、図4(A),(B)に示したように、所定の波長帯の光を発する単一のチップ11Aからなっていてもよいし、例えば、図5(A),(B)および図6(A),(B)に示したように、同一の波長帯もしくは互いに異なる波長帯の光を発する複数のチップ11Aからなっていてもよい。固体発光素子11が複数のチップ11Aからなる場合には、それらのチップ11Aは、例えば、図5(A),(B)に示したように、横方向に一列に配置されていたり、例えば、図6(A),(B)に示したように、横方向および縦方向に格子状に配置されていたりする。固体発光素子11に含まれるチップ11の数は、光源10A,10B,10C,10Dごとに異なっていてもよいし、全ての光源10A,10B,10C,10Dで互いに等しくなっていてもよい。
固体発光素子11が単一のチップ11Aからなる場合には、固体発光素子11としてのサイズ(WV×WH)は、例えば、図4(A)に示したように、単一のチップ11Aのサイズ(WV1×WH1)に等しい。一方、固体発光素子11が複数のチップ11Aからなる場合には、固体発光素子11としてのサイズは、例えば、図5(A),図6(A)に示したように、全てのチップ11Aをひとまとまりとしたときのサイズに等しい。複数のチップ11Aが横方向に一列に配置されている場合には、固体発光素子11としてのサイズ(WV×WH)は、図5(A)の例では、WV1×2WH1となる。また、複数のチップ11Aが、横方向および縦方向に格子状に配置されている場合には、固体発光素子11としてのサイズ(WV×WH)は、図6(A)の例では、2WV1×2WH1となる。
チップ11Aは、発光ダイオード(LED)、有機EL発光素子(OLED)、またはレーザダイオード(LD)からなる。光源10A,10B,10C,10Dのそれぞれに含まれるチップ11Aが全て、LEDによって構成されていてもよいし、OLEDによって構成されていてもよいし、LDによって構成されていてもよい。また、光源10A,10B,10C,10Dのうち少なくとも1つの光源に含まれるチップ11Aが、LEDによって構成され、それ以外の光源に含まれるチップ11Aが、OLEDによって構成されていてもよい。また、光源10A,10B,10C,10Dのうち少なくとも1つの光源に含まれるチップ11Aが、LEDによって構成され、それ以外の光源に含まれるチップ11Aが、LDによって構成されていてもよい。また、光源10A,10B,10C,10Dのうち少なくとも1つの光源に含まれるチップ11Aが、OLEDによって構成され、それ以外の光源に含まれるチップ11Aが、LDによって構成されていてもよい。ただし、光源10A,10B,10C,10D全体として、チップ11Aの少なくとも1つがLDによって構成されているのが望ましい。
各光源10A,10B,10C,10Dに含まれるチップ11Aは、例えば、光源10A,10Dと、光源10Bと、光源10Cとで、互いに異なる波長帯の光を発するようになっている。光源10A,10Dに含まれるチップ11Aは、例えば、波長400nm〜500nm程度の波長の光(青色光)を発するものである。光源10Bに含まれるチップ11Aは、例えば、波長500nm〜600nm程度の波長の光(緑色光)を発するものである。光源10Cに含まれるチップ11Aは、例えば、波長600nm〜700nm程度の波長の光(赤色光)を発するものである。なお、光源10A,10Dに含まれるチップ11Aが、青色光以外の光(緑色光または赤色光)を発するものであってもよい。また、光源10Bに含まれるチップ11Aが、緑色光以外の光(青色光または赤色光)を発するものであってもよい。また、光源10Cに含まれるチップ11Aが、赤色光以外の光(緑色光または青色光)を発するものであってもよい。なお、このような各光源10A,10B,10C,10Dに含まれる各チップ11Aの発光色(各色発光スポット)の具体例については、後述する(図15(A)〜(C)等)。
チップ11Aは、例えば、図4(A),(B)〜図7(A),(B),(C)に示したように、チップ11Aサイズ(WV×WH)よりも小さなサイズ(PV1×PH1)の発光スポット11Bを有している。発光スポット11Bは、チップ11Aに電流を注入してチップ11Aを駆動したときにチップ11Aから光が発せられる領域(光射出領域)に相当する。チップ11AがLEDまたはOLEDからなる場合には、発光スポット11Bは非点状(面状)となっているが、チップ11AがLDからなる場合には、発光スポット11BはLEDまたはOLEDの発光スポット11Bよりも小さな点状となっている。
固体発光素子11が単一のチップ11Aからなる場合には、発光スポット11Bの数は、例えば、図7(A)に示したように1つである。ただし、後述するように、固体発光素子11がモノリシック構造である場合には、発光スポット11Bの数は複数個になり、以下同様である。一方、固体発光素子11が複数のチップ11Aからなる場合には、発光スポット11Bの数は、例えば、図7(B),(C)に示したようにチップ11Aの数と等しい(ただし、上記したように固体発光素子11がモノリシック構造である場合には、発光スポット11Bの数は、チップ11Aの数よりも多くなる)。ここで、固体発光素子11が単一のチップ11Aからなる場合には、固体発光素子11としての光射出領域のサイズ(PV×PH)は、発光スポット11Bのサイズ(PV1×PH1)に等しい(ただし、上記したように、固体発光素子11がモノリシック構造である場合を除く)。一方、固体発光素子11が複数のチップ11Aからなる場合には、固体発光素子11としての光射出領域のサイズ(PV×PH)は、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いのサイズに等しい。複数のチップ11Aが横方向に一列に配置されている場合には、光射出領域のサイズ(PV×PH)は、図7(B)の例では、PV1×2PH1よりも大きく、WV×WHよりも小さい。また、複数のチップ11Aが、横方向および縦方向に格子状に配置されている場合には、光射出領域のサイズ(PV×PH)は、図7(C)の例では、2PV1×2PH1よりも大きく、WV×WHよりも小さい。
(光源10A,10B,10C,10D:チップ11Aが端面発光型の素子の場合)
ここで、図4(A),(B)〜図7(A),(B)では、チップ11Aが上面発光型の素子となっている場合を例示したが、チップ11Aは、以下説明するような端面発光型の素子であってもよい。その場合には、光源10A,10B,10C,10Dは、それぞれ、例えば、図8(A),(B)〜図13(A),(B),(C)に示したように、ステム13とキャップ14とによって囲まれた内部空間に、1または複数の端面発光型のチップ11Aからなる固体発光素子11が収容されたキャンタイプの形態となっている。換言すると、ここでは、各光源10A,10B,10C,10Dは、固体発光素子11を内蔵したパッケージとなっている。
ステム13は、キャップ14とともに光源10A,10B,10C,10Dのパッケージを構成するものであり、例えば、サブマウント15を支持する支持基板13Aと、支持基板13Aの裏面に配置された外枠基板13Bと、複数の接続端子13Cとを有している。
サブマウント15は導電性および放熱性を有する材料からなる。支持基板13Aおよび外枠基板13Bは、それぞれ、導電性および放熱性を有する基材に、1または複数の絶縁性のスルーホールと、1または複数の導電性のスルーホールとが形成されたものである。支持基板13Aおよび外枠基板13Bは、例えば、円板形状となっており、双方の中心軸(図示せず)が互いに重なり合うように積層されている。外枠基板13Bの直径は、支持基板13Aの直径よりも大きくなっている。外枠基板13Bの外縁は、外枠基板13Bの中心軸を法線とする面内において外枠基板13Bの中心軸から放射方向に張り出した環状のフランジとなっている。フランジは、製造過程においてキャップ14を支持基板13Aに嵌合させるときの基準位置を規定する役割を有している。
複数の接続端子13Cは、少なくとも支持基板13Aを貫通している。複数の接続端子13Cのうち少なくとも1つの端子を除いた端子(以下、便宜的に「端子α」とする。)は、個々のチップ11Aの電極(図示せず)に1つずつ電気的に接続されている。端子αは、例えば、外枠基板13B側に長く突出しており、かつ支持基板13A側に短く突出している。また、複数の接続端子13Cのうち上記の端子α以外の端子(以下、便宜的に「端子β」とする。)は、全てのチップ11Aの他の電極(図示せず)に電気的に接続されている。端子βは、例えば、外枠基板13B側に長く突出しており、端子βの支持基板13A側の端縁は、例えば、支持基板13A内に埋め込まれている。各接続端子13Cのうち外枠基板13B側に長く突出している部分が、例えば基板などに嵌め込まれる部分に相当する。一方、複数の接続端子13Cのうち支持基板13A側に短く突出している部分が、ワイヤ16を介して個々のチップ11Aと1つずつ電気的に接続される部分に相当する。複数の接続端子13Cのうち支持基板13A内に埋め込まれている部分が、例えば、支持基板13Aおよびサブマウント15を介して全てのチップ11Aと電気的に接続される部分に相当する。端子αは、支持基板13Aおよび外枠基板13Bに設けられた絶縁性のスルーホールによって支持されており、そのスルーホールによって支持基板13Aおよび外枠基板13Bから絶縁分離されている。さらに、個々の端子αは、上記の絶縁部材によって互いに絶縁分離されている。一方、端子βは、支持基板13Aおよび外枠基板13Bに設けられた導電性のスルーホールによって支持されており、そのスルーホールと電気的に接続されている。
キャップ14は、固体発光素子11を封止するものである。キャップ14は、例えば、上端および下端に開口が設けられた筒部14Aを有している。筒部14Aの下端が、例えば、支持基板13Aの側面に接しており、筒部14Aの内部空間に、固体発光素子11が位置している。キャップ14は、筒部14Aの上端側の開口を塞ぐようにして配置された光透過窓14Bを有している。光透過窓14Bは、固体発光素子11の光射出面と対向する位置に配置されており、固体発光素子11から出力された光を透過する機能を有している。
このように、チップ11Aが端面発光型の素子からなる場合においても、固体発光素子11は、単一もしくは複数の点状、または単一もしくは複数の非点状の発光スポットからなる光射出領域から光を発するようになっている。固体発光素子11は、例えば、所定の波長帯の光を発する単一のチップ11Aからなっていてもよいし、同一の波長帯の光を発する複数のチップ11Aからなっていてもよいし、互いに異なる波長帯の光を発する複数のチップ11Aからなっていてもよい。固体発光素子11が複数のチップ11Aからなる場合には、それらのチップ11Aは、例えば、図8(A),(B)および図9(A),(B)に示したように、横方向に一列に配置されていたり、例えば、図11(A),(B)および図12(A),(B)に示したように、縦方向に一列に配置されていたりする。固体発光素子11に含まれるチップ11Aの数は、光源10A,10B,10C,10Dごとに異なっていてもよいし、全ての光源10A,10B,10C,10Dで互いに等しくなっていてもよい。
固体発光素子11が単一のチップ11Aからなる場合には、固体発光素子11としてのサイズ(WV×WH)は、例えば、図10(B)および図13(B)に示したように、単一のチップ11Aのサイズ(WV1×WH1)に等しい。ただし、例えば図10(C)および図13(C)に示したように、固体発光素子11がモノリシック構造である場合には次のようになり、以下同様である。すなわち、図10(C)の例では、固体発光素子11としてのサイズ(WV×WH)は、WV1×2WH1より大きく、図13(C)の例では、固体発光素子11としてのサイズ(WV×WH)は、2WV1×WH1より大きい。一方、固体発光素子11が複数のチップ11Aからなる場合には、固体発光素子11としてのサイズは、例えば、図8(B),図9(B),図11(B),図12(B)に示したように、全てのチップ11Aをひとまとまりとしたときのサイズに等しい。複数のチップ11Aが横方向に一列に配置されている場合には、固体発光素子11としてのサイズ(WV×WH)は、図8(B)の例では、WV1×3WH1より大きく、図9(B)の例では、WV1×2WH1より大きい。また、複数のチップ11Aが縦方向に一列に配置されている場合には、固体発光素子11としてのサイズ(WV×WH)は、図11(B)の例では、3WV1×WH1より大きく、図12(B)の例では、2WV1×WH1より大きい。
チップ11Aは、例えば、レーザダイオード(LD)からなる。光源10A,10B,10C,10Dのそれぞれに含まれるチップ11Aが全て、LDによって構成されていてもよい。また、光源10A,10B,10C,10Dのうち少なくとも1つの光源に含まれるチップ11Aが、LDによって構成され、それ以外の光源に含まれるチップ11Aが、LEDまたはOLEDによって構成されていてもよい。ただしこの場合も、光源10A,10B,10C,10D全体として、チップ11Aの少なくとも1つがLDによって構成されているのが望ましい。
チップ11Aは、例えば、図8(A),(B)〜図16(A),(B),(C)に示したように、チップ11Aサイズ(WV×WH)よりも小さなサイズ(PV1×PH1)の発光スポット11Bを有している。発光スポット11Bは、チップ11Aに電流を注入してチップ11Aを駆動したときにチップ11Aから光が発せられる領域(光射出領域)に相当する。チップ11AがLDからなる場合には、発光スポット11BはLEDまたはOLEDの発光スポットよりも小さな点状となっている。
固体発光素子11が単一のチップ11Aからなる場合には、発光スポット11Bの数は、例えば、図10(B)および図13(B)に示したように1つである。ただし、例えば図10(C)および図13(C)に示したように、固体発光素子11がモノリシック構造である場合には、発光スポット11Bの数は複数(ここでは2つ)となり、以下同様である。一方、固体発光素子11が複数のチップ11Aからなる場合には、発光スポット11Bの数は、例えば、図8(B),図9(B),図11(B)、図12(B)に示したようにチップ11Aの数と等しい。ここで、固体発光素子11が単一のチップ11Aからなる場合には、固体発光素子11としての光射出領域のサイズ(PV×PH)は、発光スポット11Bのサイズ(PV1×PH1)に等しい。ただし、例えば図10(C)および図13(C)に示したように、固体発光素子11がモノリシック構造である場合には次のようになり、以下同様である。すなわち、図10(C)の例では、固体発光素子11としての光射出領域のサイズ(PV×PH)は、PV1×2PH1よりも大きく、WV×WHよりも小さい。また、図13(C)の例では、固体発光素子11としての光射出領域のサイズ(PV×PH)は、2PV1×PH1よりも大きく、WV×WHよりも小さい。一方、固体発光素子11が複数のチップ11Aからなる場合には、固体発光素子11としての光射出領域のサイズ(PV×PH)は、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いのサイズに等しい。複数のチップ11Aが横方向に一列に配置されている場合には、光射出領域のサイズ(PV×PH)は、図8(B)の例では、PV1×3PH1よりも大きく、WV×WHよりも小さい。同様に、図9(B)の例では、光射出領域のサイズ(PV×PH)は、PV1×2PH1よりも大きく、WV×WHよりも小さい。また、複数のチップ11Aが縦方向に一列に配置されている場合には、光射出領域のサイズ(PV×PH)は、図11(B)の例では、3PV1×PH1よりも大きく、WV×WHよりも小さい。同様に、図12(B)の例では、光射出領域のサイズ(PV×PH)は、2PV1×PH1よりも大きく、WV×WHよりも小さい。
カップリングレンズ20Aは、例えば、図3に示したように、光源10Aから発せられた光を略平行光化するものであり、光源10Aから発せられた光の指向角(θH,θV)を、平行光の指向角と等しくなるように、またはそれに近づくように変換するものである。カップリングレンズ20Aは、光源10Aから発せられた光のうち指向角内の光が入射する位置に配置されている。カップリングレンズ20Bは、例えば、図2(A),(B)に示したように、光源10Bから発せられた光を略平行光化するものであり、光源10Bから発せられた光の指向角(θH,θV)を、平行光の指向角と等しくなるように、またはそれに近づくように変換するものである。カップリングレンズ20Bは、光源10Bから発せられた光のうち指向角内の光が入射する位置に配置されている。カップリングレンズ20Cは、例えば、図2(A),(B)に示したように、光源10Cから発せられた光を略平行光化するものであり、光源10Cから発せられた光の指向角(θH,θV)を、平行光の指向角と等しくなるように、またはそれに近づくように変換するものである。カップリングレンズ20Cは、光源10Cから発せられた光のうち指向角内の光が入射する位置に配置されている。カップリングレンズ20Dは、例えば、図3に示したように、光源10Dから発せられた光を略平行光化するものであり、光源10Dから発せられた光の指向角(θH,θV)を、平行光の指向角と等しくなるように、またはそれに近づくように変換するものである。カップリングレンズ20Dは、光源10Dから発せられた光のうち指向角内の光が入射する位置に配置されている。つまり、カップリングレンズ20A,20B,20C,20Dは、光源10A,10B,10C,10Dごとに1つずつ配置されている。なお、カップリングレンズ20A,20B,20C,20Dは、それぞれ、単一のレンズによって構成されていてもよいし、複数のレンズによって構成されていてもよい。
ダイクロイックミラー30A,30Bは、波長選択性を持つ1枚のミラーを含むものである。なお、上記のミラーは、例えば、多層の干渉膜を蒸着して構成されたものである。ダイクロイックミラー30Aは、例えば、図2(A),(B)に示したように、ミラーの裏面側から入射した光(光源10A,10D側(光源ユニット10−1側)から入射した光)をミラーの表面側に透過させるとともに、ミラーの表面側から入射した光(光源10B側から入射した光)をミラーで反射するようになっている。一方、ダイクロイックミラー30Bは、図2(A),(B)に示したように、ミラーの裏面側から入射した光(ダイクロイックミラー30A側から入射した光源10A,10B,10Dの光)をミラーの表面側に透過させるとともに、ミラーの表面側から入射した光(光源10C側から入射した光)をミラーで反射するようになっている。従って、光路合成素子30は、光源10A,10B,10C,10Dから発せられた個々の光束を単一の光束に合成するようになっている。
フライアイレンズ40A、40Bはそれぞれ、例えば図14(A),(B)に示したように、所定の配列状態(ここでは、縦×横=4×3のマトリクス状)に配置された複数のレンズ(セル)によって構成されたものである。フライアイレンズ40Bに含まれる複数のセル42は、フライアイレンズ40Aのセル41ごとに1つずつ対向して配置されている。フライアイレンズ40Aは、フライアイレンズ40Bの焦点位置(または略焦点位置)に配置されており、フライアイレンズ40Bは、フライアイレンズ40Aの焦点位置(または略焦点位置)に配置されている。従って、インテグレータ40は、フライアイレンズ40Aで分割形成された光束がフライアイレンズ40Bの像側のレンズ面近傍に焦点を結び、ここに2次光源面(光源像)を形成するようになっている。この2次光源面は投影光学系70の入射瞳と共役な面の位置に位置している。ただし、この2次光源面は、必ずしも厳密に投影光学系70の入射瞳と共役な面の位置に位置している必要はなく、設計上の許容範囲内に位置していればよい。なお、フライアイレンズ40A、40Bは、一体に形成されたものであってもよい。
ここで、一般に光源10A,10B,10C,10Dから射出された光束は、その進行方向に垂直な面において不均一な強度分布をもっている。そのため、これら光束をそのまま照明範囲60A(被照射面)に導くと、照明範囲60Aでの照度分布が不均一になる。これに対して、上記のように光源10A,10B,10C,10Dから射出された光束を、インテグレータ40によって複数の光束に分割してそれぞれを照明範囲60Aに重畳的に導くようにすれば、照明範囲60A上の照度分布を均一にすることができる。
コンデンサレンズ50は、インテグレータ40により形成された多光源からの光束を集光して照明範囲60Aを重畳的に照明するものである。
空間変調素子60は、光源10,10B,10C,10Dの各波長成分に対応した色画像信号に基づいて、照明光学系1Aからの光束を2次元的に変調し、これにより画像光を生成するものである。この空間変調素子60は、例えば図2(A),(B)に示したように、ここでは透過型の素子であり、例えば、透過型の液晶パネルによって構成されている。
[プロジェクタ1の特徴部分の構成]
次に、本実施の形態のプロジェクタ1の特徴部分について説明する。
(特徴部分その1)
まず、本実施の形態では、光源10A,10B,10C,10D全体として、互いに異なる2以上の波長帯の光(ここでは、3つの波長帯の光である赤色光,緑色光,青色光)が発せられるように、発光スポット11Bが3つ以上設けられている。また、これらの光源10A,10B,10Cのうちの2以上の光源(ここでは、2つの光源10A,10D)間で、同一の波長帯の光(ここでは、赤色光、緑色光または青色光)が発せられる発光スポット11Bが(共通して)設けられている。そして、これらの2以上の光源(ここでは2つの光源10A,10D)からそれぞれ発せられる上記同一波長帯の光を合成する光路合成部(ここではプリズム30C)が設けられている。
具体的には、例えば図15(A),(B)に模式的に示したようにして、4つの光源10A,10B,10C,10Dにおいて、赤色発光スポット11Br、緑色発光スポット11Bgおよび青色発光スポット11Bbがそれぞれ配置されている。すなわち、図15(A)に示した例では、光源10A,10Dにおいてそれぞれ、固体発光素子11が1つの緑色発光スポット11Bgを有し、光源10Bにおいて固体発光素子11が1つの青色発光スポット11Bbを有し、光源10Cにおいて固体発光素子11が1つの赤色発光スポット11Brを有している。また、図15(B)に示した例では、光源10A,10Dにおいてそれぞれ、固体発光素子11が2つの緑色発光スポット11Bgを有し、光源10Bにおいて固体発光素子11が1つの青色発光スポット11Bbを有し、光源10Cにおいて固体発光素子11が1つの赤色発光スポット11Brを有している。そして、これら図15(A),(B)に示した例ではそれぞれ、上記した2以上の光源(ここでは2つの光源10A,10D)からそれぞれ発せられる上記同一波長帯の光(ここでは緑色光)を合成する光路合成部(ここではプリズム30C)が、光源ユニット10−1内に設けられている。
(特徴部分その2)
また、本実施の形態では、光源10A,10B,10C,10Dのうちの少なくとも1つの光源において、LDからなるチップ11Aにおける発光スポット11Bが複数設けられている場合に、以下のように構成されていることが望ましい。すなわち、まず、各発光スポット11Bから発せられる光におけるファーフィールドパターン(FFP)の短軸方向がそれぞれ、前述した光学部材(ここではインテグレータ40)の光軸(ここではz軸方向)と直交する面内(ここではxy面内)における短軸方向(ここではy軸方向)と略一致(好ましくは一致)しているのが望ましい。換言すると、各発光スポット11Bから発せられる光のFFPの短軸方向が、プロジェクタ1の装置外形(例えば矩形状の筐体)における短軸方向と略一致(好ましくは一致)しているのが望ましい。また、上記した光源が互いに異なる2以上の波長帯の光を発する光源である場合には、各発光スポット11Bから発せられる光のFFPの長軸方向が、これらの2以上の波長帯間で互いに略一致(好ましくは一致)しているのが望ましい。
具体的には、図16(A)に示した例では、上記した光源において、LDからなる2つのチップ11A−1,11A−2が設けられ、それに伴い、活性層110を含む発光スポット(ニアーフィールドパターン;NFP)11B−1,11B−2が設けられている。一方、図16(B)(前述したモノリシック構造の例)に示した例では、上記した光源において、LDからなる1つのチップ11Aが設けられると共に、このチップ11A内に2つの発光スポット11B−1,11B−2が設けられている。そして、ここでは発光スポット11B−1,11B−2では、同一の波長帯域の光、または互いに異なる2つの波長帯の光が発せられるものとする。この場合において、各発光スポット11B−1,11B−2から発せられる光におけるFFP(図中の符号P11,P12参照)の短軸方向(ここではy軸方向)がそれぞれ、インテグレータ40の光軸と直交する面内における短軸方向(ここではy軸方向)と一致している。また、各発光スポット11B−1,11B−2から発せられる光におけるFFPの長軸方向(ここではx軸方向)が、これらの発光スポット11B−1,11B−2間で互いに一致している。
(特徴部分その3)
更に、本実施の形態では、フライアイレンズ40Aの各セル41によってフライアイレンズ40Bに形成される各光源像Sのサイズがフライアイレンズ40Bの1つのセル42のサイズを超えない大きさとなるように、カップリングレンズ20A,20B,20C,20Dの焦点距離と、フライアイレンズ40A、40Bの焦点距離とが設定されていることが好ましい。これを式で表すと、以下の式(1)〜(4)のようになる。また、これを模式的に表すと、図17のようになる。この図17には、フライアイレンズ40A,40Bの各セルが1以外の縦横比(アスペクト比)を有している場合が例示されている。なお、図17については後に詳述する。
1=P1×(fFEL/fCL1)≦hFEL2…(1)
2=P2×(fFEL/fCL2)≦hFEL2…(2)
3=P3×(fFEL/fCL3)≦hFEL2…(3)
4=P4×(fFEL/fCL4)≦hFEL2…(4)
ここで、
1:光源10Aの光によって形成される光源像S(光源像S1)のサイズ
2:光源10Bの光によって形成される光源像S(光源像S2)のサイズ
3:光源10Cの光によって形成される光源像S(光源像S3)のサイズ
4:光源10Dの光によって形成される光源像S(光源像S4)のサイズ
1:光源10Aに含まれる固体発光素子11の光射出領域のサイズ
2:光源10Bに含まれる固体発光素子11の光射出領域のサイズ
3:光源10Cに含まれる固体発光素子11の光射出領域のサイズ
4:光源10Dに含まれる固体発光素子11の光射出領域のサイズ
FEL:フライアイレンズ40A,40Bの焦点距離
CL1:カップリングレンズ20Aの焦点距離
CL2:カップリングレンズ20Bの焦点距離
CL3:カップリングレンズ20Cの焦点距離
CL4:カップリングレンズ20Dの焦点距離
FEL2:フライアイレンズ40Bの1つのセル42のサイズ
なお、光源10Aに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P1は、そのチップ11Aの発光スポット11Bのサイズに等しい。同様に、光源10Bに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P2は、そのチップ11Aの発光スポット11Bのサイズに等しく、光源10Cに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P3は、そのチップ11Aの発光スポット11Bのサイズに等しく、光源10Dに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P4は、そのチップ11Aの発光スポット11Bのサイズに等しい。光源10Aに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P1は、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いのサイズに等しい。同様に、光源10Bに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P2は、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いのサイズに等しい。光源10Cに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P3は、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いのサイズに等しい。光源10Dに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P4は、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いのサイズに等しい。また、カップリングレンズ20Aが複数のレンズによって構成されている場合には、fCL1は、各レンズの合成焦点距離とする。同様に、カップリングレンズ20Bが複数のレンズによって構成されている場合には、fCL2は、各レンズの合成焦点距離とする。カップリングレンズ20Cが複数のレンズによって構成されている場合には、fCL3は、各レンズの合成焦点距離とする。カップリングレンズ20Dが複数のレンズによって構成されている場合には、fCL4は、各レンズの合成焦点距離とする。
ここで、上記の式(1)〜(4)とおおよそ等価な式として、以下の式(5)〜(8)を挙げることができる。式(5)〜(8)は、固体発光素子11の光射出領域のサイズが固体発光素子11のサイズと概ね等しい場合に特に有益である。
1=W1×(fFEL/fCL1)≦hFEL2…(5)
2=W2×(fFEL/fCL2)≦hFEL2…(6)
3=W3×(fFEL/fCL3)≦hFEL2…(7)
4=W4×(fFEL/fCL4)≦hFEL2…(8)
ここで、
1:光源10Aに含まれる固体発光素子11のサイズ
2:光源10Bに含まれる固体発光素子11のサイズ
3:光源10Cに含まれる固体発光素子11のサイズ
4:光源10Dに含まれる固体発光素子11のサイズ
なお、固体発光素子11が単一のチップ11Aからなる場合には、Wは、そのチップ11Aのサイズに等しい。また、固体発光素子11が複数のチップ11Aからなる場合には、Wは、全てのチップ11Aを単一のチップとしてみたときの、そのチップのサイズに等しい。
ところで、本実施の形態において、例えば、図14(A),(B)に示したように、フライアイレンズ40A,40Bの各セル41,42が1以外の縦横比(アスペクト比)を有している場合には、カップリングレンズ20A,20B,20C,20Dの焦点距離と、フライアイレンズ40A、40Bの焦点距離とが以下の8つの関係式を満たしていることが好ましい。さらに、カップリングレンズ20A,20B,20C,20Dの縦横の焦点距離の比(fCL1H/fCL1V,fCL2H/fCL2V,fCL3H/fCL3V,fCL4H/fCL4V)(アナモフィック比)と、フライアイレンズ40Bの各セル42のサイズの縦横比の逆数(hFEL2V/hFEL2H)とを互いに等しくし、照明光学系1Aをアナモフィック光学系とすることがより好ましい。例えば、フライアイレンズ40Bの各セル42が第1の方向(例えば横方向)に長い形状となっている場合には、カップリングレンズ20A,20B,20C,20Dとして、焦点距離fCL1V,fCL2V,fCL3V,fCL4Vが焦点距離fCL1H,fCL2H,fCL3H,fCL4Hよりも長いものを用いる。以下の式(9)〜(16)を模式的に表すと、図17のようになる。
1H=P1H×(fFELH/fCL1H)≦hFEL2H…(9)
2H=P2H×(fFELH/fCL2H)≦hFEL2H…(10)
3H=P3H×(fFELH/fCL3H)≦hFEL2H…(11)
4H=P4H×(fFELH/fCL4H)≦hFEL2H…(12)
1V=P1V×(fFELV/fCL1V)≦hFEL2V…(13)
2V=P2V×(fFELV/fCL2V)≦hFEL2V…(14)
3V=P3V×(fFELV/fCL3V)≦hFEL2V…(15)
4V=P4V×(fFELV/fCL4V)≦hFEL2V…(16)
ここで、
1H:光源10Aの光によって形成される光源像S(光源像S1)の第1の方向(例えば横方向)のサイズ
2H:光源10Bの光によって形成される光源像S(光源像S2)の第1の方向(例えば横方向)のサイズ
3H:光源10Cの光によって形成される光源像S(光源像S3)の第1の方向(例えば横方向)のサイズ
4H:光源10Dの光によって形成される光源像S(光源像S4)の第1の方向(例えば横方向)のサイズ
1V:光源10Aの光によって形成される光源像S(光源像S1)の、第1の方向と直交する第2の方向(例えば縦方向)のサイズ
2V:光源10Bの光によって形成される光源像S(光源像S2)の、第1の方向と直交する第2の方向(例えば縦方向)のサイズ
3V:光源10Cの光によって形成される光源像S(光源像S3)の、第1の方向と直交する第2の方向(例えば縦方向)のサイズ
4V:光源10Dの光によって形成される光源像S(光源像S4)の、第1の方向と直交する第2の方向(例えば縦方向)のサイズ
1H:光源10Aに含まれる固体発光素子11の光射出領域の、第1の方向またはそれに対応する方向のサイズ
2H:光源10Bに含まれる固体発光素子11の光射出領域の、第1の方向またはそれに対応する方向のサイズ
3H:光源10Cに含まれる固体発光素子11の光射出領域の、第1の方向またはそれに対応する方向のサイズ
4H:光源10Dに含まれる固体発光素子11の光射出領域の、第1の方向またはそれに対応する方向のサイズ
1V:光源10Aに含まれる固体発光素子11の光射出領域の、第2の方向またはそれに対応する方向のサイズ
2V:光源10Bに含まれる固体発光素子11の光射出領域の、第2の方向またはそれに対応する方向のサイズ
3V:光源10Cに含まれる固体発光素子11の光射出領域の、第2の方向またはそれに対応する方向のサイズ
4V:光源10Dに含まれる固体発光素子11の光射出領域の、第2の方向またはそれに対応する方向のサイズ
FELH:フライアイレンズ40A,40Bの第1の方向の焦点距離
FELV:フライアイレンズ40A,40Bの第2の方向の焦点距離
CL1H:カップリングレンズ20Aの、第1の方向またはそれに対応する方向の焦点距離
CL2H:カップリングレンズ20Bの、第1の方向またはそれに対応する方向の焦点距離
CL3H:カップリングレンズ20Cの、第1の方向またはそれに対応する方向の焦点距離
CL4H:カップリングレンズ20Dの、第1の方向またはそれに対応する方向の焦点距離
CL1V:カップリングレンズ20Aの、第2の方向またはそれに対応する方向の焦点距離
CL2V:カップリングレンズ20Bの、第2の方向またはそれに対応する方向の焦点距離
CL3V:カップリングレンズ20Cの、第2の方向またはそれに対応する方向の焦点距離
CL4V:カップリングレンズ20Dの、第2の方向またはそれに対応する方向の焦点距離
FEL2H:フライアイレンズ40Bの1つのセル42の第1の方向のサイズ
FEL2V:フライアイレンズ40Bの1つのセル42の第2の方向のサイズ
ここで、「第1の方向またはそれに対応する方向」は、光源10A,10B,10C,10D、カップリングレンズ20A,20B,20C,20Dがインテグレータ40の光軸上に配置されている場合には第1の方向を指している。また、「第1の方向またはそれに対応する方向」は、光源10A,10B,10C,10D、カップリングレンズ20A,20B,20C,20Dがインテグレータ40の光軸から外れた光路上に配置されている場合には、光源10A,10B,10C,10Dからインテグレータ40までの光路上に配置された光学素子のレイアウトの関係から第1の方向に対応する方向を指している。
また、「第2の方向またはそれに対応する方向」は、光源10A,10B,10C,10D、カップリングレンズ20A,20B,20C,20Dがインテグレータ40の光軸上に配置されている場合には第2の方向を指している。また、「第2の方向またはそれに対応する方向」は、光源10A,10B,10C,10D、カップリングレンズ20A,20B,20C,20Dがインテグレータ40の光軸から外れた光路上に配置されている場合には、光源10A,10B,10C,10Dからインテグレータ40までの光路上に配置された光学素子のレイアウトの関係から第2の方向に対応する方向を指している。
なお、光源10Aに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P1Hは、そのチップ11Aの発光スポット11Bの第1の方向またはそれに対応する方向のサイズに等しい。同様に、光源10Bに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P2Hは、そのチップ11Aの発光スポット11Bの第1の方向またはそれに対応する方向のサイズに等しい。光源10Cに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P3Hは、そのチップ11Aの発光スポット11Bの第1の方向またはそれに対応する方向のサイズに等しい。光源10Dに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P4Hは、そのチップ11Aの発光スポット11Bの第1の方向またはそれに対応する方向のサイズに等しい。また、光源10Aに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P1Hは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第1の方向またはそれに対応する方向のサイズに等しい。同様に、光源10Bに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P2Hは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第1の方向またはそれに対応する方向のサイズに等しい。光源10Cに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P3Hは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第1の方向またはそれに対応する方向のサイズに等しい。光源10Dに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P4Hは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第1の方向またはそれに対応する方向のサイズに等しい。一方、光源10Aに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P1Vは、そのチップ11Aの発光スポット11Bの第2の方向またはそれに対応する方向のサイズに等しい。同様に、光源10Bに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P2Vは、そのチップ11Aの発光スポット11Bの第2の方向またはそれに対応する方向のサイズに等しい。光源10Cに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P3Vは、そのチップ11Aの発光スポット11Bの第2の方向またはそれに対応する方向のサイズに等しい。光源10Dに含まれる固体発光素子11が単一のチップ11Aからなる場合には、P4Vは、そのチップ11Aの発光スポット11Bの第2の方向またはそれに対応する方向のサイズに等しい。また、光源10Aに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P1Vは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第2の方向またはそれに対応する方向のサイズに等しい。同様に、光源10Bに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P2Vは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第2の方向またはそれに対応する方向のサイズに等しい。光源10Cに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P3Vは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第2の方向またはそれに対応する方向のサイズに等しい。光源10Dに含まれる固体発光素子11が複数のチップ11Aからなる場合には、P4Vは、最小面積で全てのチップ11Aの発光スポット11Bを囲ったときのその囲いの、第2の方向またはそれに対応する方向のサイズに等しい。
また、本実施の形態において、フライアイレンズ40A,40Bの各セル41,42が1以外の縦横比を有している場合には、フライアイレンズ40Aの各セル41のサイズの縦横比と、照明範囲60Aの縦横比とが以下の関係式(式(17))を満たしていることが好ましい。ここで、照明範囲60Aの縦横比H/V(図18参照)は、空間変調素子60の解像度と相関を有しており、例えば、空間変調素子60の解像度がVGA(640×480)である場合には640/480となっており、例えば、空間変調素子60の解像度がWVGA(800×480)である場合には800/480となっている。
FEL1H/hFEL1V=H/V…(18)
ここで、
FEL1H:フライアイレンズ40Aの1セルの第1の方向のサイズ
FEL1V:フライアイレンズ40Aの1セルの第2の方向のサイズ
H:照明範囲60Aの第1の方向のサイズ
V:照明範囲60Aの第2の方向のサイズ
(特徴部分その4)
加えて、本実施の形態では、カップリングレンズ20A,20B,20C,20Dに入射する光のビームサイズが20A,20B,20C,20Dのサイズを超えない大きさとなるように、カップリングレンズ20A,20B,20C,20Dの焦点距離および開口数が設定されていることが好ましい。これを式で表すと、以下の式(19)〜(22)のようになる。
φCL1=2×fCL1×NA1≦hCL1…(19)
φCL2=2×fCL2×NA2≦hCL2…(20)
φCL3=2×fCL3×NA3≦hCL3…(21)
φCL4=2×fCL4×NA4≦hCL4…(22)
ここで、
φCL1:カップリングレンズ20Aに入射する光のビームサイズ
φCL2:カップリングレンズ20Bに入射する光のビームサイズ
φCL3:カップリングレンズ20Cに入射する光のビームサイズ
φCL4:カップリングレンズ20Dに入射する光のビームサイズ
NA1:カップリングレンズ20Aの開口数
NA2:カップリングレンズ20Bの開口数
NA3:カップリングレンズ20Cの開口数
NA4:カップリングレンズ20Dの開口数
CL1:カップリングレンズ20Aのサイズ
CL2:カップリングレンズ20Bのサイズ
CL3:カップリングレンズ20Cのサイズ
CL4:カップリングレンズ20Dのサイズ
ところで、本実施の形態において、カップリングレンズ20A,20B,20C,20Dが1以外の縦横比(アスペクト比)を有している場合には、カップリングレンズ20A,20B,20C,20Dの焦点距離および開口数が、以下の関係式(式(23)〜(30))を満たしていることが好ましい。
φCL1H=2×fCL1H×NA1H≦hCL1H…(23)
φCL2H=2×fCL2H×NA2H≦hCL2H…(24)
φCL3H=2×fCL3H×NA3H≦hCL3H…(25)
φCL4H=2×fCL4H×NA4H≦hCL4H…(26)
φCL1V=2×fCL1V×NA1V≦hCL1V…(27)
φCL2V=2×fCL2V×NA2V≦hCL2V…(28)
φCL3V=2×fCL3V×NA3V≦hCL3V…(29)
φCL4V=2×fCL4V×NA4V≦hCL4V…(30)
ここで、
φCL1H:カップリングレンズ20Aに入射する光の、第1の方向(例えば横方向)またはそれに対応する方向のビームサイズ
φCL2H:カップリングレンズ20Bに入射する光の、第1の方向(例えば横方向)またはそれに対応する方向のビームサイズ
φCL3H:カップリングレンズ20Cに入射する光の、第1の方向(例えば横方向)またはそれに対応する方向のビームサイズ
φCL4H:カップリングレンズ20Dに入射する光の、第1の方向(例えば横方向)またはそれに対応する方向のビームサイズ
φCL1V:カップリングレンズ20Aに入射する光の、第2の方向(例えば縦方向)またはそれに対応する方向のビームサイズ
φCL2V:カップリングレンズ20Bに入射する光の、第2の方向(例えば縦方向)またはそれに対応する方向のビームサイズ
φCL3V:カップリングレンズ20Cに入射する光の、第2の方向(例えば縦方向)またはそれに対応する方向のビームサイズ
φCL4V:カップリングレンズ20Dに入射する光の、第2の方向(例えば縦方向)またはそれに対応する方向のビームサイズ
NA1H:カップリングレンズ20Aの、第1の方向またはそれに対応する方向の開口数
NA2H:カップリングレンズ20Bの、第1の方向またはそれに対応する方向の開口数
NA3H:カップリングレンズ20Cの、第1の方向またはそれに対応する方向の開口数
NA4H:カップリングレンズ20Dの、第1の方向またはそれに対応する方向の開口数
NA1V:カップリングレンズ20Aの、第2の方向またはそれに対応する方向の開口数
NA2V:カップリングレンズ20Bの、第2の方向またはそれに対応する方向の開口数
NA3V:カップリングレンズ20Cの、第2の方向またはそれに対応する方向の開口数
NA4V:カップリングレンズ20Dの、第2の方向またはそれに対応する方向の開口数
CL1H:カップリングレンズ20Aの、第1の方向またはそれに対応する方向のサイズ
CL2H:カップリングレンズ20Bの、第1の方向またはそれに対応する方向のサイズ
CL3H:カップリングレンズ20Cの、第1の方向またはそれに対応する方向のサイズ
CL4H:カップリングレンズ20Dの、第1の方向またはそれに対応する方向のサイズ
CL1V:カップリングレンズ20Aの、第2の方向またはそれに対応する方向のサイズ
CL2V:カップリングレンズ20Bの、第2の方向またはそれに対応する方向のサイズ
CL3V:カップリングレンズ20Cの、第2の方向またはそれに対応する方向のサイズ
CL4V:カップリングレンズ20Dの、第2の方向またはそれに対応する方向のサイズ
[プロジェクタ1の作用・効果]
次に、本実施の形態のプロジェクタ1の作用・効果について説明する。
まず、本実施の形態では、例えば図15(A),(B)に示したように、光源10A,10B,10C,10D全体として、互いに異なる2以上の波長帯の光(ここでは、3つの波長帯の光である赤色光,緑色光,青色光)が発せられるように、発光スポット11Bが3つ以上設けられている。そして、これらの光源10A,10B,10Cのうちの2以上の光源(ここでは、2つの光源10A,10D)間で、同一の波長帯の光(ここでは、赤色光、緑色光または青色光)が発せられる発光スポット11Bが設けられている。
ここで、プロジェクタでは一般に、赤色光,緑色光,青色光の3原色光を用いてカラー表示がなされる。ところが、これらの各原色光を発するデバイス(固体発光素子内のチップ)では、色ごとに発光強度(輝度)が異なっている場合があり、その場合、従来では照明装置(照明光学系)からの照明光全体としての輝度向上を図るのが困難であった。これは、例えば上記3原色のうちの1色(例えば緑色光)の発光強度が他の2色(例えば赤色光,青色光)の発光強度と比べて相対的に低い場合、照明光全体としてのホワイトバランスを調整しようとすると、相対的に低いほうの発光強度を基準に合わせ込まざるを得ないからである。
これに対して本実施の形態では、光源10A,10B,10C,10Dが上記した構成となっていることにより、照明光学系1Aから2以上の波長帯の光(ここでは赤色光,緑色光,青色光)を照明光として出射する際に、各波長帯の光同士での発光強度が調整可能となる。したがって、従来のように、照明光全体としてのホワイトバランスを調整する場合に、相対的に発光強度が低いものを基準とすることを回避することができ、照明光の輝度を向上させることが可能となる。
また、本実施の形態において、例えば図16(A),(B)に示したように、光源10A,10B,10C,10Dのうちの少なくとも1つの光源において、LDからなるチップ11Aにおける発光スポット11Bが複数設けられている場合に、以下のように構成したときには、以下の作用・効果が生じる。すなわち、まず、各発光スポット11Bから発せられる光におけるFFPの短軸方向がそれぞれ、インテグレータ40の光軸と直交する面内における短軸方向と略一致するようにした場合には、プロジェクタ1の装置外形における短軸方向と上記FFPの短軸方向とが略一致することになるため、プロジェクタ1全体の更なる小型化を図ることが可能となる。また、上記した光源が互いに異なる2以上の波長帯の光を発する光源である場合において、各発光スポット11Bから発せられる光のFFPの長軸方向がこれらの2以上の波長帯間で互いに略一致するようにした場合には、例えばIカット形状のレンズを用いた場合などにおいて、光損失が低減される。具体的には、Iカット形状のレンズを用いた場合、Iカットされる部分では光学的有効範囲が犠牲になるものの、LDの放射角度の長軸方向をIカットする方向(有効径が広い方向)に合わせることにより、光損失を低減することができる。
更に、本実施の形態において、例えば図17に示したように、フライアイレンズ40Aの各セル41によってフライアイレンズ40Bに形成される各光源像Sのサイズがフライアイレンズ40Bの1つのセル42のサイズを超えない大きさとなるように、カップリングレンズ20A,20B,20C,20Dの焦点距離fCL1,fCL2,fCL3,fCL4と、フライアイレンズ40A,40Bの焦点距離fFELとを設定するようにした場合には、以下の作用・効果が生じる。ここで、固体発光素子11は、単一もしくは複数の点状、または単一もしくは複数の非点状の発光スポットからなる光射出領域から光を発するものであり、例えば、1もしくは複数の発光ダイオード、1もしくは複数の有機EL発光素子、または1もしくは複数のレーザダイオードによって構成されている。そのため、フライアイレンズ40Bがフライアイレンズ40Aの焦点位置に配置されている場合であっても、フライアイレンズ40Aの各セルによってフライアイレンズ40Bに形成される各光源像Sが点状ではなく、ある程度の大きさを持っている(図17参照)。しかし、本実施の形態では、1つの光源像Sが複数のセルにまたがって形成されることがないので、フライアイレンズ40Bに入射した光が効率良く照明範囲にまで到達する。よって、照明光学系1Aにおける光利用効率を改善することができる。
加えて、本実施の形態において、フライアイレンズ40A,40Bの各セルが1以外の縦横比を有している場合に、その縦横比を考慮して、カップリングレンズ20A,20B,20C,20Dの焦点距離fCL1H,fCL2H,fCL3H,fCL4H,fCL1V,fCL2V,fCL3V,fCL4Vと、フライアイレンズ40A,40Bの焦点距離fFELH,fFELVとを設定するようにした場合には、照明光学系1Aにおける光利用効率をさらに改善することができる。また、本実施の形態において、カップリングレンズ20A,20B,20C,20Dが1以外の縦横比を有している場合に、その縦横比を考慮して、カップリングレンズ20A,20B,20C,20Dの焦点距離fCL1H,fCL2H,fCL3H,fCL4H,fCL1V,fCL2V,fCL3V,fCL4Vおよび開口数NA1H,NA2H,NA3H,NA4H,NA1V,NA2V,NA3V,NA4Vを設定するようにした場合には、照明光学系1Aにおける光利用効率をさらに改善することができる。また、本実施の形態において、光源10A,10B,10C,10Dの指向角がそれぞれ異なる場合に、それぞれの指向角を考慮して、カップリングレンズ20A,20B,20C,20Dの焦点距離fCL1H,fCL2H,fCL3H,fCL4H,fCL1V,fCL2V,fCL3V,fCL4Vおよび開口数NA1H,NA2H,NA3H,NA4H,NA1V,NA2V,NA3V,NA4Vをそれぞれ設定するようにした場合には、照明光学系1Aにおける光利用効率をさらに改善することができる。
続いて、本発明の他の実施の形態(第2,第3の実施の形態)について説明する。なお、上記第1の実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
<第2の実施の形態>
図19は、第2の実施の形態に係るプロジェクタに適用される光源ユニット(光源ユニット10−2)および位相差板アレイ90の構成例を表したものである。具体的には、図19(A),(B)は、本実施の形態の光源ユニット10−2の詳細構成例を示し、図19(C)は、本実施の形態の位相差板アレイ90の構成例を示す。本実施の形態のプロジェクタは、上記第1の実施の形態の照明光学系1において、光源ユニット10−1の代わりに光源ユニット10−2を設けると共に、位相差板アレイ90を更に設けるようにしたものである。
光源ユニット10−2は、例えば図19(A)に示したように、光源10A,10Dと、カップリングレンズ20A,20Dと、偏光ビームスプリッタ30Dとを有している。あるいは、光源ユニット10−2は、例えば図19(B)に示したように、光源10A,10Dと、偏光ビームスプリッタ30Dと、カップリングレンズ20Eとを有している。このカップリングレンズ20Eは、光源10A,10Dから発せられて偏光ビームスプリッタ30Dを介して入射した光をそれぞれ略平行光化するものであり、光源10A,10Dから発せられた光の指向角(θH,θV)を、平行光の指向角と等しくなるように、またはそれに近づくように変換するものである。また、位相差板アレイ90は、例えば図19(C)に示したように、インテグレータ40とコンデンサレンズ50(または前述した照明範囲60A)との間に設けられている。本実施の形態では、フライアイレンズ40Bは、フライアイレンズ40Aの焦点位置の手前に配置されており、位相差板アレイ90が、フライアイレンズ40Aの焦点位置(または略焦点位置)に配置されている。なお、偏光ビームスプリッタ30Dと位相差板アレイ90とが、本発明の「光路合成部」の一具体例に相当し、偏光ビームスプリッタ30Dが本発明の「偏光分離素子」の一具体例に相当する。
偏光ビームスプリッタ30Dは、入射する光の偏光に対して異方性を有する光学素子であり、光源10A,10Dから入射する光をそれぞれ、S偏光成分とP偏光成分との進行方向が異なるように分離(例えば反射)するものである。具体的には、例えば図20に示したように、偏光ビームスプリッタ30Dは、光源10Aから入射した光に含まれるP偏光成分の光(P偏光Lp)を、入射角と射出角とが互いに等しく(またはほぼ等しく)なるように選択透過させるようになっている。また、偏光ビームスプリッタ30Dは、光源10Dから入射した光に含まれるS偏光成分の光(S偏光Ls)を、入射角と射出角とが互いに異なるように選択反射させるようになっている。ここで、偏光ビームスプリッタ30Dから射出されたP偏光Lpの進行方向とS偏光Lsの進行方向とは、この偏光ビームスプリッタ30Dの法線(光軸)との関係で互いに反対方向を向いており、かつ、この法線(光軸)との関係で互いに線対称となる方向を向いていることが好ましい。
なお、この偏光ビームスプリッタ30Dが、上記の例とは逆に、例えば、光源10Aから入射した光に含まれるS偏光成分の光を、入射角と射出角とが互いに等しく(またはほぼ等しく)なるように選択透過させるようになっていてもよい。この場合に、偏光ビームスプリッタ30Dが、さらに、例えば、光源10Dから入射した光に含まれるP偏光成分の光を、入射角と射出角とが互いに異なるように選択反射させるようになっていてもよい。
位相差板アレイ90は、例えば図21に示したように、位相差の互いに異なる第1領域90Aおよび第2領域90Bを有している。第1領域90Aは、偏光ビームスプリッタ30Dで分離されたS偏光成分(S偏光Ls)およびP偏光成分(P偏光Lp)のいずれか一方の偏光成分が入射する位置に配置されており、第1領域90Aへの入射光を、偏光方向を維持したまま透過するようになっている。一方、第2領域90Bは、偏光ビームスプリッタ30Dで分離されたS偏光成分(S偏光Ls)およびP偏光成分(P偏光Lp)のうち第1領域90Aに入射する偏光成分とは異なる偏光成分が入射する位置に配置されており、第2領域90Bへの入射光を、第1領域90Aに入射する光の偏光と等しい偏光の光に変換するようになっている。これらの第1領域90Aおよび第2領域90Bは、ともに、偏光ビームスプリッタ30Dにおける分離(反射)方向と直交する方向に延在する帯状の形状となっており、かつ偏光ビームスプリッタ30Dにおける分離(反射)方向と平行な方向に交互に配置されている。ここで、フライアイレンズ40A,40Bの各セルが1以外の縦横比(アスペクト比)を有している場合には、第1領域90Aおよび第2領域90Bはともに、フライアイレンズ40A,40Bの長手方向と垂直な方向に延在していることが好ましい。
互いに隣り合う第1領域90Aおよび第2領域90Bの合計の幅Λarrayは、例えば、フライアイレンズ40Bの1つのセル42の幅と等しくなっている。第1領域90Aおよび第2領域90Bが、例えば図21に示したように、横方向に配列されている場合には、幅Λarrayは、例えば、セル42の横方向の幅(hFEL2H)と等しくなっている。第1領域90Aおよび第2領域90Bが、図示しないが、縦方向に配列されている場合には、幅Λarrayは、例えば、セル42の縦方向の幅(hFEL2V)と等しくなっている。第1領域90Aの幅hAWP1と、第2領域90Bの幅hAWP2とは、例えば、互いに等しくなっている。
このような構成により光源ユニット10−2では、例えば図22に示したように、偏光ビームスプリッタム30Dから射出されたS偏光Lsは、インテグレータ40で複数の微小光束となり、位相差板アレイ90の第1領域90Aに入射する。そして、この第1領域90Aへ入射したS偏光Lsは、その偏光方向を維持したまま、位相差板アレイ90を透過して出射する。一方、偏光ビームスプリッタ30Dから射出されたP偏光Lpは、インテグレータ40で複数の微小光束となり、位相差板アレイ90の第2領域90Bに入射する。そして、この第2領域90Bへ入射したP偏光Lpは、第1領域90Aに入射する光の偏光と等しい偏光の光(ここではS偏光Ls)に変換されたのち、位相差板アレイ90から出射する。なお、この例とは逆に、第1領域90Aへ入射したP偏光Lsが、その偏光方向を維持したまま位相差板アレイ90を透過して出射すると共に、第2領域90Bへ入射したS偏光LsがP偏光Lpに変換されたのち、位相差板アレイ90から出射するようにしてもよい。いずれにしても、この位相差板アレイ90からは、P偏光LpおよびS偏光Lsのいずれか一方の偏光(図22の例ではS偏光Ls)の光が、主として射出されるようになっている。
また、このとき、偏光ビームスプリッタ30Dから射出されたS偏光Lsは、フライアイレンズ40Aで微小光束に分割され、分割された各光束が位相差板アレイ90の第1領域90Aの近傍に焦点を結び、ここに2次光源面(光源像SA)を形成する(図23参照)。同様に、偏光ビームスプリッタ30Dから射出されたP偏光Lpは、フライアイレンズ40Aで微小光束に分割され、分割された各光束が位相差板アレイ90の第2領域90Bの近傍に焦点を結び、ここに2次光源面(光源像SB)を形成する(図23参照)。
このような構成の光源ユニット10−2および位相差板アレイ90を有する照明光学系を備えた本実施の形態のプロジェクタにおいても、上記第1の実施の形態のプロジェクタ1と同様の作用により、同様の効果を得ることが可能である。
<変形例>
続いて、上記第1および第2の実施の形態に共通の変形例(変形例1,2)について説明する。なお、これらの実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
[変形例1]
図24(A),(B)は、変形例1に係るプロジェクタ(プロジェクタ3)の概略構成を表すものである。なお、このプロジェクタ3が、本発明の「投射型表示装置」の一具体例に相当する。ここで、図24(A)はプロジェクタ3を上から(y軸方向から)見たときの構成例を表し、図24(B)はプロジェクタ3を横から(x軸方向から)見たときの構成例を表す。
本変形例のプロジェクタ3は、照明光学系3Aを備えていると共に空間変調素子60として反射型の素子を用いている点で、照明光学系1Aを備えたプロジェクタ1の構成と相違する。そこで、以下では、プロジェクタ1との相違点について主に説明し、プロジェクタ1との共通点についての説明を適宜省略するものとする。なお、本変形例の照明光学系3Aでは、光源ユニット10−1,10−2のどちらを設けるようにしてもよい。
照明光学系3Aは、照明光学系1Aにおいて、コンデンサレンズ50の代わりにコンデンサレンズ50Aを設けるようにしたものである。このコンデンサレンズ50Aは、インテグレータ40により形成された多光源からの光束を平行化し、偏光ビームスプリッタ51を介してコンデンサレンズ50Bへ照明させるレンズである。
また、本変形例では上記したように、空間変調素子60が、例えば反射型の液晶パネル等の反射型の素子によって構成されている。したがって、プロジェクタ3はプロジェクタ1と比較して、コンデンサレンズ50Bおよび偏光ビームスプリッタ51を更に備えている。偏光ビームスプリッタ51は、特定の偏光(例えばp偏光)を選択的に透過させると共に、他方の偏光(例えばs偏光)を選択的に反射させる光学部材である。また、空間変調素子60は、入射時と出射時とにおける各偏光(例えば、s偏光またはp偏光)が異なるものとなるように反射しつつ、光変調を行うようになっている。これにより、照明光学系3A側から入射した光(例えばs偏光)が選択的に反射されて空間変調素子60へ入射すると共に、この空間変調素子60から出射した画像光(例えばp偏光)が選択的に透過し、投影光学系70側へ入射するようになっている。コンデンサレンズ50Bは、インテグレータ40により形成され、コンデンサレンズ50Aおよび偏光ビームスプリッタ51を介して入射した多光源からの光束を集光し、照明範囲60Aを重畳的に照明するレンズである。
このような構成からなる本変形例のプロジェクタ3においても、上記第1,第2の実施の形態のプロジェクタと同様の作用により、同様の効果を得ることが可能である。
また、特に本変形例では、インテグレータ40の光軸と直交する面内(xy面内)のうち、x軸方向が特に長くなっていることから、プロジェクタ3の装置外形における短軸方向(y軸方向)と各発光スポット11Bから発せられる光におけるFFPの短軸方向とを一致させることにより、プロジェクタ3全体の小型化を図る利点が大きいと言える。
[変形例2]
図25(A),(B)は、変形例2に係るプロジェクタ(プロジェクタ4)の概略構成を表すものである。なお、このプロジェクタ4が、本発明の「投射型表示装置」の一具体例に相当する。ここで、図25(A)はプロジェクタ4を上から(y軸方向から)見たときの構成例を表し、図25(B)はプロジェクタ4を横から(x軸方向から)見たときの構成例を表す。
本変形例のプロジェクタ4は、照明光学系4Aを備えている点で、照明光学系1Aを備えたプロジェクタ1の構成と相違する。そこで、以下では、プロジェクタ1との相違点について主に説明し、プロジェクタ1との共通点についての説明を適宜省略するものとする。なお、本変形例の照明光学系4Aでは、光源ユニット10−1,10−2のどちらを設けるようにしてもよい。
照明光学系4Aでは、照明光学系1Aにおいて、インテグレータ40およびコンデンサ50を省いた(設けないようにした)構成となっている。すなわち、照明光学系4Aは、光源ユニット10−1(または光源ユニット10−2)と、光源10B,10Cと、カップリングレンズ20B,20Cと、光路合成素子30とを有している。
このように、場合によっては照明光学系内に、インテグレータ40およびコンデンサ50を設けないようにしてもよい。
[その他の変形例]
以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されず、種々の変形が可能である。
例えば、上記実施の形態等では、照明光学系1A,3A,4Aが、平行光をフライアイレンズ40Aに入射させる無限光学系を含んで構成されていたが、収束光(または発散光)をフライアイレンズ40Aに入射させる有限光学系を含んで構成されていてもよい。この場合には、上記実施の形態等において、カップリングレンズ20A〜20Dの代わりに、光源10A〜10Dから発せられた光を収束するか、または発散する機能を有する指向角変換素子を配置すればよい。ただし、この場合には、フライアイレンズ40Aの各セル41によってフライアイレンズ40Bに形成される各光源像Sのサイズがフライアイレンズ40Bの1つのセル42のサイズを超えない大きさとなるように、上記の指向角変換素子と、フライアイレンズ40A,40Bとからなる光学系の光学倍率が設定されていることが好ましい。具体的には、上記の指向角変換素子と、フライアイレンズ40A,40Bとからなる光学系の光学倍率が以下の関係式を満たすことが好ましい。なお、この場合においても、フライアイレンズ40A,40Bの各セル41,42が1以外の縦横比(アスペクト比)を有している場合には、照明光学系1A,3A,4Aが、アナモフィック光学系となっていることが好ましい。
h=P×m≦hFEL2
m:上記の指向角変換素子と、フライアイレンズ40A,40Bとからなる光学系の光学倍率
また、上記実施の形態等では、本発明を、投射型表示装置に適用した場合について説明されていたが、他の表示装置に適用することももちろん可能である。例えば、図26に示したように、本発明を、リアプロジェクション表示装置7に適用することが可能である。このリアプロジェクション表示装置7は、照明光学系1A,3A,4Aを含むプロジェクタ1,3,4と、プロジェクタ1,3,4(投影光学系70)から投射された画像光を映し出す透過型スクリーン8とを備えている。このように、リアプロジェクション表示装置7の照明光学系として、照明光学系1A,3A,4Aを用いることにより、照明光(画像光,表示光)の輝度を向上させることができる。
更に、上記実施の形態等において説明した、照明光学系内の複数の光源における各色発光スポットの配置方法や発光スポットの発光色については、特に限定されず、用途や目的に応じて任意に設定することが可能である。そのように構成した場合であっても、上記各実施の形態と同様の作用により、同様の効果を得ることが可能である。例えば、図27に示した例では、光源10A,10Bにおいてそれぞれ、固体発光素子11が2つの緑色発光スポット11Bgを有すると共に、光源10Bにおいて固体発光素子11が1つの青色発光スポット11Bbを更に有し、光源10Cにおいて固体発光素子11が1つの赤色発光スポット11Brを有している。そして、前述した2以上の光源(ここでは2つの光源10A,10B)からそれぞれ発せられる同一波長帯の光(ここでは緑色光)を合成する光路合成部が、光源ユニット10−1または光源ユニット10−2内に設けられている。つまり、この図27に示した例では特に、上記した2以上の光源のうちの少なくとも1つの光源(ここでは2つの光源10A,10B)において、固体発光素子11が、同一の波長帯(ここでは緑色光の波長帯)とは異なる波長帯の光(ここでは青色光)が発せられる1または複数の発光スポット(ここでは1つの青色発光スポット11Bb)を更に有している。
加えて、上記実施の形態等では、空間変調素子60が透過型または反射型の素子によって構成されている場合について説明したが、これには限られず、例えば、空間変調素子60がデジタルマイクロミラーデバイスによって構成されていてもよい。
また、上記実施の形態等では、照明光学系および表示装置の各構成要素(光学系)を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。
更に、上記実施の形態等では、本発明の照明装置の用途として、投射型等の表示装置を例に挙げて説明したが、これには限られず、例えばステッパ等の露光装置にも適用することが可能である。
1,3,4…プロジェクタ、1A,3A,4A…照明光学系、2…スクリーン、7…リアプロジェクション表示装置、8…透過型スクリーン、10A,10B,10C、10D…光源、11…固体発光素子、11A,11A−1,11A−2…チップ、11B,11B−1,11B−2…発光スポット、11Br…赤色発光スポット、11Bg…緑色発光スポット、11Bb…青色発光スポット、12…パッケージ、13…ステム、13A…支持基板、13B…外枠基板、13C…接続端子、14…キャップ、14A…筒部、14B…光透過部、15…サブマウント、16…ワイヤ、20A,20B,20C,20D,20E…カップリングレンズ、30…光路合成素子、30A,30B…ダイクロイックミラー、30C…プリズム、30D…偏光ビームスプリッタ、40…インテグレータ、40A,40B…フライアイレンズ、41,42…セル、50,50A,50B…コンデンサレンズ、51…偏光ビームスプリッタ、60…空間変調素子、60A…照明範囲、70…投影光学系、90…位相差板アレイ、90A…第1領域、90B…第2領域。

Claims (15)

  1. 単一もしくは複数の発光スポットを含む光射出領域から光を発する固体発光素子をそれぞれ含む複数の光源と、
    短軸および長軸を有すると共に、前記固体発光素子側から入射した光が通過して出射する光学部材と
    を備え、
    前記固体発光素子は、光を発する単一または複数のチップを含み、
    前記複数の光源全体として、互いに異なる2以上の波長帯の光が発せられるように、前記発光スポットが3つ以上設けられ、
    前記複数の光源のうちの2以上の光源間で、同一の波長帯の光が発せられる発光スポットが設けられ、
    前記複数の光源全体として、前記チップの少なくとも1つがレーザダイオードを含み、
    前記複数の光源のうちの少なくとも1つの光源における前記レーザダイオードからなるチップに、発光スポットが複数設けられると共に、このレーザダイオードからなるチップの各発光スポットから発せられる光におけるファーフィールドパターン(FFP)の向きが、前記光学部材の光路中において互いに略一致している
    照明装置。
  2. 前記2以上の光源のうちの少なくとも1つの光源に、前記同一の波長帯とは異なる波長帯の光が発せられる1または複数の発光スポットが更に設けられている
    請求項1に記載の照明装置。
  3. 前記2以上の光源からそれぞれ発せられる前記同一波長帯の光を合成する光路合成部を更に備えた
    請求項1または請求項2に記載の照明装置。
  4. 前記光路合成部が、偏光分離素子と位相差板アレイとを有し、
    前記偏光分離素子は、前記2以上の光源から入射する前記同一波長帯の光を、S偏光成分とP偏光成分との進行方向が異なるように分離し、
    前記位相差板アレイは、位相差の互いに異なる第1領域および第2領域を有し、
    前記第1領域は、前記偏光分離素子で分離されたS偏光成分およびP偏光成分のいずれか一方の偏光成分が入射する位置に配置されており、この第1領域への入射光を、偏光方向を維持したまま透過し、
    前記第2領域は、前記偏光分離素子で分離されたS偏光成分およびP偏光成分のうち前記第1領域に入射する偏光成分とは異なる偏光成分が入射する位置に配置されており、この第2領域への入射光を、前記第1領域に入射する光の偏光と等しい偏光の光に変換する
    請求項3に記載の照明装置。
  5. 前記光路合成部は、前記2以上の光源から異なる方向へ進行する光を共通の光路方向へ向けさせるように構成されたプリズムを含む
    請求項3に記載の照明装置。
  6. 前記光学部材が、
    前記固体発光素子側から入射した光の指向角を変換する1または複数の指向角変換素子と、
    短軸および長軸を有すると共に、前記指向角変換素子を透過した光が照明する所定の照明範囲における光の照度分布を均一化するインテグレータとを含み、
    前記FFPの短軸方向が、前記インテグレータの光軸と直交する面内における、前記インテグレータの前記短軸方向と略一致している
    請求項1に記載の照明装置。
  7. 前記光学部材が、
    前記固体発光素子側から入射した光の指向角を変換する1または複数の指向角変換素子と、
    前記指向角変換素子を透過した光が照明する所定の照明範囲における光の照度分布を均一化するインテグレータとを含む
    請求項1ないし請求項5のいずれか1項に記載の照明装置。
  8. 前記インテグレータは、前記指向角変換素子側からの光が入射する第1のフライアイレンズと、前記第1のフライアイレンズ側からの光が入射する第2のフライアイレンズとを含み、
    前記第1のフライアイレンズの各セルによって前記第2のフライアイレンズに形成される各光源像のサイズが前記第2のフライアイレンズの1セルのサイズを超えない大きさとなるように、前記指向角変換素子と、前記第1および第2のフライアイレンズとからなる光学系の光学倍率が設定されている
    請求項7に記載の照明装置。
  9. 前記指向角変換素子と、前記第1および第2のフライアイレンズとからなる光学系の光学倍率が、以下の関係式を満たす
    請求項8に記載の照明装置。
    h=P×m≦hFEL2
    h:前記光源像のサイズ
    P:前記光射出領域のサイズ(前記固体発光素子が単一のチップからなる場合はそのチップの発光スポットのサイズに等しく、前記固体発光素子が複数のチップからなる場合は最小面積で全てのチップの発光スポットを囲ったときのその囲いのサイズに等しい)
    m:前記指向角変換素子と、前記第1および第2のフライアイレンズとからなる光学系の光学倍率
    FEL2:前記第2のフライアイレンズの1セルのサイズ
  10. 前記第1のフライアイレンズは、前記第2のフライアイレンズの略焦点位置に配置されており、
    前記第2のフライアイレンズは、前記第1のフライアイレンズの略焦点位置に配置されている
    請求項8に記載の照明装置。
  11. 各光源は、前記固体発光素子を内蔵したパッケージとなっている
    請求項1ないし請求項5のいずれか1項に記載の照明装置。
  12. 各光源は、前記固体発光素子を基材上に支持するパッケージとなっている
    請求項1ないし請求項5のいずれか1項に記載の照明装置。
  13. 前記チップは、発光ダイオード、有機EL素子、またはレーザダイオードである
    請求項1ないし請求項5のいずれか1項に記載の照明装置。
  14. 照明光学系と、
    入力された映像信号に基づいて前記照明光学系からの光を変調することにより、画像光を生成する空間変調素子と、
    前記空間変調素子で生成された画像光を投射する投影光学系と
    を備え、
    前記照明光学系は、
    単一もしくは複数の発光スポットを含む光射出領域から光を発する固体発光素子をそれぞれ含む複数の光源と、
    短軸および長軸を有すると共に、前記固体発光素子側から入射した光が通過して出射する光学部材と
    を備え、
    前記固体発光素子は、光を発する単一または複数のチップを含み、
    前記複数の光源全体として、互いに異なる2以上の波長帯の光が発せられるように、前記発光スポットが3つ以上設けられ、
    前記複数の光源のうちの2以上の光源間で、同一の波長帯の光が発せられる発光スポットが設けられ、
    前記複数の光源全体として、前記チップの少なくとも1つがレーザダイオードを含み、
    前記複数の光源のうちの少なくとも1つの光源における前記レーザダイオードからなるチップに、発光スポットが複数設けられると共に、このレーザダイオードからなるチップの各発光スポットから発せられる光におけるファーフィールドパターン(FFP)の向きが、前記光学部材の光路中において互いに略一致している
    投射型表示装置。
  15. 照明光学系と、
    入力された映像信号に基づいて前記照明光学系からの光を変調することにより、画像光を生成する空間変調素子と、
    前記空間変調素子で生成された画像光を投射する投影光学系と、
    前記投影光学系から投射された画像光を映し出す透過型スクリーンと
    を備え、
    前記照明光学系は、
    単一もしくは複数の発光スポットを含む光射出領域から光を発する固体発光素子をそれぞれ含む複数の光源と、
    短軸および長軸を有すると共に、前記固体発光素子側から入射した光が通過して出射する光学部材と
    を備え、
    前記固体発光素子は、光を発する単一または複数のチップを含み、
    前記複数の光源全体として、互いに異なる2以上の波長帯の光が発せられるように、前記発光スポットが3つ以上設けられ、
    前記複数の光源のうちの2以上の光源間で、同一の波長帯の光が発せられる発光スポットが設けられ、
    前記複数の光源全体として、前記チップの少なくとも1つがレーザダイオードを含み、
    前記複数の光源のうちの少なくとも1つの光源における前記レーザダイオードからなるチップに、発光スポットが複数設けられると共に、このレーザダイオードからなるチップの各発光スポットから発せられる光におけるファーフィールドパターン(FFP)の向きが、前記光学部材の光路中において互いに略一致している
    直視型表示装置。
JP2010265379A 2010-11-29 2010-11-29 照明装置、投影型表示装置および直視型表示装置 Active JP5633695B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010265379A JP5633695B2 (ja) 2010-11-29 2010-11-29 照明装置、投影型表示装置および直視型表示装置
US13/281,553 US8888300B2 (en) 2010-11-29 2011-10-26 Illumination unit having at least two solid state light sources in the same wavelength band
CN201110373625.9A CN102540677B (zh) 2010-11-29 2011-11-22 照明单元、投影式显示单元及直视式显示单元
US14/279,885 US8905554B2 (en) 2010-11-29 2014-05-16 Illumination unit having a plurality of light sources including a light source emitting two or more different wavelengths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265379A JP5633695B2 (ja) 2010-11-29 2010-11-29 照明装置、投影型表示装置および直視型表示装置

Publications (3)

Publication Number Publication Date
JP2012118122A JP2012118122A (ja) 2012-06-21
JP2012118122A5 JP2012118122A5 (ja) 2014-05-01
JP5633695B2 true JP5633695B2 (ja) 2014-12-03

Family

ID=46126432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265379A Active JP5633695B2 (ja) 2010-11-29 2010-11-29 照明装置、投影型表示装置および直視型表示装置

Country Status (3)

Country Link
US (2) US8888300B2 (ja)
JP (1) JP5633695B2 (ja)
CN (1) CN102540677B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113223A (ja) 2010-11-26 2012-06-14 Sony Corp 照明装置、投影型表示装置および直視型表示装置
JP5633695B2 (ja) * 2010-11-29 2014-12-03 ソニー株式会社 照明装置、投影型表示装置および直視型表示装置
JP5811807B2 (ja) * 2011-03-22 2015-11-11 ソニー株式会社 照明装置、投影型表示装置、直視型表示装置
JP5648556B2 (ja) * 2011-03-28 2015-01-07 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置
CN103791288A (zh) * 2014-01-14 2014-05-14 北京牡丹视源电子有限责任公司 一种激光灯条、由激光灯条构成的背光模组及显示器
JP6265055B2 (ja) 2014-01-14 2018-01-24 ソニー株式会社 発光装置、表示装置および照明装置
DE102014110960A1 (de) * 2014-08-01 2016-02-04 GOM - Gesellschaft für Optische Meßtechnik mbH Messeinrichtung zum dreidimensionalen optischen Vermessen von Objekten mit einem topometrischen Sensor sowie Verwendung eines Multi-Laserchip-Bauelementes
JP6398494B2 (ja) * 2014-09-05 2018-10-03 船井電機株式会社 画像投影装置
EP2993899A1 (en) * 2014-09-05 2016-03-09 Funai Electric Co., Ltd. Image projection apparatus
JP6375799B2 (ja) * 2014-09-05 2018-08-22 船井電機株式会社 画像投影装置
JP2016061897A (ja) * 2014-09-17 2016-04-25 ソニー株式会社 照明装置および投射型表示装置
JP6380813B2 (ja) * 2015-12-24 2018-08-29 カシオ計算機株式会社 光源装置及び投影装置
CN109564379B (zh) * 2016-08-02 2021-12-14 索尼公司 投影式显示装置
CN106875853A (zh) * 2017-01-22 2017-06-20 深圳晗竣雅科技有限公司 一种数字化阵列光源芯片及制造方法以及投影装置
WO2020146559A1 (en) 2019-01-09 2020-07-16 Vuzix Corporation Color correction for virtual images of near-eye displays
CN113534584B (zh) * 2020-04-13 2023-07-04 台达电子工业股份有限公司 远端激光投影装置的操作方法
JP7185193B2 (ja) * 2021-01-15 2022-12-07 ウシオ電機株式会社 光源装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243620A (ja) * 1985-08-21 1987-02-25 Fuji Photo Film Co Ltd 半導体レ−ザ光源装置
WO1999049358A1 (fr) * 1998-03-26 1999-09-30 Mitsubishi Denki Kabushiki Kaisha Afficheur d'images et dispositif emettant de la lumiere
JP2001281760A (ja) * 2000-03-29 2001-10-10 Seiko Epson Corp 投射型表示装置
US6733139B2 (en) * 2000-06-05 2004-05-11 Hewlett-Packard Development Company, L.P. Projector with narrow-spectrum light source to complement broad-spectrum light source
US6648475B1 (en) * 2002-05-20 2003-11-18 Eastman Kodak Company Method and apparatus for increasing color gamut of a display
US6769772B2 (en) * 2002-10-11 2004-08-03 Eastman Kodak Company Six color display apparatus having increased color gamut
US20060007406A1 (en) * 2002-10-21 2006-01-12 Sean Adkins Equipment, systems and methods for control of color in projection displays
JP2004184777A (ja) * 2002-12-04 2004-07-02 Nec Viewtechnology Ltd 光源装置及び投写型表示装置
US7159987B2 (en) * 2003-04-21 2007-01-09 Seiko Epson Corporation Display device, lighting device and projector
JP4546930B2 (ja) * 2004-01-28 2010-09-22 パナソニック株式会社 発光方法、発光装置、投写型表示装置
US7360900B2 (en) * 2004-03-10 2008-04-22 Seiko Epson Corporation Illuminating apparatus, image display apparatus, and projector
KR100643764B1 (ko) * 2005-03-09 2006-11-10 삼성전자주식회사 발광다이오드 광원의 온도를 감안하여 화이트밸런스를 조정하는 영상투사장치 및 그의 화이트밸런스 조정방법
US7411722B2 (en) * 2005-08-24 2008-08-12 Eastman Kodak Company Display system incorporating bilinear electromechanical grating device
JP2007065429A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 投写型映像表示装置
WO2007026885A1 (ja) * 2005-09-01 2007-03-08 Matsushita Electric Industrial Co., Ltd. レーザ画像形成装置およびカラー画像形成方法
US8669565B2 (en) * 2006-04-24 2014-03-11 Cree Huizhou Solid State Lighting Company Limited LED devices with narrow viewing angle and an LED display including same
US8748915B2 (en) * 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8487326B2 (en) * 2006-04-24 2013-07-16 Cree, Inc. LED device having a tilted peak emission and an LED display including such devices
JP5463613B2 (ja) 2006-11-27 2014-04-09 株式会社リコー 照明光学系、表示装置および投射表示装置
US7766490B2 (en) * 2006-12-13 2010-08-03 Philips Lumileds Lighting Company, Llc Multi-color primary light generation in a projection system using LEDs
US7905605B2 (en) * 2006-12-13 2011-03-15 Koninklijke Philips Electronics N.V. Multi-primary LED projection system
TWI343506B (en) * 2007-04-16 2011-06-11 Young Optics Inc Illumination system
JP5456688B2 (ja) * 2007-11-30 2014-04-02 ポイボス ビジョン オプト−エレクトロニクス テクノロジー リミテッド 投影システムに用いる光源装置並びに投影表示装置
US7891816B2 (en) * 2008-02-25 2011-02-22 Eastman Kodak Company Stereo projection using polarized solid state light sources
US7959297B2 (en) * 2008-05-15 2011-06-14 Eastman Kodak Company Uniform speckle reduced laser projection using spatial and temporal mixing
JP2010166023A (ja) * 2008-09-30 2010-07-29 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP2010160444A (ja) * 2009-01-09 2010-07-22 Nippon Hoso Kyokai <Nhk> 映像投射装置
US9429761B2 (en) * 2009-09-28 2016-08-30 Nec Corporation Color synthesis optical element, projection-type display device using same, and method for controlling display thereof
CN102576186B (zh) * 2009-10-15 2014-08-13 Nec显示器解决方案株式会社 照明设备和使用该照明设备的投影型显示设备
CN102696157B (zh) * 2010-07-30 2014-03-05 索尼公司 光源单元、照明装置及显示器
JP2012113223A (ja) * 2010-11-26 2012-06-14 Sony Corp 照明装置、投影型表示装置および直視型表示装置
JP5633695B2 (ja) * 2010-11-29 2014-12-03 ソニー株式会社 照明装置、投影型表示装置および直視型表示装置
JP2012203392A (ja) * 2011-03-28 2012-10-22 Sony Corp 照明装置、投影型表示装置および直視型表示装置
JP5648556B2 (ja) * 2011-03-28 2015-01-07 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置
JP5772143B2 (ja) * 2011-03-28 2015-09-02 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置

Also Published As

Publication number Publication date
US20140247591A1 (en) 2014-09-04
US8905554B2 (en) 2014-12-09
US20120133901A1 (en) 2012-05-31
CN102540677A (zh) 2012-07-04
JP2012118122A (ja) 2012-06-21
CN102540677B (zh) 2015-06-17
US8888300B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
JP5633695B2 (ja) 照明装置、投影型表示装置および直視型表示装置
JP5648556B2 (ja) 照明装置、投射型表示装置および直視型表示装置
JP5581958B2 (ja) 照明装置、投影型表示装置、直視型表示装置
US10162250B2 (en) Illumination unit, projection display unit, and direct view display unit
US10168019B2 (en) Illumination unit, projection display unit, and direct-view display unit
JP5910324B2 (ja) 照明装置、投影型表示装置および直視型表示装置
JP5772143B2 (ja) 照明装置、投射型表示装置および直視型表示装置
JP5811807B2 (ja) 照明装置、投影型表示装置、直視型表示装置
JP2012073496A (ja) 照明装置、投影型表示装置、直視型表示装置
JP2015007774A (ja) 照明装置、投影型表示装置、直視型表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R151 Written notification of patent or utility model registration

Ref document number: 5633695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250