WO2009067861A1 - Poudre d'alliage magnétique doux amorphe à base de fe, noyau de poudre magnétique comprenant la poudre et son procédé de fabrication - Google Patents

Poudre d'alliage magnétique doux amorphe à base de fe, noyau de poudre magnétique comprenant la poudre et son procédé de fabrication Download PDF

Info

Publication number
WO2009067861A1
WO2009067861A1 PCT/CN2008/001882 CN2008001882W WO2009067861A1 WO 2009067861 A1 WO2009067861 A1 WO 2009067861A1 CN 2008001882 W CN2008001882 W CN 2008001882W WO 2009067861 A1 WO2009067861 A1 WO 2009067861A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy powder
soft magnetic
amorphous soft
magnetic alloy
powder
Prior art date
Application number
PCT/CN2008/001882
Other languages
English (en)
French (fr)
Inventor
Zhichao Lu
Deren Li
Feng Guo
Jianliang Li
Liang Zhang
Caowei Lu
Shaoxiong Zhou
Jun Wang
Original Assignee
Advanced Technology & Materials Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Technology & Materials Co., Ltd filed Critical Advanced Technology & Materials Co., Ltd
Publication of WO2009067861A1 publication Critical patent/WO2009067861A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder

Definitions

  • This invention relates to magnetic functional materials and their preparation. More specifically, the present invention relates to an iron-based amorphous soft magnetic alloy powder, a magnetic powder core comprising the powder, and a method of producing the magnetic powder core. Background technique
  • the metal magnetic powder core mainly has an iron powder core, a Fe 85 Si 9 Al 6 magnetic powder core, and Fe 5 . Ni 5 . Magnetic powder core and Fe 17 Ni 81 Mo 2 magnetic powder core, and amorphous magnetic powder core and nanocrystalline magnetic powder core developed in recent years. These magnetic powder cores have their own characteristics and their application fields are also different.
  • the iron content of the iron powder core is generally above 99 wt%. Its main features are low price, the magnetic permeability can reach 90, and the loss is above ⁇ 4000 mW/cm 3 (tested at 0.1 T, 100 kHz). Excellent stability. Due to magnetostriction, ferromagnetic core materials sometimes inevitably cause noise. In addition, the iron powder core material itself has a thermal decay problem, that is, long-term use at high temperatures (generally above 100TC) will cause permanent loss and affect the service life of the ferromagnetic powder core material.
  • Japanese Patent No. JP 08-037107 discloses a Fe 85 Si 9 Al 6 magnetic powder core having a high performance-price ratio, and the composition thereof contains 9-10 atom% of silicon and 5-6 atomic% of aluminum, and the balance is iron. .
  • the magnetic powder core has a maximum magnetic permeability of 125 and a loss of about 1000 mW/cm 3 (tested at 0. IT, 100 kHz).
  • the Fe 85 Si, Al 6 magnetic powder core has a slightly higher price, lower loss, lower magnetostriction coefficient, and lower noise during operation. Therefore, the magnetic powder core has been widely used as an EMI inductor.
  • U.S. Patent No. 1,669,642 discloses a Fe 5 . Ni 5 . Magnetic powder core
  • the composition is 50 atomic % of iron, 50 atomic % of nickel, the maximum magnetic permeability can reach 160, the loss reaches 1000 mW/cm 3 (tested at 0. IT, 100 kHz), and has the highest resistance to DC bias.
  • the magnetic powder core contains 50 atom% of Ni, the price is high.
  • U.S. Patent No. 5,470,399 discloses an iron-nickel-molybdenum magnetic powder core which is generally composed of Fe 17 Ni 81 Mo 2 and has a maximum magnetic permeability of 500.
  • the magnetic powder core has the widest magnetic permeability range in all magnetic powder cores, and the loss can reach ⁇ 400 mW/cm 3 (tested at 0.1 T, 100 kHz).
  • the DC biasing performance is good, and the hysteresis is almost 0, so the work noise is small.
  • its composition contains 81 atom%, the price is higher.
  • the nanocrystalline magnetic powder core is currently mainly used in the FeCuNbS iB series nanocrystalline alloy (see Chinese invention patent CN1373481A, US invention patent US 6, 827, 557), and its constituent atomic percentage satisfies: Fe is 70 - 75 %, NbCu is 4 % , S iB is 26 - 21 %, and the maximum magnetic permeability can reach 120.
  • the nanocrystalline magnetic powder core has good frequency characteristics. Since the powder is usually obtained by the method of strip crushing, the powder has a problem of dissimilarity, and the insulation is also difficult and the loss is high.
  • amorphous alloys have better integrated magnetic properties than crystalline alloys, which have both high saturation magnetization and magnetic permeability, and low loss. This good overall performance provides the technical foundation to break through the traditional magnetic powder core.
  • the preparation of amorphous alloys requires a cooling rate of more than 10 6 K / s, so it has been studied how to prepare amorphous materials using existing industrial equipment or equipment that has been modified on the existing basis. Thus, a bulk amorphous material is produced.
  • the existing metal magnetic powder core has its own shortcomings in performance and price. Therefore, an alternative product of a metal magnetic powder core is required to improve cost performance. More specifically, amorphous magnetic powder cores which are free of relatively expensive metals are particularly desirable. Summary of the invention
  • One of the objects of the present invention is to provide a cost-effective iron-based amorphous soft magnetic alloy powder.
  • Another object of the present invention is to provide a magnetic powder core which is cost effective and has low loss. It is still another object of the present invention to provide a method capable of producing the above magnetic powder core using an existing apparatus.
  • the invention achieves the above object by a low loss iron-based amorphous soft magnetic alloy powder, a magnetic powder core thereof and a preparation method of the magnetic powder core, wherein the iron-based amorphous soft magnetic joint
  • the composition of the gold powder does not contain relatively expensive metals such as Co and Ni.
  • the present invention relates to an amorphous soft magnetic alloy powder, the composition of which is expressed in atomic ratio to satisfy the following formula:
  • M is one selected from the group consisting of Mo and Nb; T is one or two selected from the group consisting of Sn and A1; a is 1 - 5; b is 1 - 5; c is 0 - 5; a + b Is 2 - 8; x is 2 - 15; y is 0.5 - 8; z is 1 - 12; t is 0 - 6.
  • the present invention also relates to the amorphous powder core comprising a soft magnetic alloy powder, the magnetic core loss of less than 600 mW / cm 3 (0. IT , under the conditions tested 100kHz).
  • Another aspect of the present invention provides a method for preparing the above magnetic powder core, wherein the material is selected from the above iron-based amorphous soft magnetic alloy powder, and the preparation method is as follows:
  • the obtained mixture is placed in a magnetic powder core mold and molded under a pressure of 500 MPa to 3000 MPa;
  • the aging treatment of the magnetic powder core is performed.
  • the amorphous soft magnetic powder has a particle size of from -200 to +400 mesh, preferably from -300 to +400 mesh.
  • the annealing temperature is higher than T e + 20 to less than T x -20 :, preferably 400 - 440 ⁇ ; and the annealing time is 30 minutes - 5 hours, preferably 30 - 90 minutes.
  • the aging treatment comprises: holding at a temperature of -80 - 40 for 0.5 - 3 hours, then raising the temperature to a temperature of 80 - 120 C for 0.5 - 3 hours, and repeating twice or more.
  • Figure 1 shows the composition of the alloy with a particle size range of -100- + 200. Scanning electron micrograph of amorphous powder of Fe 72 Cr 4 Mo 2 Sn 2 P 10 C 2 B 4 S i 4 .
  • Figure 2 shows the composition of the alloy with a particle size range of -300- + 400 mesh.
  • Figure 3 shows the composition of the alloy with a particle size range of -200 - +300.
  • Figure 4 shows the composition of the alloy with a particle size range of -100 - +200.
  • Figure 5 shows the alloy composition as
  • Figure 6 is an amorphous magnetic powder core of FenCr ⁇ o ⁇ i ⁇ PuC ⁇ S with a particle size ranging from -100- + 200 mesh, -200- + 300 mesh, -300-+400 mesh, and a particle size of -400 mesh. Permeability curve as a function of frequency.
  • Figure 7 shows the composition of the alloy with a particle size range of -200- + 300 mesh, -300- +400 mesh, and a particle size of -400, respectively.
  • DC bias characteristic curve shows the composition of the alloy with a particle size range of -200- + 300 mesh, -300- +400 mesh, and a particle size of -400, respectively.
  • Figure 8 shows the composition of the alloy with a particle size range of -300- + 400 mesh.
  • Fig. 9 is a DC bias characteristic curve of an amorphous magnetic powder core having an alloy composition of Fe 72 Cr 4 Mo 2 Sn 2 P 10 C 2 B 4 S i 4 having a particle size ranging from -300 to + 400 after annealing at different annealing temperatures.
  • Figure 10 shows the composition of the alloy in the range of -300- + 400 mesh.
  • Fe 72 Cr 4 Mo 2 Sn 2 P 10 C 2 B 4 S i 4 (Inventive) Amorphous magnetic powder core with Fe 17 Ni 81 Mo 2 , Fe 5 . Ni 5 . , Contrast curve of magnetic permeability of Fe 85 S i 9 Al 6 magnetic powder core with frequency.
  • FIG. 11 is a particle size range -300- + 400 mesh alloy is Fe 72 Cr 4 Mo 2 Sn 2 P 10 C 2 B 4 S i 4 ( present invention) an amorphous magnetic core and Fe 17 Ni 81 Mo 2, Fe 5 . Ni 5 . , Fe 85 S i 9 Al 6 # core loss versus frequency of the contrast curve. detailed description
  • a screen that "does not pass” or “passes” the mesh For example, "-300 mesh” means passing through a 300 mesh screen, while “+400 mesh” means not passing through a 400 mesh screen. Therefore, “-300 - + 400 mesh” means a powder that has passed through a 300 mesh screen and has not passed through a 400 mesh screen. Amorphous soft magnetic alloy powder and preparation method thereof
  • the amorphous soft magnetic alloy powder of the present invention is expressed by atomic ratio to satisfy the following formula:
  • M is one selected from the group consisting of Mo and Nb; T is one or two selected from the group consisting of Sn and A1; a is 1-5; b is 1-5; c is 0-5; a+b 2 - 8; x is 2-15; y is 0.5-8; z is 1 - 12; t is 0-6.
  • x + y + z + t is from 12 to 25, preferably from 14 to 24, more preferably from 16 to 23, most preferably from 18 to 22.
  • the main function of Cr is to increase the oxidation resistance of the molten alloy and increase the viscosity. If the Cr content is less than 1 atom%, the alloy has poor oxidation resistance and is therefore not preferred. If the Cr content is more than 5 atom%, the viscosity of the molten alloy is too large, resulting in sticking between the powders during the atomization process, and therefore it is not preferable.
  • the main role of M is to increase the crystallization temperature. If the content of M is less than 1 atom%, the effect of increasing the crystallization temperature is not remarkable, which is not preferable. If the content of M is more than 5 atom%, the M portion is analyzed during the atomization, which tends to cause segregation of components, which in turn causes a decrease in magnetic properties of the powder, and is therefore not preferable.
  • T The main function of T is to increase the fluidity of the molten alloy. If the fluidity of the alloy is not Preferably, adhesion may occur between the powders during the atomization process. Therefore, T is not an essential element, but is added only when it is necessary to increase the fluidity of the molten alloy. but if
  • the content of T exceeding 5 atom% may cause the fluidity of the molten alloy to be high, which in turn causes the particle size of the atomized powder to be too small, and the magnetic powder core prepared by using the powder has low magnetic permeability, and thus is not preferable.
  • the Fe element affects the magnetic properties of the amorphous soft magnetic alloy powder, and P, Si, B and optional C are amorphizing elements.
  • the iron-based amorphous soft magnetic alloy powder of the present invention has excellent magnetic properties and amorphous structural properties.
  • the alloy powder has a saturation magnetic induction of 1.0 T or more, preferably 1.1 T or more, more preferably 1.3 T or more; and a supercooled liquid phase zone width of not less than 30 K, preferably not less than 35 K, and most preferably not less than 37 K.
  • the width of the supercooled liquid phase refers to LT g , where T x is the crystallization temperature of the powder and T g is the glass transition temperature of the powder.
  • the amorphous alloy powder of the present invention has a substantially spherical morphology (see Figs. 1 to 3).
  • the bulk density of the powder is not less than 2.8 g/cm 3 , preferably not less than 3.0 g/cm 3 , more preferably not less than 3.5 g/cm 3 .
  • the oxygen content as an impurity is less than 8000 ppm by mass, preferably less than 4000 ppm; the amorphous particle size may be -80 mesh; if necessary, the amorphous particle size may be -200 mesh.
  • the amorphous particle size of the powder refers to the maximum particle size at which the powder can form an amorphous state.
  • the preparation method of the iron-based amorphous soft magnetic powder adopts water atomization, gas atomization or combined gas and water atomization.
  • the water atomization preparation method is: using high-pressure water (for example, 40 Bar), the metal droplets are rapidly pulverized by the atomizing nozzle and simultaneously rapidly cooled into metal particles.
  • the gas atomization preparation method is similar to the water atomization method, except that the cooling medium is different (high-pressure gas such as nitrogen gas or helium gas can be used); the water-gas combined atomization method is to crush gold with high-pressure gas. After droplets or metal particles, the metal droplets or metal particles are rapidly cooled by high-pressure water.
  • the low loss magnetic powder core of the present invention comprises the iron-based amorphous soft magnetic powder of the present invention.
  • the magnetic powder core loss is less than 600 mW/cm 3 , preferably less than 550 mW/cm 3 , more preferably less than 500 mW/cm 3 , and most preferably less than 400 mW/cm 3 (tested at 0. IT, 100 kHz).
  • the preparation method of the magnetic powder core mainly comprises the following steps:
  • the above iron-based amorphous alloy powder of the present invention is mixed with a binder, an optional insulating agent and an optional lubricant and dried to form a dry powder;
  • the iron-based amorphous soft magnetic alloy powder is sieved.
  • the sifting of the powder of the present invention can be accomplished using a test screen, a standard slap shake screen, other types of vibrating screens, and a gas flow powder grading apparatus.
  • Step 1 Mix the powder with the binder and optional insulating agent and lubricant and dry to a thousand powder
  • the amorphous soft magnetic powder of the present invention is mixed with a binder, and an optional insulating agent, and dried to form a powder having a certain fluidity.
  • each powder is added to the binder and stirred thoroughly. If the viscosity is large, the diluent is used to lower the viscosity and is heated in the subsequent stirring process until the diluent is completely evaporated. Finally, the mixed powder is dried under heating or no heating to impart a certain fluidity to the obtained mixture powder.
  • a diluent known in the art can be used.
  • an insulating agent can be used.
  • the present invention is also completely free from the use of an insulating agent, and the object of the present invention can be achieved.
  • the present invention preferably uses one or more selected from the group consisting of insulating agents: 1. Oxide powders such as S i0 2 , Ca0, A1 2 0 3 , Ti0 2 and the like. Oxide powders are generally stable in nature, have good insulation and heat resistance, and are inexpensive. 2. Silicates, phosphates, etc. 3. Other mineral powders, such as mica powder, kaolin and so on. In addition, it is also possible to perform insulation by using a chemically produced surface film or surface oxidation that occurs.
  • the weight percentage of the insulating agent is preferably between 0.2% by weight and 7% by weight based on the total weight of the mixture.
  • the reason why the upper limit of the insulating agent is set to 7% by weight is: If the insulating agent is excessive, the interval between the powders is too large, and the magnetic permeability of the magnetic powder core is lowered. More preferably, the insulating agent has a weight percentage ranging from 1% by weight to 5% by weight.
  • the present invention preferably uses a binder selected from the following types as a binder: 1.
  • An organic binder such as an epoxy resin. Epoxy resins have been commonly used in the industry as bonding materials, and the bonding materials have a better bonding effect especially after being mixed with a curing agent.
  • Inorganic binders such as silicates. The inorganic binder has the advantages of good heat resistance and excellent insulating properties per se, so that it can have both the function of insulation and adhesion.
  • the preferred content of the binder is 2 - 4% by weight
  • a lubricant may optionally be added to the mixture of the present invention, and the addition of a lubricant is not necessary.
  • the function of the lubricant is as follows: 1. The powder is easy to flow during pressing, thereby increasing the density of the magnetic powder core. 2. The magnetic ring and the pressing mold are less likely to be bonded, so that the mold is easily released.
  • stearate, talc, etc. are preferred as lubricating substances, and their contents are It should be no more than 2% by weight of the total weight of the mixture. If the lubricant is too much, the density of the composite powder in the magnetic powder core is lowered, resulting in deterioration of the performance of the magnetic powder core and a decrease in magnetic permeability.
  • the total amount of the insulating agent, the binder and the lubricant is 0.5 to 10% by weight; more preferably 1 to 7 wt%.
  • the molding pressure of the mixture powder of the present invention is preferably from 500 MPa to 3000 MPa.
  • the pressure is less than 500 MPa, the powder is difficult to form, or cracks are formed after molding. This will result in low magnetic permeability and poor magnetic core performance.
  • the pressure is greater than 3000 MPa, the mold is subjected to high pressure, easy to damage, and the powder insulation is difficult, the core loss is high, and the quality factor is not good, so it is not good.
  • the magnetic powder core forming pressure is more preferably 800 MPa to 2500 MPa.
  • Step 3 Magnetic core annealing
  • the mixture powder is pressed by the press during the pressing process, and there is stress inside the magnetic powder core, and these stresses affect the performance of the magnetic powder core.
  • the annealing temperature of the magnetic powder core should meet the following conditions: 1.
  • the annealing temperature is higher than T. + 20t! to less than ⁇ -20, which ⁇ . And 1 ⁇ are the Curie temperature and the crystallization temperature respectively; 2.
  • the annealing temperature should be as high as possible.
  • the core annealing temperature is too low, the thermal disturbance is small, the internal stress of the powder core is difficult to be fully eliminated, and the magnetic properties are difficult to be sufficiently improved.
  • the annealing time of the magnetic powder core should meet the following conditions: 1.
  • the annealing time of the powder core should not exceed 5 hours. Because if the annealing time exceeds 5 hours, the annealing time is too long, the efficiency is low, and the manufacturing cost is increased. 2.
  • the annealing time of the powder core should not be less than 30 minutes, because if the annealing time is less than 30 minutes, the annealing time is too short, and it is difficult to achieve uniform treatment during batch processing, and the powder core performance is difficult to be uniform.
  • the magnetic powder core annealing time is preferably between 30 minutes and 90 minutes.
  • the present invention preferably performs the above annealing process under a protective atmosphere, which may be a vacuum state, a hydrogen state, a nitrogen state, or an argon state.
  • Step 4 Magnetic powder core aging treatment
  • the heat-treated magnetic powder core is placed in a temperature-adjustable and heat-insulating device, and is first kept at a temperature of -401 C.
  • the holding time is not particularly limited and may be 0.5 to 3 hours, preferably 1 hour.
  • the temperature is raised to 80-120, and the temperature is not particularly limited, and may be 0.5 to 3 hours, preferably 1 hour. This cycle can be completed by cycling more than 2 times.
  • the powder of the present embodiment adopts an iron-based amorphous soft magnetic alloy of different composition and is prepared by a water atomization method, the atomization pressure is 20 kg/cm 2 , and the atomized powder is used in a vacuum drying oven for 180 X 8 hours.
  • the system was dried, and then the powder was classified by a slap-type vibrating sieve to obtain powders of -80 - +200 mesh, -200-300 mesh, -300-400 mesh, and -400 mesh, respectively.
  • the composition of the alloy is
  • the prepared powder was tested for its properties separately. Among them, the powder morphology was observed by scanning electron microscopy, the powder morphology was close to spherical and the surface was smooth (Fig. 1 ⁇ 3); the powder thermal analysis was tested by differential scanning calorimeter, the heating rate was 20K/min, and the test temperature range was 298- 850 K (Fig. 4); powder crystal structure ⁇ tested with X-ray diffractometer, test angle 20-80. , scan rate 0. 02 ° / s ( Figure 5). It can be seen from the X-ray diffraction pattern of FIG.
  • the X-ray diffraction pattern of the alloy powder of the present invention has no crystallization peak and exhibits a distinct amorphous structural characteristic, indicating that the structure of the alloy powder of the present invention is amorphous powder state.
  • the powder saturation magnetic induction is measured by a vibrating sample magnetometer; the powder looseness is tested by a loose flow meter.
  • magnetic powder cores were prepared using different compositions of -200 ⁇ +300 mesh powders.
  • the preparation process is as follows: a.
  • the amorphous soft magnetic alloy powder is mixed with 2% by weight of sodium silicate powder as a binder in water for 10 minutes, and then heated to 200 Torr until the water vapor substantially disappears, and then 180 CX 120 in the dry box. Minutes of system drying;
  • the pressed magnetic powder core is annealed under a nitrogen atmosphere at 440 X 120 minutes;
  • the annealed magnetic powder core into the incubator, firstly heat it at -80 for one hour, then heat up to 1001C for one hour, and then cycle 5 times to complete the aging treatment.
  • the magnetic properties of the magnetic powder core were then measured.
  • the magnetic permeability and loss were measured using Iwatsu SY-8232 with measurement conditions of 100 kHz and 0.1 T, respectively.
  • Table 1 Properties of amorphous powders with different alloy compositions
  • Amorphous powder and corresponding magnetic powder core properties are shown in Table 1 and Table 2.
  • Amorphous powders can have a particle size of -80 mesh, supercooled liquid phase The area can reach above 30K, even higher than 35K, the saturation magnetic induction intensity is above 1.1T, the bulk density is above 2.8 g/cm 3 ; the permeability of the magnetic powder core is greater than 60, even greater than 70, and the loss is less than 600 mW/cm 3 .
  • This embodiment uses an alloy composition of The amorphous soft magnetic powder has a supercooled liquid phase width of 38 K, and the preparation method is as described in Example 1.
  • the powder has a saturation magnetic induction of 1.2T.
  • the magnetic powder core was prepared by using the alloys -100- + 200 mesh, -200-+300 mesh, -300-+400 mesh, -400 mesh powder, respectively, and the preparation method was as described in Example 1.
  • the performance of the magnetic powder core is shown in Table 3 and Figure 6, Figure 7.
  • Table 3 by annealing 440 reach magnetic permeability higher than 60. It can be seen from Fig. 6 that the magnetic permeability does not change substantially with the test frequency in the "MHz frequency range.
  • Fig. 7 the external field of the DC bias characteristic when the inductance is attenuated to 50% is about 1000e.
  • the magnetic powder core is used.
  • the particle size of the powder is preferably from -200 to 400 mesh, most preferably from -300 to +400 mesh. Table 3.
  • Powder particle size (mesh) magnetic permeability (f 100kHz)
  • a -300-+400 mesh amorphous soft magnetic alloy powder having an alloy composition of Fe 72 Cr 4 Mo 2 Sn 2 P 1 () C 2 B 4 S i 4 is used, and the supercooled liquid region width is 38 K, and the preparation method is adopted.
  • the preparation method of the magnetic powder core is as described in Example 1, but the annealing temperature is varied from 280 to 480 ⁇ .
  • the performance of the magnetic powder core is shown in Table 4 and Figure 8, Figure 9. It can be seen from Table 4 that the annealing temperature at which the magnetic permeability reaches the highest is 440, and the loss is also the smallest at this time, reaching 320 mW/cm 3 0. It can be seen from Fig. 8 that the entire test frequency range, especially at ⁇ At 5 MHz, the permeability does not change substantially with the test frequency. At the same time, as can be seen from Fig. 9, the DC bias characteristic is 100 0e when the inductance is attenuated to 50%. In general, the annealing temperature is preferably between 400 and 4401:. Table 4. Different annealing temperatures Amorphous magnetic powder core performance
  • the composition of the alloy used in this embodiment is The amorphous soft magnetic powder has a supercooled liquid phase width of 38 K, and the preparation method is as described in Example 1.
  • the saturation magnetic induction of the alloy powder is 1. 2T.
  • the magnetic powder core was then prepared using this alloy-300-+400 mesh powder, and the preparation method was as described in Example 1.
  • -400- + 500 mesh Fe 17 Ni sl Mo 2 and -300- + 400 mesh Fe 5 were respectively selected. Ni 5 .
  • Preparing a magnetic powder core of -300-400 mesh Fe 85 S i 9 Al 6 powder the preparation process is as described in Example 1, except that the content of the mica powder as an insulating agent is 2% by weight, 2% by weight, and 2% by weight, respectively. Annealing temperatures were 600 ⁇ , 600"C, 550 t;
  • the performance of the magnetic powder core is shown in Table 5, Figure 10 and Figure 11. It can be seen from Table 5 that the magnetic loss of the amorphous magnetic powder core reaches 320 mW/cm 3 in the case of the same magnetic permeability, which is lower than that of other magnetic powder cores, especially significantly lower than Fe 5 . Ni 5 . with? 6 85 31 ⁇ 1 6 magnetic powder core; and it is more than Fe 17 Ni 81 Mo 2 and Fe 5 . Ni 5 . The amount of Ni contained in the magnetic powder core is greatly reduced, so the cost of raw materials is greatly reduced. Table 5. Performance of amorphous magnetic powder core and traditional metal magnetic powder core

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Description

铁基非晶软磁合金粉末及包含该粉末的磁粉芯
和该磁粉芯的制备方法 技术领域
本发明涉及磁性功能材料及其制备。 更具体的, 本发明涉及 一种铁基非晶软磁合金粉末及包含该粉末的磁粉芯和该磁粉芯的 制备方法。 背景技术
目前, 金属磁粉芯主要有铁粉芯、 Fe85Si9Al6磁粉芯、 Fe5。Ni5。 磁粉芯和 Fe17Ni81Mo2磁粉芯, 以及近年来开发的非晶磁粉芯和纳 米晶磁粉芯。 这些磁粉芯具有各自的特点, 其应用领域也各不相 同。
铁粉芯的铁含量一般在 99 wt %以上,其主要特点是价格低廉, 磁导率最大可以达到 90, 损耗在 ~ 4000 mW/cm3以上(在 0. 1T, 100kHz条件下测试) , 温度稳定性优良。 由于磁致伸缩的原因, 铁磁粉芯材料有时不可避免会造成噪声。 另外, 铁粉芯材料本身 有热衰退问题, 即长期在高温下 (一般指 100TC以上)使用会造 成损耗永久增大, 影响铁磁粉芯材料使用寿命。
日本发明专利 JP08 - 037107公开了 Fe85Si9Al6磁粉芯, 该磁 粉芯具有较高性能价格比,其组成中含有 9-10 原子%的硅和 5 - 6 原子%的铝, 其余为铁。 该磁粉芯的最大磁导率可以达到 125, 损耗可以达到 1000 mW/cm3左右 (在 0. IT, 100kHz条件下测试)。 与铁粉芯相比, Fe85Si,Al6磁粉芯价格稍高, 损耗较低, 磁致伸缩 系数低, 在工作过程中的噪音也低。 因此, 该磁粉芯作为 EMI电 感得到了广泛的应用。
美国发明专利 US1, 669, 642公开了一种 Fe5。Ni5。磁粉芯, 其 成分为铁 50 原子%, 镍 50原子%, 最大磁导率可以达到 160, 损 耗达到 1000 mW/cm3 (在 0. IT, 100kHz条件下测试) , 且具有最 高的抗直流偏磁能力。但是, 因为该磁粉芯含有 50 原子%的 Ni, 所以价格高。
美国发明专利 US5, 470, 399公开了一种铁镍钼磁粉芯, 其组 成一般为 Fe17Ni81Mo2, 最大磁导率可以达到 500。 该磁粉芯在所有 磁粉芯中是磁导率范围最宽的, 损耗可达到 ~ 400 mW/cm3 (在 0. 1T, 100kHz条件下测试) , 直流偏磁性能较好, 磁滞伸缩几乎 为 0, 所以工作噪音小。 但是, 由于其成分含有 81 原子%的 , 所以价格更高。
纳米晶磁粉芯目前主要釆用的是 FeCuNbS iB 系纳米晶合金 ( 参见 中 国 发明 专 利 CN1373481A , 美 国 发明 专 利 US6, 827, 557 ) , 其成分原子百分比满足: Fe为 70 - 75 %, NbCu 为 4 %, S iB为 26 - 21 %, 最大磁导率可以达到 120。 该纳米晶磁 粉芯具有良好的频率特性。 由于粉末通常是采用带材破碎的方法 获得, 粉末存在异形化问题, 绝缘也比较困难, 损耗较高。
在金属磁粉芯领域存在着种种问题,其中主要是性价比问题, 这使得科研工作者开始关注铁基非晶合金。 对于软磁合金来说, 非晶合金比晶态合金有更好的综合磁性能, 即同时具有很高的饱 和磁化强度和磁导率, 以及较低的损耗。 这种良好的综合性能提 供了突破传统磁粉芯困扰的技术基础。 但是, 非晶合金得的制备 需要超过 106K / s 的冷却速率, 所以人们开始研究如何利用现有 工业化设备或在现有基础上经过改造的装备来制备非晶态材料。 于是, 产生了大块非晶材料。
自 1988年以来, Inoue (井上明久)等人研究了多组元非晶 合金系的玻璃形成能力(GFA )。 他们采用水淬和模铸等方法, 获 得了镧系、 镁系、 铪系、 锆系、 钛系和钯系等一系列大块非晶合 金。 这些合金均具有很宽的过冷液相区、 很低的临界冷却速度、 厚度可达 75min。 上述大块非晶合金仅限于非铁磁系统, 而且没有 得到铁磁性。 1995年, Inoue等人才利用铜模铸造法, 获得了具 有软磁性的铁基铁磁性大块非晶合金 Fe- ( Al, Ga ) - ( P, C, B, S i , Ge )。 此后, 又有 Fe- ( Co, Ni ) - ( Zr , Hf , Nb ) - B等合金 系问世, 尽管这些合金具有较高的饱和磁感应强度和磁导率; 但 是, 由于其成分中含有一些较贵的金属 Ga、 Ni、 Co等而使其应用 相对滞后。
鉴于铁基非晶软磁合金的优异磁性能, 人们开始研究原材料 容易获得且容易制备的铁基非晶软磁合金。 由此, 铁基非晶软磁 合金磁粉芯领域成为研究热点, 并显示出其低损耗的特点 (参见 US 5, 935, 347 , US5, 252, 148 , JP08 - 037107 , US6, 827, 557 ) 。 所以, 鉴于现有技术的上述情况, 需要比现有金属磁粉芯性价比 更高的非晶磁粉芯。 因此, 如果能够减少软磁合金组成中的例如 Co和 Ni等较贵的金属的含量, 或是不使用这些金属, 将能够大 大降低软磁合金的成本。 由此, 也可以扩大其应用领域。
综上所述, 现有的金属磁粉芯在性能和价格上各有缺点。 所 以, 需要金属磁粉芯的替代产品从而提高性价比。 更具体的, 不 含较贵的金属的非晶磁粉芯是特别需要的。 发明内容
本发明的目的之一是提供一种性价比高的铁基非晶软磁合金 粉末。 本发明的另一个目的是提供一种性价比高且损耗低的磁粉 芯。 本发明再一个目的是提供能够采用现有设备来制备上述磁粉 芯的方法。
本发明通过一种低损耗的铁基非晶软磁合金粉末及其磁粉芯 和该磁粉芯的制备方法实现了上述目的, 其中该铁基非晶软磁合 金粉末的组成中不含较贵的金属, 例如 Co和 Ni。
本发明涉及一种非晶软磁合金粉末, 该合金粉末的組成以原 子比表示满足下式:
Fe (100-a-b-c-x-y-z-t) CraMbTcPxSiyBzCt
其中, M为选自 Mo和 Nb中的一种; T为选自 Sn和 A1中的 一种或两种; a为 1 - 5; b为 1 - 5; c为 0- 5; a+b为 2- 8; x 为 2 - 15; y为 0.5 - 8; z为 1 - 12; t为 0- 6。
本发明还涉及包括上述非晶软磁合金粉末的磁粉芯, 该磁粉 芯的损耗小于 600 mW/cm3 ( 0. IT, 100kHz条件下测试) 。
本发明的另一方面是提供了上述磁粉芯的制备方法,其材料 选用上述铁基非晶软磁合金粉末, 制备方法为:
a、将上述非晶软磁粉末与粘结剂、可选的绝缘剂和可选的润 滑剂均匀混合并使其干燥;
b、将所得的混合物放入磁粉芯模具,在 500MPa - 3000MPa 的 压力下成型;
c、 将成型的磁粉芯进行退火处理;
d、 将退火处理后的磁粉芯进行老化处理。
在一个优选实施方案中, 所述非晶软磁粉末的粒度为 - 200到 + 400目, 优选 - 300到 + 400目。 在另一个优选实施方案中, 退 火温度为高于 Te + 20 至低于 Tx-20 :, 优选为 400 - 440Ό; 退 火时间为 30分钟 - 5小时, 优选为 30 - 90分钟。
另一个优选实施方案中, 老化处理包括: 在- 80 - 40 的温度 保温 0.5-3小 , 之后升温至 80-120 C的温度保温 0.5-3小时, 并重复两次以上。 附图说明
图 1为粒度范围在 -100- + 200目的合金成分为 Fe72Cr4Mo2Sn2P10C2B4S i4的非晶粉末扫描电子显微镜照片。
图 2为粒度范围在 -300- + 400目的合金组成为
Fe72Cr4Mo2Sn2P10C2B4S i4的非晶粉末扫描电子显微镜照片。
图 3为粒度范围在 -200 - +300目的合金组成为
Fe72Cr4Mo2Sn2P10C2B4S i4的非晶粉末扫描电子显微镜照片。
图 4为粒度范围在 -100 - +200目的合金组成为
Figure imgf000007_0001
的非晶粉末 DSC曲线。
图 5为合金组成分别为
Figure imgf000007_0002
Fe76Cr1MoiSn2P1oC2B4Si4, Fe74Cr2Mo2Sn2P10C2B4S i4
Figure imgf000007_0003
的非晶粉末 X射线衍射曲线。
图 6分别为粒度范围在 -100- + 200目、-200- + 300目、- 300- + 400目和粒度为 -400目的合金组成为 FenCr^o^i^PuC^S 的 非晶磁粉芯磁导率随频率的变化曲线。
图 7分别为粒度范围在 -200- + 300目、-300- + 400目和粒度 为 -400目的合金组成为
Figure imgf000007_0004
直流偏置特性曲线。
图 8为粒度范围在 -300- + 400目的合金组成为
Fe72Cr4Mo2Sn2P10C2B4S i4的非晶磁粉芯经在不同退火温度退火后磁 导率随频率的变化曲线。
图 9 为粒度范围在 -300- + 400 目 的合金组成为 Fe72Cr4Mo2Sn2P10C2B4S i4的非晶磁粉芯在不同退火温度退火后直流 偏置特性曲线。
图 10 为是粒度范围内 - 300- + 400 目 的合金组成为
Fe72Cr4Mo2Sn2P10C2B4S i4 (本发明) 的非晶磁粉芯与 Fe17Ni81Mo2、 Fe5。Ni5。、 Fe85S i9Al6磁粉芯的磁导率随频率变化的对比曲线。
图 11 为粒度范围在 -300- + 400 目 的合金组成为 Fe72Cr4Mo2Sn2P10C2B4S i4 (本发明) 的非晶磁粉芯与 Fe17Ni81Mo2、 Fe5。Ni5。、 Fe85S i9Al6 # 芯的损耗随频率变化的对比曲线。 具体实施方式
正如本申请中所使用的和本领域技术人员所公知的, 当用目 数表示粉末的粒度时, 在目数之前的 "+ " 或 "-" 号分别表示
"不通过" 或 "通过" 所述目数的筛网。 例如, "- 300 目" 表 示通过 300目的筛网, 而 " + 400目"表示不通过 400目的筛网。 因此, "- 300 - + 400目"就表示通过了 300目筛网而未通过 400 目筛网的粉末。 非晶软磁合金粉末及其制备方法
本发明的非晶软磁合金粉末, 该合金粉末的组成以原子比表 示满足下式:
Fe (100-a-b-c-x-y-z-t) CraMbTcPxSiyBzCt
其中, M为选自 Mo和 Nb中的一种; T为选自 Sn和 A1中的 一种或两种; a为 1-5; b为 1-5; c为 0-5; a+b为 2 - 8; x 为 2-15; y为 0.5-8; z为 1— 12; t为 0-6。
在本发明的一个实施方案中, x+y+z+t为 12- 25, 优选为 14 - 24, 更优选为 16-23, 最优选为 18-22。
Cr的主要作用是提高熔融合金的抗氧化能力并会增加粘度。 如果 Cr含量低于 1原子%,则合金的抗氧化能力较差, 因此不优 选。 如果 Cr含量高于 5原子%, 则熔融合金的粘度偏大, 导致在 雾化过程粉末之间有粘连现象, 因此也不优选。
M的主要作用是提高晶化温度。 如果 M的含量低于 1原子%, 则提高晶化温度的效果不显著, 因此不优选。 如果 M的含量高于 5原子%, 导致在雾化过程中 M部分析出, 易引起成分偏析, 进 而导致粉末的磁性能降低, 因此也不优选。
T的主要作用是增加熔融合金的流动性。如果合金的流动性不 佳, 在雾化过程粉末之间可能会出现粘连现象。 因此, T 不是必 要的元素, 只是在需要增加熔融合金流动性时添加。 但是, 如果
T的含量超过 5原子%, 可能导致熔融合金的流动性偏高, 进而 导致雾化的粉末粒度太小, 用该粉末制备的磁粉芯磁导率低, 因 此不优选。
如本领域技术人员所公知的, Fe元素会影响非晶软磁合金粉 末的磁性能, P、 Si、 B以及非必要的 C为非晶化元素。
作为上述各参数的优选范围, 其中 a可以为 1 - 4; b可以为 1 - 4, 优选为 1 - 3; c可以为 1 - 4, 优选为 2 - 3; x可以为 5 - 13, 优选为 7 - 12; y可以为 1 - 6, 优选为 3- 6; z可以为 2 - 9, 优选为 3- 6; t可以为 0- 5, 优选为 1 - 3。
本发明的铁基非晶软磁合金粉末具有优良的磁性能和非晶态 结构性能。 该合金粉末的饱和磁感应强度在 1.0T 以上, 优选在 1.1T以上,更优选在 1.3T以上; 其过冷液相区宽度不小于 30K, 优选不小于 35K,最优选不小于 37K。 具体的, 过冷液相区的宽度 指 L-Tg, 其中 Tx为粉末的晶化温度, Tg为粉末的玻璃转变温度。
本发明的非晶合金粉末的形貌大致呈球形(参见图 1~图 3)。 粉末的松装密度不小于 2.8g/cm3, 优选不小于 3.0 g/cm3, 更优选 不小于 3.5 g/cm3。 作为杂质的氧含量按质量比小于 8000ppm, 优 选小于 4000ppm; 非晶态粒度可达到 -80目; 如果需要, 该非晶态 粒度可以为 -200目。粉末的非晶态粒度是指粉末可以形成非晶态 的最大粒度。
铁基非晶软磁粉末制备方法采用水雾化、 气雾化或水气联合 雾化。 其中, 水雾化制备方法为: 采用高压水(例如 40Bar) 通 过雾化喷盘将金属液滴迅速粉碎并同时快速冷却为金属颗粒。 气 雾化制备方法类似于水雾化方法, 只是冷却介质不同 (可以采用 氮气、 氦气等高压气体) ; 水气联合雾化法是用高压气体粉碎金 属液滴或金属颗粒后再用高压水将金属液滴或金属颗粒快速冷 却。 磁粉芯及其制备方法
本发明的低损耗磁粉芯包含本发明的铁基非晶软磁粉末。 该 磁粉芯损耗小于 600 mW/cm3 , 优选小于 550 mW/cm3, 更优选小 于 500 mW/cm3, 最优选小于 400 mW/cm3 ( 0. IT, 100kHz条件下测 试) 。
该磁粉芯的制备方法主要包括以下步骤:
1、 将本发明的上述铁基非晶合金粉末与粘结剂、 可选的绝 缘剂和可选的润滑剂进行混合并干燥成干粉;
2、 压制成型;
3、 磁粉芯退火;
4、 磁粉芯老化处理。
另外, 在第一步混合步骤之前, 还可选择的地包括将所述铁 基非晶软磁合金粉末进行筛分。 在可选的筛分步骤中, 本发明所 述粉末的筛分可以采用实验筛、 标准拍击式震动筛、 其他类型的 震动筛和气流式粉末分级设备等实现。 步骤 1 :粉末与粘结剂以及可选的绝缘剂和润滑剂进行混合并干 燥成千粉
将本发明的非晶软磁粉末与粘结剂,以及可选的绝缘剂混合 后并干燥形成具有一定流动性的粉末。 混合时将各粉末加入到粘 结剂中充分搅拌, 如果黏度大则釆用稀释剂降低黏度并在随后的 搅拌过程加热, 直至稀释剂挥发完全。 最后将混合好的粉末在加 热或不加热条件下干燥, 使得到的混合物粉末具有一定流动性。 对于稀释剂没有特别的要求, 采用本领域中公知的稀释剂即可。 为了提高磁粉芯电阻率, 降低涡流损耗, 提高高频下的磁导 率, 可以使用绝缘剂。 但是, 本发明也完全可以不使用绝缘剂, 并且可以实现本发明的目的。 如果使用绝缘剂, 本发明优选使用 用选自以下种类的绝缘剂中的一种或多种: 1、 氧化物粉末, 如 S i02、 Ca0、 A1203, Ti02等。 氧化物粉末通常性质稳定, 绝缘、 耐 热性能好, 并且价格低廉。 2、 硅酸盐类, 磷酸盐类等。 3、 其它 矿物粉, 如云母粉、 高岭土等。 另外, 还可以采用化学方法生成 的表面薄膜或发生的表面氧化来进行绝缘。
如果采用选自上述绝缘剂对混合粉末进行绝缘, 绝缘剂重量 百分比优选为混合物总重量的 0. 2重量%- 7重量%之间。 绝缘剂 的上限设定为 7重量%的原因是: 如果绝缘剂过多, 粉末之间的 间隔过大, 磁粉芯磁导率降低。 绝缘剂更优选的重量百分比范围 为 1重量%到 5重量%。
本发明优选用选自以下种类的粘结物质作为粘结剂: 1、有机 物粘结剂, 如环氧类树脂。 目前工业上已经普遍使用环氧类树脂 作为粘结材料, 该粘结材料尤其是在和固化剂混合使用后粘结效 果更佳。 2、 无机粘结剂, 如硅酸盐类等。 无机粘结剂的优点是耐 热性佳, 并且本身具有优良的绝缘性能, 因此可以具有绝缘和粘 结的双重作用。
如果釆用上述粘结剂, 其粘结剂含量占混合物的重量百分比 为 0. 1 - 5重量%。 如果粘结剂含量过多, 磁粉芯性能下降, 磁导 率降低。 粘结剂含量过低, 则起不到作用。 粘结剂的优选的含量 为 2 - 4重量%
可以在本发明的混合物中可选的地加入润滑剂, 润滑剂的加 入不是必须的。润滑剂的作用在于: 1、使粉末在压制时易于流动, 从而提高磁粉芯密度, 2、磁环和压制模具不易发生粘接, 从而易 于脱模。 本发明优选硬脂酸盐、 滑石粉等作为润滑物质, 其含量 应不大于混合物总重量的 2重量%。如果润滑剂过多,会造成磁粉 芯中复合粉末密度下降,从而导致磁粉芯性能恶化,磁导率降低。
为了得到绝缘混合充分、 粉芯致密、 磁性能优良的复合磁粉 芯, 本发明优选绝缘剂、 粘结剂与润滑剂的总量占混合物粉末总 重量的 0. 5 - 10重量%; 更优选为 1一 7重量%。
步骤 2: 压制成型
本发明混合物粉末的成型压力优选为 500MPa - 3000MPa。 压 力小于 500MPa, 粉末难以成型, 或成型后有裂纹存在。 这将导致 磁导率低, 磁粉芯性能不佳。 压力大于 3000MPa, 模具承受压力 大, 容易损坏, 且粉末绝缘困难, 粉芯损耗高, 品质因数不佳, 因此不好。 磁粉芯成型压力更优选 800MPa到 2500MPa。
步骤 3 : 磁粉芯退火
混合物粉末在压制过程中受到压机的挤压作用, 磁粉芯内部 存在着应力, 这些应力影响磁粉芯的性能。 通过对磁粉芯进行退 火处理, 可以达到消除内应力和改善磁性能的目的。 磁粉芯退火 处理温度应满足下列条件: 1、 退火温度为高于 T。 + 20t!至低于 Τ -20 , 其中 Τ。和 1\分别为居里温度和晶化温度; 2、 在满足 条件 1的情况下, 退火温度应尽量高。 粉芯退火温度过低、 热扰 动较小, 粉芯内部应力难以得到充分消除, 磁性能难以得到充分 提升。 磁粉芯退火时间应满足下列条件: 1、粉芯退火时间应不超 过 5小时。 因为如果退火时间超过 5小时, 则退火时间过长, 效 率低, 增加制造成本。 2、 粉芯退火时间应不低于 30分钟, 因为 如果退火时间不足 30分钟, 则退火时间过短,批量处理时难以达 到均匀处理之目的, 粉芯性能难以均一。 另外, 磁粉芯退火时间 优选 30分钟到 90分钟之间。 本发明优选在保护气氛下进行上述 退火过程, 保护气氛可以是真空状态、 氢气状态、 氮气状态或氩 气状态。 步骤 4: 磁粉芯老化处理
将热处理过的磁粉芯放入可调节温度并可保温的装置, 首先 在 -401C的温度保温, 保温时间没有特别的限制, 可以为 0. 5 - 3小时, 优选 1小时。 之后,升到 80- 120 的温度保温, 保 温时间没有特别的限制, 可以为 0. 5 - 3小时, 优选 1小时。 如此 循环 2次以上即可完成老化处理。 实施例 1
本实施例粉末采用不同组成的铁基非晶软磁合金, 并采用水 雾化方法制备, 雾化压力为 20公斤 /cm2, 雾化好的粉末在真空干 燥箱内釆用 180 X 8小时的制度烘干,然后用拍击式震动筛进行 粉末分级, 分别得到- 80 - +200目、 -200—300目、 -300—400目 和 -400 目的粉末。 合金组成分别为
Figure imgf000013_0001
Fe76Cr1MoiSn2PioC2B4S i4 、 Fe74Cr2Mo2Sn2P10C2B4S i4 、
Fe72Cr4Mo2Sn2P10C2B4S i4 、 Fe74Cr2Nb2Sn2P1QC2B4Si4
Fe74Cr2Nb2Al2P10C2B4S i4
制备好的粉末再分别测试其性能。 其中, 粉末形貌采用扫描 电子显微镜观察, 粉末形貌接近球形且表面光滑(图 1 ~ 3 ); 粉 末热分析釆用差热扫描量热仪测试, 升温速率 20K/min, 测试温 度范围 298- 850 K (图 4 ) ;粉末晶体结构釆用 X射线衍射仪测试, 测试角度 20-80。 , 扫描速率 0. 02° /s (图 5 ) 。 由图 5的 X射 线衍射图镨案可以看出, 本发明的合金粉末的 X射线衍射图没有 结晶峰, 表现为明显非晶态结构特征, 说明本发明的合金粉末的 结构为非晶粉末态。 粉末饱和磁感应强度采用振动样品磁强计测 量; 粉末松装流动性采用松装流动仪测试。
之后, 利用不同组成的 -200 ~ +300 目的粉末分别制备磁粉 芯。 制备过程如下: a、 将非晶软磁合金粉末与 2 重量%的作为粘结剂的硅酸钠 粉末在水中混合 10分钟,之后加热到 200Ό混合直至水蒸气基本 消失, 之后在千燥箱内以 180 C X 120分钟的制度干燥;
b、 在干燥后的粉末中加入 0.2 重量%的作为润滑剂的硬脂 酸锌, 并混合 10分钟;
c、 把 b 中得到的所述粉末放入磁粉芯模具, 用液压机在 lOOOMPa 的压力下成型; 磁粉芯形状为圆环, 尺寸为 φ20χ φ 12 X 7讓。
d、 压制好的磁粉芯在氮气保护下以 440 X 120分钟的制度 退火;
e、将退火后的磁粉芯放入恒温箱,首先在 -80 保温一小时, 之后升温到 1001C保温一小时, 如此循环 5次完成老化处理。
之后测量了磁粉芯的磁性能。 磁导率和损耗采用 Iwatsu SY-8232测量, 测量条件分别为 100kHz和 0.1T。 表 1.不同合金组成的非晶粉末性能
饱和磁感应强 过冷液相 最大非 松装密度 合金组成
度(τ) 区 (κ) 晶粒度 (g/cm3)
Figure imgf000014_0001
1.3 30 -150目 2.80
Fe7 6Cr1Mo1Sn2P10C2B4Si4 1.3 31 -150目 2.90
Fe7 4Cr2Mo2Sn2P10C2B4Si4 1.2 32 -80目 3.60
Fe7 2Cr4Mo2Sn2P10C2B4Si4 1.2 38 -80目 3.65
Fe7 4Cr2Nb2Sn2P10C2B4Si4 1.1 34 -80目 3.60
Fe7 4Cr2Nb2Al2P10C2B4Si4 1.1 32 -100目 2.90 表 2.不同合金组成的非晶磁粉芯性能
损耗 ( mW/cm3 ) 初始磁导率 合金组成
(0. IT, lOOKHz) (f = 100kHz)
Fe, ,6Cr1Mo1Sn2P8C2B4Si6 520 80.0
Fe7 6Cr,Mo1Sn2P1„C2B4Si4 540 79.8
Fe, 4Cr2Mo2Sn2P10C2B4Si4 480 75.1
Fe, 2Cr4Mo2Sn2P10C2B4Si4 382 74.1
Fe7 4Cr2Nb2Sn2P10C2B4Si4 452 73.0
Fe, 4Cr2Nb2Al2P10C2B4Si, 512 76.5 非晶粉末及相应的磁粉芯性能见表 1和表 2, 非晶粉末的粒 度可以达到 -80目,过冷液相区可以达到 30K以上,甚至高于 35K, 饱和磁感应强度在 1.1T以上, 松装密度在 2.8 g/cm3以上; 磁粉 芯磁导率大于 60, 甚至大于 70, 损耗小于 600 mW/cm3。 实施例 2
本实施例采用合金组成为
Figure imgf000015_0001
的非晶软磁 粉末, 过冷液相区宽度 38K, 制备方法如实施例 1所述。 该粉末 的饱和磁感应强度 1.2T。 之后, 分别釆用此合金 -100- + 200目、 -200-+ 300目、 -300- + 400目、 -400目粉末制备磁粉芯, 制备 方法如实施例 1所述。
磁粉芯性能见表 3和图 6、 图 7。 由表 3可以看出, 经 440 退火的磁导率达到高于 60。 由图 6可见, 在 "MHz频率范围内磁 导率基本不随测试频率而变化。 由图 7可见, 直流偏磁特性在电 感衰减到 50%时的外场为约 1000e。 综合而论, 磁粉芯所用的粉 末粒度优选在 -200 ~ 400目, 最优选在 - 300 - + 400目。 表 3.不同合金组成的非晶磁粉芯性能
损耗( mW/cm3 )
粉末粒度(目) 磁导率 ( f = 100kHz )
(0. IT, Ι ΟΟ Ηζ)
-100- + 200 560 70
-200- + 300 382 74. 1 -300— + 400 320 60. 7
-400 260 26 实施例 3
本实施例采用合金成分为 Fe72Cr4Mo2Sn2P1()C2B4S i4的 -300- + 400目非晶软磁合金粉末,过冷液相区宽度 38K,制备方法如实施 例 1所述。 该粉末的饱和磁感应强度 1. 2T。 磁粉芯的制备方法如 实施例 1所述, 但是退火温度在 280 ~ 480Ό间变化。
磁粉芯性能见表 4和图 8、 图 9。 由表 4可以看出, 其磁导 率达到最高的退火温度为 440 , 此时损耗也最小, 达到 320 mW/cm3 0由图 8可以看出,在整个测试频率范围内,尤其是在 <5MHz 下, 磁导率基本不随测试频率而变化。 同时, 由图 9可以看出, 直流偏磁特性在电感衰减到 50 %时的外场为 100 0e。 综合而论, 退火温度优选在 400 ~ 4401:。 表 4. 不同退火温度下
Figure imgf000016_0001
非晶磁粉芯性能
损耗 ( mW/cm3 )
退火温度( ) 磁导率 ( 100kHz )
(0. IT, Ι ΟΟΚΗζ)
280 550 29
300 520 34
360 440 44
400 380 49
440 320 60
480 880 38 实施例 4
本实施例釆用合金组成为
Figure imgf000017_0001
的非晶软磁 粉末, 过冷液相区宽度 38K, 制备方法如实施例 1所述。 该合金 粉末的饱和磁感应强度 1. 2T。之后采用此合金 -300- + 400目粉末 制备磁粉芯, 制备方法如实施例 1所述。
同时, 为了与传统磁粉芯对比, 分别选用 -400- + 500目 Fe17NislMo2、 -300- + 400目 Fe5。Ni5。、 -300-400目 Fe85S i9Al6粉末 制备磁粉芯, 制备工艺如实施例 1所述, 只是作为绝缘剂的云母 粉的含量分别为 2 重量%、 2重量%、 2重量%, 退火温度分別 为 600Ό、 600"C、 550 t;。
磁粉芯性能见表 5, 图 10和图 11。 由表 5可以看出, 磁导率 在同为 ~ 60的情况下, 非晶磁粉芯损耗达到 320 mW/cm3, 较其他 磁粉芯都低, 尤其是显著低于 Fe5。Ni5。和?68531^16磁粉芯; 且其 较 Fe17Ni81Mo2和 Fe5。Ni5。磁粉芯含 Ni量大大降低, 所以原材料成 本大大降低。 表 5.非晶磁粉芯与传统金属磁粉芯性能
损耗(mW/cm3 )
磁粉芯成分 磁导率(f = 100kHz )
(0. IT, l OOKHz)
Fe72Cr4Mo2Sn2P10C2B4S i4 320 60
Fe„Ni8,Mo2 400 60
Fe5ONi50 1200 60
Fe8sS i,Al6 1000 60

Claims

1. 一种非晶软磁合金粉末, 该合金粉末的组成以原子比表 示满足下式: 其中, M为选自 Mo和 Nb中的一种; T为选自 Sn和 A1中的 一种或两种; a为 1 - 5; b为 1 - 5; c为 0- 5; a+b为 2 - 8; x 为 2 - 15; y为 0.5 - 8; z为 1— 12; t为 0 - 6。
2. 根据权利要求 1 的非晶软磁合金粉末, 其中 x+y+z+t 为 12 - 25, 优选为 14 - 24, 更优选为 16 - 23, 最优选为 18 - 22。
3. 根据权利要求 1的非晶软磁合金粉末, 其中 a为 1 - 4。
4. 根据权利要求 1的非晶软磁合金粉末, 其中 b为 1 - 4, 优选为 1 - 3。
5. 根据权利要求 1的非晶软磁合金粉末, 其中 c为 1 - 4, 优选为 2 - 3。
6. 根据权利要求 1的非晶软磁合金粉末, 其中 X为 5 - 13, 优选为 7 - 12。
7. 根据权利要求 1的非晶软磁合金粉末, 其中 y为 1 - 6, 优选为 3- 6。
8. 根据权利要求 1的非晶软磁合金粉末, 其中 z为 2- 9, 优选为 3 - 6
9. 根据权利要求 1的非晶软磁合金粉末, 其中 t为 0 - 5, 优选为 1 - 3。
10. 根据权利要求 1 的非晶软磁合金粉末, 其中该合金粉末 的组成以原子比表示满足式
Figure imgf000019_0001
i
11. 根据权利要求 1 的非晶软磁合金粉末, 其中该合金粉末 的组成以原子比表示满足式
Figure imgf000019_0002
i"
12. 根据权利要求 1 的非晶软磁合金粉末, 其中该合金粉末 的组成以原子比表示满足式 FewCrzMc Sn^ B^i"
13. 根据权利要求 1 的非晶软磁合金粉末, 其中该合金粉末 的组成以原子比表示满足式
Figure imgf000019_0003
i
14. 根据权利要求 1 的非晶软磁合金粉末, 其中该合金粉末 的组成以原子比表示满足式
Figure imgf000019_0004
i"
15. 根据权利要求 1 的非晶软磁合金粉末, 其中该合金粉末 的组成以原子比表示满足式 Fe C Nb LPwC Si"
16. 根据权利要求 1 - 15 中任何一项的非晶软磁合金粉末, 其中该非晶软磁合金粉末的过冷液相区宽度 Tx-Tg不小于 30K, 不小于 35K,最优选不小于 37K。
17. 根据权利要求 1 - 15中任何一项的非晶软磁合金粉末, 其 中该非晶软磁合金粉末的饱和磁感应强度在 1.0T 以上, 优选在 1.1T以上,更优选在 1.3T以上。
18. 根据权利要求 1 - 15 中任何一项的非晶软磁合金粉末, 其中该非晶软磁合金粉末的松装密度不小于 2.8g/cm3, 优选不小 于 3.0 g/cm3, 更优选不小于 3.5 g/cm3
19. 根据权利要求 1 - 15 中任何一项的非晶软磁合金粉末, 其中该非晶软磁合金粉末中作为杂盾的氧含量按质量比小于 gOOOppm, 优选小于 4000ppm。
20. 根据权利要求 1 - 15 中任何一项的非晶软磁合金粉末, 其中该非晶软磁合金粉末的非晶态粒度为 -80目。
21. 一种磁粉芯, 该磁粉芯包括非晶软磁合金粉末, 该非晶 软磁合金粉末的组成以原子比表示满足下式:
Fe (100-a-b-c-x-y-z-t) CraMJcPxSiyBzCt
其中, M为选自 Mo和 Nb中的一种; T为选自 Sn和 A1中的 一种或两种; a为 1 - 5; b为 1 - 5; c为 0- 5; a+b为 2 - 8; x 为 2- 15; y为 0.5- 8; z为 1 - 12; t为 0 - 6。
22. 根据权利要求 21的磁粉芯, 其中 x+y+z+t为 12 - 25, 优 选为 14 - 24, 更优选为 16 - 23, 最优选为 18 - 22。
23. 根据权利要求 21或 22的磁粉芯, 其中该磁粉芯在 0.1T 和 100kHz 条件下测试的损耗小于 600 mW/cm3, 优选小于 550 mW/cm3, 更优选小于 500 mW/cm3, 最优选小于 400 mW/cm3
24. 根据权利要求 21或 22的磁粉芯, 其中该磁粉芯在 100kHz 条件下测试的磁导率大于 25, 优选大于 40, 更优选大于 50, 更 优选大于 60。
25. 根据权利要求 21或 22 的磁粉芯, 其中该磁粉芯基于磁 粉芯的总重量还包括 0 -7.0重量%的绝缘剂、 0.1-5.0重量% 的粘结剂和 0-2重量%的润滑剂。
26. 一种磁粉芯的制备方法, 该方法包括步骤:
a、 将非晶软磁合金粉末与粘结剂、 可选的绝缘剂和可选的润 滑剂均匀混合并使其干燥, 其中该非晶软磁合金粉末的组成以原 子比表示满足下式: 其中, M为选自 Mo和 Nb中的一种; T为选自 Sn和 A1中的一 种或两种; a为 1-5; b为 1-5; c为 0-5; a+b为 2 - 8; x为 2-15; y为 0.5-8; z为 1 - 12; t为 0-6。
b、将得到的混合物放入磁粉芯模具,并在 500MPa - 3000MPa, 且优选 800MPa- 2500MPa的压力下成型;
c、 将成型后的磁粉芯进行退火处理;
d、 将退火处理后的磁粉芯进行老化处理。
27. 根据权利要求 26的方法, 其中 x+y+z+t为 I2 - 25, 优选 为 14-24, 更优选为 16-23, 最优选为 18 -22。
28. 根据权利要求 26或 27 的方法, 其中所述非晶软磁合金 粉末粒度为 - 200到 + 400目, 优选 - 300到 + 400目。
29. 根据权利要求 26或 27的方法, 其中退火处理的退火温 度为高于 T。 + 201C至低于 TX-20C, 优选为 400 - 4401; 退火时 间为 30分钟 -5小时, 优选为 30 - 90分钟。
PCT/CN2008/001882 2007-11-27 2008-11-17 Poudre d'alliage magnétique doux amorphe à base de fe, noyau de poudre magnétique comprenant la poudre et son procédé de fabrication WO2009067861A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101964131A CN101226803B (zh) 2007-11-27 2007-11-27 铁基非晶软磁合金粉末及包含该粉末的磁粉芯和该磁粉芯的制备方法
CN200710196413.1 2007-11-27

Publications (1)

Publication Number Publication Date
WO2009067861A1 true WO2009067861A1 (fr) 2009-06-04

Family

ID=39858731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001882 WO2009067861A1 (fr) 2007-11-27 2008-11-17 Poudre d'alliage magnétique doux amorphe à base de fe, noyau de poudre magnétique comprenant la poudre et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN101226803B (zh)
WO (1) WO2009067861A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915826A (zh) * 2011-08-04 2013-02-06 阿尔卑斯绿色器件株式会社 电感器及其制造方法
CN110747411A (zh) * 2019-11-25 2020-02-04 佛山市中研非晶科技股份有限公司 铁基非晶合金用母合金
CN114150235A (zh) * 2020-11-30 2022-03-08 佛山市中研非晶科技股份有限公司 非晶纳米晶母合金及其制备方法
CN114260457A (zh) * 2021-01-15 2022-04-01 武汉科技大学 FeSiBCCr非晶磁粉及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226803B (zh) * 2007-11-27 2011-01-19 安泰科技股份有限公司 铁基非晶软磁合金粉末及包含该粉末的磁粉芯和该磁粉芯的制备方法
CN101902898B (zh) * 2009-12-02 2012-05-30 安泰科技股份有限公司 多层型电磁波吸收体及其制造方法
CN101892425B (zh) * 2010-08-20 2012-06-13 武汉中磁浩源科技有限公司 一种软磁合金粉末、磁粉芯及其制备方法
CN102534435A (zh) * 2010-12-20 2012-07-04 北京有色金属研究总院 一种铁基非晶合金粉末和铁基非晶合金涂层及其制备方法
CN103219119A (zh) * 2013-04-18 2013-07-24 安泰科技股份有限公司 一种μ90高磁导率Fe基非晶磁粉芯的制备方法
CN104795196A (zh) * 2014-05-30 2015-07-22 安徽华林磁电科技有限公司 一种高性能磁粉芯
CN104575913B (zh) * 2014-12-01 2017-05-03 横店集团东磁股份有限公司 一种低损耗非晶磁粉芯的制备方法
CN104835609B (zh) * 2015-05-05 2017-11-03 深圳市麦捷微电子科技股份有限公司 一种电感器用非晶合金磁粉及制造方法
WO2017022594A1 (ja) * 2015-07-31 2017-02-09 株式会社村田製作所 軟磁性材料およびその製造方法
CN107359036B (zh) * 2016-05-09 2020-02-04 北京中科三环高技术股份有限公司 一种粘结磁体及其制备方法
KR102288549B1 (ko) * 2017-01-27 2021-08-10 제이에프이 스틸 가부시키가이샤 연자성 철분의 제조 방법
EP3588518B1 (en) * 2017-02-22 2021-06-16 Hitachi Metals, Ltd. Magnetic core unit, current transformer, and methods for manufacturing same
CN107527702B (zh) * 2017-09-08 2020-05-05 中国舰船研究设计中心 一种铁基非晶态合金粉末及其制备方法和用途
CN110808139B (zh) * 2019-11-25 2022-07-12 佛山市中研非晶科技股份有限公司 非晶磁粉芯及其制备方法
CN110834091B (zh) * 2019-11-25 2022-06-21 佛山市中研非晶科技股份有限公司 非晶成品粉末及其制备方法
CN111570809A (zh) * 2020-04-27 2020-08-25 江苏萌达新材料科技有限公司 一种非晶合金粉末及其制备方法
CN117497278B (zh) * 2023-12-29 2024-03-12 天通控股股份有限公司 一种高磁导率低损耗铁基非晶复合磁粉心及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356403A (zh) * 2000-11-27 2002-07-03 新日本制铁株式会社 铁基无定形合金薄带及用它做的铁心
JP2002322546A (ja) * 2001-04-24 2002-11-08 Alps Electric Co Ltd Fe基軟磁性合金およびそれを用いた磁心
CN1787125A (zh) * 2005-11-16 2006-06-14 安泰科技股份有限公司 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
CN101148712A (zh) * 2007-10-18 2008-03-26 同济大学 一种制备铁基大块非晶合金的方法
CN101226803A (zh) * 2007-11-27 2008-07-23 安泰科技股份有限公司 铁基非晶软磁合金粉末及包含该粉末的磁粉芯和该磁粉芯的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771224B2 (ja) * 2002-09-11 2006-04-26 アルプス電気株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
CN100432269C (zh) * 2003-10-17 2008-11-12 安泰科技股份有限公司 块体铁基非晶合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356403A (zh) * 2000-11-27 2002-07-03 新日本制铁株式会社 铁基无定形合金薄带及用它做的铁心
JP2002322546A (ja) * 2001-04-24 2002-11-08 Alps Electric Co Ltd Fe基軟磁性合金およびそれを用いた磁心
CN1787125A (zh) * 2005-11-16 2006-06-14 安泰科技股份有限公司 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
CN101148712A (zh) * 2007-10-18 2008-03-26 同济大学 一种制备铁基大块非晶合金的方法
CN101226803A (zh) * 2007-11-27 2008-07-23 安泰科技股份有限公司 铁基非晶软磁合金粉末及包含该粉末的磁粉芯和该磁粉芯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NI X. ET AL: "Crystallization process and microhardness change in Fe74Cr2Mo2Sn2P10Si4B4C2 amorphous alloys", METALLIC FUNCTIONAL MATERIALS, vol. 12, no. 4, 31 August 2005 (2005-08-31) *
ZHANG L ET AL.: "Preparation and properties of bulk amorphous FE78-2xCrxMoxSnP10Si4B4C2(x=2,4)alloys", METALLIC FUNCTIONAL MATERIALS, vol. 11, no. 1, 29 February 2004 (2004-02-29) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915826A (zh) * 2011-08-04 2013-02-06 阿尔卑斯绿色器件株式会社 电感器及其制造方法
CN110747411A (zh) * 2019-11-25 2020-02-04 佛山市中研非晶科技股份有限公司 铁基非晶合金用母合金
CN110747411B (zh) * 2019-11-25 2024-02-13 佛山市中研非晶科技股份有限公司 铁基非晶合金用母合金
CN114150235A (zh) * 2020-11-30 2022-03-08 佛山市中研非晶科技股份有限公司 非晶纳米晶母合金及其制备方法
CN114150235B (zh) * 2020-11-30 2023-06-23 佛山市中研非晶科技股份有限公司 非晶纳米晶母合金及其制备方法
CN114260457A (zh) * 2021-01-15 2022-04-01 武汉科技大学 FeSiBCCr非晶磁粉及其制备方法

Also Published As

Publication number Publication date
CN101226803A (zh) 2008-07-23
CN101226803B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
WO2009067861A1 (fr) Poudre d&#39;alliage magnétique doux amorphe à base de fe, noyau de poudre magnétique comprenant la poudre et son procédé de fabrication
JP3771224B2 (ja) 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
KR910002350B1 (ko) Fe-기본 연질 자성 합금 분말, 이의 자성 코어 및 이의 제조방법
CN104087833B (zh) 高频性能优良的铁基纳米晶软磁合金及其制备方法
KR101296818B1 (ko) 압분자심 및 초크
KR100545849B1 (ko) 철계 비정질 금속 분말의 제조방법 및 이를 이용한 연자성코어의 제조방법
US8048191B2 (en) Compound magnetic powder and magnetic powder cores, and methods for making them thereof
CN100442402C (zh) 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
KR101838825B1 (ko) 압분자심, 이것을 이용한 코일 부품 및 압분자심의 제조 방법
Guo et al. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties
US6827557B2 (en) Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
TW201114924A (en) Alloy composition, Fe-based nanocrystalline alloy and manufacturing method of the same
JP6669304B2 (ja) 結晶質Fe基合金粉末及びその製造方法
WO2008093430A1 (ja) 高圧縮性鉄粉、およびそれを用いた圧粉磁芯用鉄粉と圧粉磁芯
Wang et al. New Fe-based amorphous compound powder cores with superior DC-bias properties and low loss characteristics
JP2007092162A (ja) 高圧縮性鉄粉、およびそれを用いた圧粉磁芯用鉄粉と圧粉磁芯
JP5439888B2 (ja) 複合磁性材料およびその製造方法
JPS63304603A (ja) Fe基軟磁性合金圧粉体及びその製造方法
JP2013098384A (ja) 圧粉磁心
JP7025230B2 (ja) 希土類磁石及びその製造方法
US11276516B2 (en) Magnetic powder for high-frequency applications and magnetic resin composition containing same
Yoshida et al. Preparation of new amorphous powder cores using Fe-based glassy alloy
JPWO2010038441A1 (ja) 複合磁性材料及びその製造方法
Endo et al. Fe-based amorphous soft-magnetic powder produced by spinning water atomization process (SWAP)
JP2002249802A (ja) 非晶質軟磁性合金圧密体及びそれを用いた圧粉磁心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08853836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08853836

Country of ref document: EP

Kind code of ref document: A1