WO2009039761A1 - Procédé de préparation d'une fibre absorbant l'huile - Google Patents

Procédé de préparation d'une fibre absorbant l'huile Download PDF

Info

Publication number
WO2009039761A1
WO2009039761A1 PCT/CN2008/072351 CN2008072351W WO2009039761A1 WO 2009039761 A1 WO2009039761 A1 WO 2009039761A1 CN 2008072351 W CN2008072351 W CN 2008072351W WO 2009039761 A1 WO2009039761 A1 WO 2009039761A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
methacrylate
oil
absorbing fiber
reaction
Prior art date
Application number
PCT/CN2008/072351
Other languages
English (en)
French (fr)
Inventor
Changfa Xiao
Naiku Xu
Shulin An
Yan Feng
Guangxia Jia
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Publication of WO2009039761A1 publication Critical patent/WO2009039761A1/zh
Priority to US12/541,918 priority Critical patent/US8110525B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/36Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated carboxylic acids or unsaturated organic esters as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt

Definitions

  • the invention relates to a technical fiber preparation technology, in particular to a method for manufacturing oil-absorbing fibers using a jelly spinning method, and the international patent classification number is intended to be Int. Cl. BOll) 69/00 (2006. 01). Background technique
  • the high oil-absorbing resin is a low cross-linking polymer composed of a lipophilic monomer, and is a self-swelling type material.
  • the resin molecules have a three-dimensional cross-linked network structure, and the main forms of cross-linking are physical, chemical and ionic combinations, among which Chemical crosslinking is the most common.
  • American Dow Chemical Company made a non-polar high oil absorption resin (JP 45 27081, 1970) by using fluorenylethylene as a monomer and cross-linking with divinylbenzene.
  • Mitsui Oil Company of Japan used methacrylic acid.
  • the thiol ester or mercapto styrene is a monomer, and a polar resin having a solubility of 9.8 g or more is obtained by crosslinking (JP 50 15882, 1975). In 1989, the Japanese company was peroxidized with triethyl propyl phenyl group.
  • the vinyl acetate-vinyl chloride copolymer obtained by cross-linking is also a polar high oil-absorbing resin (Jun Tenglongqing, Functional Materials, 1990, 10 (11): 43 ⁇ 49,), 1990 Japan Catalyst Chemical Industry Co., Ltd.
  • Acrylic monomer a low-crosslinking polymer with long chain mercapto groups on the side chain is a medium-polar high oil-absorbing resin (Functional Materials Market Data, Functional Materials, 1991, 11 (7): 41 ⁇ 47,). Domestic research in this area has been relatively late. Only a few universities and research institutes have carried out research work in this area. Some researchers have studied the preparation and application of polynorbornene resin (Song Bo, polynorbornene).
  • the synthetic high oil-absorbing resin adopts a single chemical cross-linking agent, such as divinylbenzene, etc.
  • the synthetic resin has a perfect chemical cross-linking structure after being formed, which is neither soluble nor molten, thus bringing great to the preparation of the fiber. difficult.
  • the oil absorbing fiber developed by the applicant's prior patent (CN1584148A) needs to be separated into a synthetic polymer during the resin synthesis stage, and needs to be thermally crosslinked after the fiber is formed to form a chemical crosslinked structure, and the preparation process is cumbersome and complicated.
  • the fibers produced by the wet spinning technique also have disadvantages such as poor mechanical properties. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method for manufacturing an oil absorbing fiber, which has a simple synthetic process, a short cycle, a simple post-treatment process, and is easy to implement on an industrial scale.
  • the oil absorbing fiber produced has excellent oil absorption Features, can be processed in a variety of textiles, into a variety of fiber products to meet specific application requirements.
  • the technical solution of the present invention to solve the technical problem is: design a manufacturing method of oil absorbing fiber, and the process is as follows:
  • a dispersant having a total mass of the methacrylate monomer of 0.1 to 1% and a deionized water having a volume ratio of 3:1 to the methacrylate monomer are added, and after being sufficiently dissolved, The methacrylate monomer, the initiator of the total mass of the methacrylate monomer is 0.1 to 1%, and the mixture is stirred into a uniform solution, and then the solution is added to the reaction vessel. After introducing nitrogen gas, stirring and heating to 70 ⁇ 80 °C, after reacting for 2 ⁇ 6h, increasing the reaction temperature to 90 ⁇ : L00 °C, and continuing the reaction for 2 ⁇ 4h, the reaction is terminated, the product is taken out, washed and dried.
  • the methacrylate monomer comprising at least a first monomer n-butyl methacrylate and a second monomer ⁇ -hydroxyethyl methacrylate, wherein the first monomer methacrylic acid is positive Butyl ester accounts for 80 to 95% of the total mass of the methacrylate monomer; the second monomer ⁇ -hydroxyethyl methacrylate accounts for 5 to 20% of the total mass of the methacrylate monomer;
  • the dispersant is poly Vinyl alcohol, methyl cellulose, polyethylene glycol, soluble starch or One kind of glue;
  • the initiator is benzoyl peroxide or azobisisobutyronitrile;
  • the obtained white resin is sufficiently dried, it is uniformly mixed with the swelling agent, and sealed in a room temperature environment for 48 to 96 hours to be swollen to form a uniform jelly;
  • the swelling agent is dimethylformamide, One of dimethyl sulfoxide and dimethyl acetamide, the amount of which is 1/9 to 4 times the mass of the white resin;
  • the coagulation bath is a mixture of distilled water and the swelling agent, wherein the swelling agent has a volume percentage of 5 to 40% and a temperature of 25 to 50 ° C;
  • the primary oil absorbing fiber is post-treated by stretching at a temperature of 25 to 80 ° C for 2 to 6 times to obtain the oil absorbing fiber.
  • the oil absorbing fiber manufacturing method of the invention has the advantages of simple process, easy implementation, short cycle, easy industrialization, simple processing of the obtained fiber, and better mechanical properties.
  • the oil absorbing fiber of the present invention has a three-dimensional network structure and has good oil absorption, but is insoluble in oil.
  • n-butyl methacrylate, beta hydroxy methacrylate The fiber has a mass percentage of 85% and 15%, respectively.
  • the maximum absorption capacity of the fiber for different oils is 12.03g toluene/g fiber, 22.91g trichloroethylene/g fiber, and the specific surface area is large, oil absorption High efficiency, can be processed by textile or non-woven fabric according to conventional methods, and made into various forms of fiber.
  • a dispersant having a total mass of the methacrylate monomer of 0.1 to 1% and a deionized water having a volume ratio of 3:1 to the methacrylate monomer are added, and after being sufficiently dissolved, The methacrylate monomer, the initiator of the total mass of the methacrylate monomer is 0.1 to 1%, and the mixture is stirred into a uniform solution, and then the solution is added to the reaction vessel. After introducing nitrogen gas, stirring and heating to 70 ⁇ 80 °C, after reacting for 2 ⁇ 6h, increasing the reaction temperature to 90 ⁇ : L00 °C, and continuing the reaction for 2 ⁇ 4h, the reaction is terminated, the product is taken out, washed and dried.
  • the methacrylate monomer comprising at least a first monomer n-butyl methacrylate and a second monomer ⁇ -hydroxyethyl methacrylate, wherein the first monomer methacrylic acid is positive Butyl ester accounts for 80 to 95% of the total mass of the methacrylate monomer; the second monomer ⁇ -hydroxyethyl methacrylate accounts for 5 to 20% of the total mass of the methacrylate monomer;
  • the dispersant is poly Vinyl alcohol, methyl cellulose, polyethylene glycol, soluble starch or One kind of glue;
  • the initiator is benzoyl peroxide or azobisisobutyronitrile;
  • the obtained white resin is sufficiently dried, it is uniformly mixed with the swelling agent, and sealed in a room temperature environment for 48 to 96 hours to be swollen to form a uniform jelly;
  • the swelling agent is dimethylformamide, One of dimethyl sulfoxide and dimethyl acetamide, the amount of which is 1/9 to 4 times the mass of the white resin;
  • the coagulation bath is a mixture of distilled water and the swelling agent, wherein the swelling agent has a volume percentage of 5 to 40% and a temperature of 25 to 50 ° C;
  • the primary oil absorbing fiber is post-treated by stretching 2 to 6 times at a temperature of 25 to 80 ° C to obtain the oil absorbing fiber.
  • the methacrylate monomer of the present invention may include only the first monomer and the second monomer, and may further include a third monomer.
  • the first monomer is n-butyl methacrylate
  • the second monomer is ⁇ -hydroxyethyl methacrylate
  • the third monomer is dodecyl methacrylate, octadecyl methacrylate, One of hexadecyl methacrylate or tetradecyl methacrylate.
  • the first monomer n-butyl methacrylate accounts for 80 to 95% of the total mass of the methacrylate monomer
  • the second monomer ⁇ -hydroxyethyl methacrylate accounts for the total mass of the methacrylate monomer. 5 ⁇ 20%
  • the third monomer is added in a ratio of 1:1 to the second monomer, which together constitutes 5 ⁇ of the total mass of the methacrylate monomer. 20%.
  • Preferred formula monomers in the embodiments of the present invention are the first monomer being n-butyl methacrylate, the second monomer being ⁇ -hydroxyethyl methacrylate, and the third monomer being dodecyl methacrylate or methacrylic acid. Octadecyl ester.
  • the polymerizable monomer used in the present invention is a methacrylate type substance.
  • the polymer molecule formed by polymerization of such a monomer has a lipophilic group (ester group), has affinity for different oils, and can adsorb a large amount of oil into the interior of the molecule, while the second monomer, the third
  • the introduction of the monomer makes the oil-absorbing fiber have a certain degree of cross-linking and cross-linking density, so that the fiber molecules can be swollen after oil absorption and difficult to dissolve, so that the fiber has a good oil absorption function.
  • the rational selection of the second monomer and the third monomer according to the present invention is based on: 1 the second monomer and the third monomer are easily polymerized with n-butyl methacrylate; 2 the second monomer and the third monomer; It has a hydrogen donating group forming a hydrogen bond, a hydrogen accepting group, and a long side chain which is easy to form molecular entanglement; 3 the obtained copolymer can meet the requirements of jelly spinning; 4 the second monomer and the third monomer itself It has an oleophilic group, which can improve the selective absorption and absorption capacity of the fiber on the oil molecule; 5 no physical damage and chemical damage to the final formed fiber.
  • the second monomer and the third monomer according to the present invention respectively select ⁇ -hydroxyethyl methacrylate having a hydrogen donor group, a hydrogen accepting group, and a molecule having a long side chain which is easy to form molecular entanglement.
  • the initiator according to the invention is benzoyl peroxide or azobisisobutyronitrile, preferably benzoyl peroxide.
  • the type and amount of the initiator are the main factors affecting the polymerization rate and the degree of polymerization, and thus the selection of the initiator is very important.
  • the free radical suspension polymerization is carried out at 40 to 100 ° C, so that an appropriately active initiator should be selected within this temperature range.
  • the activity of the initiator is often expressed in terms of half-life (the time required for the initiator to decompose to half of the initial concentration).
  • the half-life of the initiator is too short, meaning that In a short period of time, a large amount of free radicals are generated, which may cause explosion, which may cause the polymerization reaction to be out of control.
  • the polymerization rate may be too slow due to insufficient initiator, and even the dead end polymerization may be caused; on the contrary, if the initiator is If the half-life is too long and the rate of decomposition of the initiator is slow, the initial polymerization rate is too slow, and the late gelation effect is so severe that it is uncontrollable, and the undecomposed initiator in the polymerization remains in the polymerization product, which is not only wasteful, but also causes Side reactions and the like affect the quality of the product.
  • the polymerization temperature of the methacrylate is between 75 and 85 ° C, and benzoyl peroxide has a good activity in this temperature range. Therefore, the present invention preferably uses benzoyl peroxide as an initiator. Polymerization of methacrylate.
  • the dispersing agent of the present invention is polyvinyl alcohol, methyl cellulose, polyethylene glycol, soluble starch or gelatin, preferably polyvinyl alcohol.
  • the aqueous phase (including water and dispersants) is a major factor influencing the granulation mechanism and particle characteristics. It keeps the monomer droplets and acts as a heat transfer medium.
  • the role of the dispersant is to reduce the surface tension of the droplets, to promote the dispersion of the monomers into droplets, and to prevent the particles from sticking together, because the polymerization proceeds to a certain conversion rate (such as 20 ⁇ 30%), the monomer becomes polymer/single
  • the body solution particles tend to stick, and the dispersant adsorbs on the surface of the particles to prevent sticking.
  • the dispersant can usually be selected according to the dispersing ability and the ability to retain the gum. Studies have shown that the dispersing ability and gel-preserving ability of polyethylene glycol and soluble starch are poor, and it is not suitable for use. Although the dispersing ability and gel-retaining ability of methyl cellulose are very strong, the solubility in water is poor, and it is not suitable. Selection; Polyvinyl alcohol and gelatin have better overall performance. Since polyvinyl alcohol is inexpensive and readily available, the present invention preferably uses a polyvinyl alcohol as a dispersing agent for suspension polymerization of a methacryl
  • the manufacturing method of the invention utilizes the jelly spinning method to prepare the oil absorbing fiber, and the design principle thereof is: introducing the second monomer or even the third monomer under the condition that the oil absorbing fiber polymerization system of the invention does not exist in the chemical crosslinking agent, so that the synthetic
  • the copolymer forms a physical crosslinked structure without a chemical crosslinked structure, and the physical crosslinked structure is derived from hydrogen bonding and molecular entanglement introduced by the second monomer or the second monomer and the third monomer.
  • the copolymer having such a physical cross-linking structure has the characteristics of being swellable, difficult to dissolve, and meltable under heating conditions (swelling in a swelling agent) under the condition that the content of the second monomer and the third monomer is moderate.
  • the swelling agent of the present invention is one of dimethylformamide, dimethyl sulfoxide and dimethylacetamide, preferably dimethylformamide.
  • the swelling agent is used in an amount of from 1/9 to 4 times the mass of the white resin.
  • the jelly spinning technology described is itself prior art. According to the formulation and the manufacturing method of the present invention, functional fibers having a higher saturated oil absorption rate and oil retention rate can be obtained. Although the first monomer can be used alone in the oil absorbing fiber formulation of the present invention, the resulting fiber is less than ideal.
  • the network structure (including the degree of crosslinking and the crosslinking density, etc.) of the oil absorbing fibers of the present invention depends on the content of the second monomer or the second monomer and the third monomer. If the content of the second monomer or the second monomer and the third monomer is low, the physical crosslinked structure formed inside the fiber is imperfect, the fiber tends to dissolve in the oil, and cannot be used; if the second monomer or the first If the content of the second monomer and the third monomer is too high, the intramolecular network structure of the copolymer is dense, and on the one hand, the spinning temperature is too high, which is disadvantageous to the jelly spinning process, and on the other hand, the fiber is not favorable for the oil in the fiber.
  • the fiber can obtain an appropriate degree of crosslinking and crosslink density, so that the fiber can be in the oil. It is fully absorbed and swells but difficult to dissolve to ensure a high saturated oil absorption rate.
  • the nascent oil-absorbing fiber obtained by the coagulation bath of the production method of the present invention needs to be stretched first, and the post-stretching treatment after winding is preferred.
  • Appropriate post-stretching of the fibers allows the fibers to be oriented to a certain extent, improving the mechanical properties of the fibers and allowing the fibers to meet the needs of further processing.
  • the multiple of the post-stretching should be appropriate, the stretching ratio is too low, and the stretching effect is not obvious; if the stretching ratio is too high, the fiber itself is broken, which is counterproductive.
  • the general stretching ratio is 2 to 6 times, and the ideal stretching ratio is 3 to 5 times.
  • the n-butyl methacrylate is used as the first monomer
  • the ⁇ -hydroxyethyl methacrylate is the second monomer
  • the mass ratio of the second monomer to the first monomer is 3:17
  • benzoyl peroxide is used. 5% ⁇
  • the monomer solution of the initiator was added to the solution. 0. 5%.
  • the reaction is stirred and heated at 75 ° C for 4 h, the reaction temperature is raised to 85 ° C to continue the reaction for 2 h, the reaction is terminated, washed, and dried to obtain a white granular resin; after the resin is sufficiently dried, the swelling agent is dimethyl Carbamide (mass ratio of resin to swelling agent is 3: 2) After uniform mixing, it is sealed and placed at room temperature for 48 hours to obtain uniform gel; after crushing the gel, using jelly spinning method, solidifying with water The bath was spun and the spinning temperature was 160 ° C to obtain nascent oil-absorbing fibers. As far as its oil absorption performance is concerned, it can be used without post-treatment.
  • the obtained nascent fibers were sufficiently dried at room temperature, and then immersed in toluene and trichloroethylene respectively, and the saturated oil absorption rates were 12.03 and 22.91 (g * gl), respectively; the oil-saturated gel was centrifuged. After spinning at 1000 r/min for 5 min, the oil retention rates were 73.6% and 46.03%, respectively.
  • n-butyl methacrylate is used as the first monomer
  • the ⁇ -hydroxyethyl methacrylate is the second monomer
  • the mass ratio of the second monomer to the first monomer is 1:9
  • benzoyl peroxide is used.
  • polyvinyl alcohol is a dispersing agent
  • distilled water is the reaction medium
  • a monomer solution containing 0.5% (by mass of the total monomer) initiator is added to the dissolved dispersant under the protection of nitrogen (accounting for the total amount of monomers)
  • the reaction was heated and stirred at 75 ° C for 4 h, the reaction temperature was raised to 85 ° C to continue the reaction for 2 h, the reaction was terminated, washed, and dried to obtain a granulated resin; the resin was sufficiently dried and then treated with dimethyl
  • the base formamide (the mass ratio of the resin to the dimethylformamide is 3:2) is uniformly mixed, and then sealed at room temperature for 48 hours to obtain a uniform jelly; after the jelly is pulverized, the jelly spinning method is used, the temperature is For 150 ° C, water is used as a coagulation bath for spinning, and nascent oil-absorbing fibers are obtained.
  • the obtained fiber was sufficiently dried at room temperature, it was immersed in toluene and trichloroethylene, respectively, and the saturated oil absorption rates were 11.21 and 17.88 (g ⁇ g-1), respectively.
  • the oil-saturated gel was centrifuged in a centrifuge. Centrifugal rotation at 1000r/min for 5min, the oil retention rate was 22.62% and 44.7 respectively.
  • the n-butyl methacrylate is used as the first monomer, and the ⁇ -hydroxyethyl methacrylate is the second monomer.
  • the mass ratio of the second monomer to the first monomer is 1:19, and benzoyl peroxide is used.
  • the initiator polyvinyl alcohol is the dispersing agent
  • distilled water is the reaction medium
  • the monomer solution containing 0.5% (by mass of the total monomer) of the initiator is added to the dissolved dispersing agent under the protection of nitrogen (accounting for the total amount of the monomers)
  • the reaction was heated and stirred at 75 ° C for 4 h, the reaction temperature was raised to 85 ° C to continue the reaction for 2 h, the reaction was terminated, washed, and dried to obtain a granulated resin; the resin was sufficiently dried and then Methylformamide (mass ratio of resin to dimethylformamide is 7:3)
  • Methylformamide mass ratio of resin to dimethylformamide is 7:3
  • n-butyl methacrylate as the first monomer
  • ⁇ -hydroxyethyl methacrylate as the second monomer
  • dodecyl methacrylate as the third monomer
  • the quality of the second monomer and the first monomer The ratio is 1:19, the mass ratio of the second monomer to the third monomer is 1:1, benzoyl peroxide is used as the initiator, polyvinyl alcohol is used as the dispersing agent, distilled water is the reaction medium, under the protection of nitrogen, 5 ⁇ (% by mass of the total monomer)
  • the monomer solution of the initiator is added to the water in which the dispersing agent (5% by mass of the total monomer) is heated and stirred at 75 ° C.
  • the reaction temperature is raised to 85 ° C to continue the reaction for 2 h, the reaction temperature is raised to 95 ° C and further reacted for 2 h, the reaction is terminated, washed, and dried to obtain a granulated resin; the resin is sufficiently dried and then treated with dimethylformamide ( The mass ratio of the resin to dimethylformamide is 7: 3) After uniformly mixing, it is sealed and placed at room temperature for 48 hours to obtain a uniform jelly; after the jelly is pulverized, the temperature is 140 ° C using a jelly spinning method.
  • Example 5 The gel was measured by centrifugation at 1000 r/min for 5 min.
  • the resin is sufficiently dried and uniformly mixed with dimethylformamide (the mass ratio of the resin to dimethylformamide is 7:3), and then sealed at room temperature. After being placed for 48 hours, a uniform gel is obtained; after the jelly is pulverized, the temperature is 120 ° C by using a jelly spinning method, and water is used as a coagulation bath to obtain a primary oil absorbing fiber;
  • the obtained fiber After the obtained fiber is sufficiently dried at room temperature, it is immersed in toluene and trichloroethylene, respectively. Since no second monomer is introduced, no crosslinked structure is introduced into the resin, and the fiber molecules have a linear structure. The result is that the fibers are all dissolved in the oil.
  • the n-butyl methacrylate is the first monomer
  • the dodecyl methacrylate is the second monomer
  • the mass ratio of the second monomer to the first monomer is 3: 17, which is initiated by benzoyl peroxide.
  • the polyvinyl alcohol is a dispersing agent
  • the distilled water is a reaction medium.
  • a monomer solution containing 0.5% (by mass of the total monomer) of the initiator is added to the dissolved dispersing agent (accounting for the total monomer).
  • the mass percentage is 0.5% by mass, and the reaction is heated and stirred at 75 °C for 4 h.
  • the reaction temperature is raised to 85 ° C to continue the reaction for 2 h.
  • the reaction temperature is raised to 95 ° C for 2 h, the reaction is terminated, washed, dried.
  • a granular resin is obtained; the resin is sufficiently dried and uniformly mixed with dimethylformamide (the mass ratio of the resin to dimethylformamide is 7:3), and then sealed at room temperature for 48 hours to obtain a uniform jelly.
  • the temperature is 120 ° C by using a jelly spinning method, and the water is used as a coagulation bath to obtain a primary oil absorbing fiber; the obtained fiber is sufficiently dried at room temperature, and then immersed in toluene and respectively.
  • trichloroethylene by Without introducing methacrylate, ⁇ -hydroxyethyl methacrylate, the resin without introducing hydrogen, a linear molecular structure of the fibers, the fibers result in substantially all dissolved in the oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

一种吸油纤维的制造方法 技术领域
本发明涉及一种功能纤维制备技术, 具体为一种利用了冻胶纺丝方法的 吸油纤维制造方法, 国际专利分类号拟为 Int. Cl. BOll) 69/00 (2006. 01)丄。 背景技术
近年来, 由含油污水、 废气液体及油船、 油罐泄漏而造成的环境污染日 益严重。这些污染环境的油 30 %来自工业废水排放, 45 %来自海洋上的油船 泄漏。 面对日益恶化的环境, 有效的油品回收技术及含油工业废水净化材料 的研究势在必行, 优质吸油材料的开发已成为重大的研究课题。
高吸油性树脂是由亲油性单体构成的低交联度聚合物, 属自溶胀型材 料, 树脂分子间具有三维交联网状结构, 交联主要形式有物理、 化学及离子 结合 3种,其中化学交联是最常用的。 1966年美国道化学公司以垸基乙烯为 单体,经二乙烯基苯交联制得一种非极性的高吸油树脂 (JP 45 27081, 1970), 1973年日本三井石油公司以甲基丙烯酸垸基酯或垸基苯乙烯为单体,经交联 制得一种溶解度在 9. 8g以上的极性树脂 (JP 50 15882, 1975), 1989年日本 村上公司用三乙丙苯基过氧化物交联制得的醋酸乙烯-氯乙烯共聚体也是一 种极性的高吸油性树脂(俊滕隆清,机能材料, 1990, 10 (11) : 43〜49,), 1990 年日本触媒化学工业公司以丙烯酸类单体,制得的侧链上有长链垸基的丙烯 酸低交联聚合物是一种中等极性的高吸油树脂 (机能材料市场数据, 机能材 料, 1991, 11 (7) : 41〜47,)。 国内在这方面的研究起歩比较晚, 只有少数几 家高校和研究所在开展这方面的研究工作, 部分研究人员研究了聚降冰片烯 树脂 (宋波, 聚降冰片烯的制备与应用, 辽宁化工, 1986, 6: 28〜32 ) 、 聚氨酯泡沬等吸油材料 (吕洪久译, 高吸油性聚氨酯泡沬, 化工新型材料, 1994, 6: 18〜22 ) , 大多数的研究人员是采用甲基丙烯酸系列 (路建美等, 微波辐射吸油性复合体的制备及性能研究, 化学世界, 1999, 2: 86〜89 ) 为原料, 以过氧化苯甲酰 (BP0) (刘德荣等, 丙烯酸系自膨润型吸油树脂的 合成, 化工新型材料, 1997, 4: 37〜39 ) 、 过硫酸盐 (曹爱丽等, 丙烯酸 系高吸油性树脂的合成及性能研究. 高分子材料科学与工程, 1999, 2: 38〜 40)等为引发剂, 用二丙烯酸 1, 4-丁二醇酯(路建美, 朱秀林, 二元共聚高 吸油性树脂的合成及研究. 高分子材料科学与工程, 1995, 2: 41〜45 ) 、 乙二醇二丙烯酸酯(朱秀林等, 高吸油性树脂的合成及性能研究, 高分子材 料科学与工程, 1995, 1: 19〜23 ) 、 双烯交联剂 (蒋必彪等, 高吸油性树 脂的合成及其性能研究, 合成树脂及塑料, 1996 , 2: 37〜39)等为交联剂, 采用悬浮聚合 (路建美等, 甲基丙烯酸酯高吸油性树脂的研究, 石油化工, 1995, 3: 176〜179 ) 、 乳液聚合 (曹爱丽等, 丙烯酸系高吸油性树脂的合 成及性能研究, 高分子材料科学与工程, 1999, 2: 38〜40) 、 微波辐射(路 建美等, 微波辐射吸油性复合体的制备及性能研究, 化学世界, 1999, 2: 86〜89) 等多种方法制得吸油倍率在 10-30倍不等的高吸油树脂。
但是目前对吸油材料的研究仍主要集中在粒状树脂方面。粒状材料由于 其形状的局限性, 存在着吸收速率慢、 吸收倍率小等诸多问题, 应用受到一 定限制。 目前国内外对有关吸油纤维的研究报道相对较少。 天津工业大学肖 长发、封严等利用半互穿聚合物网络技术以及湿法纺丝技术制备了聚甲基丙 烯酸酯类吸油纤维, 并申请了专利 (CN1584148A) 。 该吸油纤维具有吸油面 积大、 易回收等特点, 可以根据需要将其加工成各种形态的制品, 拓宽应用 范围, 成功开发吸油纤维并投入产业化使用, 将对水资源的治理起到积极作 用。 目前合成高吸油树脂采用的都是单一的化学交联剂, 如二乙烯苯等, 合 成树脂成形后即具有完善的化学交联结构, 既不溶, 也不熔, 因而给制备纤 维带来极大困难。 而申请人在先的专利 (CN1584148A)所开发的吸油纤维在 树脂合成阶段需分歩合成聚合物, 在纤维成形后需进行热交联, 以形成化学 交联结构, 制备过程比较繁琐、 复杂, 并且由湿法纺丝技术制得的纤维还存 在力学性能较差等缺点。 发明内容
针对现有技术的不足, 本发明拟解决的技术问题是, 提供一种吸油纤维 的制造方法, 该吸油纤维的制造方法具有合成聚合物工艺简单, 周期短, 后 处理过程简单, 易于工业规模实施等特点。所制得的吸油纤维具有优良吸油 特性, 可以进行各种纺织加工, 制成多种形态的纤维制品, 满足特定的使用 要求。
本发明解决所述技术问题的技术方案是: 设计一种吸油纤维的制造方 法, 其工艺过程如下:
( 1 ) 在反应釜中加入占甲基丙烯酸酯单体总质量 0. 1〜1%的分散剂及与 甲基丙烯酸酯单体的体积比为 3 : 1 的去离子水, 充分溶解后, 将所述甲基 丙烯酸酯单体、 占甲基丙烯酸酯单体总质量 0. 1〜1%的引发剂放入到一个容 器中, 搅拌成均匀溶液后, 将该溶液加入到反应釜中, 通入氮气, 搅拌升温 至 70〜80°C, 反应 2〜6h后, 提高反应温度到 90〜: L00°C, 继续反应 2〜4h 后, 终止反应, 取出产物, 再经洗涤, 干燥, 可得白色树脂; 所述的甲基丙 烯酸酯单体至少包括第一单体甲基丙烯酸正丁酯和第二单体甲基丙烯酸 β 羟乙酯, 其中, 所述第一单体甲基丙烯酸正丁酯占甲基丙烯酸酯单体总质量 的 80〜95%;第二单体甲基丙烯酸 β羟乙酯占甲基丙烯酸酯单体总质量的 5〜 20%; 所述的分散剂为聚乙烯醇、 甲基纤维素、 聚乙二醇、 可溶性淀粉或者 明胶中的一种; 所述的引发剂为过氧化苯甲酰或偶氮二异丁氰;
( 2 )将所得白色树脂充分干燥后, 与溶胀剂均匀混合, 并在室温环境中 密封放置 48〜96h, 使其溶胀, 形成均匀的冻胶; 所述的溶胀剂为二甲基甲 酰胺、 二甲基亚砜、 二甲基乙酰胺中的一种, 其用量为所述白色树脂质量的 1/9倍〜 4倍;
( 3 ) 将所述的冻胶充分粉碎, 利用柱塞式纺丝机进行纺丝, 经凝固浴 凝固后, 可得初生吸油纤维; 所述的纺丝温度为 90〜200°C ; 所述的凝固浴 为蒸馏水与所述溶胀剂的混合液,其中溶胀剂的体积百分含量为 5〜40%,温 度为 25〜50 °C ;
(4)初生吸油纤维经 25〜80°C温度下, 拉伸 2〜6倍的后处理, 即可得 所述的吸油纤维。
与现有技术相比, 本发明的吸油纤维制造方法具有合成聚合物过程简 单, 易实施, 周期短, 易工业化, 所得纤维后续处理过程简单, 力学性能较 佳等特点。 与传统吸油树脂相比, 本发明吸油纤维为三维网状结构, 具有良 好的吸油性, 但难溶于油品中。 例如, 甲基丙烯酸正丁酯、 甲基丙烯酸 β羟 乙酯质量百分含量分别为 85%和 15%的纤维, 纤维对不同油品的最大吸收能 力为 12. 03g甲苯 /g纤维、 22. 91g三氯乙烯 /g纤维, 并且比表面积大, 吸油 效率高, 可以按常规方法进行纺织或非织造布加工, 制成多种形态的纤维制
P
具体实施方式
下面结合实施例进一歩叙述本发明:
本发明吸油纤维制造方法 (以下简称方法) 的工艺歩骤如下:
( 1 ) 在反应釜中加入占甲基丙烯酸酯单体总质量 0. 1〜1%的分散剂及与 甲基丙烯酸酯单体的体积比为 3 : 1 的去离子水, 充分溶解后, 将所述甲基 丙烯酸酯单体、 占甲基丙烯酸酯单体总质量 0. 1〜1%的引发剂放入到一个容 器中, 搅拌成均匀溶液后, 将该溶液加入到反应釜中, 通入氮气, 搅拌升温 至 70〜80°C, 反应 2〜6h后, 提高反应温度到 90〜: L00°C, 继续反应 2〜4h 后, 终止反应, 取出产物, 再经洗涤, 干燥, 可得白色树脂; 所述的甲基丙 烯酸酯单体至少包括第一单体甲基丙烯酸正丁酯和第二单体甲基丙烯酸 β 羟乙酯, 其中, 所述第一单体甲基丙烯酸正丁酯占甲基丙烯酸酯单体总质量 的 80〜95%;第二单体甲基丙烯酸 β羟乙酯占甲基丙烯酸酯单体总质量的 5〜 20%; 所述的分散剂为聚乙烯醇、 甲基纤维素、 聚乙二醇、 可溶性淀粉或者 明胶中的一种; 所述的引发剂为过氧化苯甲酰或偶氮二异丁氰;
( 2 )将所得白色树脂充分干燥后, 与溶胀剂均匀混合, 并在室温环境中 密封放置 48〜96h, 使其溶胀, 形成均匀的冻胶; 所述的溶胀剂为二甲基甲 酰胺、 二甲基亚砜、 二甲基乙酰胺中的一种, 其用量为所述白色树脂质量的 1/9倍〜 4倍;
( 3 ) 将所述的冻胶充分粉碎, 利用柱塞式纺丝机进行纺丝, 经凝固浴 凝固后, 可得初生吸油纤维; 所述的纺丝温度为 90〜200°C ; 所述的凝固浴 为蒸馏水与所述溶胀剂的混合液,其中溶胀剂的体积百分含量为 5〜40%,温 度为 25〜50°C ;
(4)初生吸油纤维经 25〜80°C温度下, 拉伸 2〜6倍的后处理, 即可得 所述的吸油纤维。 本发明所述的甲基丙烯酸酯类单体可以仅包括第一单体和第二单体, 也 可以还包括第三单体。所述的第一单体为甲基丙烯酸正丁酯, 第二单体为甲 基丙烯酸 β羟乙酯; 所述的第三单体为甲基丙烯酸十二酯、 甲基丙烯酸十八 酯、 甲基丙烯酸十六酯或甲基丙烯酸十四酯中的一种。 其中, 所述第一单体 甲基丙烯酸正丁酯占甲基丙烯酸酯单体总质量的 80〜95%; 第二单体甲基丙 烯酸 β羟乙酯占甲基丙烯酸酯单体总质量的 5〜20%;当配方设计加入第三单 体时, 第三单体的加入量与所述的第二单体为 1 : 1 的比例, 共占甲基丙烯 酸酯单体总质量的 5〜20%。
本发明实施例优选的配方单体是第一单体为甲基丙烯酸正丁酯、第二单 体为甲基丙烯酸 β羟乙酯、第三单体为甲基丙烯酸十二酯或甲基丙烯酸十八 酯。
本发明所用聚合单体为甲基丙烯酸酯类物质。此类单体聚合后所生成的 聚合物分子链上具有亲油性基团 (酯基) , 对不同的油品具有亲和力, 可将 大量油品吸附到分子内部, 同时第二单体、 第三单体的引入, 使得吸油纤维 具有一定的交联度及交联密度, 可使纤维分子吸油后溶胀而难于溶解, 从而 使纤维具备良好的吸油功能。
本发明所述的第二单体、 第三单体的合理选择依据是:①第二单体、 第 三单体易于与甲基丙烯酸正丁酯聚合; ②第二单体、 第三单体其本身具有形 成氢键的氢给予基、 氢接收基以及易于形成分子缠结的长侧链; ③所得共聚 物能够满足冻胶纺丝的要求; ④第二单体、 第三单体本身也具有亲油基团, 可以改善纤维对油品分子的选择吸收性以及吸收能力;⑤对最终成型纤维无 物理损伤和化学损害。 据此, 本发明所述的第二单体、 第三单体分别选择了 自身具有氢给予基、氢接收基的甲基丙烯酸 β羟乙酯以及具有长侧链的易于 形成分子缠结的甲基丙烯酸十二酯或甲基丙烯酸十八酯。
本发明所述的引发剂为过氧化苯甲酰或偶氮二异丁氰,优选过氧化苯甲 酰。所述引发剂的种类和用量是影响聚合速率和聚合度的主要因素, 因而引 发剂的选择非常重要。 通常自由基悬浮聚合在 40〜100°C下进行, 因此活性 适当的引发剂应选择在该温度范围内。 引发剂的活性常以半衰期(指引发剂 分解至初始浓度的一半所需的时间)表示。 引发剂的半衰期太短, 意味着在 短时间内便有大量自由基产生, 易引起爆聚, 使聚合反应失控, 同时聚合反 应后期会因无足够的引发剂而使聚合速率过慢, 甚至造成死端聚合; 相反, 引发剂的若半衰期过长,引发剂分解速率慢,则容易导致初期聚合速率过慢, 后期凝胶效应剧烈, 以致无法控制, 而且聚合反应中未分解的引发剂残留在 聚合产物中, 不仅浪费, 而且会因副反应等影响产物的品质。 本发明中甲基 丙烯酸酯的聚合温度在 75〜85 °C之间,过氧化苯甲酰在此温度范围内具有较 好的活性, 因此本发明优选用过氧化苯甲酰作为引发剂, 进行甲基丙烯酸酯 的聚合反应。
本发明所述的分散剂为聚乙烯醇、 甲基纤维素、 聚乙二醇、 可溶性淀粉 或者明胶, 优选聚乙烯醇。 在悬浮聚合体系中, 水相 (包括水和分散剂) 是 影响成粒机理和颗粒特性的主要因素, 它保持单体呈液滴状, 并作为传热的 介质。 分散剂作用一是降低液滴表面张力, 促使单体分散成液滴, 二是防止 粒子粘并, 因为聚合进行到一定转化率(如 20〜30 % )时, 单体变成聚合物 /单体溶液粒子, 趋于粘结, 而分散剂则吸附在粒子表面, 起到防止粘并的 作用。 通常可根据分散能力和保胶能力来选择分散剂。 研究表明, 聚乙二醇 和可溶性淀粉的分散能力及保胶能力均较差, 不宜选用, 虽然甲基纤维素的 分散能力及保胶能力均很强, 但在水中的溶解性能较差, 也不宜选用; 聚乙 烯醇和明胶的综合性能较好。 由于聚乙烯醇价廉易得, 所以本发明优先选用 聚乙烯醇为甲基丙烯酸酯单体悬浮聚合的分散剂。
本发明制造方法利用冻胶纺丝法制备吸油纤维, 其设计原理是: 本发明 吸油纤维聚合体系不存在化学交联剂的条件下, 引入第二单体、 甚至第三单 体, 使合成的共聚物在不具备化学交联结构的条件下, 形成物理交联结构, 这种物理交联结构来源于第二单体或者第二单体和第三单体引入的氢键作 用以及分子缠结作用, 在第二单体、 第三单体含量适中的条件下, 具有这种 物理交联结构的共聚物具有可溶胀、 难溶解、 加热条件下可熔融(在溶胀剂 中溶胀过) 的特点, 能够满足冻胶纺丝的要求。 本发明所述的溶胀剂为二甲 基甲酰胺、 二甲基亚砜、 二甲基乙酰胺中的一种, 优选二甲基甲酰胺。 所述 溶胀剂的用量为所述白色树脂质量的 1/9倍〜 4倍。 所述的冻胶纺丝技术本 身为现有技术。 依据本发明配方和制造方法可以得到具有较高饱和吸油率和保油率的 功能纤维。 尽管本发明吸油纤维配方中可以单独使用第一单体, 但所得纤维 不尽理想。 本发明吸油纤维的网络结构 (包括交联程度和交联密度等)取决 于第二单体或者第二单体和第三单体的含量。若第二单体或者第二单体和第 三单体含量较低, 则纤维内部形成的物理交联结构不完善, 纤维在油品中趋 于溶解, 无法使用; 若第二单体或者第二单体和第三单体含量过高, 则共聚 物分子内网络结构致密, 一方面因纺丝温度过高不利于冻胶纺丝过程, 另一 方面成纤后不利于油品在纤维中的扩散, 致使纤维的饱和吸油率下降; 只有 第二单体或者第二单体和第三单体含量适中时,纤维才能获得适当的交联程 度和交联密度, 使得纤维在油品中可充分吸收而溶胀但难于溶解, 以保证纤 维具有较高的饱和吸油率。
本发明制造方法经凝固浴后所得的初生吸油纤维需要进行先拉伸,再卷 绕的后拉伸处理比较理想。对纤维进行适当的后拉伸, 可使纤维获得一定程 度的取向, 改善纤维的力学性能, 使纤维满足进一歩加工的需要。 后拉伸的 倍数应当适当, 拉伸倍率过低, 拉伸效果不明显; 拉伸倍数过高, 则会使纤 维本身断裂, 适得其反。 一般的拉伸倍率为 2〜6倍, 比较理想的拉伸倍率 为 3〜5倍。
下面给出具体实施例, 但本发明不受具体实施例的限制:
实施例 1 :
以甲基丙烯酸正丁酯为第一单体, 甲基丙烯酸 β羟乙酯为第二单体, 第 二单体与第一单体的质量比为 3 : 17, 以过氧化苯甲酰为引发剂,聚乙烯醇为 分散剂, 蒸馏水为反应介质, 氮气保护下将含 0. 5 % (占单体总量的质量百 分比, 下同) 引发剂的单体溶液加入溶有 0. 5%分散剂的水中, 于 75°C加热 搅拌反应 4h, 提高反应温度至 85°C继续反应 2h, 终止反应, 洗涤, 干燥, 得白色颗粒状树脂; 将此树脂充分干燥后, 与溶胀剂二甲基甲酰胺(树脂与 溶胀剂的质量比为 3 : 2 ) 均匀混合后, 在室温条件下密封放置 48h, 得均一 冻胶; 将冻胶粉碎后, 采用冻胶纺丝方法, 以水为凝固浴进行纺丝, 纺丝温 度为 160°C, 得初生吸油纤维。 就其吸油性能而言, 不经过后处理也可以使 用。 将所得初生纤维在室温条件下充分干燥后, 分别浸于甲苯和三氯乙烯 中, 测得其饱和吸油率分别为 12.03和 22.91 (g * g-l); 将吸油达饱和的凝 胶于离心机中以 1000r/min离心旋转 5min, 测得其保油率分别为 73.6%和 46.03%。
实施例 2:
以甲基丙烯酸正丁酯为第一单体, 甲基丙烯酸 β羟乙酯为第二单体, 第 二单体与第一单体的质量比为 1:9, 以过氧化苯甲酰为引发剂, 聚乙烯醇为 分散剂, 蒸馏水为反应介质, 氮气保护下将含 0.5% (占单体总量的质量百 分比)引发剂的单体溶液加入溶有分散剂(占单体总量的质量百分比为 0.5%) 的水中, 于 75°C加热搅拌反应 4h, 提高反应温度至 85°C继续反应 2h, 终止 反应,洗涤,干燥,得颗粒状树脂;将此树脂充分干燥后与二甲基甲酰胺(树 脂与二甲基甲酰胺的质量比为 3:2)均匀混合后,在室温条件下密封放置 48h, 得均一冻胶; 将冻胶粉碎后, 采用冻胶纺丝法, 温度为 150°C, 以水为凝固 浴进行纺丝, 得初生吸油纤维。
将所得纤维在室温条件下充分干燥后, 分别浸于甲苯和三氯乙烯中, 测 得其饱和吸油率分别为 11.21和 17.88 (g · g-1); 将吸油达饱和的凝胶于离 心机中以 1000r/min离心旋转 5min, 测得其保油率分别为 22.62%和 44.7
0/
/0 o
实施例 3:
以甲基丙烯酸正丁酯为第一单体, 甲基丙烯酸 β羟乙酯为第二单体, 其 中第二单体与第一单体的质量比为 1:19, 以过氧化苯甲酰为引发剂,聚乙烯 醇为分散剂, 蒸馏水为反应介质, 氮气保护下将含 0.5% (占单体总量的质 量百分比) 引发剂的单体溶液加入溶有分散剂(占单体总量的质量百分比为 0.5%)的水中,于 75°C加热搅拌反应 4h,提高反应温度至 85°C继续反应 2h, 终止反应, 洗涤, 干燥, 得颗粒状树脂; 将此树脂充分干燥后与二甲基甲酰 胺 (树脂与二甲基甲酰胺的质量比为 7:3) 均匀混合后, 在室温条件下密封 放置 48h, 得均一冻胶; 将冻胶粉碎后, 采用冻胶纺丝法, 温度为 140°C, 以水为凝固浴进行纺丝, 得初生吸油纤维;
将所得纤维在室温条件下充分干燥后, 分别浸于甲苯以和三氯乙烯中, 测得其饱和吸油率分别为 7. 81和 12. 95 (g -g-1);将吸油达饱和的凝胶于离 心机中以 1000r/min离心旋转 5min, 测得其保油率分别为 8. 18 %和 34. 91 实施例 4:
以甲基丙烯酸正丁酯为第一单体, 甲基丙烯酸 β羟乙酯为第二单体, 甲 基丙烯酸十二酯为第三单体,其中第二单体与第一单体的质量比为 1 : 19,第 二单体与第三单体的质量比为 1 : 1, 以过氧化苯甲酰为引发剂, 聚乙烯醇为 分散剂, 蒸馏水为反应介质, 氮气保护下, 将含 0. 5 % (占单体总量的质量 百分比) 引发剂的单体溶液加入溶有分散剂 (占单体总量的质量百分比为 0. 5%)的水中,于 75°C加热搅拌反应 4h,提高反应温度至 85°C继续反应 2h, 提高反应温度至 95°C再反应 2h, 终止反应, 洗涤, 干燥, 得颗粒状树脂; 将此树脂充分干燥后与二甲基甲酰胺 (树脂与二甲基甲酰胺的质量比为 7 : 3 ) 均匀混合后, 在室温条件下密封放置 48h, 得均一冻胶; 将冻胶粉碎后, 采 用冻胶纺丝法, 温度为 140°C, 以水为凝固浴进行纺丝, 得初生吸油纤维; 在室温条件下,将所得纤维充分干燥后,分别浸于甲苯以和三氯乙烯中, 测得其饱和吸油率分别为 7. 11和 11. 95 (g -g-1);将吸油达饱和的凝胶于离 心机中以 1000r/min离心旋转 5min, 测得其保油率分别为 7. 05 %和 31. 72 实施例 5:
以甲基丙烯酸正丁酯为单体, 以过氧化苯甲酰为引发剂, 聚乙烯醇为分 散剂, 蒸馏水为反应介质, 氮气保护下将含 0. 5 % (占单体总量的质量百分 比) 引发剂的单体溶液加入溶有分散剂 (占单体总量的质量百分比为 0. 5%) 的水中, 于 75 °C加热搅拌反应 4h, 提高反应温度至 85°C继续反应 2h, 终止 反应,洗涤,干燥,得颗粒状树脂;将此树脂充分干燥后与二甲基甲酰胺(树 脂与二甲基甲酰胺的质量比为 7 : 3 )均匀混合后,在室温条件下密封放置 48h, 得均一冻胶; 将冻胶粉碎后, 采用冻胶纺丝法, 温度为 120°C, 以水为凝固 浴进行纺丝, 得初生吸油纤维;
将所得纤维在室温条件下充分干燥后, 分别浸于甲苯和三氯乙烯中, 由 于没有引入第二单体, 树脂中没有引入交联结构, 纤维分子呈线性结构, 结 果是纤维全部溶解于油品中。
实施例 6
以甲基丙烯酸正丁酯为第一单体, 甲基丙烯酸十二酯为第二单体, 第二 单体与第一单体的质量比为 3 : 17, 以过氧化苯甲酰为引发剂,聚乙烯醇为分 散剂, 蒸馏水为反应介质, 氮气保护下, 将含 0. 5 % (占单体总量的质量百 分比)引发剂的单体溶液加入溶有分散剂(占单体总量的质量百分比为 0. 5%) 的水中, 于 75 °C加热搅拌反应 4h, 提高反应温度至 85°C继续反应 2h, 提高 反应温度至 95°C再反应 2h, 终止反应, 洗涤, 干燥, 得颗粒状树脂; 将此 树脂充分干燥后与二甲基甲酰胺 (树脂与二甲基甲酰胺的质量比为 7 : 3 ) 均 匀混合后, 在室温条件下密封放置 48h, 得均一冻胶; 将冻胶粉碎后, 采用 冻胶纺丝法, 温度为 120°C, 以水为凝固浴进行纺丝, 得初生吸油纤维; 将所得纤维在室温条件下充分干燥后, 分别浸于甲苯和三氯乙烯中, 由 于没有引入甲基丙烯酸 β羟乙酯, 树脂中没有引入氢键, 纤维分子呈线性结 构, 结果是纤维基本全部溶解于油品中。

Claims

权 利 要 求 书
1. 一种吸油性纤维的制备方法, 其工艺过程如下:
( 1 )在反应釜中加入占甲基丙烯酸酯单体总质量 0. 1〜1%的分散剂及与 甲基丙烯酸酯单体的体积比为 3 : 1的去离子水, 充分溶解后, 将所述甲基 丙烯酸酯单体、占甲基丙烯酸酯单体总质量 0. 1〜1%的引发剂放入到一个容 器中, 搅拌成均匀溶液后, 将该溶液加入到反应釜中, 通入氮气, 搅拌升 温至 70〜80°C, 反应 2〜6h后,提高反应温度到 90〜: L00°C, 继续反应 2〜 4h后, 终止反应, 取出产物, 再经洗涤, 干燥, 可得白色树脂; 所述的甲 基丙烯酸酯单体至少包括第一单体甲基丙烯酸正丁酯和第二单体甲基丙烯 酸 β羟乙酯, 其中, 所述第一单体甲基丙烯酸正丁酯占甲基丙烯酸酯单体 总质量的 80〜95%;第二单体甲基丙烯酸 β羟乙酯占甲基丙烯酸酯单体总质 量的 5〜20%; 所述的分散剂为聚乙烯醇、 甲基纤维素、 聚乙二醇、 可溶性 淀粉或者明胶中的一种; 所述的引发剂为过氧化苯甲酰或偶氮二异丁氰;
( 2 ) 将所得白色树脂充分干燥后, 与溶胀剂均匀混合, 并在室温环境 中密封放置 48〜96h, 使其溶胀, 形成均匀的冻胶; 所述的溶胀剂为二甲基 甲酰胺、 二甲基亚砜、 二甲基乙酰胺中的一种, 其用量为所述白色树脂质 量的 1/9倍〜 4倍;
( 3 ) 将所述的冻胶充分粉碎, 利用柱塞式纺丝机进行纺丝, 经凝固浴 凝固后, 可得初生吸油纤维; 所述的纺丝温度为 90〜200°C ; 所述的凝固浴 为蒸馏水与所述溶胀剂的混合液, 其中溶胀剂的体积百分含量为 5〜40%, 温度为 25〜50°C ;
(4) 初生吸油纤维经 25〜80°C温度下, 拉伸 2〜6倍的后处理, 即可 得所述的吸油纤维。
2. 根据权利要求 1所述的吸油性纤维的制备方法, 其特征在于所述 的甲基丙烯酸酯单体还包括第三单体; 所述的第三单体为甲基丙烯酸十二 酯、 甲基丙烯酸十八酯、 甲基丙烯酸十六酯或甲基丙烯酸十四酯中的一种; 第三单体的加入量与所述的第二单体为 1 : 1的比例, 共占甲基丙烯酸酯单
3. 根据权利要求 1或 2所述的吸油性纤维的制备方法, 其特征在于 所述的分散剂为聚乙烯醇; 所述的引发剂为过氧化苯甲酰; 所述的溶胀剂 为二甲基甲酰胺; 所述的拉伸倍率为 3〜5倍。
4. 根据权利要求 2所述的吸油性纤维的制备方法, 其特征在于所述 的第三单体为甲基丙烯酸十二酯或甲基丙烯酸十八酯; 所述的弓 I发剂为过 氧化苯甲酰; 所述的溶胀剂为二甲基甲酰胺; 所述的拉伸倍率为 3〜5倍。
PCT/CN2008/072351 2007-09-26 2008-09-12 Procédé de préparation d'une fibre absorbant l'huile WO2009039761A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/541,918 US8110525B2 (en) 2007-09-26 2009-08-15 Method of preparing oil absorbing fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710059780.7 2007-09-26
CN2007100597807A CN101220528B (zh) 2007-09-26 2007-09-26 一种吸油纤维的制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/541,918 Continuation US8110525B2 (en) 2007-09-26 2009-08-15 Method of preparing oil absorbing fibers

Publications (1)

Publication Number Publication Date
WO2009039761A1 true WO2009039761A1 (fr) 2009-04-02

Family

ID=39630589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072351 WO2009039761A1 (fr) 2007-09-26 2008-09-12 Procédé de préparation d'une fibre absorbant l'huile

Country Status (3)

Country Link
US (1) US8110525B2 (zh)
CN (1) CN101220528B (zh)
WO (1) WO2009039761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278110A (zh) * 2021-05-27 2021-08-20 浙江理工大学 一种液体分散染料用的高分子分散剂及其合成方法和应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220528B (zh) * 2007-09-26 2010-10-06 天津工业大学 一种吸油纤维的制造方法
KR102178191B1 (ko) 2008-09-02 2020-11-13 머크 밀리포어 리미티드 크로마토그래피 막, 이를 포함하는 장치 및 이의 이용방법
CN101550261B (zh) * 2008-12-31 2012-12-05 上海闰铭精密技术有限公司 含纤维素废弃物填料的高吸油复合材料及其制备方法
CN101698965B (zh) * 2009-10-30 2012-04-18 天津工业大学 一种吸附纤维及其制造方法
KR20120093349A (ko) * 2009-11-13 2012-08-22 나트릭스 세퍼레이션즈, 인코포레이티드 소수성 상호반응 크로마토그래피용 막 및 그의 사용방법
CN101845756B (zh) * 2010-05-07 2011-08-31 天津工业大学 一种夹层型复合吸油材料的制造方法
CN101838862B (zh) * 2010-05-07 2012-01-04 天津工业大学 一种有机液体吸附纤维的制造方法
CN101822973B (zh) * 2010-05-19 2012-05-02 西南科技大学 用于吸附tnt的改性羟乙基纤维素吸附材料的制备方法
US20130284674A1 (en) * 2010-07-22 2013-10-31 Mark Moskovitz Organic compound adsorbing material and process for making the same
CN101929034B (zh) * 2010-08-18 2011-11-09 天津工业大学 一种吸附有机液体非织造布的制造方法
CA2836460C (en) 2011-05-17 2021-09-21 Natrix Separations Inc. Methods of using a fluid treatment device
CN102383212B (zh) * 2011-08-10 2012-10-17 天津工业大学 一种有机液体吸附纤维的制造方法
CN102383215B (zh) * 2011-08-10 2013-01-09 天津工业大学 一种吸附有机液体聚烯烃纤维的制造方法
CN103724564A (zh) * 2012-10-15 2014-04-16 中国科学院兰州化学物理研究所 一种基于木棉纤维三维网络吸油材料
CN103113513B (zh) * 2013-02-27 2015-06-24 天津工业大学 一种成纤聚合物的合成方法
CN103586067B (zh) * 2013-07-09 2017-02-08 中国科学院过程工程研究所 一种甲醛水溶液和乙酸合成丙烯酸的方法
CN105200591A (zh) * 2015-08-06 2015-12-30 太仓市雄瑞化纺有限公司 一种吸油弹力丝
CN107245771B (zh) * 2017-06-29 2019-09-13 天津工业大学 一种中空纤维状异相类Fenton反应催化剂的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117335A (ja) * 1991-10-31 1993-05-14 Sanyo Chem Ind Ltd 吸油性複合樹脂
JPH06166725A (ja) * 1992-12-01 1994-06-14 Showa Denko Kk 吸油剤
JPH07102248A (ja) * 1993-10-01 1995-04-18 Nippon Shokubai Co Ltd 吸油材
US5688843A (en) * 1993-03-17 1997-11-18 Nippon Shokubai Co., Ltd. Oil-absorbent composition, particulate oil absorber, oil-absorbent material, and oil-absorbent pack
CN1584148A (zh) * 2004-05-26 2005-02-23 天津工业大学 吸油纤维及其制造方法
CN1724575A (zh) * 2005-06-03 2006-01-25 江苏工业学院 多孔性高吸油性树脂及其制备方法
CN101220528A (zh) * 2007-09-26 2008-07-16 天津工业大学 一种吸油纤维的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704213A (en) * 1985-05-28 1987-11-03 Texaco Inc. Encapsulated oil absorbent polymers as lost circulation additives for oil based drilling fluids
AU9133401A (en) * 2000-11-28 2002-05-30 Rohm And Haas Company Hydrophobic absorbing polymers and process
US7527738B2 (en) * 2003-10-21 2009-05-05 Kinectrics Inc. Method and apparatus for oil spill containment
CA2488981C (en) * 2003-12-15 2008-06-17 Rohm And Haas Company Oil absorbing composition and process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117335A (ja) * 1991-10-31 1993-05-14 Sanyo Chem Ind Ltd 吸油性複合樹脂
JPH06166725A (ja) * 1992-12-01 1994-06-14 Showa Denko Kk 吸油剤
US5688843A (en) * 1993-03-17 1997-11-18 Nippon Shokubai Co., Ltd. Oil-absorbent composition, particulate oil absorber, oil-absorbent material, and oil-absorbent pack
JPH07102248A (ja) * 1993-10-01 1995-04-18 Nippon Shokubai Co Ltd 吸油材
CN1584148A (zh) * 2004-05-26 2005-02-23 天津工业大学 吸油纤维及其制造方法
CN1724575A (zh) * 2005-06-03 2006-01-25 江苏工业学院 多孔性高吸油性树脂及其制备方法
CN101220528A (zh) * 2007-09-26 2008-07-16 天津工业大学 一种吸油纤维的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278110A (zh) * 2021-05-27 2021-08-20 浙江理工大学 一种液体分散染料用的高分子分散剂及其合成方法和应用

Also Published As

Publication number Publication date
US20090306259A1 (en) 2009-12-10
US8110525B2 (en) 2012-02-07
CN101220528B (zh) 2010-10-06
CN101220528A (zh) 2008-07-16

Similar Documents

Publication Publication Date Title
WO2009039761A1 (fr) Procédé de préparation d'une fibre absorbant l'huile
CN101348950B (zh) 一种吸附功能改性聚丙烯腈纤维的制造方法
CN110270317A (zh) 一种用于重金属废水处理的纤维素基水凝胶吸附剂的制备方法
JPS6021164B2 (ja) 変性多糖類の製造方法
CN101698965B (zh) 一种吸附纤维及其制造方法
CN113368838B (zh) 一种表面负载有纳米过渡金属氧化物的生物质纳米纤维素多孔材料及其制备方法
CN104693592A (zh) 一种共聚甲基丙烯酸酯/聚丙烯复合吸油材料的制备方法
CN103113513B (zh) 一种成纤聚合物的合成方法
CN102383215B (zh) 一种吸附有机液体聚烯烃纤维的制造方法
CN100574871C (zh) 有机物吸附纤维的制造方法
CN103437067A (zh) 一种吸油纤维毡的制造方法
CN101845756B (zh) 一种夹层型复合吸油材料的制造方法
CN113694970B (zh) 一种两性均相混床用强酸性阳离子交换树脂及其制备方法
CN113896825A (zh) 一种高堆积密度的丙烯酸增稠剂及其制备方法和应用
CN101285216B (zh) 一种有机物吸附纤维的制造方法
CN102618963B (zh) 一种改性聚丙烯纤维的制造方法
CN1255586C (zh) 吸油纤维及其制造方法
CN102383212B (zh) 一种有机液体吸附纤维的制造方法
Chantawong et al. Modification of silk fabrics with diallyldimethylammonium chloride
CN101928365A (zh) 一种双亲单分散微球树脂的制备方法
CN101838862B (zh) 一种有机液体吸附纤维的制造方法
CN108993440B (zh) 一种用于吸附海洋浮油的吸油树脂球的制备方法
US4107384A (en) Method for producing porous fibers
CN1856511A (zh) 改进的交换树脂无溶剂磺化
CN112547028A (zh) 一种吸附阳离子染料的松香基磁性多孔微球的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800860

Country of ref document: EP

Kind code of ref document: A1