WO2009024712A1 - Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (hmtbn) en 2-hydroxy-4-methylthiobutanamide (hmtbm) - Google Patents

Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (hmtbn) en 2-hydroxy-4-methylthiobutanamide (hmtbm) Download PDF

Info

Publication number
WO2009024712A1
WO2009024712A1 PCT/FR2008/051432 FR2008051432W WO2009024712A1 WO 2009024712 A1 WO2009024712 A1 WO 2009024712A1 FR 2008051432 W FR2008051432 W FR 2008051432W WO 2009024712 A1 WO2009024712 A1 WO 2009024712A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmtbm
hmtbn
catalyst
hmtba
hydroxy
Prior art date
Application number
PCT/FR2008/051432
Other languages
English (en)
Inventor
Virginie Belliere-Baca
Jean-Claude Kiefer
Jean-Christophe Rossi
Original Assignee
Adisseo Ireland Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adisseo Ireland Limited filed Critical Adisseo Ireland Limited
Priority to JP2010518723A priority Critical patent/JP2010535182A/ja
Priority to CN200880100621A priority patent/CN101765586A/zh
Priority to RU2010102574/04A priority patent/RU2479574C2/ru
Priority to EP08827679A priority patent/EP2178831A1/fr
Priority to US12/671,361 priority patent/US20100197965A1/en
Publication of WO2009024712A1 publication Critical patent/WO2009024712A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds

Definitions

  • the present invention relates to the catalytic conversion of 2-hydroxy-
  • HMTBN 4-methylthiobutanenitrile
  • HMTBM 2-hydroxy-4-methylthiobutanamide
  • the HMTBM thus obtained can be used for example for the production of 2-hydroxy-4-methylthiobutanoic acid (HMTBA) hydroxyanalogue of methionine, methionine being an essential amino acid widely used as a feed additive in animal nutrition.
  • HMTBA 2-hydroxy-4-methylthiobutanoic acid
  • HMTBN 2-hydroxy-4-methylthiobutyronitrile
  • HMTBM 2-hydroxy-4-methylthiobutyramide
  • HMTBA 2-hydroxy-4-methylthiobutanoic acid
  • HMTBM resulting in the co-production of a very large amount of inorganic products difficult to exploit. Indeed, the catalytic activity of the strong mineral acids with respect to the HMTBN is such that all the introduced HMTBN is transformed very rapidly.
  • the HMTBM produced may especially react with water to form HMTBA and ammonia. In the case of sulfuric acid, for example, it may react with the ammonia released to form ammonium sulphate which must then be treated.
  • one of the proposed alternatives to this acidic hydration is an enzymatic process in which a nitrile hydratase, such as Rhodococcus (according to US 6 900 037 B2 and US Pat.
  • WO 2002/070717 A2 for example, can transform HMTBN into HMTBM.
  • the major disadvantage that penalizes this process lies in the difficulty of synthesize enzymes and extract them from the reaction medium after obtaining HMTBM.
  • a solution proposed by the patent WO 2002/00869 for extracting the enzymes from the reaction medium is the use of insoluble granules in water containing the enzyme.
  • the process for obtaining these granules is complicated and the catalytic activity of the enzymes in the granules is very much reduced.
  • the low catalytic activity makes it possible to be very selective in HMTBM but the duration of the transformation reaction of HMTBN into HMTBM must be lengthened.
  • Heterogeneous catalysis methods are also known.
  • the hydration of HMTBN is carried out in the presence of a mass-based manganese oxide catalyst in a water / acetone mixture (450/150).
  • the amount of manganese oxide used is 0.75 moles per 1 mole of cyanohydrin. It appeared that this reaction is difficult to reproduce because it is strongly related to the nature of the manganese oxide used. For example, in the presence of pyrolusite, no hydration reaction occurs.
  • the hydration conditions of the HMTBN according to this patent do not appear easy to optimize to obtain a reproducible yield in the absence of secondary products.
  • Patent FR 2,750,987 describes the hydration reaction of HMTBN or methylpropioaminonitrile cyanohydrin to the corresponding amide at low temperature (between 0 ° C. and 60 ° C.) in water in the presence of a catalyst with base of manganese oxide deposited on silica without any appearance of oxidation products on the sulfur atom.
  • the molar ratio MnO 2 / HMTBN or MnO 2 / cyanohydrin of the methylthiopropioaminotrile is between 0.05 and 1.5.
  • the weight ratio of the manganese oxide to the silica is preferably between 5 and 10%. It appears in the examples of this patent FR 2,750,987 that supporting manganese oxide on silica makes it possible to improve the selectivity of the reaction, but the small amounts of deposited active phase require long reaction times and / or Cyanhydrin very weak.
  • the amount of water used in the reaction medium is not critical for the reaction but that if the reaction time is too long and / or the temperature too high, part of the HMTBM formed can react with the water of the reaction medium to form HMTBA and / or produce secondary products of condensation of HMTBM.
  • the ammonia released induces an increase the hydrogen potential (pH) of the reaction medium which, at basic pH, causes the degradation of HMTBN which has not yet reacted and therefore an overall decrease in the production of HMTBM.
  • patent EP 0 601 195 A1 which describes a process for producing HMTBA in three successive stages, the first of which consists in the catalytic conversion of HMTBN into HMTBM in the presence of a heterogeneous catalyst, preferably of manganese oxide. or alkali metal borate (sodium tetraborate), it is recommended to substitute a portion of the amount of water of the reaction medium with a water-soluble organic solvent, such as acetone or methanol, and add sulfuric acid to improve the selectivity of the reaction. According to this patent, sulfuric acid is added to improve the performance of the reaction but in very limited amounts to prevent the formation of ammonia. In the examples, the best yield of HMTBM obtained after 6 hours of reaction at 60 ° C. in the presence of manganese oxide and sulfuric acid in a water / acetone solvent is 89%.
  • the state of the art shows that it is difficult to reconcile a strong catalytic activity for the hydration of HMTBN and a good selectivity in HMTBM.
  • the best performances are described for catalysts based on manganese oxide.
  • the best selectivities are obtained for manganese oxide supported on silica.
  • the low levels of supported manganese oxides involve long reaction times or reaction media containing very low concentrations of HMTBN.
  • One of the aims of the present invention is to provide an alternative to the methods described above but which does not have the disadvantages.
  • a first object of the present invention is to provide a sufficiently active and selective solid catalyst to produce 2-hydroxy-4-methylthiobutanamide (HMTBM) from 2-hydroxy-4-methylthiobutanenitrile (HMTBN) in short reaction times. to limit the formation of unwanted by-products and without the addition of strong mineral acids so as not to produce inorganic waste and to prevent degradation of HMTBN.
  • HMTBM 2-hydroxy-4-methylthiobutanamide
  • HMTBN 2-hydroxy-4-methylthiobutanenitrile
  • a first object of the invention is a process for the catalytic conversion of HMTBN to HMTBM, in the presence of a solid catalyst comprising an active phase, said catalyst being shaped and said conversion taking place in a substantially free-flowing medium. strong mineral acid.
  • substantially free of strong mineral acid is meant, if any, a trace presence at most, a proportion of less than 0.1% by weight relative to the total weight of the medium.
  • HMTBN in HMTBM consists of at least one metal oxide.
  • the proportion of this active phase is preferably at least 30% by weight relative to the total weight of the catalyst.
  • the constituent metallic elements of these oxides are advantageously chosen from the group comprising copper, nickel, iron, zirconium, manganese, cerium and their combinations.
  • the preferred metal oxides are manganese oxide and cerium oxide, they may be present alone or in combination to promote the selective hydration of HMTBN to HMTBM.
  • the diluent is chosen from the group comprising zirconium oxide, titanium oxide, alumina, silica, clays such as bentonites, attapulgite, and combinations thereof. . Its proportion is preferably at most 70% by weight relative to the total weight of the catalyst.
  • Preferred diluent of the invention include silica, alumina and combinations thereof.
  • the shaping of the catalyst generally comprises at least a first step of shaping the active phase, followed by a second heat treatment step.
  • a shaping process there may be mentioned processes using wet granulation or extrusion, in the presence of a binder.
  • the heat treatment step is often a drying stage (low temperature) between 50 0 C and 100 0 C, followed by a calcination step with the aim to reveal the active phase between 200 ° C and 600 0 C.
  • Binder means any binder selected from water, natural polymers, organic polymers and sugars, characterized in that it will ensure the cohesion of the active phase and the diluent during the preparation of the catalyst.
  • natural polymer any natural polymer, such as, for example, starch, gelatin, alginic acid, sodium alginate and combinations thereof.
  • organic polymer any organic polymer, such as, for example, polyvinylpyrrolidone, methylcellulose, polyethylene glycol and combinations thereof.
  • Sugar means any sugar, such as glucose, sucrose, sorbitol and combinations thereof.
  • any binder which makes it possible to improve certain properties of the invention is suitable, binders which do not generate toxic compounds or which are not themselves toxic to the environment or for the catalytic reaction being preferred.
  • a mixture of active phase powders and diluent is prepared, the proportions of which are determined by the composition of the desired shaped catalyst; small granules ( ⁇ 1 mm) of desired formulation are generated which are called primers;
  • the primers are introduced into the plate to be granulated, also called bezel or pan granulator, to which the mixture of the active phase powders and diluent previously prepared is slowly added continuously and the binder solution is sprayed simultaneously;
  • Granules are produced which are "naturally selected by centrifugation", out of the plate as soon as the desired particle size is reached, via rotational speed and inclination of the plate;
  • the granules are dried and calcined.
  • a second embodiment of the process for obtaining these compositions by granulation in a mixer - granulator Low or High Shear is used.
  • mixers are equipped with one or more pale-type rotors, pins or plowshares which allows the powder mixture to move.
  • This mode includes the following steps. a mixture of active phase powders and diluent is prepared, the proportions of which are determined by the composition of the desired shaped catalyst;
  • the binder is incorporated in the form of a spray, which makes it possible to ensure the growth of the granules and to control the particle size distribution by controlling the quantity of binder introduced.
  • the other important granulation parameters are those of the speed of rotation and contact time.
  • a third embodiment of the process for obtaining these compositions by extrusion comprises the following steps:
  • a mixture of active phase powders and diluent is prepared, the proportions of which are determined by the composition of the desired shaped catalyst; the binder is introduced;
  • the mixture is kneaded until a paste is obtained; the dough thus obtained is introduced into a die of the desired diameter;
  • the extrudates are dried and calcined.
  • the extrudates can be continuously produced with an extruder in which the mixture of powders, ie active phases and diluents, is introduced, followed by the binder.
  • a paste is thus generated in situ, in the screw, for example single or double screw, then extracted in the form of "spaghetti" whose length is controlled by the formulation or mechanically, for example with a rotary knife. They are then dried and calcined.
  • a catalyst of the invention has strong activities for the selective hydration of HMTBN in very high HMTBM at temperatures between 0 0 C and 100 0 C, more particularly between 20 0 C and 90 ° C.
  • the reaction time is advantageously greater than 45 minutes and preferably greater than 60 minutes.
  • the catalytic hydration of HMTBN in HMTBM can be carried out in the liquid phase or in the gas phase. Under these conditions, the HMTBN is in solution, at a rate of 20 to 80% relative to the total weight of the solution. It may be in solution in a solvent or a mixture of solvents chosen from water, water-soluble solvents such as acetone and methanol.
  • the HMTBN is present in a reaction medium from which it originates. It can for example be obtained by reaction of hydrogen cyanide with aldehyde-3- (methylthio) propionic acid.
  • the catalytic hydration of HMTBN in HMTBM can be carried out in a closed reactor or continuously.
  • the reaction can be carried out in a continuous reactor on a fixed bed of catalyst or in a perfectly stirred reactor, and in particular a continuous reaction on a fixed bed of catalyst is preferred.
  • the process of the invention finds an interesting application in the preparation of 2-hydroxy-4-methylthiobutanoic acid (HMTBA), according to the following steps: the conversion of HMTBN into HMTBM is carried out by a process of the invention as defined above,
  • the step of converting HMTBM to HMTBA can be carried out under conditions well known to those skilled in the art.
  • this step can be carried out catalytically in the presence of a catalyst based on one or more metal oxides, preferably chosen from titanium dioxide and zirconium dioxide.
  • This conversion step may also be carried out by hydrolysis in the presence of an acid, such as a mineral acid chosen from H 2 SO 4, H 3 PO 4 and HCl.
  • an acid such as a mineral acid chosen from H 2 SO 4, H 3 PO 4 and HCl.
  • the acid is H 2 SO 4
  • the reaction conditions are those described in application EP-A-1 097 130.
  • HMTBA can also be prepared from HMTBM enzymatically in the presence of an amidase.
  • HMTBS ammonium salt
  • the ammonium salts optionally in admixture with the HMTBA undergo a conversion treatment, advantageously chosen from a neutralization, an electrodialysis, a distillation.
  • the neutralization step can be carried out on resins, or by acid neutralization.
  • Rhodia cerium oxide HSA-5
  • a conditated SB3 alumina and water as binder are used.
  • a mixture of powders composed of 90% by weight of cerium oxide and 10% by weight of alumina is prepared. 10% primer weight of this composition is prepared in a plate to be granulated on the plate. The powder mixture is then slowly fed continuously and the water is sprayed simultaneously for granulation to be effective.
  • the granules produced are "naturally selected by centrifugation", removed from the plate as soon as the granulometry is reached (4-5 mm), via rotation speed and inclination of the plate. They are recovered, dried in the oven for 12 hours at 60 ° C. and then calcined for 2 hours at 500 ° C.
  • the powders are mixed with 90% by weight of alpha manganese oxide and 10% by weight of alumina.
  • a mixture of powders is introduced into a Brabender kneader and 32 ml of purified water are introduced in 8 minutes. The mixing time after introduction of water is 20 minutes. The paste obtained is then introduced into the multi-hole die 1.5 mm. Generated spaghetti is smooth and breaks easily. They are dried in an oven at 60 0 C for 18 hours. These dry spaghetti are then calcined at 400 0 C and then plateau for 2 hours.
  • the extrudates thus obtained after calcination have lengths which range between 3 and 20 mm.
  • KMnO 4 (15.6g, 95.9 mmol) was dissolved in water (24OmL) at room temperature in a 1 liter monocolon.
  • Silica 60 (Merck, 240 g) is then added and mechanically stirred for 2 hours.
  • the water is then evaporated under vacuum using a rotary evaporator (bath at 60 ° C.).
  • the violet powder obtained is then gradually added to a vigorously stirred solution of MnSO 4 -H 2 O (37.2 g, 220.1 mmol) in water (40OmL). Stirred for three hours and filtered the brownish solid on sintered glass. This solid is washed with water until total disappearance of the manganous ions (characterized by formation of a precipitate by treatment with ammonia) in the washing water.
  • This example gives the results of measurement of the conversion of 2-hydroxy-4-methylthiobutanenitrile in the presence of the compositions of the preceding examples and in the manner that follows.
  • the reaction mixture composed of a solution of 23% by weight of
  • HMTBN in water is introduced into the Schott tube containing the catalyst.
  • a magnetized bar is then introduced into the Schott tube and stirred to homogenize the reaction mixture.
  • the Schott tube thus charged is then heated to 75 ° C. The initial time of the reaction is considered when the temperature of 75 ° C is reached.
  • HMTBN initially introduced and the selectivity to different reaction products, such as HMTBM and HMTBA, at time t is calculated with respect to the amount of this product formed at time t and the amount of HMTBN at moment t.
  • compositions of the invention exhibit catalytic activities which are greater than the catalyst described in patent FR 2,750,987 (C).
  • the conversions of HMTBN are greater than 90% for the examples of the invention and their selectivities in HMTBM are greater than 70% whereas the comparative catalyst ( C) shows only 13% conversion of HMTBN and 63% selectivity to HMTBM.
  • This example gives the results of measurement of the conversion of 2-hydroxy-4-methylthiobutyronitrile in the presence of catalyst B over time and in the manner that follows.
  • Example 2 80 ml of catalyst B described in Example 2 are introduced into a batch reactor fixed flow recirculation bed. 180 ml of industrial HMTBN flux diluted in water so as to have 28% by weight of HMTBN in the reaction stream are introduced into the reactor.
  • the reaction flow is circulated in the reactor with a circulation rate of 121 / h.
  • the reactor is heated to a temperature of 75 ° C.
  • the initial time of the reaction is considered when the temperature of 75 ° C is reached.
  • Flow samples are taken during the reaction to follow the progress of the reaction. The quantities taken are very small and it is considered that the volume of the flow remains constant throughout the reaction.
  • the composition of the samples taken is determined by HPLC.
  • the conversion of HMTBN at time t is calculated with respect to the HMTBN initially introduced and the HMTBM selectivity at time t is calculated with respect to the amount of HMTBM at time t and the amount of HMTBN. transformed at the instant t.
  • catalyst B is very active with respect to the hydration of HMTBN and very selective in HMTBM.
  • the HMTBM formed is very stable over time and does not degrade in HMTBA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Ce procédé est conduit en présence d'un catalyseur solide comprenant une phase active. Le catalyseur est mis en forme et la conversion a lieu dans un milieu essentiellement exempt d'acide minéral fort.

Description

Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (HMTBN) en 2-hydroxy-4-methylthiobutanamide (HMTBM)
La présente invention concerne la conversion catalytique du 2-hydroxy-
4-méthylthiobutanenitrile (HMTBN) en 2-hydroxy-4-methylthiobutanamide (HMTBM), illustrée ci-dessous.
Figure imgf000002_0001
HMTBN HMTBM
L'HMTBM ainsi obtenu peut-être utilisé par exemple, pour la production d'acide 2-hydroxy-4-methylthiobutanoïque (HMTBA), hydroxyanalogue de la méthionine, la méthionine étant un acide aminé essentiel largement employé comme additif alimentaire en nutrition animale.
Un grand nombre de documents décrit la transformation catalytique de
2-hydroxy-4-methylthiobutyronitrile (HMTBN) en 2-hydroxy-4- methylthiobutyramide (HMTBM) et/ou d'acide 2-hydroxy-4- methylthiobutanoïque (HMTBA).
Ainsi, cette conversion a été décrite en présence stoechiométrique ou sur-stoechiométrique d'acides minéraux forts, tel que l'acide sulfurique.
L'inconvénient majeur de l'utilisation d'acides minéraux forts est leurs fortes activités catalytiques qui ne permettent pas de contrôler la sélectivité en
HMTBM, entraînant de plus la co-production d'une quantité très importante de produits inorganiques difficilement exploitables. En effet, l'activité catalytique des acides minéraux forts vis-à-vis de l'HMTBN est telle que tout l'HMTBN introduit est transformé très rapidement. L'HMTBM produit peut notamment réagir avec l'eau pour former l'HMTBA et de l'ammoniaque. Dans le cas de l'acide sulfurique par exemple, il pourra réagir avec l'ammoniaque libérée pour former du sulfate d'ammonium qu'il faudra ensuite traiter.
Pour des raisons environnementales, une des alternatives proposées à cette hydratation acide est un procédé enzymatique dans lequel une nitrile hydratase, telle que le Rhodococcus (selon les brevets US 6 900 037 B2 et
WO 2002/070717 A2 par exemple), peut transformer l'HMTBN en HMTBM.
L'inconvénient majeur qui pénalise ce procédé réside dans la difficulté de synthétiser des enzymes puis de les extraire du milieu réactionnel après obtention de l'HMTBM. Une solution proposée par le brevet WO 2002/00869 pour extraire les enzymes du milieu réactionnel est l'utilisation de granules insolubles dans l'eau contenant l'enzyme. Toutefois, le procédé d'obtention de ces granules est compliqué et l'activité catalytique des enzymes dans les granules est très largement réduite. La faible activité catalytique permet d'être très sélectif en HMTBM mais la durée de la réaction de transformation de l'HMTBN en HMTBM doit être allongée.
Des procédés par catalyse hétérogène sont également connus. Selon le brevet US 5 386 056, l'hydratation de l'HMTBN est réalisée en présence d'un catalyseur à base d'oxyde de manganèse massique dans un mélange eau/acétone (450/150). La quantité d'oxyde de manganèse utilisée est de 0,75 mole pour 1 mole de cyanhydrine. Il est apparu que cette réaction est difficilement reproductible car elle est fortement liée à la nature de l'oxyde de manganèse utilisé. Par exemple, en présence de pyrolusite, aucune réaction d'hydratation n'apparaît. De plus, les conditions d'hydratation de l'HMTBN selon ce brevet ne paraissent pas faciles à optimiser pour obtenir un rendement reproductible en l'absence de produits secondaires.
Le brevet FR 2 750 987 décrit la réaction d'hydratation de l'HMTBN ou de la cyanhydrine du méthylpropioaminonitrile en amide correspondant à basse température (compris entre 00C et 600C) dans l'eau en présence d'un catalyseur à base d'oxyde de manganèse déposé sur de la silice sans aucune apparition de produits d'oxydation sur l'atome de soufre. Selon ce brevet, le rapport molaire Mnθ2/HMTBN ou Mnθ2/cyanhydrine du méthylthiopropioaminotrile est compris entre 0,05 et 1 ,5. Le rapport pondéral de l'oxyde de manganèse à la silice est de préférence compris entre 5 et 10%. Il apparaît dans les exemples de ce brevet FR 2 750 987 que supporter l'oxyde de manganèse sur silice permet d'améliorer la sélectivité de la réaction mais les faibles quantités de phase active déposée obligent des temps de réaction longs et/ou des concentrations en cyanhydrine très faibles.
Il est connu de l'homme de métier que la quantité d'eau utilisée dans le milieu réactionnel n'est pas critique pour la réaction mais que si le temps de réaction est trop long et/ou la température trop élevée, une partie du HMTBM formé peut réagir avec l'eau du milieu réactionnel pour former l'HMTBA et/ou produire des produits secondaires de condensation de l'HMTBM. De plus, dans le cas de la formation d'HMTBA, l'ammoniaque libéré induit une augmentation du potentiel hydrogène (pH) du milieu réactionnel qui, en pH basique, provoque la dégradation du HMTBN n'ayant pas encore réagi et par conséquent, une diminution globale de la production de HMTBM.
Ainsi, dans le brevet EP 0 601 195 A1 qui décrit un procédé de production de l'HMTBA en trois étapes successives dont la première consiste à la transformation catalytique de HMTBN en HMTBM en présence d'un catalyseur hétérogène, préférentiellement d'oxyde de manganèse ou de borate de métal alcalin (tétraborate de sodium), il est préconisé de substituer une partie de la quantité d'eau du milieu réactionnel par un solvant organique soluble dans l'eau, tel que l'acétone ou le méthanol, et d'ajouter de l'acide sulfurique pour améliorer la sélectivité de la réaction. Selon ce brevet, de l'acide sulfurique est ajouté pour améliorer les performances de la réaction mais dans des quantités très limitées afin d'éviter la formation d'ammoniaque. Dans les exemples, le meilleur rendement en HMTBM obtenu après 6 heures de réaction à 600C en présence d'oxyde de manganèse et d'acide sulfurique dans un solvant eau/acétone est de 89%.
En résumé, l'état de l'art montre qu'il est difficile de concilier une forte activité catalytique pour l'hydratation de l'HMTBN et une bonne sélectivité en HMTBM. Les meilleures performances sont décrites pour des catalyseurs à base d'oxyde de manganèse. Notamment, les meilleures sélectivités sont obtenues pour de l'oxyde de manganèse supporté sur de la silice. Les faibles teneurs en oxydes de manganèse supportés impliquent des temps longs de réaction ou des milieux réactionnels contenant de très faibles concentrations en HMTBN. Un des buts de la présente invention est d'apporter une alternative aux procédés décrits ci-dessus mais qui n'en présente pas les inconvénients.
Ainsi un premier objet de la présente invention est de fournir un catalyseur solide suffisamment actif et sélectif pour produire le 2-hydroxy-4- methylthiobutanamide (HMTBM) à partir de 2-hydroxy-4-methylthiobutanenitrile (HMTBN) dans des temps de réaction courts pour limiter la formation de produits secondaires indésirables et sans ajout d'acides minéraux forts pour ne pas produire de déchets inorganiques et pour éviter la dégradation de l'HMTBN.
Les auteurs de la présente invention ont découvert que mettre en forme une phase active pour l'hydratation sélective de HMTBN en HMTBM, permet de rendre le catalyseur solide, actif dans des conditions déterminées permettant de limiter les temps de réaction et améliorant au surplus la sélectivité de la réaction. La mise en forme du catalyseur est effectuée dans un diluant.
Il a été également trouvé que mettre en forme la phase active pour l'hydratation sélective de HMTBN en HMTBM dans un diluant permet d'augmenter la quantité de phase active accessible et efficace pour la réaction et permet d'améliorer les propriétés de résistances mécaniques du catalyseur. Renforcer la tenue mécanique du catalyseur permet de limiter la perte d'activité du catalyseur dans le temps par lixiviation de la phase active du catalyseur dans le milieu réactionnel. La présente invention permet donc en outre d'améliorer la durée de vie du catalyseur.
Enfin, un autre avantage d'avoir un catalyseur solide mis en forme permet de réaliser la réaction en réacteur continu. Le temps de réaction peut alors être très aisément contrôlé. La séparation du catalyseur du milieu réactionnel est facilitée. Une régénération du catalyseur peut également être envisagée directement dans le réacteur sous flux d'air en température par exemple.
Ainsi, un premier objet de l'invention est un procédé pour la conversion catalytique de HMTBN en HMTBM, en présence d'un catalyseur solide comprenant une phase active, ledit catalyseur étant mis en forme et ladite conversion ayant lieu dans un milieu essentiellement exempt d'acide minéral fort.
Par essentiellement exempt d'acide minéral fort, on entend, s'il y en a, une présence à l'état de traces au plus, soit une proportion inférieure à 0,1 % en poids par rapport au poids total du milieu.
Selon cette invention, la phase active pour l'hydratation sélective de
HMTBN en HMTBM est constituée d'au moins un oxyde métallique. La proportion de cette phase active est de préférence d'au moins 30% en poids par rapport au poids total du catalyseur. Les éléments métalliques constitutifs de ces oxydes sont avantageusement choisis dans le groupe comprenant le cuivre, le nickel, le fer, le zirconium, le manganèse, le cérium et leurs combinaisons. Les oxydes métalliques préférés sont l'oxyde de manganèse et l'oxyde de cérium, ils peuvent être présents seuls ou en combinaison pour favoriser l'hydratation sélective de HMTBN en HMTBM. Selon une autre caractéristique de l'invention, le diluant est choisi dans le groupe comprenant l'oxyde de zirconium, l'oxyde de titane, l'alumine, la silice, les argiles tels que les bentonites, l'attapulgite, et leurs combinaisons. Sa proportion est de préférence au maximum de 70% en poids par rapport au poids total du catalyseur. Comme diluant préféré de l'invention, on peut citer la silice, l'alumine et leurs combinaisons.
La mise en forme du catalyseur comprend de manière générale au moins une première étape de mise en forme de la phase active, suivie par une seconde étape de traitement thermique. Comme exemple de procédé de mise en forme, on peut citer les procédés mettant en œuvre la granulation humide ou l'extrusion, en présence d'un liant. L'étape de traitement thermique est souvent une étape de séchage : (basse température) comprise entre 500C et 1000C, suivie d'une étape de calcination ayant pour objectif de révéler la phase active comprise entre 200°C et 6000C. Par liant, en entend tout liant choisi parmi l'eau, les polymères naturels, les polymères organiques et les sucres, caractérisé par le fait qu'il permettra d'assurer la cohésion de la phase active et du diluant pendant la préparation du catalyseur.
Par polymère naturel, on entend tout polymère naturel, comme par exemple, l'amidon, la gélatine, l'acide alginique, alginate de sodium et leurs combinaisons.
Par polymère organique, on entend tout polymère organique, comme par exemple, le polyvinylpirrolidone, le methylcellulose, le polyethyleneglycol et leurs combinaisons. Par sucre, on entend tout sucre, comme par exemple, le glucose, le sucrose, le sorbitol et leurs combinaisons.
Cette liste de liants est donnée à titre indicatif et n'est pas exhaustive.
Ainsi, tout liant qui permet d'améliorer certaines propriétés de l'invention est convenable, les liants ne générant pas de composés toxiques ou qui ne sont pas eux-mêmes toxiques pour l'environnement ou pour la réaction catalytique étant préférés.
Un premier mode de réalisation du procédé d'obtention de ces compositions par granulation comprend les étapes suivantes :
- on prépare un mélange des poudres de phase active et de diluant dont les proportions sont déterminées par la composition du catalyseur mis en forme souhaitée ; - on génère des granulés de petites tailles (<1 mm) de formulation souhaitée qui sont appelés des amorces;
- on prépare une solution diluée de liant ;
- on introduit les amorces dans l'assiette à granuler, appelée aussi drageoir ou pan granulator, auxquelles on ajoute lentement en continu le mélange des poudres de phase active et de diluant précédemment préparé et on pulvérise simultanément la solution de liant ;
- on produit des granulés qui sont « sélectes naturellement par centrifugation », sortis de l'assiette dès que la granulométrie souhaitée est atteinte, via vitesse de rotation et inclinaison de l'assiette;
- on sèche et on calcine les granulés.
Un deuxième mode de réalisation du procédé d'obtention de ces compositions par granulation en mélangeur - granulateur Low ou High Shear est utilisé.
Ces mélangeurs sont équipés d'un ou plusieurs rotors de type pâles, broches ou socs de charrue qui permet (tent) de mettre le mélange pulvérulent en mouvement. Ce mode comprend les étapes suivantes. - on prépare un mélange des poudres de phase active et de diluant dont les proportions sont déterminées par la composition du catalyseur mis en forme souhaitée ;
- on incorpore le liant sous forme de spray, ce qui permet d'assurer la croissance des granulés et de contrôler la répartition granulométrique par la maîtrise de la quantité de liant introduit, les autres paramètres de granulation importants sont ceux de la vitesse de rotation et du temps de contact.
Les granulés avec ou sans traitement ultérieur de sphéronisation sont ensuite séchés et calcinés. Un troisième mode de réalisation du procédé d'obtention de ces compositions par extrusion comprend les étapes suivantes :
- on prépare un mélange des poudres de phase active et de diluant dont les proportions sont déterminées par la composition du catalyseur mis en forme souhaitée ; - on introduit le liant ;
- on malaxe le mélange jusqu'à obtention d'une pâte; - on introduit la pâte ainsi obtenue dans une filière de diamètre souhaité ;
- on récupère les solides de diamètre souhaité et on les coupe la longueur souhaitée des objets ; - on obtient des extrudés ;
- on sèche et on calcine les extrudés.
Les extrudés peuvent être produits en continu avec une extrudeuse dans laquelle on introduit le mélange de poudres, à savoir phases actives et diluants, puis le liant. Une pâte est ainsi générée in situ, dans la vis, par exemple vis simple ou double, puis extraite sous forme de « spaghettis » dont la longueur est contrôlée par la formulation ou mécaniquement, par exemple avec un couteau rotatif. Ils sont ensuite séchés puis calcinés.
Un catalyseur de l'invention présente de fortes activités pour l'hydratation sélective de l'HMTBN en HMTBM très élevée à des températures comprises entre 00C et 1000C, plus particulièrement entre 200C et 90°C.
La durée de réaction est avantageusement supérieure à 45 minutes et de préférence supérieure à 60 minutes.
L'hydratation catalytique de l'HMTBN en HMTBM peut être réalisée en phase liquide ou en phase gazeuse. Dans ces conditions, l'HMTBN est en solution, à raison de 20 à 80% par rapport au poids total de la solution. Il peut être en solution dans un solvant ou un mélanges de solvants choisis parmi l'eau, les solvants hydrosolubles tels que l'acétone, le méthanol.
Selon une variante du procédé de l'invention, le HMTBN est présent dans un milieu réactionnel dont il provient. Il peut par exemple être obtenu par réaction de l'acide cyanhydrique avec l'aldéhyde-3-(méthylthio)propionique
(AMTP), ou bien à partir de l'acroléine et de l'acide cyanhydrique, sans isolement de produits intermédiaires, puis addition de méthylmercaptan (MSH).
L'hydratation catalytique de l'HMTBN en HMTBM peut être réalisée en réacteur fermé ou en continu. De façon industrielle, la réaction peut être réalisée en réacteur continu sur un lit fixe de catalyseur ou dans un réacteur parfaitement agité, et en particulier une réaction continue sur lit fixe de catalyseur est préférée.
Comme évoqué précédemment, le procédé de l'invention trouve une application intéressante dans la préparation de l'acide 2-hydroxy-4- méthylthiobutanoïque (HMTBA), selon les étapes suivantes : - on réalise la conversion de l'HMTBN en HMTBM par un procédé de l'invention tel que défini précédemment,
- on effectue la conversion de l'HMTBM en HMTBA.
L'étape de conversion de l'HMTBM en HMTBA peut être réalisée dans des conditions bien connues de l'homme du métier.
Ainsi, cette étape peut être conduite par voie catalytique, en présence d'un catalyseur à base d'un ou plusieurs oxydes métalliques, de préférence choisis parmi le dioxyde de titane et le dioxyde de zirconium.
Cette étape de conversion peut aussi être opérée par hydrolyse en présence d'un acide, tel qu'un acide minéral choisi parmi H2SO4, H3PO4 et HCI. A titre d'exemple, l'acide est H2SO4, et les conditions de réaction sont celle décrites dans la demande EP-A-1 097 130.
L'HMTBA peut aussi être préparé à partir de l'HMTBM, par voie enzymatique, en présence d'une amidase. Lorsqu'il est obtenu sous forme de sel d'ammonium (HMTBS), les sels d'ammonium éventuellement en mélange avec l'HMTBA subissent un traitement de conversion, avantageusement choisi parmi une neutralisation, une électrodialyse, une distillation. L'étape de neutralisation peut être réalisée sur résines, ou par neutralisation acide.
Les exemples qui suivent ont pour but d'illustrer la présente invention sans en limiter la portée.
EXEMPLE 1 : Préparation d'un catalyseur A On prépare un catalyseur mis en forme de composition 90% en poids d'oxyde de cérium et 10% en poids d'alumine par granulation voie humide.
Pour préparer ce catalyseur, on utilise un oxyde de cérium de Rhodia, HSA-5, et une alumine SB3 condéa et de l'eau comme liant.
On prépare un mélange de poudres composé de 90% en poids d'oxyde de cérium et 10% en poids d'alumine. On prépare 10% poids d'amorces de cette composition dans une assiette à granuler l'assiette. On introduit ensuite le mélange de poudres lentement en continu et on pulvérise l'eau simultanément pour que la granulation soit effective. Les granulés produits sont « sélectes naturellement par centrifugation », sortis de l'assiette dès que la granulométrie est atteinte (4-5 mm), via vitesse de rotation et inclinaison de l'assiette. Ils sont récupérés, séchés à l'étuve 12h à 600C puis calcinés 2h à 5000C.
EXEMPLE 2 : Préparation d'un catalyseur B On prépare un catalyseur mis en forme de compositions 90% en poids d'oxyde de manganèse alpha et 10% en poids d'alumine par extrusion.
Pour préparer ce catalyseur, on utilise un oxyde de manganèse alpha HSA de Comilog (n° de lot 103514-12) et une alumine SB3 Condea.
On mélange les poudres 90% en poids d'oxyde de manganèse alpha et 10% en poids d'alumine.
On introduit dans un malaxeur Brabender 67g de mélange de poudres et on introduit 32 ml d'eau épurée en 8 minutes. La durée du malaxage après introduction d'eau est de 20 minutes. La pâte obtenue est ensuite introduite dans la filière multi trous 1.5 mm. Les spaghettis générés sont lisses et se cassent facilement. Ils sont mis à sécher à l'étuve à 600C durant 18 heures. Ces spaghettis secs sont ensuite calcinés à 4000C puis palier de 2 heures.
Les extrudés ainsi obtenus après calcination ont des longueurs qui s'échelonnent entre 3 et 20 mm.
EXEMPLE 3 comparatif: Préparation d'un catalyseur C selon le brevet FR 2 750 987
On dissout du KMnO4 (15,6g ; 95,9 mmol) dans de l'eau (24OmL) à température ambiante dans un monocol de 1 litre. On ajoute alors de la silice 60 (Merck, 240g) et on agite mécaniquement pendant 2 heures. L'eau est alors évaporée sous vide à l'évaporateur rotatif (bain à 60°C). La poudre violette obtenue est alors ajoutée progressivement à une solution vigoureusement agitée de MnSO4-H2O (37,2g ; 220,1 mmol) dans l'eau (40OmL). On agite pendant trois heures et filtre le solide brunâtre sur verre fritte. Ce solide est lavé à l'eau jusqu'à disparition totale des ions manganeux (caractérisés par formation d'un précipité par traitement à l'ammoniaque) dans les eaux de lavage. On essore bien sur le filtre et place le solide dans les boîtes de Pétri ; l'épaisseur des couches étant de 0,5 cm. On sèche à 1100C en étuve ventilée pendant 2 heures. La poudre marron, fine, ainsi obtenue pèse 248g. EXEMPLE 4: Hydratation du 2-hydroxy-4-methylthiobutanenitrile en 2-hydroxy-4-methylthiobutanamide en présence des catalyseurs poudres A, B et C.
Cet exemple donne les résultats de mesure de la conversion du 2- hydroxy-4-methylthiobutanenitrile en présence des compositions des exemples précédents et de la manière qui suit.
5 g de composé selon l'un des exemples ci-dessus sont broyés et tamisés de façon à récupérer la fraction granulométrique comprise entre 100 et
200 μm. 0,6 g de cette fraction granulométrique est introduite dans un tube
Schott. Le mélange réactionnel composé d'une solution de 23% en poids de
HMTBN dans l'eau est introduit dans le tube Schott contenant le catalyseur. Un barreau aimanté est alors introduit dans le tube Schott et mis en agitation pour homogénéiser le mélange réactionnel. Le tube Schott ainsi chargé est ensuite chauffé à 75°C. On considère le temps initial de la réaction lorsque la température de 75°C est atteinte.
Après 60 minutes de réaction, le chauffage est coupé et le catalyseur est extrait du milieu réactionnel par filtration. La composition du filtrat est analysée par HPLC. La conversion de l'HMTBN à l'instant t est calculée par rapport au
HMTBN initialement introduit et la sélectivité en différents produits de réaction, tels que en HMTBM et en HMTBA, à l'instant t est calculée par rapport à la quantité de ce produit formé à l'instant t et à la quantité d'HMTBN à l'instant t.
Les performances catalytiques des catalyseurs poudres sont présentées dans le tableau 1.
Tableau 1
Figure imgf000011_0001
On voit à partir des résultats du tableau 1 que les compositions de l'invention (A et B) présentent des activités catalytiques supérieures au catalyseur décrit dans le brevet FR 2 750 987 (C). Après 60 minutes de réaction, à 75°C, sans ajout d'acide sulfurique, les conversions de HMTBN sont supérieures à 90% pour les exemples de l'invention et leurs sélectivités en HMTBM sont supérieures à 70% alors que le catalyseur comparatif (C) présente seulement 13% de conversion de HMTBN et 63% de sélectivité en HMTBM.
EXEMPLE 5 : Hydratation du 2-hydroxy-4-methylthiobutyronitrile en 2-hydroxy-4-methylthiobutyramide en présence du catalyseur B.
Cet exemple donne les résultats de mesure de la conversion du 2- hydroxy-4-methylthiobutyronitrile en présence du catalyseur B au cours du temps et de la manière qui suit.
80 ml_ de catalyseur B décrit dans l'exemple 2 sont introduits dans un réacteur batch lit fixe à recirculation de flux. 180 ml_ de flux industriel de HMTBN dilué dans de l'eau de façon à avoir 28% en poids de HMTBN dans le flux réactionnel sont introduits dans le réacteur. Le flux réactionnel est mis en circulation dans le réacteur avec un débit de circulation de 121/h. Le réacteur est porté à la température de 75°C. On considère le temps initial de la réaction lorsque la température de 75°C est atteinte. Des échantillons du flux sont prélevés au cours de la réaction pour suivre l'avancement de la réaction. Les quantités prélevées sont très faibles et l'on considère que le volume du flux reste constant tout au long de la réaction. La composition des échantillons prélevés est déterminée par HPLC.
La conversion de l'HMTBN à l'instant t est calculée par rapport au HMTBN initialement introduit et la sélectivité en HMTBM à l'instant t est calculée par rapport à la quantité de HMTBM à l'instant t et à la quantité d'HMTBN transformée à l'instant t.
Les performances catalytiques du catalyseur B au cours du temps sont présentées dans la figure 1.
On voit sur la Figure 1 que le catalyseur B est très actif vis-à-vis de l'hydratation de l'HMTBN et très sélectif en HMTBM. De plus, l'HMTBM formé est très stable dans le temps et ne se dégrade pas en HMTBA.

Claims

REVENDICATIONS
1. Procédé pour la conversion catalytique de 2-hydroxy-4- méthylthiobutanenitrile (HMTBN) en 2-hydroxy-4-methylthiobutanamide (HMTBM), en présence d'un catalyseur solide comprenant une phase active, caractérisé en ce que le catalyseur est mis en forme et en ce que ladite conversion a lieu dans un milieu essentiellement exempt d'acide minéral fort.
2. Procédé selon la revendication 1 , caractérisé en ce que la phase active dudit catalyseur comprend au moins un oxyde métallique choisi parmi les oxydes de cuivre, de nickel, de fer, de zirconium, de manganèse, de cérium, et les combinaisons de ces oxydes.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le catalyseur est mis en forme en présence d'au moins un diluant.
4. Procédé selon la revendication 3, caractérisé en ce que le diluant est choisi parmi l'oxyde de zirconium, l'oxyde de titane, l'alumine, la silice, les argiles tels que les bentonites, l'attapulgite, et leurs combinaisons.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la proportion de la phase active est d'au moins 30% (p/p) par rapport au catalyseur.
6. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que la proportion du diluant est au plus de 70% (p/p) par rapport au catalyseur.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le catalyseur est mis en forme par une première étape choisie parmi l'extrusion, la granulation humide, puis une seconde étape de traitement thermique.
8. Procédé selon la revendication 7, caractérisé en ce que l'étape de mise en forme est réalisée avec un liant assurant la cohésion entre la phase active et le diluant.
9. Procédé selon la revendication 8, caractérisé en ce que le liant est choisi parmi l'eau, les polymères naturels, les polymères organiques et les sucres.
10. Procédé selon la revendication 7, caractérisé en ce que l'étape de traitement thermique est un séchage suivi d'une calcination.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la conversion est effectuée à une température qui varie de 0 à 1000C, de préférence de 20 et 900C.
12. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que la durée de la conversion est supérieure à 45 minutes, de préférence supérieure à 60 minutes.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le HMTBN est en solution, à raison de 20 à 80% en poids par rapport au poids total.
14. Procédé selon la revendication 13, caractérisé en ce que le HMTBN est en solution dans un solvant ou un mélanges de solvants choisis parmi l'eau, les solvants hydrosolubles tels que l'acétone, le méthanol.
15. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le HMTBN est présent dans un milieu réactionnel dont il provient.
16. Procédé selon la revendication 15, caractérisé en ce que le HMTBN est obtenu par réaction de l'acide cyanhydrique avec l'aldéhyde-3- (méthylthio)propionique (AMTP).
17. Procédé selon la revendication 15, caractérisé en ce que le HMTBN est obtenu à partir de l'acroléine et de l'acide cyanhydrique, sans isolement de produits intermédiaires, puis addition de méthylmercaptan (MSH).
18. Procédé pour la préparation de l'acide 2-hydroxy-4- méthylthiobutanoïque (HMTBA), caractérisé en ce qu'il comprend les étapes suivantes : - on réalise la conversion de l'HMTBN en HMTBM par un procédé tel que défini à l'une quelconque des revendications 1 à 17, on effectue la conversion de l'HMTBM en HMTBA.
19. Procédé selon la revendication 18, caractérisé en ce que l'étape de conversion de l'HMTBM en HMTBA est réalisée en présence d'un catalyseur à base d'un ou plusieurs oxydes métalliques, de préférence choisis parmi le dioxyde de titane et le dioxyde de zirconium.
20. Procédé selon la revendication 18, caractérisé en ce que l'étape de conversion de l'HMTBM en HMTBA est réalisée par voie enzymatique, en présence d'une amidase.
21. Procédé selon la revendication 18, caractérisé en ce que l'étape de conversion de l'HMTBM en HMTBA est réalisée par hydrolyse de l'HMTBM en présence d'un acide minéral, de préférence choisi parmi H2SO4, H3PO4 et HCI.
22. Procédé selon la revendication 21 , caractérisé en ce que l'hydrolyse de l'HMTBM est effectuée en solution aqueuse, par de l'acide sulfurique.
23. Procédé selon l'une quelconque des revendications 18 à 22, caractérisé en ce que le HMTBA est obtenu sous forme de sel d'ammonium, HMTBS.
24. Procédé selon la revendication 23, caractérisé en ce que l'HMTBA est obtenu à partir des sels d'ammonium par au moins une étape choisie une neutralisation, une électrodialyse, une distillation.
25. Procédé selon la revendication 24, caractérisé en ce que l'étape de neutralisation est réalisée sur résines, ou par neutralisation acide.
PCT/FR2008/051432 2007-07-31 2008-07-30 Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (hmtbn) en 2-hydroxy-4-methylthiobutanamide (hmtbm) WO2009024712A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010518723A JP2010535182A (ja) 2007-07-31 2008-07-30 2−ヒドロキシ−4−メチルチオブタンニトリル(hmtbn)の2−ヒドロキシ−4−メチルチオブタンアミド(hmtbm)への接触変換のための方法
CN200880100621A CN101765586A (zh) 2007-07-31 2008-07-30 用于将2-羟基-4-甲基硫代丁腈(hmtbn)催化转化为2-羟基-4-甲基硫代丁酰胺(hmtbm)的方法
RU2010102574/04A RU2479574C2 (ru) 2007-07-31 2008-07-30 Способ каталитического превращения 2-гидрокси-4-метилтиобутаннитрила (гмтбн) в 2-гидрокси-4-метилтиобутанамид (гмтба)
EP08827679A EP2178831A1 (fr) 2007-07-31 2008-07-30 Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (hmtbn) en 2-hydroxy-4-methylthiobutanamide (hmtbm)
US12/671,361 US20100197965A1 (en) 2007-07-31 2008-07-30 Method for the catalytic conversion of 2-hydroxy-4-methylthiobutanenitrile (hmtbn) into 2-hydroxy-4-methylthiobutanamide (hmtbm)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705592A FR2919607B1 (fr) 2007-07-31 2007-07-31 Procede pour la conversion catalytique de 2-hydroxy-4- methylthiobutanenitrile (hmtbn) en 2-hydroxy-4- methylthiobutanamide (hmtbm).
FR07/05592 2007-07-31

Publications (1)

Publication Number Publication Date
WO2009024712A1 true WO2009024712A1 (fr) 2009-02-26

Family

ID=39233062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051432 WO2009024712A1 (fr) 2007-07-31 2008-07-30 Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (hmtbn) en 2-hydroxy-4-methylthiobutanamide (hmtbm)

Country Status (9)

Country Link
US (1) US20100197965A1 (fr)
EP (1) EP2178831A1 (fr)
JP (1) JP2010535182A (fr)
KR (1) KR20100045989A (fr)
CN (1) CN101765586A (fr)
FR (1) FR2919607B1 (fr)
RU (1) RU2479574C2 (fr)
TW (1) TW200920731A (fr)
WO (1) WO2009024712A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948620B (zh) * 2012-10-16 2014-01-22 安徽省正大源饲料集团有限公司 一种改性羟基蛋氨酸钙饲料添加剂的制备方法
JP6493410B2 (ja) * 2014-09-26 2019-04-03 住友化学株式会社 メチオニンの製造方法
WO2016174231A1 (fr) 2015-04-30 2016-11-03 Haldor Topsøe A/S Procédé de préparation d'analogues d'alpha-hydroxylation de l-méthionine à partir de sucres et de dérivés de ceux-ci
US11319278B2 (en) 2016-07-28 2022-05-03 Showa Denko K.K. Method for producing glycine
JP6826012B2 (ja) * 2017-09-08 2021-02-03 住友化学株式会社 メチオニン及び/又は2−ヒドロキシ−4−(メチルチオ)ブタン酸の製造方法
WO2020161067A1 (fr) * 2019-02-04 2020-08-13 Evonik Operations Gmbh Procédé de préparation de méthionine
CN111153824A (zh) * 2019-06-19 2020-05-15 浙江大学 利用氧化物材料催化有机腈类水合制备酰胺类化合物方法
FR3115537B1 (fr) * 2020-10-23 2023-01-06 Adisseo France Sas Procédé de fabrication catalytique d’un analogue de la méthionine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087750A (en) * 1989-12-19 1992-02-11 Mitsubishi Gas Chemical Company, Inc. Process for producing alpha-hydroxyisobutyric acid amide
US5386056A (en) 1992-05-21 1995-01-31 Daicel Chemical Industries, Ltd. Process for producing 2-hydroxy-4-methylthiobutanoic acid
FR2750987A1 (fr) 1996-07-09 1998-01-16 Rhone Poulenc Nutrition Animal Procede de preparation de methionine
US5763652A (en) 1995-03-08 1998-06-09 Daicel Chemical Industries, Ltd. Process for producing a carboxylic acid
WO2002000869A2 (fr) 2000-06-30 2002-01-03 Aventis Animal Nutrition S.A. Catalyseur contenant une enzyme enrobee
US20020034467A1 (en) * 2000-07-28 2002-03-21 Japan Pionics Co., Ltd. Process for purifying ammonia
WO2004089863A1 (fr) * 2003-04-09 2004-10-21 Degussa Ag Procede pour produire un sel d'ammonium d'acide 2-hydroxy-4-methylthiobutyrique
US20070117980A1 (en) * 2005-10-05 2007-05-24 Horst Weigel Manganese dioxide catalyst for the hydrolysis of carbonitriles

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108916A (en) * 1976-03-05 1977-09-12 Mitsubishi Chem Ind Ltd Preparaion of acrylamide by hydration of acrylonitrile
DE2751336A1 (de) * 1977-11-17 1979-05-23 Basf Ag Verfahren zur herstellung von carbonsaeureamiden
US4299735A (en) * 1979-07-20 1981-11-10 Carus Corporation Heavy metal-manganese oxidation catalysts and process of producing same
JP3219544B2 (ja) * 1992-05-21 2001-10-15 ダイセル化学工業株式会社 2−ヒドロキシ−4−メチルチオブタン酸の製造法
JPH0782226A (ja) * 1993-09-16 1995-03-28 Mitsui Toatsu Chem Inc アミド化合物の製造方法
DE4428608C1 (de) * 1994-08-12 1996-02-29 Degussa Verfahren zur Gewinnung von 2-Hydroxy-4-methylthiobuttersäure (MHA)
US6057481A (en) * 1996-04-01 2000-05-02 Union Carbide Chemicals & Plastics Technology Corporation Processes for the manufacture of methylmercaptopropanal
JPH10179183A (ja) * 1996-12-20 1998-07-07 Daicel Chem Ind Ltd カルボン酸の製造方法
RU2213729C2 (ru) * 1999-02-03 2003-10-10 Сумитомо Кемикал Компани, Лимитед Способ получения 2-гидрокси-4-метилтиобутановой кислоты
WO2001060788A1 (fr) * 2000-02-15 2001-08-23 Rhone-Poulenc Animal Nutrition Procede de production de methionine
JP4517474B2 (ja) * 2000-07-25 2010-08-04 住友化学株式会社 2−ヒドロキシ−4−メチルチオブタン酸の製造方法
JP2002037623A (ja) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd アンモニアの精製方法
JP4672914B2 (ja) * 2001-06-15 2011-04-20 ダイセル化学工業株式会社 アミド化合物の製造方法
JP2004081169A (ja) * 2002-08-29 2004-03-18 Daicel Chem Ind Ltd ヒドロキシカルボン酸の製造方法
DE102004041250A1 (de) * 2004-08-26 2006-03-02 Degussa Ag Herstellung von 2-Hydroxy-4-Methylthiobuttersäure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087750A (en) * 1989-12-19 1992-02-11 Mitsubishi Gas Chemical Company, Inc. Process for producing alpha-hydroxyisobutyric acid amide
US5386056A (en) 1992-05-21 1995-01-31 Daicel Chemical Industries, Ltd. Process for producing 2-hydroxy-4-methylthiobutanoic acid
US5763652A (en) 1995-03-08 1998-06-09 Daicel Chemical Industries, Ltd. Process for producing a carboxylic acid
FR2750987A1 (fr) 1996-07-09 1998-01-16 Rhone Poulenc Nutrition Animal Procede de preparation de methionine
WO2002000869A2 (fr) 2000-06-30 2002-01-03 Aventis Animal Nutrition S.A. Catalyseur contenant une enzyme enrobee
US20020034467A1 (en) * 2000-07-28 2002-03-21 Japan Pionics Co., Ltd. Process for purifying ammonia
WO2004089863A1 (fr) * 2003-04-09 2004-10-21 Degussa Ag Procede pour produire un sel d'ammonium d'acide 2-hydroxy-4-methylthiobutyrique
US20070117980A1 (en) * 2005-10-05 2007-05-24 Horst Weigel Manganese dioxide catalyst for the hydrolysis of carbonitriles

Also Published As

Publication number Publication date
FR2919607B1 (fr) 2012-10-12
TW200920731A (en) 2009-05-16
US20100197965A1 (en) 2010-08-05
RU2010102574A (ru) 2011-09-10
KR20100045989A (ko) 2010-05-04
JP2010535182A (ja) 2010-11-18
FR2919607A1 (fr) 2009-02-06
EP2178831A1 (fr) 2010-04-28
CN101765586A (zh) 2010-06-30
RU2479574C2 (ru) 2013-04-20

Similar Documents

Publication Publication Date Title
WO2009024712A1 (fr) Procédé pour la conversion catalytique de 2-hydroxy-4-méthylthiobutanenitrile (hmtbn) en 2-hydroxy-4-methylthiobutanamide (hmtbm)
CA2805574C (fr) Procede de synthese d&#39;acide 2,5-furandicarboxylique
JP5882309B2 (ja) 白金と金とのナノ粒子を含む触媒およびグルコースの酸化のためのその使用ならびにかかる触媒の調製方法
FR2880345A1 (fr) Synthese et applications de l&#39;acide 2-oxo-4-methylthiobutyrique, ses tels et ses derives
FR3008409A1 (fr) Procede de fabrication de furane 2,5-dicarboxaldehyde a partir d&#39;hydroxymethylfurfural et de ses derives halogenes n&#39;utilisant pas de catalyseur metallique
JP5511187B2 (ja) カルボン酸ニトリルの加水分解のための二酸化マンガン触媒
FR2994973A1 (fr) Procede de production d&#39;acide methacrylique
RU2355678C2 (ru) Способ получения аммониевой соли 2-гидрокси-4-метилтиомасляной кислоты
JPS61282355A (ja) 4,4’−ジニトロスチルベン−2,2’−ジスルホン酸塩の製造法
JPWO2008050829A1 (ja) S−(−)−6−ヒドロキシ−2,5,7,8−テトラメチルクロマン−2−カルボン酸の製造方法及びその方法による製造物
EP0796254B1 (fr) Procede de fabrication selective de furanedicarboxaldehyde-2,5 a partir de l&#39;hydroxymethyl-5 furane carboxaldehyde-2
FR3102373A1 (fr) catalyseur à base de molybdate de bismuth
FR2471808A1 (fr) Procede de preparation d&#39;un catalyseur a base d&#39;oxydes de molybdene et de fer
EP4003592A1 (fr) Catalyseur à base de molybdate de bismuth, procédé de sa fabrication et utilisation de ce catalyseur dans l&#39;oxydation du propène en acroléine
CN105753684B (zh) 一种羟基特戊酸的制备方法
CN109180545B (zh) 水相中苯基酚酸催化分子氧氧化合成具有s-s键的二硫化合物的方法
WO1998024546A1 (fr) Systeme catalytique contenant de l&#39;oxygene, du molybdene et du phosphore, et son application a l&#39;oxydeshydrogenation d&#39;acides carboxyliques satures ou de leurs esters, ainsi qu&#39;a l&#39;oxydation d&#39;alcanes
JPH0413346B2 (fr)
JP2011144200A (ja) ピリジルエチルチオ化合物の製造方法、変性イオン交換体およびビスフェノール化合物の製造方法
JPWO2005026110A1 (ja) 光学活性3,3’−ジチオビス(2−アミノ−2−メチルプロピオン酸)誘導体、並びに、光学活性2−アミノ−3−メルカプト−2−メチルプロピオン酸誘導体の製造方法
JP2005185145A (ja) Nadまたはnadpの酵素還元法
FR2605316A1 (fr) Procede perfectionne de preparation de l-carnitine.
JPS58144352A (ja) β−ヒドロキシ−α−アミノ酪酸の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880100621.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08827679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 150/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12671361

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010518723

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107002574

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008827679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010102574

Country of ref document: RU