WO2009001878A1 - 空燃比センサの異常診断装置 - Google Patents

空燃比センサの異常診断装置 Download PDF

Info

Publication number
WO2009001878A1
WO2009001878A1 PCT/JP2008/061594 JP2008061594W WO2009001878A1 WO 2009001878 A1 WO2009001878 A1 WO 2009001878A1 JP 2008061594 W JP2008061594 W JP 2008061594W WO 2009001878 A1 WO2009001878 A1 WO 2009001878A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
abnormality
calculated
ratio sensor
Prior art date
Application number
PCT/JP2008/061594
Other languages
English (en)
French (fr)
Inventor
Daisuke Shibata
Hiroshi Sawada
Yasuyuki Yokokawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP08777607.6A priority Critical patent/EP2163753A4/en
Priority to US12/666,238 priority patent/US8234916B2/en
Priority to CN200880021415XA priority patent/CN101688498B/zh
Publication of WO2009001878A1 publication Critical patent/WO2009001878A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality diagnosis device for an air-fuel ratio sensor that detects an air-fuel ratio of exhaust gas of a compression ignition type internal combustion engine.
  • a compression ignition type internal combustion engine that is, a diesel engine, is usually burned and operated at a higher air / fuel ratio than the stoichiometric air / fuel ratio. And accompanying this
  • a NOX catalyst that reduces NOX in the exhaust is provided in the exhaust system, or an exhaust gas recirculation (EGR) device that recirculates part of the exhaust to the intake system is provided.
  • EGR exhaust gas recirculation
  • the air-fuel ratio of exhaust gas is detected and the detected value is used for exhaust gas control.
  • air-fuel ratio sensors are installed in the exhaust system of diesel engines. Since the air-fuel ratio sensor substantially detects the oxygen concentration of the exhaust gas, it is also referred to as an oxygen sensor or an oxygen concentration sensor.
  • the air-fuel ratio sensor is subject to deterioration at high temperatures because its detection element is constantly exposed to high-temperature exhaust, and is prone to malfunction. If an abnormality occurs in the air-fuel ratio sensor, the desired exhaust gas control will not be possible and the emissions will inevitably deteriorate. Therefore, it has been conventionally performed to diagnose abnormality of the air-fuel ratio sensor. In particular, in the case of an engine mounted on an automobile, it is also requested by the laws and regulations of each country to diagnose the abnormality of the air-fuel ratio sensor in the on-board state in order to prevent traveling in a state where exhaust gas has deteriorated. ing.
  • Conventional air-fuel ratio sensor abnormality diagnosis is mainly in gasoline engines. This is because a three-way catalyst is mounted on a gasoline engine, and the air-fuel ratio sensor is installed because the three-way catalyst needs to feedback control the exhaust air-fuel ratio to the theoretical air-fuel ratio that exhibits a high purification rate. Therefore, there are relatively few examples of performing abnormality diagnosis of air-fuel ratio sensors in diesel engines. As an example of this, the one disclosed in Japanese Patent Laid-Open No. 2 0 3-2 9 3 8 4 4 is cited. When the engine is in steady operation, the reducing agent is supplied to the upstream side of the oxygen concentration sensor. The degree of deterioration of the oxygen concentration sensor is diagnosed based on the response of the output change of the oxygen concentration sensor.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an abnormality diagnosis device for an air-fuel ratio sensor suitable for an air-fuel ratio sensor provided in a compression ignition type internal combustion engine. Disclosure of the invention
  • Calculated air-fuel ratio calculating means for calculating a calculated air-fuel ratio based on at least the fuel injection amount and the intake air amount in the internal combustion engine;
  • the operating state of the internal combustion engine changes relatively abruptly according to the engine operation request, and thereby the calculated air-fuel ratio is detected by the air-fuel ratio sensor when the calculated air-fuel ratio changes relatively abruptly.
  • An abnormality diagnosis device for an air-fuel ratio sensor is provided.
  • the operating state of the internal combustion engine changes relatively abruptly according to the engine operation request, not when the air-fuel ratio is forcibly changed.
  • the abnormality of the air-fuel ratio sensor is determined based on the calculated air-fuel ratio at this time and the actual air-fuel ratio. Therefore, the air-fuel ratio is not changed or fluctuated forcibly, and the exhaust emission at the time of abnormality diagnosis and the deterioration of the combustion state, and the deterioration of vibration, noise, etc. can be surely prevented.
  • An abnormality diagnosis apparatus suitable for an air-fuel ratio sensor provided in a compression ignition type internal combustion engine can be provided.
  • the abnormality determination means calculates a responsiveness abnormality determination value based on the calculated air-fuel ratio, and sets the actual air-fuel ratio after a predetermined time has elapsed from the start of change of the calculated air-fuel ratio as the responsiveness abnormality determination value. Compare to determine abnormality of the air-fuel ratio sensor
  • a responsiveness abnormality determination value serving as a reference for determining an abnormality of the air-fuel ratio sensor, particularly an responsiveness abnormality of the air-fuel ratio sensor, is calculated based on the calculated air-fuel ratio. Therefore, it is possible to obtain an appropriate responsiveness abnormality judgment value in accordance with the actual change state of the calculated air-fuel ratio. Then, the actual air-fuel ratio after the elapse of a predetermined time from the start of the calculated air-fuel ratio change is Compared with the abnormality determination value, abnormality of the air-fuel ratio sensor, in particular, responsiveness abnormality is determined. This makes it possible to reliably detect an abnormality in the responsiveness of the air-fuel ratio sensor.
  • the abnormality determination means calculates a dead time from the difference between the calculated start time of the air-fuel ratio and the actual start time of the air-fuel ratio, and compares the dead time with a predetermined dead time abnormality determination value. Determine abnormality of the air-fuel ratio sensor
  • an abnormality in the air-fuel ratio sensor particularly an abnormality in the dead time of the air-fuel ratio sensor, can be reliably detected.
  • the abnormality determination unit is configured to detect the air-fuel ratio sensor when the operating state of the internal combustion engine changes relatively rapidly from a steady state.
  • the correction is made to match the calculated air-fuel ratio with the actual air-fuel ratio.
  • the abnormality of the air-fuel ratio sensor is determined when the operating state of the internal combustion engine changes relatively suddenly from the steady state, for example, in the case of an internal combustion engine for an automobile, when the vehicle starts from an idle state, Abnormality diagnosis can be performed when accelerating or decelerating from high-speed driving, and many diagnostic opportunities can be secured.
  • the calculated air-fuel ratio and the actual air-fuel ratio are in a steady state, correction is performed to make them coincide with each other, so that diagnosis can be performed without any deviation between the two, and diagnostic accuracy is improved. be able to.
  • the abnormality determination unit calculates a change rate when the calculated air-fuel ratio changes by a predetermined value or more, and the change rate is The abnormality of the air-fuel ratio sensor is determined when the value is equal to or greater than a predetermined value.
  • the change speed of the calculated air-fuel ratio is not less than a predetermined value, that is, the calculated air-fuel ratio is sufficiently high. Since the diagnosis is executed only when the speed changes rapidly, an abnormality in the responsiveness of the air-fuel ratio sensor can be accurately detected.
  • the abnormality determination unit calculates an integrated value of the intake air amount during the dead time, and calculates the dead time abnormality determination value based on the integrated value of the intake air amount.
  • the dead time between the calculated start time of the air-fuel ratio and the actual start time of the air-fuel ratio changes depending on the amount of intake air, that is, the amount of exhaust gas flow. According to the sixth embodiment, it is possible to calculate an appropriate dead time abnormality judgment value in consideration of the exhaust gas flow rate during the dead time, and it is possible to accurately detect the dead time abnormality.
  • an abnormality diagnosis device for an air-fuel ratio sensor suitable for an air-fuel ratio sensor provided in a compression ignition type internal combustion engine.
  • FIG. 1 is a schematic system diagram of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a time chart for explaining the contents of the abnormality diagnosis according to the present embodiment.
  • FIG. 3 is a flowchart for explaining the contents of the abnormality diagnosis according to this embodiment.
  • FIG. 4 is a graph showing the steady state calculated air-fuel ratio and the actual air-fuel ratio.
  • Figure 5 shows the results of performing a Fourier analysis on the measured values in Figure 4.
  • Fig. 6 is a map for calculating the dead time abnormality determination value.
  • FIG. 1 is a schematic system diagram of an internal combustion engine according to an embodiment of the present invention.
  • 1 0 is A compression ignition type internal combustion engine or diesel engine for automobiles
  • 11 is an intake manifold communicated with an intake port
  • 12 is an exhaust manifold communicated with an exhaust port
  • 13 is a combustion chamber.
  • the fuel power supplied from the fuel tank (not shown) to the high pressure pump 17 is pumped to the common rail 18 by the high pressure pump 17 and stored in a high pressure state.
  • Fuel injection valve) 14 is directly injected into the combustion chamber 13.
  • Exhaust gas from the engine 10 passes through the exhaust manifold 12 through the turbocharger 19 and then flows into the exhaust passage 15 downstream of the exhaust manifold 12. After being purified as described later, the exhaust gas is discharged to the atmosphere.
  • the form of the diesel engine is not limited to the one provided with such a common rail fuel injection device.
  • the intake air introduced from the air cleaner 20 into the intake passage 21 passes through the air flow meter 22, the turbocharger 19, the intercooler 23, and the slot nole valve 24 in order to reach the intake manifold 11.
  • the air flow meter 22 is a sensor for detecting the intake air amount, and specifically outputs a signal corresponding to the flow rate of the intake air.
  • the throttle valve 24 is an electronically controlled type.
  • a catalyst 30 is installed in the exhaust passage 15 downstream of the turbocharger 19.
  • the catalyst 30 is composed of a NOx catalyst for reducing and removing NOx in the exhaust gas.
  • the NO X catalyst is a NOx storage reduction catalyst that absorbs NO X in the exhaust when the normal exhaust air-fuel ratio is lean. Then, when a rich spike by a post injection or the like is executed and the exhaust air-fuel ratio is temporarily made rich, the absorbed NO X is released from the NOx catalyst, and this released NOx is counteracted with the exhaust HC as the reducing agent. In response, NOx is reduced and removed. It is preferable to install a diesel particulate filter (DPF) or an oxidation catalyst as another exhaust purification device provided in the exhaust passage.
  • DPF diesel particulate filter
  • the NOx catalyst may be a selective reduction type NOx catalyst.
  • the engine 10 is provided with an EGR device 35 for returning a part of the exhaust gas to the intake system.
  • the EGR device 35 has an exhaust passage 15 (exhaust manifold 12) and a suction passage.
  • An EGR passage 36 communicating with the air passage 21 (intake manifold 1 1), an EGR valve 37 provided in the EGR passage 36, an EGR cooler 38 provided upstream of the EGR valve 37 in the EGR passage 36, and Is provided.
  • the EGR valve 37 adjusts the flow rate of the exhaust gas flowing through the EGR passage 36, that is, the EGR gas circulated from the exhaust system to the intake system.
  • the EGR cooler 38 cools the EGR gas so as to increase the flow rate of the EGR gas returned to the intake system.
  • An electronic control unit (hereinafter referred to as ECU) 100 is provided as a control means for controlling the entire engine.
  • the ECU 100 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like.
  • the ECU 100 controls the indicator 14, the high-pressure pump 17, the throttle valve 24, the EGR valve 37, and the like so that desired engine control is executed based on detection values of various sensors.
  • Sensors connected to the ECU 100 include the air flow meter 22 described above, a crank angle sensor 26 that detects the crank angle of the engine 10, an accelerator opening sensor 27 that detects the accelerator opening, and fuel in the common rail 18
  • a common rail pressure sensor 28 that detects pressure (common rail pressure) is included.
  • the ECU 100 calculates the rotational speed of the engine 10 based on the output of the crank angle sensor 26.
  • the ECU 100 controls the amount of fuel injected from the engine 14 based on the engine operating state (mainly rotational speed and accelerator opening). In addition, the ECU 100 controls the EGR valve 37 and the throttle valve 24 so that the ratio of the EGR gas amount to the entire intake air becomes a predetermined target EGR rate. Further, the ECU 100 controls the high pressure pump 17 so that the actual common rail pressure detected by the common rail pressure sensor 28 becomes a predetermined target common rail pressure.
  • an air-fuel ratio sensor 40 for detecting the air-fuel ratio A / F of the exhaust gas flowing into the NO X catalyst 30 is installed upstream of the NO X catalyst 30. 40 is also connected to ECU 100.
  • the air-fuel ratio sensor 40 is used, for example, for estimating the amount of NO X absorbed by the NO X catalyst 30, and further, the NOx catalyst. Used to determine the timing of the rich spike for releasing absorbed NO x from the medium 30.
  • Various other uses and purposes of the air-fuel ratio sensor 40 are possible.
  • the air-fuel ratio sensor 40 is also called an oxygen sensor or an oxygen concentration sensor, and outputs a current signal corresponding to the oxygen concentration of the exhaust gas. The value of this current signal is converted into an air-fuel ratio by the ECU 100.
  • an exhaust temperature sensor for detecting the exhaust temperature
  • a NO X sensor for detecting the NO X concentration of the exhaust gas, or the like.
  • a value that is a calculated air-fuel ratio is calculated based on the fuel injection amount Q and the intake air amount G a in the ECU 100 power engine 10. That is, the ECU 10 or the engine 10 performs the next injection according to a predetermined map or the like based on the engine speed N e detected based on the output of the crank angle sensor 26 and the accelerator opening Ac detected by the accelerator opening sensor 27.
  • the fuel injection amount Q which is the amount of fuel to be used, is determined for each injection.
  • This calculated air-fuel ratio A / F k has a character as an input air-fuel ratio given to the air-fuel ratio sensor 40.
  • the ECU 100 compares the calculated air-fuel ratio when the operating state of the engine 10 changes relatively abruptly according to the engine operation request, and the calculated air-fuel ratio AZ F k changes relatively abruptly, and the air-fuel ratio sensor 40. Based on the actual air-fuel ratio AZF r detected by the above, the abnormality of the air-fuel ratio sensor 40 is determined. That is, when the operating state of the engine 10 changes relatively rapidly, the calculated air-fuel ratio A / F k changes relatively rapidly almost simultaneously, and the actual air-fuel ratio A / F r is slightly delayed accordingly. Change.
  • the actual air-fuel ratio AZ Fr has a characteristic as an output air-fuel ratio obtained from the air-fuel ratio sensor 40.
  • the engine operation request refers to a request when the engine is operated and controlled in accordance with a user (driver in the case of a vehicle) or a request for driving conditions (for example, operation of a air conditioner).
  • the operating state of the engine 10 changes according to the engine operating request means that the operating state of the engine 10 changes when the engine is passively operated, that is, normally operated and controlled according to the request of the user or the operating state. That means. Therefore, it does not include the case where the operating state of the engine 10 is changed to forced or active regardless of the demand of the user or the driving situation. This does not include the case where the air-fuel ratio is forcibly changed by active air-fuel ratio control.
  • accelerator members such as an accelerator pedal and an accelerator lever are operated according to a user's request.
  • the operation amount of the accelerator member, that is, the accelerator opening is detected by the accelerator opening sensor 27. Therefore, the value of the accelerator opening detected by the accelerator opening sensor 27 is a value corresponding to the engine operation request.
  • the engine load may change, or depending on the driving conditions or environment of the vehicle (downhill / hill climbing, highlands, cold regions, etc.) The engine load may change.
  • the signal input to E C U 20 in order to control the engine in response to such changes in operating conditions corresponds to the engine operating request.
  • the engine operation state or the air-fuel ratio is not forcedly or actively changed, but the engine operation state happens to be compared during the engine operation according to the normal engine operation request.
  • Change suddenly i.e.
  • the abnormality of the air-fuel ratio sensor 40 is diagnosed using the change in the calculated air-fuel ratio AZF k and the actual air-fuel ratio AZF r at this time. Therefore, the air-fuel ratio is not forcibly shifted or fluctuated in the vicinity of the theoretical air-fuel ratio, and exhaust emission deterioration, engine combustion condition deterioration, vibration, noise deterioration, etc. are reliably prevented. be able to.
  • An abnormality diagnosis device suitable for an air-fuel ratio sensor provided in a diesel engine can be provided.
  • the solid line represents the calculated air-fuel ratio AZF k
  • the broken line represents the actual air-fuel ratio AZF r detected by the air-fuel ratio sensor 40. Please refer to the flow chart of the diagnosis procedure shown in Fig.3.
  • the diagnostic processing described below is performed digitally by the ECU 100.
  • the change in the calculated air-fuel ratio AZF k with respect to the change in the engine operating state is considered to occur almost simultaneously with a time delay or dead time that is negligibly small. This is because, for example, the fuel injection amount Q and the intake air amount Ga can change immediately with respect to changes in the accelerator opening.
  • the actual air-fuel ratio AZ Fr changes after a certain dead time with respect to changes in the engine operating state and the calculated air-fuel ratio AZFk. This is because the air-fuel ratio sensor 40 is on the downstream side at a predetermined distance from the air flow meter 22 and there is a delay in response from the exhaust gas hitting the air-fuel ratio sensor 40 itself until a signal corresponding to the exhaust gas is output. Because there is.
  • step S101 the steady state of the engine is detected by the ECU 100 (FIG. 3: step S101). That is, when the detected engine speed Ne and the accelerator opening degree Ac are substantially constant, it is detected that the engine operating state is steady. With this engine steady state, the calculated air-fuel ratio AZFk also becomes a substantially constant steady state (timing t l).
  • step S102 the steady state of the actual air-fuel ratio AZFr is detected by the ECU 100 (FIG. 3: step S102). That is, when the actual air-fuel ratio A / F r detected by the air-fuel ratio sensor 40 is substantially constant, it is detected that the actual air-fuel ratio AZF r is steady. (Time t 2). The actual steady state of the air-fuel ratio AZF r is realized later than the steady state of the engine.
  • the calculated air-fuel ratio AZF k and the actual air-fuel ratio AZF r reach a steady state, the values do not necessarily match. This is because the calculated air-fuel ratio AZF k does not consider the effect of EGR, the detection value of the air-fuel ratio sensor 40 has an error, and the way the exhaust gas hits the air-fuel ratio sensor 40 varies from time to time. Because. Therefore, the magnitude relationship between the calculated air-fuel ratio AZF k and the actual air-fuel ratio AZF r also differs depending on the time.
  • the ECU 100 executes a correction for making the calculated air-fuel ratio A / F k and the actual air-fuel ratio AZF r coincide with each other and eliminating the deviation between them (time t 3) (Fig. 3). : Step S103).
  • the deviation amount ⁇ AZF is added to the calculated air-fuel ratio AZF k, and the calculated air-fuel ratio A / F k becomes the actual air-fuel ratio AZF r. Matched.
  • values obtained by subjecting the measured values of both to the calculated air-fuel ratio AZF k and the actual air-fuel ratio AZF r that have been subjected to predetermined calculation processing For example, an average value obtained by simply averaging a plurality of actually measured values measured during a predetermined time can be used.
  • Fourier analysis may be performed on the plurality of actually measured values, and only a low-order DC component may be used. That is, for example, as shown in FIG. 4, a plurality of actually measured values are obtained at predetermined calculation periods for the steady state calculated air-fuel ratio AZF k and the actual air-fuel ratio A / F r, and Fourier analysis is performed on these actually measured values.
  • amplitude values are obtained for each of a plurality of frequency bands as shown in FIG. Since this is a steady state value, only some low frequency components are dominant, and the other frequency components are very small. Therefore, among the frequency bands, the amplitude between the frequency bands where the amplitude of both is maximized The absolute value of the difference is obtained, and this can be used as the deviation amount ⁇ ⁇ F. Only the low-order value is used to calculate the amount of deviation, so the amount of computation is small.
  • the abnormality diagnosis can be executed after eliminating the deviation between the calculated air-fuel ratio AZ F k and the actual air-fuel ratio AZ F r, and the diagnostic accuracy can be improved.
  • the engine enters a standby state until the engine operating state changes relatively abruptly according to the engine operation request, that is, until the start of the course fluctuation.
  • the fluctuation start time t4 is detected and stored by ECU100 (FIG. 3: step S1004).
  • the calculated air-fuel ratio AZ F k also starts to change relatively abruptly at the same time when the event fluctuation starts, and the event fluctuation start time t 4 is regarded as the change start time of the calculated air-fuel ratio A Z F k.
  • the diagnosis is canceled if the deviation correction has not been completed before the start of the fluctuation.
  • each calculation timing for each predetermined calculation cycle ⁇ t is indicated by a vertical line. Note that the calculation is performed at every predetermined calculation cycle ⁇ t even before the fluctuation start time t4.
  • ECU 1 0 0 starts the evental fluctuation.
  • the figure shows the case where the calculated air-fuel ratio A / Fk changes to a higher value, that is, to the lean side, due to the start of event fluctuation.
  • the ECU 10 0 calculates the reference value for determining the responsiveness abnormality of the air-fuel ratio sensor 40, that is, the responsiveness abnormality judgment value J based on the calculated air-fuel ratio AZ F k. Calculate sequentially for each timing ( Figure 3: Step S 1 0 5).
  • This responsiveness abnormality judgment value J is later compared with the actual air-fuel ratio A / Fr, and used when judging the abnormality of the air-fuel ratio sensor 40.
  • the responsiveness abnormality judgment value J is obtained by subjecting the calculated air-fuel ratio A / F k to a predetermined calculation process that takes into account a physical model or the like.
  • the responsiveness abnormality determination value J is calculated by multiplying the calculated air-fuel ratio AZ F k by a first-order to higher-order lag transfer function.
  • the example shown is an example using a first-order lag transfer function.
  • smooth the calculated air-fuel ratio A / F k The responsive abnormality determination value J may be calculated.
  • the responsiveness abnormality determination value J may be calculated more simply by dividing the calculated air-fuel ratio AZF k by a value greater than 1. In short, as long as the responsiveness abnormality judgment value J that follows the calculated air-fuel ratio AZF k but changes slightly later than that can be calculated, any calculation process can be adopted.
  • the parameters in the arithmetic processing may be changed according to the engine operating state (for example, the rotational speed N e and the accelerator opening degree Ac).
  • the ECU 100 integrates the values of the intake air amount Ga and the calculated air-fuel ratio track length L at each calculation timing (FIG. 3: step S106).
  • the integration of the intake air amount G a is executed from the calculation timing t 5 next to the fluctuation start timing t 4.
  • the change start timing t 6 is detected and stored by the ECU 100 (FIG. 3: step S 107).
  • the actual air-fuel ratio AZF r (n) force at the current calculation timing is greater than the actual air-fuel ratio A / F r (n-1) at the previous calculation timing by a predetermined value or more.
  • Judge that the actual air-fuel ratio AZF r starts to change The figure shows the case where the actual air-fuel ratio AZF r changes to a higher value, that is, the lean side, following the change of the calculated air-fuel ratio AZF k.
  • the broken line a indicates the case where the air-fuel ratio sensor is normal, and the broken line b indicates the case where the air-fuel ratio sensor is abnormal.
  • the ECU 100 calculates the difference (t 6 ⁇ t 4) between the actual fluctuation start timing (calculated air-fuel ratio change start timing) t 4 and the actual air-fuel ratio change start timing t 6 as the dead time td ( Figure 3: Step S108).
  • This dead time td corresponds to a delay time from when the calculated air-fuel ratio changes until the actual air-fuel ratio changes.
  • the ECU 100 determines a predetermined map as shown in FIG. 6 based on the integrated value of the intake air amount G a accumulated until the actual air-fuel ratio change start timing t 6, that is, the integrated air amount ⁇ G a. (A function may be used) to calculate the dead time abnormality judgment value tds (Fig. 3: Step S109).
  • the dead time abnormality judgment value tds is a reference value for judging whether or not the actually detected dead time td is normal.
  • the ECU 100 detects that the integrated value of the calculated air-fuel ratio locus length L, that is, the integrated calculated air-fuel ratio locus length ⁇ L has reached a value equal to or greater than a predetermined value ⁇ L s (time t 7) (Fig. 3 : Step S 1 10).
  • the ECU 100 calculates based on the integrated calculation air-fuel ratio trajectory length ⁇ L at the arrival time t 7 and the time (t 7 — t 4) from the event fluctuation start time t 4 to the arrival time t 7.
  • Calculate the air-fuel ratio change speed V ( Figure 3: Step S 1 1 1).
  • the ECU 100 compares the calculated air-fuel ratio change speed V with a predetermined value V s (FIG. 3: step S 1 1 2).
  • the diagnosis is stopped and the subsequent abnormality determination is not executed.
  • the diagnosis is continued when the calculated air-fuel ratio change speed V is equal to or greater than the predetermined value Vs.
  • the diagnosis is stopped when the calculated air-fuel ratio change speed V is less than the predetermined value Vs. Calculated air / fuel ratio Since the diagnosis is executed only when the change speed V is equal to or higher than the predetermined value V s, that is, when the calculated air-fuel ratio changes sufficiently fast, the responsiveness abnormality of the air-fuel ratio sensor 40 can be accurately detected.
  • step S 1 1 3 the comparison between the actual air-fuel ratio AZ F r at the arrival time t 7 and the response abnormality determination value J at the arrival time t 7 is 0 (FIG. 3: step S 1 1 3). If the actual air-fuel ratio A / F r is larger than the responsiveness abnormality judgment value J (in the case of the broken line a in FIG. 2), the actual air-fuel ratio A / ⁇ r follows and changes sufficiently quickly, and the air-fuel ratio sensor 4 0 The responsiveness can be considered normal.
  • the ECU 10 0 finally immediately determines that the air-fuel ratio sensor 40 is abnormal (FIG. 3 : step S 1 16).
  • the ECU 100 considers that the dead time td of the air-fuel ratio sensor 40 is abnormal, and finally determines the air-fuel ratio sensor 40. (Fig. 3: Step S1 1 6). In response to this final abnormality determination, it is preferable to operate a warning device (warning lamp, buzzer, etc.) to notify the user of the abnormality.
  • a warning device warning lamp, buzzer, etc.
  • step S 1 15 the ECU 100 finally determines that the air-fuel ratio sensor 40 is normal (FIG. 3: step S 1 15).
  • the dead time td is less than the dead time abnormality judgment value tds (that is, the dead time). Only when the two conditions (normal) are satisfied, the air-fuel ratio sensor 40 finally determines that it is normal. If either condition is not satisfied, the air-fuel ratio sensor 40 is determined to be abnormal and final. Judgment.
  • other determination methods are possible.
  • the air-fuel ratio sensor 40 when one of the conditions is satisfied, the air-fuel ratio sensor 40 is determined to be normal, and when the two conditions are not satisfied, the air-fuel ratio sensor 40 is determined to be abnormal. May be. The judgment may be made only with either one of the! / And deviation conditions. In this case, only one of the responsiveness abnormality and the dead time abnormality is judged.
  • the abnormality of the air-fuel ratio sensor 40 can be diagnosed during the normal operation of the engine without forcibly changing the engine operating state and the air-fuel ratio. It is possible to reliably prevent the deterioration of the mission and engine combustion state, and the deterioration of vibration and noise. Therefore, it is extremely suitable for an air-fuel ratio sensor of a diesel engine. Further, since the responsiveness abnormality determination value to be compared with the actual air-fuel ratio is calculated based on the calculated air-fuel ratio, an appropriate responsiveness abnormality determination value in accordance with the actual change state of the calculated air-fuel ratio can be obtained.
  • the abnormality determination is performed after a predetermined time has elapsed after the start of the change in the calculated air-fuel ratio, but when determining the responsiveness abnormality determination value so that an appropriate responsiveness abnormality determination value can be obtained at this abnormality determination timing. It is preferable to determine the parameters in the arithmetic processing.
  • the abnormality of the fuel ratio sensor 40 is diagnosed when the operating state of the engine changes relatively rapidly from the steady state, for example, when the vehicle starts from the idle state, or when accelerating or decelerating from constant speed, Diagnosis can be performed, and many diagnostic opportunities can be secured. Moreover, since the diagnosis is substantially started after the values of both air-fuel ratios are stabilized, the diagnosis accuracy can be improved.
  • this invention can also take other embodiment. For example, in the above-described embodiment, the responsiveness abnormality determination value is calculated from the calculated air-fuel ratio, and this responsiveness abnormality determination value is compared with the actual air-fuel ratio. However, the present invention is not limited to this.
  • the calculated air-fuel ratio is the actual air-fuel ratio. You can compare directly with it.
  • the air-fuel ratio sensor can be determined to be abnormal when these differences are greater than a predetermined value.
  • other values for example, intake air temperature, intake air pressure, atmospheric pressure, etc. may be used in addition to the fuel injection amount and the intake air amount.
  • the present invention is applicable to an air-fuel ratio sensor that detects an air-fuel ratio of exhaust gas of a compression ignition type internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本発明に係る異常診断装置は、燃料噴射量と吸入空気量とに基づき計算空燃比A/Fkを算出可能であり、且つ、内燃機関の運転状態が機関運転要求に従って比較的急激に変化し、これにより計算空燃比が比較的急激に変化したときの当該計算空燃比と、空燃比センサによって検出された実際の空燃比A/Frとに基づき、空燃比センサの異常を判定する。空燃比を強制的に変更・変動させないので、異常診断時の排気エミッション及び燃焼状態の悪化、並びに振動、ノイズ等の悪化を確実に防止できる。

Description

明細書 空燃比センサの異常診断装置 技術分野
本発明は、圧縮着火式内燃機関の排気ガスの空燃比を検出する空燃比センサの異 常診断装置に関する。 背景技術
—般に、圧縮着火式内燃機関即ちディーゼルエンジンでは、 通常、 理論空燃比よ りも高レヽ (リーンな) 空燃比で燃焼及び運転が行われている。 そして、 これに伴う
N O Xの排出を抑制すべく、排気中の N O Xを還元する N O X触媒を排気系に設け たり、 排気の一部を吸気系に還流させる排気還流 (E G R : Exhaust Gas Recirculation) 装置を設けたりしている。 近年、 N O x触媒や E G R装置を十分 機能させるため、ディーゼルエンジンにおいても排気ガスの空燃比を検出し、 その 検出値を排ガス制御に用いるようになってきている。 このため、ディーゼルェンジ ンの排気系に空燃比センサを設置する例がしばしば見受けられる。空燃比センサは、 実質的には排気ガスの酸素濃度を検出するものであるため、酸素センサ或いは酸素 濃度センサなどとも称される。
空燃比センサは、 その検出素子が常時高温の排気に晒されるため、比較的劣化し やすく、異常となりやすい。 空燃比センサに異常を来すと所望の排ガス制御ができ なくなり、必然的にェミッションが悪化してしまう。 よって空燃比センサの異常を 診断することが従来から行われている。特に、自動車に搭載されたエンジンの場合、 排ガスが悪化した状態での走行を未然に防止するため、 車載状態 (オンボード) で 空燃比センサの異常を診断することが各国法規等からも要請されている。
従来の空燃比センサの異常診断はガソリンエンジンにおけるものが主流である。 ガソリンエンジンでは三元触媒が搭載され、この三元触媒が高い浄化率を示す理論 空燃比に排気空燃比をフィードバック制御する必要があるために、空燃比センサが 設置されるからである。従って、ディーゼルエンジンにおいて空燃比センサの異常 診断を行う例は比較的少ない。その一例として特開 2 0 0 3— 2 9 3 8 4 4号公報 に開示されたものを挙げると、エンジンの定常運転時において酸素濃度センサの上 流側に還元剤が供給され、この供給時の酸素濃度センサの出力変化の応答性に基づ いて、 酸素濃度センサの劣化度合いが診断される。
ガソリンエンジンにおける空燃比センサの異常診断では、排気空燃比を理論空燃 比近傍で敢えて強制的に (アクティブに) 変動させ、 そのときのセンサの応答性等 を評価するやり方が一般的である。 この際、排気空燃比が理論空燃比から少なから ず外れるので排ガスエミッションの悪化は避けられないが、それでも、理論空燃比 近傍で変動させている限り、三元触媒の浄化能を利用できるので、排ガスエミッシ ョンの悪化をある程度抑制することができる。
しかしながら、 ディーゼルエンジンの場合だと、 通常、 理論空燃比よりもリーン でしかも広範な空燃比領域 (Aノ F = 2 0〜6 0程度) で運転しているため、 空燃 比を強制的に理論空燃比 (A/ F =約 1 4 . 6 ) 近傍に移行したり、 それを強制的 に変動させたりすれば、燃焼そのものに悪影響を及ぼす。 そして、 排気エミッショ ンが著しく悪化するのみならず、 所望の機関出力すら得られなくなり、 振動、 ノィ ズ等も悪化する。即ち、強制的な空燃比の変更や変動はディーゼルエンジンにはな じまず、 エンジンの性能を大きく損う結果となる。
そこで、 本発明はかかる実情に鑑みてなされたものであり、 その目的は、圧縮着 火式内燃機関に設けられた空燃比センサに好適な空燃比センサの異常診断装置を 提供することにある。 発明の開示
本発明の第 1の形態によれば、 圧縮着火式内燃機関の排気ガスの空燃比を検出する空燃比センサの異常診断装 置であって、
前記内燃機関における少なくとも燃料噴射量と吸入空気量とに基づき計算空燃 比を算出する計算空燃比算出手段と、
前記内燃機関の運転状態が機関運転要求に従って比較的急激に変化し、これによ り前記計算空燃比が比較的急激に変化したときの当該計算空燃比と、前記空燃比セ ンサによって検出された実際の空燃比とに基づき、前記空燃比センサの異常を判定 する異常判定手段と
を備えたことを特徴とする空燃比センサの異常診断装置が提供される。
この本発明の第 1の形態によれば、空燃比を強制的に変化させたような場合では なく、機関運転要求に従って内燃機関の運転状態が比較的急激に変化し、 これによ り計算空燃比が比較的急激に変化したときに、このときの計算空燃比及び実際の空 燃比に基づいて空燃比センサの異常が判定される。 よって、空燃比を強制的に変更 したり変動させたりすることがなく、異常診断時の排気ェミツション及び燃焼状態 の悪化、 並びに振動、 ノイズ等の悪化を確実に防止することができる。 そして圧縮 着火式内燃機関に設けられた空燃比センサに好適な異常診断装置を提供すること ができる。
本発明の第 2の形態は、 前記第 1の形態において、
前記異常判定手段は、前記計算空燃比に基づいて応答性異常判定値を算出すると 共に、前記計算空燃比の変化開始から所定時間経過後の前記実際の空燃比を、前記 応答性異常判定値と比較して、 前記空燃比センサの異常を判定する
ことを特徴とする。
これによれば、空燃比センサの異常、特に空燃比センサの応答性異常を判定する ための基準となる応答性異常判定値が、計算空燃比に基づいて算出される。 よって 計算空燃比の実際の変化状態に即した適切な応答性異常判定値を得ることができ る。 そして、 計算空燃比の変化開始から所定時間経過後の実際の空燃比を、 応答性 異常判定値と比較して、空燃比センサの異常特に応答性異常が判定される。 これに より空燃比センサの応答性異常を確実に検出することが可能になる。
本発明の第 3の形態は、 前記第 1又は第 2の形態において、
前記異常判定手段は、前記計算空燃比の変化開始時期と前記実際の空燃比の変化 開始時期との差からむだ時間を算出し、当該むだ時間を所定のむだ時間異常判定値 と比較して、 前記空燃比センサの異常を判定する
ことを特徴とする。
これにより空燃比センサの異常、特に空燃比センサのむだ時間の異常を確実に検 出することができる。
本発明の第 4の形態は、 前記第 1乃至第 3のいずれかの形態において、 前記異常判定手段は、前記内燃機関の運転状態が定常状態から比較的急激に変化 したときに前記空燃比センサの異常を判定し、且つ、その定常状態の間に前記計算 空燃比と前記実際の空燃比とが定常状態となったとき、前記計算空燃比と前記実際 の空燃比とを一致させるための補正を行う
ことを特徴とする。
これによれば、内燃機関の運転状態が定常状態から比較的急激に変化したときに 空燃比センサの異常を判定するので、例えば自動車用内燃機関の場合ではアイドル 状態からの車両発進時や、定速走行からの加速時又は減速時に異常診断を実行でき、 多くの診断機会を確保することができる。 また、計算空燃比と実際の空燃比とが定 常状態となったときにこれらを一致させるための補正を行うので、両者のズレを無 くした上で診断を実行でき、 診断精度を向上することができる。
本発明の第 5の形態は、 前記第 1乃至第 4のいずれかの形態において、 前記異常判定手段は、前記計算空燃比が所定値以上変化したときの変化速度を算 出し、 当該変化速度が所定値以上の場合に、 前記空燃比センサの異常を判定する ことを特徴とする。
これによれば、計算空燃比の変化速度が所定値以上の場合、即ち計算空燃比が十 分速く変化した場合に限って診断を実行するので、空燃比センサの応答性異常を正 確に検出することができる。
本発明の第 6の形態は、 前記第 3の形態において、
前記異常判定手段は、 前記むだ時間の間における吸入空気量の積算値を算出し、 当該吸入空気量の積算値に基づいて前記むだ時間異常判定値を算出する
ことを特徴とする。
計算空燃比の変化開始時期から実際の空燃比の変化開始時期までの間のむだ時 間は、 吸入空気量の大小即ち排気ガス流量の大小に応じて変化する。 この第 6の形 態によれば、むだ時間の間の排気ガス流量を考慮した適切なむだ時間異常判定値を 算出することができ、 むだ時間の異常を正確に検出することが可能になる。
本発明によれば、圧縮着火式内燃機関に設けられた空燃比センサに好適な空燃比 センサの異常診断装置を提供することができるとレ、う、 優れた効果が発揮される。 図面の簡単な説明
図 1は、 本発明の実施形態に係る内燃機関の概略的なシステム図である。
図 2は、本実施形態に係る異常診断の内容を説明するためのタイムチャートであ る。
図 3は、本実施形態に係る異常診断の内容を説明するためのフローチヤ一トであ る。
図 4は、 定常状態の計算空燃比及び実際の空燃比を示すグラフである。
図 5は、 図 4の実測値に対してフーリェ解析を実行した結果である。
図 6は、 むだ時間異常判定値算出用マップである。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明を実施するための最良の形態を説明する。 図 1は、本発明の実施形態に係る内燃機関の概略的なシステム図である。 1 0は 自動車用の圧縮着火式内燃機関即ちディーゼルエンジンであり、 1 1は吸気ポート に連通されている吸気マニフォルド、 1 2は排気ポートに連通されている排気マ二 フォルド、 13は燃焼室である。 本実施形態では、 不図示の燃料タンクから高圧ポ ンプ 1 7に供給された燃料力 高圧ポンプ 1 7によりコモンレール 1 8に圧送され て高圧状態で蓄圧され、 このコモンレール 18内の高圧燃料がインジヱクタ (燃料 噴射弁) 14から燃焼室 13内に直接噴射供給される。 エンジン 10からの排気ガ スは、排気マニフォルド 12からターボチャージャ 19を経た後にその下流の排気 通路 1 5に流され、 後述のように浄化処理された後、 大気に排出される。 なお、 デ イーゼルエンジンの形態としてはこのようなコモンレール式燃料噴射装置を備え たものに限らない。
エアクリーナ 20から吸気通路 21内に導入された吸入空気は、エアフローメー タ 22、 ターボチャージャ 19、 インタークーラ 23、 スロットノレバルブ 24を順 に通過して吸気マニフォルド 1 1に至る。エアフローメータ 22は吸入空気量を検 出するためのセンサであり、 具体的には吸入空気の流量に応じた信号を出力する。 スロットルバルブ 24には電子制御式のものが採用されている。
ターボチャージャ 1 9の下流側の排気通路 15には触媒 30が設置されている。 本実施形態の場合、触媒 30は、排気ガス中の NO Xを還元して除去するための N Ox触媒からなっている。 NO X触媒は吸蔵還元型 NO X触媒からなり、通常の排 気空燃比がリーンのときに排気中の NO Xを吸収する。 そして、 ボスト噴射等によ るリツチスパイクが実行され、排気空燃比が一時的にリツチとされたとき、 NOx 触媒から吸収 NO Xが放出され、この放出 NOxが還元剤としての排気中 HCと反 応して NOxが還元除去される。 なお、排気通路に設けられる他の排気浄化装置と して、 ディーゼルパティキュレートフィルタ (DPF) や酸化触媒を設けるのが好 ましい。 NOx触媒は選択還元型 N O X触媒であってもよレ、。
またエンジン 10には、排気の一部を吸気系に還流させるための EGR装置 35 が設けられる。 EGR装置 35は、 排気通路 1 5 (排気マニフォルド 12) 及び吸 気通路 21 (吸気マニフォルド 1 1) を連通する EGR通路 36と、 EGR通路 3 6に設けられた EG R弁 37と、 EGR通路 36において EG R弁 37の上流側に 設けられた EGRクーラ 38とを備える。 EGR弁 37は、 EGR通路 36を流れ る排気ガス、即ち排気系から吸気系に環流される EGRガスの流量を調節する。 E GRクーラ 38は、吸気系に戻される EGRガスの流量を増大すべく EGRガスを 冷却する。
エンジン全体の制御を司る制御手段としての電子制御ュニット(以下 ECUと称 す) 100が設けられる。 ECU 100は、 CPU、 ROM、 RAM, 入出力ポー ト、 および記憶装置等を含むものである。 ECU100は、 各種センサ類の検出値 等に基づいて、 所望のエンジン制御が実行されるように、 インジヱクタ 14、 高圧 ポンプ 1 7、 スロットルバルブ 24及び EG R弁 37等を制御する。 ECU 100 に接続されるセンサ類としては、前述のエアフローメータ 22の他、エンジン 10 のクランク角を検出するクランク角センサ 26、アクセル開度を検出するアクセル 開度センサ 27、 及びコモンレール 18内の燃料圧力 (コモンレール圧) を検出す るコモンレール圧センサ 28が含まれる。 ECU 100はクランク角センサ 26の 出力に基づきエンジン 10の回転速度を算出する。
ECU 100は、インジ: nクタ 14から噴射される燃料噴射量をエンジン運転状 態 (主に回転速度及びアクセル開度) に基づき制御する。 また ECU 100は、 吸 気全体に対する EG Rガス量の比率が所定の目標 EG R率になるように、 EGR弁 37及びスロッ トルバルブ 24を制御する。 さらに ECU 100は、 コモンレール 圧センサ 28により検出された実際のコモンレール圧が所定の目標コモンレール 圧になるように、 高圧ポンプ 1 7を制御する。
排気通路 15において、 NO X触媒 30の上流側には、 NO X触媒 30に流入す る排気ガスの空燃比 A/Fを検出するための空燃比センサ 40が設置されており、 この空燃比センサ 40も ECU 100に接続されている。 空燃比センサ 40は、例 えば、 NO X触媒 30に吸収された NO X量の推定に用いられ、 さらに、 NOx触 媒 30から吸収 NO xを放出させるためのリツチスパイクのタイミングを決定す るために用いられる。なお空燃比センサ 40の用途及び目的は他にも様々なものが 可能である。
空燃比センサ 40は、酸素センサ或いは酸素濃度センサなどとも称され、排気ガ スの酸素濃度に応じた電流信号を出力する。この電流信号の値は ECU 100によ り空燃比に換算される。 空燃比センサ 40は、 エンジンが運転する空燃比領域 (例 えば A,F = 20〜60程度) に対応して、広範囲の空燃比領域に亘る空燃比を連 続的に検出可能である。
他のセンサ類として、排気温を検出する排気温センサや、排気ガスの NO X濃度 を検出する NO Xセンサ等を設けるのも好ましい。
次に、 空燃比センサ 40の異常診断について説明する。
当該異常診断においては、 まず ECU 100力 エンジン 10における燃料噴射 量 Qと吸入空気量 G aとに基づき計算空燃比なる値を算出する。 即ち、 ECU10 ひは、 クランク角センサ 26の出力に基づき検出されるエンジン回転速度 N eと、 アクセル開度センサ 27によって検出されるアクセル開度 Acとに基づき、所定の マップ等に従って、次回噴射すべき燃料量である燃料噴射量 Qを噴射毎に決定して いる。そして ECU 100は、この内部値若しくは指示値としての燃料噴射量 Qと、 エアフローメータ 22によって検出された吸入空気量 G aとに基づき、これらの比 である計算空燃比 AZFk=GaZQを算出する。 この計算空燃比 A/F kは、空 燃比センサ 40に与えられる入力空燃比としての性格を有する。
次いで、 ECU100は、エンジン 10の運転状態が機関運転要求に従って比較 的急激に変化し、これにより計算空燃比 AZ F kが比較的急激に変化したときの当 該計算空燃比と、空燃比センサ 40によって検出された実際の空燃比 AZF rとに 基づき、 空燃比センサ 40の異常を判定する。 即ち、 エンジン 10の運転状態が比 較的急激に変化すると、 ほぼ同時に計算空燃比 A/F kが比較的急激に変化し、 こ れに伴って実際の空燃比 A/F rがやや遅れて変化する。よって計算空燃比 AZF kの変化に対する実際の空燃比 AZ F rの変化の応答性を調べることにより、空燃 比センサ 4 0の応答性の異常を検出することができる。ここでエンジン運転状態が 変化する場合には、 ェンジンが加速する場合と減速する場合との両方が含まれる。 実際の空燃比 AZ F rは、空燃比センサ 4 0から得られる出力空燃比としての性格 を有する。
機関運転要求とは、 ユーザ (車両の場合はドライバ) や運転状況の要求 (例えば ェアコンの作動等)に従ってエンジンが運転及び制御されるときの当該要求のこと をいう。 つまり、 機関運転要求に従ってエンジン 1 0の運転状態が変化するとは、 ユーザや運転状況の要求に従ってエンジンがパッシブに、即ち通常通り、運転及び 制御されているときにエンジン 1 0の運転状態が変化することをいう。 よって、 ュ 一ザや運転状況の要求とは無関係にエンジン 1 0の運転状態が強制的ないしァク ティブに変化される場合は含まれず、典型的にはガソリンエンジンにおける空燃比 センサ異常診断のように、アクティブ空燃比制御によって空燃比が強制的に変化さ れる場合は含まれない。
本実施形態のエンジンに関しては、アクセルペダルやアクセルレバー等のァクセ ル部材がユーザの要求に従って操作される。そしてアクセル部材の操作量即ちァク セル開度がアクセル開度センサ 2 7によって検出される。 よって、 アクセル開度セ ンサ 2 7で検出されたアクセル開度の値は機関運転要求に対応した値となる。この ほか、 図示しない周辺装置 (エアコン、 A/ Cジェネレータ等) の作動状態に応じ てエンジン負荷が変化されたり、車両の走行条件又は環境(降坂'登坂走行、高地、 寒冷地等) に応じてエンジン負荷が変化されたりする。 このような運転状況の変化 に対応してエンジンを制御すべく E C U 2 0に入力される信号が機関運転要求に 対応する。
このように、本発明の実施形態では、エンジン運転状態や空燃比が強制的ないし ァクティブに変化させられるような場合ではなく、通常の機関運転要求に従ったェ ンジン運転時にェンジン運転状態がたまたま比較的急激に変化したときに、即ち成 り行き変動の際に、このときの計算空燃比 AZF k及び実際の空燃比 AZF rの変 化を利用して、 空燃比センサ 40の異常を診断する。 よって、 空燃比を強制的に理 論空燃比近傍に移行したり変動させたりすることが無く、排気ェミッションの悪化、 エンジンの燃焼状態の悪化、及び振動、 ノイズの悪化等を確実に防止することがで きる。 そして、ディーゼルエンジンに設けられた空燃比センサにとって好適な異常 診断装置を提供することができる。
以下、図 2を参照しつつ、本実施形態の空燃比センサ異常診断の内容を説明する。 図中、実線は計算空燃比 AZF kを表し、破線は空燃比センサ 40によって検出さ れた実際の空燃比 AZF rを表す。なお図 3に診断手順をフローチャートで示した ので適宜参照されたい。
以下に説明する診断処理は ECU 100によってデジタル方式で行われる。
前提として、エンジン運転状態の変化に対する計算空燃比 AZF kの変化につい ては、時間遅れ即ちむだ時間が無視できる程に小さく、 ほぼ同時に起こるとみなさ れる。 なぜなら、例えばアクセル開度の変化に対して燃料噴射量 Q及び吸入空気量 Gaは即座に変化することができるからである。 これに対して、実際の空燃比 AZ F rは、エンジン運転状態及び計算空燃比 AZF kの変化に対してあるむだ時間を 経た後に変化する。 なぜなら、 空燃比センサ 40力 エアフローメータ 22から所 定距離を隔てた下流側にあり、且つ空燃比センサ 40自体にも排ガスが当たってか らその排ガス相当の信号が出力されるまでに応答遅れがあるからである。
まず、 エンジンの定常状態が ECU 100により検出される (図 3 :ステップ S 101)。 即ち、 検出されたエンジン回転速度 Ne及びアクセル開度 Acが略一定 であるとき、エンジンの運転状態が定常であることが検出される。 このエンジン定 常状態に伴い、 計算空燃比 AZFkも略一定の定常状態となる (時期 t l)。
次に、 実際の空燃比 AZF rの定常状態が ECU 1 00により検出される (図 3 :ステップ S 102)。 即ち、 空燃比センサ 40により検出された実際の空燃比 A/F rが略一定であるとき、実際の空燃比 AZF rが定常であることが検出され る (時期 t 2)。 実際の空燃比 AZF rの定常状態は、 エンジンの定常状態から遅 れて実現される。
こうして計算空燃比 AZF kと実際の空燃比 AZF rが定常状態になったとき、 両者の値は必ずしも一致しない。 なぜなら、計算空燃比 AZF kには EGRの影響 が考慮されておらず、空燃比センサ 40の検出値にも誤差が存在し、 また空燃比セ ンサ 40に対する排気ガスの当たり方がその時々で異なるからである。 よって、計 算空燃比 AZF kと実際の空燃比 AZF rとの大小関係も、その時々に応じて異な る。
そこで次に、これら計算空燃比 A/F kと実際の空燃比 AZF rとの値を一致さ せ、両者のズレを無くすための補正が ECU 100によって実行される(時期 t 3) (図 3 :ステップ S 103)。 まず、 両者のズレ量 ΔΑ Fが式: AA,F= | A /F k-A/F r Iから算出され、 このズレ量 ΔΑ/F力 小さい方の値に加算さ れる力、又は大きレ、方の値から減算され、両者の値が一致させられる。図示例では、 計算空燃比 AZF kが実際の空燃比 AZF rより小さいので、ズレ量 Δ AZFが計 算空燃比 AZF kに加算され、計算空燃比 A/F kが実際の空燃比 AZF rに一致 させられている。
この際、ズレ量算出に用いる計算空燃比 AZF k及び実際の空燃比 AZF rの値 については、 両者の実測値に所定の演算処理を施した値を用いるのが好ましい。例 えば、所定時間中に測定された複数の実測値を単純に平均化した平均値を用いるこ とができる。 或いは、 その複数の実測値に対してフーリエ解析を実行し、 そのうち の低次の直流成分のみを用いてもよい。即ち、例えば図 4に示すような定常状態の 計算空燃比 AZF k及び実際の空燃比 A/F rについて所定の演算周期毎に複数 の実測値を取得し、 これら実測値に対してフーリエ解析を実行すると、 図 5に示す ように、 複数の周波数帯域毎に振幅値が求められる。 定常状態での値であるので、 ある低周波数成分のみが支配的であり、 それ以外の周波数成分は非常に小さい。 よ つて、複数の周波数帯域のうち、 両者の振幅が最大になる周波数帯域同士で、 振幅 の差の絶対値を求め、 これをズレ量 Δ Α Fとすることができる。 低次の値のみを ズレ量算出に用いるので演算量は少なくて済む。
このようなズレ補正を実行すると、計算空燃比 AZ F kと実際の空燃比 AZ F r とのズレを無くした上で異常診断を実行でき、 診断精度を向上することができる。 このズレ補正が行われた後は、エンジン運転状態が機関運転要求に従って比較的 急激に変化するまで、 即ち成り行き変動の開始まで、 待機状態となる。 そして、 成 り行き変動が開始したならば、その変動開始時期 t 4が E C U 1 0 0によって検出、 記憶される (図 3 : ステップ S 1 0 4 )。 この成り行き変動開始と同時に計算空燃 比 AZ F kも比較的急激に変化し始め、成り行き変動開始時期 t 4は計算空燃比 A Z F kの変化開始時期とみなされる。 なお、成り行き変動開始前にズレ補正が終了 していない場合には診断が中止される。
図 2において、変動開始時期 t 4以降には、所定の演算周期 Δ t毎の各演算タイ ミングが縦線で示されている。 なお、所定演算周期△ t毎に演算を行う点は変動開 始時期 t 4以前でも同じである。成り行き変動開始の判断については、検出された アクセル開度 A c及び回転速度 N eの少なくとも一方が、 1ないし複数の演算周期 間に所定値より大きく変化したとき、 E C U 1 0 0が成り行き変動開始と判断する。 図は成り行き変動の開始により、計算空燃比 A/ F kがより高い値即ちリーン側に 変化する場合を示す。
成り行き変動が開始されると、 E C U 1 0 0は、計算空燃比 AZ F kに基づいて、 空燃比センサ 4 0の応答性異常判定のための基準値即ち応答性異常判定値 Jを、各 演算タイミング毎に逐次的に算出する (図 3 : ステップ S 1 0 5 )。 この応答性異 常判定値 Jは後に実際の空燃比 A/ F rと比較され、空燃比センサ 4 0の異常を判 定する際に用いられる。応答性異常判定値 Jは、物理モデル等を考慮した所定の演 算処理を計算空燃比 A/ F kに施して得られる。例えば、計算空燃比 AZ F kに一 次乃至高次遅れの伝達関数を乗じて応答性異常判定値 Jが算出される。図示例は一 次遅れの伝達関数を用いた例である。或いは、計算空燃比 A/ F kになまし処理を 行って応答性異常判定値 Jを算出してもよい。 さらには、 より簡単に、 計算空燃比 AZF kの値を 1より大きい値で除して応答性異常判定値 Jを算出してもよい。要 は、計算空燃比 AZF kに追従するがそれよりやや遅れて値が変化するような応答 性異常判定値 Jを算出できれば、 どのような演算処理を採用してもよレ、。 なお演算 処理におけるパラメータをエンジン運転状態(例えば回転速度 N eとアクセル開度 Ac) によって変化させてもよい。
また、 成り行き変動開始後、 ECU100は、 吸入空気量 Gaと、 計算空燃比軌 跡長 Lとの値を、 各演算タイミング毎に積算する (図 3 :ステップ S 106)。 吸 入空気量 G aの積算は変動開始時期 t 4の次の演算タイミング t 5から実行され る。 他方、 計算空燃比軌跡長 Lとは、 今回 (n) と前回 (n— 1) の演算タイミン グにおける計算空燃比の差をいい、今回の演算タイミングにおける計算空燃比軌跡 長し (n) は式: L (n) =A/F k (n) -A/F k (n— 1) で表される。 こ の計算空燃比軌跡長 Lが、変動開始時期 t 4の次の演算タイミング t 5から、各演 算タイミング毎に積算される。
そして、成り行き変動開始後に実際の空燃比 A/F rが変化を開始したとき、 そ の変化開始時期 t 6が ECU 100によって検出、 記憶される (図 3 :ステップ S 107)。 この変化開始の判断については、 今回の演算タイミングにおける実際の 空燃比 AZF r (n)力 前回の演算タイミングにおける実際の空燃比 A/F r (n - 1) より所定値以上大きいとき、 ECU100が実際の空燃比 AZF rの変化開 始と判断する。 図は計算空燃比 AZF kの変化に追従して、実際の空燃比 AZF r がより高い値即ちリーン側に変化する場合を示す。 なお、破線 aは空燃比センサが 正常の場合、 破線 bは空燃比センサが異常の場合をそれぞれ示す。
次に、 ECU100は、 成り行き変動開始時期 (計算空燃比変化開始時期) t 4 と実際の空燃比の変化開始時期 t 6との差( t 6— t 4) をむだ時間 t dとして算 出する (図 3 :ステップ S 108)。 このむだ時間 t dは、 計算空燃比が変化して 力 ら実際の空燃比が変化するまでの遅れ時間に相当する。 この後 ECU 100は、実際の空燃比の変化開始時期 t 6までに積算された吸入 空気量 G aの積算値、即ち積算空気量∑G aに基づき、 図 6に示されるような所定 のマップ (関数でもよい) を使用して、 むだ時間異常判定値 t d sなる値を算出す る (図 3 :ステップ S 109)。 むだ時間異常判定値 t d sは、 実際に検出された むだ時間 t dが正常か否かを判断するための基準値である。吸入空気量が多いほど、 排気ガスの流量が多く、 むだ時間は短くなる。 よってマップにおいては、 積算空気 量∑ G aの増大につれむだ時間異常判定値 t d sが減少するように両者が関係づ けられている。このマップを利用してむだ時間異常判定値 t d sを設定することに より、むだ時間の間の排気ガス流量を考慮した適切なむだ時間異常判定値 t d sを 設定することが可能になり、 むだ時間の異常を正確に検出することが可能になる。 次に、 ECU100は、 計算空燃比軌跡長 Lの積算値、 即ち積算計算空燃比軌跡 長∑Lが、 所定値∑L s以上の値に到達したことを検出する (時期 t 7) (図 3 : ステップ S 1 10)。
すると ECU 100は、その到達時期 t 7における積算計算空燃比軌跡長∑Lと、 成り行き変動開始時期 t 4から到達時期 t 7までの間の時間 ( t 7— t 4 ) に基づ き、 計算空燃比変化速度 Vを算出する (図 3 :ステップ S 1 1 1)。 計算空燃比変 化速度 Vは式: V=∑LZ (t 7- t 4) で表される。
次に ECU 100は、 この計算空燃比変化速度 Vを所定値 V sと比較する (図 3 :ステップ S 1 1 2)。 そして、 計算空燃比変化速度 Vが所定値 V s未満のとき は診断を中止し、 その後の異常判定を実行しない。 他方、 計算空燃比変化速度 Vが 所定値 V s以上のときは診断を続行する。
本診断は、計算空燃比が比較的急激に変化したときにそのときの実際の空燃比の 変化を検出し、 空燃比センサ 40の応答性を評価するものである。 よって、 計算空 燃比が比較的緩慢に変化した場合には実際の空燃比の変化も緩慢となり、空燃比セ ンサ 40の応答性を正確に評価できない可能性がある。 この観点から、計算空燃比 変化速度 Vが所定値 V s未満のときは診断を中止するようにしている。計算空燃比 変化速度 Vが所定値 V s以上の場合、即ち計算空燃比が十分速く変化した場合に限 つて診断を実行するので、空燃比センサ 4 0の応答性異常を正確に検出することが できる。
計算空燃比変化速度 Vが所定値 V s以上の場合、前記到達時期 t 7における実際 の空燃比 AZ F rと、 その到達時期 t 7における応答性異常判定値 Jとの比較が、 E C U 1 0 0によってなされる (図 3 :ステップ S 1 1 3 )。 実際の空燃比 A/ F rが応答性異常判定値 Jより大きい場合 (図 2の破線 aの場合)、 実際の空燃比 A / ¥ rが十分速く追従変化しており、空燃比センサ 4 0の応答性は正常とみなすこ とができる。
他方、実際の空燃比 AZ F rが応答性異常判定値 J以下の場合(図 2の破線 bの 場合)、 実際の空燃比 AZ F rの追従変化が遅く、 空燃比センサ 4 0の応答性は異 常とみなすことができる。 よってこの場合は直ちに、 E C U 1 0 0によって空燃比 センサ 4 0を異常と最終的に判定する (図 3 :ステップ S 1 1 6 )。
実際の空燃比 AZ F rが応答性異常判定値 Jより大きい場合には、次に、 むだ時 間 t d (= t 6— t 4 ) とむだ時間異常判定値 t d sとの比較が、 E C U 1 0 0に よってなされる (図 3 :ステップ S 1 1 4 )。 即ち、 空燃比センサ 4 0の応答性が 正常であっても、検出したむだ時間 t dがあまりに長ければ、空燃比センサ 4 0の 初期の応答性が悪かったり、あるいは空燃比センサ 4 0より上流側の部分で何等か の異常がある可能性がある。 そこで、むだ時間 t dがむだ時間異常判定値 t d s以 上の値であるときには、 E C U 1 0 0により空燃比センサ 4 0のむだ時間 t dが異 常であるとみなし、 空燃比センサ 4 0を最終的に異常と判定する (図 3 :ステップ S 1 1 6 )。 なおこの最終的な異常判定に対応して、 当該異常をユーザに知らせる ため、 警告装置 (警告ランプ、 ブザー等) を作動させるのが好ましい。
他方、 むだ時間 t dがむだ時間異常判定値 t d s未満の値であるときには、 E C U 1 0 0によって最終的に空燃比センサ 4 0を正常と判定する (図 3 :ステップ S 1 1 5 )。 このように本実施形態では、 確実を期すため、 1 ) 到達時期 t 7におけ る実際の空燃比 AZ F rが応答性異常判定値 Jより大きい (即ち、 応答性が正常) という条件と、 2 ) むだ時間 t dがむだ時間異常判定値 t d s未満である (即ち、 むだ時間が正常) という条件との二条件が成立したときに限って、空燃比センサ 4 0が正常と最終判定し、レ、ずれか一方の条件が非成立ならば空燃比センサ 4 0を異 常と最終判定している。 しかしながら、 他の判定方法も可能であり、 例えばいずれ か一方の条件が成立したときに空燃比センサ 4 0を正常と判定し、二条件非成立の ときに空燃比センサ 4 0を異常と判定してもよい。!/、ずれか一方の条件のみで判定 を行ってもよく、 この場合、応答性異常とむだ時間異常とのいずれか一方のみが判 定される。
このように、本実施形態の異常診断によれば、エンジン運転状態や空燃比を強制 的に変化させることがなく、エンジンの通常運転時に空燃比センサ 4 0の異常を診 断できるので、 排気ェミッション及びエンジン燃焼状態の悪化、 及び振動、 ノイズ 等の悪化を確実に防止することができる。よってディーゼルエンジンの空燃比セン サに極めて好適である。 また、実際の空燃比と比較される応答性異常判定値を計算 空燃比に基づいて算出するので、計算空燃比の実際の変化状態に即した適切な応答 性異常判定値を得ることができる。即ち、計算空燃比の変化速度が大きい場合には 大きい変化速度の応答性異常判定値を得ることができ、逆に計算空燃比の変化速度 が小さい場合には小さい変化速度の応答性異常判定値を得ることができる。ここで 異常判定は計算空燃比の変化開始後、所定時間を経過した後に行われるが、 この異 常判定時期において適切な応答性異常判定値が得られるよう、応答性異常判定値を 求める際の演算処理におけるパラメータを決定するのが好ましレ、。さらにエンジン の運転状態が定常状態から比較的急激に変化したときに^燃比センサ 4 0の異常 を診断するので、例えばアイドル状態からの車両発進時や、定速走行からの加速時 又は減速時に異常診断を実行可能であり、多くの診断機会を確保することができる。 また両空燃比の値が安定してから診断を実質的に開始するので、診断精度を向上す ることができる。 以上、本発明の実施形態について説明したが、本発明は他の実施形態を採ること も可能である。例えば、前記実施形態では計算空燃比から応答性異常判定値を算出 し、 この応答性異常判定値を実際の空燃比と比較したが、 これに限らず、 例えば計 算空燃比を実際の空燃比と直接比較してもょレ、。例えばこれらの差が所定値より大 きいときに空燃比センサを異常と判定することができる。計算空燃比の算出に際し て、燃料噴射量及び吸入空気量に加え、他の値(例えば吸気温、吸気圧、大気圧等) を用いてもよい。
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によつて規定 される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含ま れる。 従って本発明は、 限定的に解釈されるべきではなく、 本発明の思想の範囲内 に帰属する他の任意の技術にも適用することが可能である。 産業上の利用可能性
本発明は、圧縮着火式内燃機関の排気ガスの空燃比を検出する空燃比センサに適 用可能である。

Claims

請求の範囲
1 . 圧縮着火式内燃機関の排気ガスの空燃比を検出する空燃比センサの異常診断 装置であって、
前記内燃機関における少なくとも燃料噴射量と吸入空気量とに基づき計算空燃 比を算出する計算空燃比算出手段と、
前記内燃機関の運転状態が機関運転要求に従って比較的急激に変化し、これによ り前記計算空燃比が比較的急激に変化したときの当該計算空燃比と、前記空燃比セ ンサによって検出された実際の空燃比とに基づき、前記空燃比センサの異常を判定 する異常判定手段と
を備えたことを特徴とする空燃比センサの異常診断装置。
2 . 前記異常判定手段は、前記計算空燃比に基づいて応答性異常判定値を算出す ると共に、 前記計算空燃比の変化開始から所定時間経過後の前記実際の空燃比を、 前記応答性異常判定値と比較して、 前記空燃比センサの異常を判定する
ことを特徴とする請求項 1記載の空燃比センサの異常診断装置。
3 . 前記異常判定手段は、前記計算空燃比の変化開始時期と前記実際の空燃比の 変化開始時期との差からむだ時間を算出し、当該むだ時間を所定のむだ時間異常判 定値と比較して、 前記空燃比センサの異常を判定する
ことを特徴とする請求項 1記載の空燃比センサの異常診断装置。
4 . 前記異常判定手段は、前記内燃機関の運転状態が定常状態から比較的急激に 変化したときに前記空燃比センサの異常を判定し、且つ、 その定常状態の間に前記 計算空燃比と前記実際の空燃比とが定常状態となったとき、前記計算空燃比と前記 実際の空燃比とを一致させるための補正を行う ことを特徴とする請求項 1記載の空燃比センサの異常診断装置。
5 . 前記異常判定手段は、前記計算空燃比が所定値以上変化したときの変化速度 を算出し、 当該変化速度が所定値以上の場合に、前記空燃比センサの異常を判定す る
ことを特徴とする請求項 1記載の空燃比センサの異常診断装置。
6 . 前記異常判定手段は、前記むだ時間の間における吸入空気量の積算値を算出 し、 当該吸入空気量の積算値に基づいて前記むだ時間異常判定値を算出する ことを特徴とする請求項 3記載の空燃比センサの異常診断装置。
PCT/JP2008/061594 2007-06-22 2008-06-19 空燃比センサの異常診断装置 WO2009001878A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08777607.6A EP2163753A4 (en) 2007-06-22 2008-06-19 Air/fuel ratio sensor failure diagnostic device
US12/666,238 US8234916B2 (en) 2007-06-22 2008-06-19 Abnormality diagnosis device for air-fuel ratio sensor
CN200880021415XA CN101688498B (zh) 2007-06-22 2008-06-19 空燃比传感器的异常诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007165403A JP4803502B2 (ja) 2007-06-22 2007-06-22 空燃比センサの異常診断装置
JP2007-165403 2007-06-22

Publications (1)

Publication Number Publication Date
WO2009001878A1 true WO2009001878A1 (ja) 2008-12-31

Family

ID=40185690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061594 WO2009001878A1 (ja) 2007-06-22 2008-06-19 空燃比センサの異常診断装置

Country Status (5)

Country Link
US (1) US8234916B2 (ja)
EP (1) EP2163753A4 (ja)
JP (1) JP4803502B2 (ja)
CN (1) CN101688498B (ja)
WO (1) WO2009001878A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240081B2 (ja) * 2009-06-10 2013-07-17 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP5375348B2 (ja) * 2009-06-10 2013-12-25 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP2011007071A (ja) * 2009-06-23 2011-01-13 Toyota Motor Corp 空燃比センサの異常検出装置
JP4816773B2 (ja) * 2009-07-16 2011-11-16 株式会社デンソー 排気成分濃度センサの応答性検出装置
JP2011032996A (ja) * 2009-08-05 2011-02-17 Denso Corp 排気状態取得装置
US8146562B2 (en) * 2009-11-13 2012-04-03 Cummins Inc. System, method and apparatus for fuel injector diagnostics
JP5182276B2 (ja) * 2009-11-20 2013-04-17 株式会社デンソー 酸素濃度センサの応答性劣化検出装置
JP5370139B2 (ja) * 2009-12-25 2013-12-18 株式会社デンソー 電動パワーステアリング装置
JP5035389B2 (ja) 2010-05-20 2012-09-26 トヨタ自動車株式会社 酸素濃度センサの応答性取得装置
DE102010044142A1 (de) 2010-11-18 2012-05-24 Robert Bosch Gmbh Verfahren zum Ausblenden einer Störung
JP5578242B2 (ja) * 2011-01-12 2014-08-27 トヨタ自動車株式会社 車両および車両の制御方法
JP5220139B2 (ja) * 2011-01-27 2013-06-26 本田技研工業株式会社 空燃比センサの異常判定装置
US20140069086A1 (en) * 2012-09-13 2014-03-13 Leon A. LaPointe Exhaust system for spark-ignited gaseous fuel internal combustion engine
BR112015032755B1 (pt) * 2013-06-26 2021-08-24 Toyota Jidosha Kabushiki Kaisha Sistema de diagnóstico de motor de combustão interna
US9850840B2 (en) * 2013-06-26 2017-12-26 Toyota Jidosha Kabushiki Kaisha Diagnosis system of internal combustion engine
RU2613362C1 (ru) * 2013-08-28 2017-03-16 Тойота Дзидося Кабусики Кайся Устройство управления для двигателя внутреннего сгорания
JP6090092B2 (ja) 2013-10-01 2017-03-08 トヨタ自動車株式会社 空燃比センサの異常診断装置
US10365183B2 (en) 2013-10-01 2019-07-30 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
JP6156276B2 (ja) * 2014-07-23 2017-07-05 トヨタ自動車株式会社 空燃比センサの異常検出方法
JP6311578B2 (ja) * 2014-11-11 2018-04-18 トヨタ自動車株式会社 空燃比センサの異常診断装置
US11560818B2 (en) 2015-11-11 2023-01-24 Tula Technology, Inc. Lean burn internal combustion engine exhaust gas control
JP6624321B1 (ja) 2019-03-22 2019-12-25 トヨタ自動車株式会社 空燃比センサの異常検出装置、空燃比センサの異常検出システム、データ解析装置、内燃機関の制御装置、および空燃比センサの異常検出方法
CN114592980A (zh) * 2021-03-26 2022-06-07 长城汽车股份有限公司 发动机状态的检测方法和装置
CN115443376B (zh) * 2021-04-02 2023-11-14 日产自动车株式会社 车辆的异常诊断方法以及车辆的异常诊断装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218634A (ja) * 1986-03-18 1987-09-26 Honda Motor Co Ltd 内燃エンジン用酸素濃度センサの出力補正方法
WO1992017696A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of internal combustion engine
JPH09166569A (ja) * 1995-12-15 1997-06-24 Denso Corp 空燃比センサ異常検出装置
JPH10196437A (ja) * 1997-01-17 1998-07-28 Nissan Motor Co Ltd エンジン制御装置
JP2002070612A (ja) * 2000-09-04 2002-03-08 Hitachi Ltd エンジンの空燃比制御装置
JP2003293844A (ja) 2002-04-05 2003-10-15 Toyota Motor Corp 酸素濃度センサの劣化診断装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503742B2 (ja) * 1990-08-04 1996-06-05 三菱電機株式会社 内燃機関燃料制御システム
US5845489A (en) 1995-11-08 1998-12-08 Denso Corporation Abnormality detector for air-fuel ratio control system
JP2002276434A (ja) * 2001-03-19 2002-09-25 Unisia Jecs Corp 制御装置
JP3965947B2 (ja) * 2001-07-25 2007-08-29 日産自動車株式会社 エンジンの空燃比制御装置
JP2003172184A (ja) * 2001-12-05 2003-06-20 Hitachi Unisia Automotive Ltd 内燃機関の空燃比制御装置
JP3855877B2 (ja) * 2002-08-06 2006-12-13 株式会社デンソー 空燃比検出装置の劣化検出装置
JP4218601B2 (ja) * 2004-06-29 2009-02-04 トヨタ自動車株式会社 圧縮着火内燃機関の空燃比センサ劣化判定システム
JP4320778B2 (ja) * 2004-08-23 2009-08-26 株式会社デンソー 空燃比センサの異常診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218634A (ja) * 1986-03-18 1987-09-26 Honda Motor Co Ltd 内燃エンジン用酸素濃度センサの出力補正方法
WO1992017696A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of internal combustion engine
JPH09166569A (ja) * 1995-12-15 1997-06-24 Denso Corp 空燃比センサ異常検出装置
JPH10196437A (ja) * 1997-01-17 1998-07-28 Nissan Motor Co Ltd エンジン制御装置
JP2002070612A (ja) * 2000-09-04 2002-03-08 Hitachi Ltd エンジンの空燃比制御装置
JP2003293844A (ja) 2002-04-05 2003-10-15 Toyota Motor Corp 酸素濃度センサの劣化診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2163753A4 *

Also Published As

Publication number Publication date
EP2163753A4 (en) 2017-06-14
CN101688498B (zh) 2013-04-24
JP4803502B2 (ja) 2011-10-26
US8234916B2 (en) 2012-08-07
EP2163753A1 (en) 2010-03-17
CN101688498A (zh) 2010-03-31
US20100186491A1 (en) 2010-07-29
JP2009002280A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2009001878A1 (ja) 空燃比センサの異常診断装置
US8307699B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for NOx sensor
RU2605167C2 (ru) Способ управления двигателем (варианты) и система двигателя
JP4798508B2 (ja) 触媒の劣化診断装置
US9500110B2 (en) Exhaust purifying apparatus for internal combustion engine
US10316716B2 (en) Exhaust purification system and method for restoring NOx purification capacity
JP2010190089A (ja) 多気筒内燃機関の異常診断装置
CN111140389B (zh) 一种汽油机催化器清氧方法
US20160123258A1 (en) Upstream nox estimation
JPH09236569A (ja) 内燃機関の排気浄化装置の機能診断装置
WO2019214821A1 (en) An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine
EP2052137A2 (en) Catalyst monitoring system and method
US6546719B2 (en) Air-fuel ratio control apparatus of internal combustion engine
JP4736796B2 (ja) 内燃機関の診断装置及び診断方法
US6601383B2 (en) Emission control apparatus for engine and method for reducing emissions of engine
US11536209B2 (en) Control device, engine, and control method of engine
US10436092B2 (en) Exhaust purification system and control method therefor
US20080124263A1 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP2003176714A (ja) 内燃機関の排気浄化装置の機能診断装置
JP5041294B2 (ja) 空燃比センサの異常診断装置
JP4277776B2 (ja) 内燃機関の診断装置及び診断方法
JP3161288B2 (ja) ターボ過給機付エンジンの排気圧力検出装置および空気過剰率検出装置
WO2019017316A1 (ja) 排気浄化システム
JP2004270469A (ja) NOx吸蔵触媒の吸蔵量推定装置及び推定方法
JP4186517B2 (ja) 内燃機関用エアクリーナの目詰まり検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880021415.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777607

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12666238

Country of ref document: US

Ref document number: 2008777607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE