JP6156276B2 - 空燃比センサの異常検出方法 - Google Patents

空燃比センサの異常検出方法 Download PDF

Info

Publication number
JP6156276B2
JP6156276B2 JP2014149723A JP2014149723A JP6156276B2 JP 6156276 B2 JP6156276 B2 JP 6156276B2 JP 2014149723 A JP2014149723 A JP 2014149723A JP 2014149723 A JP2014149723 A JP 2014149723A JP 6156276 B2 JP6156276 B2 JP 6156276B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
rich
lean
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014149723A
Other languages
English (en)
Other versions
JP2016023614A (ja
Inventor
剛 林下
剛 林下
守谷 栄記
栄記 守谷
井手 宏二
宏二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014149723A priority Critical patent/JP6156276B2/ja
Priority to US15/325,221 priority patent/US10006394B2/en
Priority to PCT/JP2015/003655 priority patent/WO2016013211A1/en
Priority to CN201580037910.XA priority patent/CN106574563B/zh
Priority to EP15747574.0A priority patent/EP3172423B1/en
Publication of JP2016023614A publication Critical patent/JP2016023614A/ja
Application granted granted Critical
Publication of JP6156276B2 publication Critical patent/JP6156276B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は空燃比センサの異常検出方法に関する。
従来より、機関の排気通路内に排気浄化触媒を配置し、排気浄化触媒上流の機関排気通路内に上流側空燃比センサを配置し、排気浄化触媒下流の機関排気通路内に下流側酸素センサを配置し、これら上流側空燃比センサおよび下流側酸素センサの出力信号に基づいて、排気浄化触媒に流入する排気ガスの空燃比が目標空燃比、例えば理論空燃比になるように機関への燃料供給量をフィードバック制御するようにした内燃機関の空燃比制御装置が公知である(例えば、特許文献1を参照)。この空燃比制御装置では、空燃比を理論空燃比にするのに必要な基本燃料噴射量が予め記憶されており、例えばこの基本燃料噴射量に
フィードバック補正係数を乗算することによって実際の噴射量が算出される。
この場合、このフィードバック補正係数は、上流側空燃比センサの出力に基づいて、排気浄化触媒に流入する排気ガスの空燃比が理論空燃比になるように制御される。一方、このようなフィードバック制御を行っていても排気浄化触媒に流入する排気ガスの空燃比が理論空燃比に対してずれる場合がある。この場合に理論空燃比に対する空燃比のずれを修正するために、排気浄化触媒に流入する排気ガスの空燃比を理論空燃比にするのに必要なフィードバック補正係数の補正値が下流側酸素センサの出力信号に基づき学習値として求められており、この学習値によってフィードバック補正係数が補正される。
ところで、この空燃比制御装置では、下流側酸素センサが正常であるときには下流側酸素センサによる検出空燃比がリッチ側に偏倚し続けることがなく、従って下流側酸素センサによる検出空燃比がリッチ側に偏倚し続けたときには下流側酸素センサに異常があると判断される。同様に、この空燃比制御装置では、下流側酸素センサが正常であるときには下流側酸素センサによる検出空燃比がリーン側に偏倚し続けることがなく、従って下流側酸素センサによる検出空燃比がリーン側に偏倚し続けたときには下流側酸素センサに異常があると判断される。
特開2006−125252号公報
しかしながら、実際には、下流側酸素センサが正常であったとしても下流側酸素センサによる検出空燃比がリーン側或いはリッチ側に偏倚し続ける場合がある。例えば、気筒間の空燃比にばらつきがあり、特定の気筒間の空燃比が他の気筒に対して大きくリッチ側にずれており、排気通路の形状等によって上流側空燃比センサが各気筒から流出した排気ガスと均一に接触することなく、リッチ側にずれた気筒から流出した排気ガスと主に接触する場合がある。このような場合において、上流側空燃比センサの出力信号に基づいて空燃比を理論空燃比にフィードバック制御すると、各気筒への燃料噴射量が減量されて平均空燃比がリーンとなり、この場合には下流側酸素センサが正常であったとしても下流側酸素センサによる検出空燃比がリーン側に偏倚し続ける。同様に、下流側酸素センサが正常であったとしても下流側酸素センサによる検出空燃比がリッチ側に偏倚し続ける場合がある。従って、下流側酸素センサによる検出空燃比がリーン側或いはリッチ側に偏倚し続けたとしても、下流側酸素センサに異常があると判断することはできない。
本発明は、下流側空燃比センサの異常を確実に検出することができる空燃比センサの異常検出方法を提供することにある。
本発明によれば、 酸素吸蔵能力を有する排気浄化触媒に流入する排気ガスの目標空燃比を、理論空燃比よりもリッチなリッチ設定空燃比と理論空燃比よりもリーンなリーン設定空燃比との間で交互に切り替え、排気浄化触媒から流出した排気ガスの空燃比を排気浄化触媒の下流側に配置された下流側空燃比センサにより検出し、下流側空燃比センサにより検出された空燃比に基づいて排気浄化触媒に流入する排気ガスの空燃比を目標空燃比に近づけるのに必要な空燃比補正値を学習すると共に、学習により得られた空燃比補正値の学習値を用いて排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御し、目標空燃比がリッチ設定空燃比に設定されているときに下流側空燃比センサにより検出された空燃比が予め定められた期間に亘ってリーンに維持されている場合には、排気浄化触媒に流入する排気ガスの空燃比を小さくさせるために学習値を低下させる張付き学習制御を行い、下流側空燃比センサにより検出された空燃比に基づいて、排気浄化触媒に流入する排気ガスの空燃比が目標空燃比よりもリッチ側にずれていると判別されたときには学習値を増大させかつ排気浄化触媒に流入する排気ガスの空燃比が目標空燃比よりもリーン側にずれていると判別されたときには学習値を低下させる学習値更新制御を行い、学習値の一定値以上の低下と学習値の一定値以上の増大とが繰り返されたときには下流側空燃比センサに異常があると判定する空燃比センサの異常検出方法が提供される。
本発明によれば、下流側空燃比センサに異常が生じたときには下流側空燃比センサの異常を確実に検出することができる。
図1は、内燃機関を概略的に示す図である。 図2Aおよび2Bは、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx濃度、HC、CO濃度との関係を示す図である。 図3は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。 図4は、センサ印加電圧を一定にしたときの排気空燃比と出力電流との関係を示す図である。 図5は、空燃比制御を行った際の空燃比補正量等のタイムチャートである。 図6は、空燃比制御を行った際の空燃比補正量等のタイムチャートである。 図7は、上流側空燃比センサの出力値にずれが生じている際の空燃比補正量等のタイムチャートである。 図8は、上流側空燃比センサの出力値にずれが生じている際の空燃比補正量等のタイムチャートである。 図9は、通常学習を行う際の空燃比補正量等のタイムチャートである。 図10は、上流側空燃比センサの出力値に大きなずれが生じている際の空燃比補正量等のタイムチャートである。 図11は、上流側空燃比センサの出力値に大きなずれが生じている際の空燃比補正量等のタイムチャートである。 図12は、理論空燃比張付き学習を行う際の空燃比補正量等のタイムチャートである。 図13は、リーン張付き学習等を行う際の空燃比補正量等のタイムチャートである。 図14は、本発明による下流側空燃比センサの異常検出が行われている際の空燃比補正量等のタイムチャートである。 図15は、本発明による下流側空燃比センサの異常検出が行われている際の空燃比補正量等のタイムチャートである。 図16は、本発明による下流側空燃比センサの異常検出が行われている際の空燃比補正量等のタイムチャートである。 図17は、本発明による下流側空燃比センサの異常検出が行われている際の空燃比補正量等のタイムチャートである。 図18は、制御装置の機能ブロック図である。 図19は、空燃比補正量の算出制御の制御ルーチンを示すフローチャートである。 図20は、通常学習制御の制御ルーチンを示すフローチャートである。 図21は、張付き学習制御の制御ルーチンを示すフローチャートである。 図22は、下流側空燃比センサの異常検出ルーチンを示すフローチャートである。 図23は、下流側空燃比センサの異常検出ルーチンを示すフローチャートである。
以下、図面を参照して本発明による実施例について詳細に説明する。なお、以下の説明において、同様な構成要素には同一の参照番号を付す。
<内燃機関全体の説明>
図1は、本発明による空燃比センサの異常検出方法が実行されている内燃機関を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。
図1に示されるように、シリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。この燃料噴射弁11からは燃料が燃焼室5内に向けて噴射される。なお、本発明による実施例では、燃料として理論空燃比が14.6であるガソリンが用いられている。しかしながら、ガソリン以外の燃料、或いはガソリンとの混合燃料を用いることもできる。
各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。また、吸気管15内にはアクチュエータ17によって駆動されるスロットル弁18が配置される。一方、各気筒の排気ポート9は排気マニホルド19に連結され、排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するための吸入空気量検出器39が配置され、この吸入空気量検出器39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガスの空燃比を検出するための上流側空燃比センサ40が配置され、また排気管22内には排気管22内を流れる排気ガスの空燃比を検出するための下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。
アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。
<排気浄化触媒の説明>
上流側排気浄化触媒20及び下流側排気浄化触媒24は、セラミックから成る担体上に、貴金属(例えば、白金Pt)および酸素吸蔵能力を有する物質(例えば、セリアCeO2)を担持させた三元触媒からなる。三元触媒は、三元触媒に流入する排気ガスの空燃比が理論空燃比に維持されていると、未燃HC、COおよびNOxとを同時に浄化する機能を有するが、排気浄化触媒20、24が酸素吸蔵能力を有している場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、COおよびNOxとが同時に浄化される。
即ち、排気浄化触媒20、24が酸素吸蔵能力を有していると、排気浄化触媒20、24に流入する排気ガスの空燃比が若干リーンになったときには排気ガス中に含まれる過剰な酸素が排気浄化触媒20、24内に吸蔵され、排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、COおよびNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。一方、排気浄化触媒20、24に流入する排気ガスの空燃比が若干リッチになったときには排気ガス中に含まれる未燃HC、COを還元させるのに不足している酸素が排気浄化触媒20、24から放出され、この場合にも排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、COおよびNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。
このように、過剰な酸素を排気浄化触媒20、24内に吸蔵し得るとき、或いは不足している酸素を排気浄化触媒20、24から放出し得るときには、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、COおよびNOxとが同時に浄化され、排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。この場合、過剰な酸素を排気浄化触媒20、24内に吸蔵し得なくなると、或いは不足している酸素を排気浄化触媒20、24から放出し得えなくなると、排気浄化触媒20、24から流出する排気ガスの空燃比はリーン或いはリッチとなり、排気浄化触媒20、24からNOx或いはHC、COが流出することになる。このことについて図2Aおよび2Bを参照し説明する。
図2Aは、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx濃度との関係を示しており、図2Bは、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のHC、CO濃度との関係を示している。排気浄化触媒20、24に流入する排気ガスの空燃比がリーンであるときには、排気浄化触媒20、24への酸素吸蔵量が多くなると排気ガス中に含まれる過剰な酸素を排気浄化触媒20、24内に吸蔵し得なくなり、その結果排気浄化触媒20、24の表面上は酸素過剰な状態となる。このように酸素過剰な状態になるとHC、COは酸化されるがNOxは還元されなくなり、従って図2Aに示されるように、酸素吸蔵量が、最大吸蔵可能酸素量Cmax近傍の或る吸蔵量(図中のCuplim)を越えると排気浄化触媒20、24から流出する排気ガス中のNOxの濃度が急激に上昇する。
一方、排気浄化触媒20、24に流入する排気ガスの空燃比がリッチであるときには、排気浄化触媒20、24への酸素吸蔵量が少なくなると排気ガス中に含まれる酸素を排気浄化触媒20、24内に吸蔵されている酸素を十分に放出し得なくなり、その結果排気浄化触媒20、24の表面上はHC、COが過剰な状態となる。このようにHC、COが過剰な状態になるとNOxは還元されるがHC、COは酸化されなくなり、従って図2Bに示されるように、酸素吸蔵量が、ゼロ近傍の或る吸蔵量(図中のClowlim)のりも少なくなると排気浄化触媒20、24から流出する排気ガス中のHC、COの濃度が急激に上昇する。
即ち、酸素吸蔵量が、図2BのClowlimと図2AのCuplimとの間に維持されていれば、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、COおよびNOxとが同時に浄化されることになる。
<空燃比センサの出力特性>
次に、図3及び図4を参照して、本発明において用いられている空燃比センサ40、41の出力特性について説明する。図3は、空燃比センサ40、41の電圧−電流(V−I)特性を示す図であり、図4は、印加電圧を一定に維持したときの、空燃比センサ40、41周りを流通する排気ガスの空燃比(以下、「排気空燃比」という)と出力電流Iとの関係を示す図である。なお、本発明による実施例では、両空燃比センサ40、41として同一構造の空燃比センサが用いられている。
図3からわかるように、本発明において用いられている空燃比センサ40、41では、出力電流Iは、排気空燃比が高くなるほど、即ちリーンになるほど、大きくなる。また、各排気空燃比におけるV−I線には、V軸にほぼ平行な領域、即ちセンサ印加電圧が変化しても出力電流がほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3には、排気空燃比が18であるときの限界電流領域及び限界電流がそれぞれW18、I18で示されている。従って、これらの空燃比センサ40、41は限界電流式の空燃比センサと称されている。
図4は、印加電圧を0.45V程度で一定にしたときの、排気空燃比と出力電流Iとの関係を示す図である。図4からわかるように、本発明において用いられている空燃比センサ40、41では、空燃比センサ40、41の出力電流Iは、排気空燃比が高くなるほど、即ち、リーンになるほど、大きくなる。即ち、空燃比センサ40、41の出力電流Iは、排気空燃比に対してリニアに変化する。更に、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成されている。なお、排気空燃比が一定以上に大きくなったとき、或いは一定以下に小さくなったときには、排気空燃比の変化に対する出力電流の変化の割合が小さくなる。
なお、上記例では、空燃比センサ40、41として限界電流式の空燃比センサを用いている。しかしながら、排気空燃比に対して出力電流がリニアに変化するものであれば、空燃比センサ40、41として、限界電流式ではない空燃比センサ等、如何なる空燃比センサを用いてもよい。また、両空燃比センサ40、41は互いに異なる構造の空燃比センサであってもよい。
<基本的な空燃比制御>
次に、本発明による実施例において用いられている基本的な空燃比制御の概要を説明する。本発明による実施例において用いられている空燃比制御では、上流側空燃比センサ40の出力空燃比に基づいて上流側空燃比センサ40の出力空燃比が目標空燃比となるように燃料噴射弁11からの燃料噴射量を制御するフィードバック制御が行われている。なお、「出力空燃比」は、空燃比センサの出力値に相当する空燃比を意味する。
更に、本発明による実施例において用いられている空燃比制御では、下流側空燃比センサ41の出力空燃比等に基づいて目標空燃比を設定する目標空燃比の設定制御が行われる。目標空燃比の設定制御では、下流側空燃比センサ41の出力空燃比がリッチ空燃比となったときに、目標空燃比はリーン設定空燃比とされ、その後、このリーン設定空燃比に維持される。このリーン設定空燃比は、理論空燃比(制御中心となる空燃比)よりも或る程度リーンである予め定められた空燃比であり、例えば、14.65〜20、好ましくは14.65〜18、より好ましくは14.65〜16程度とされる。また、リーン設定空燃比は、制御中心となる空燃比(本発明による実施例では理論空燃比)にリーン補正量を加算した空燃比として表すこともできる。なお、本発明による実施例では、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチであるリッチ判定空燃比(例えば、14.55)以下になったときに、下流側空燃比センサ41の出力空燃比がリッチ空燃比になったと判断される。
目標空燃比がリーン設定空燃比に設定されると、上流側排気浄化触媒20に流入する排気ガスの酸素過不足量が積算される。酸素過不足量は、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比にしようとしたときに過剰となっている酸素の量又は不足している酸素の量を意味する。特に、目標空燃比がリーン設定空燃比となっているときには上流側排気浄化触媒20に流入する排気ガス中の酸素は過剰となり、この過剰な酸素は上流側排気浄化触媒20に吸蔵される。したがって、酸素過不足量の積算値(以下、「積算酸素過不足量」という)は、上流側排気浄化触媒20の酸素吸蔵量OSAを表しているといえる。
なお、酸素過不足量の算出は、上流側空燃比センサ40の出力空燃比、および吸入空気量検出器39の出力等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料供給量等に基づいて行われる。具体的には、酸素過不足量OEDは、例えば、下記式(1)により算出される。
ODE=0.23・Qi/(AFup−AFR) …(1)
ここで、0.23は空気中の酸素濃度、Qiは燃料噴射量、AFupは上流側空燃比センサ40の出力空燃比、AFRは制御中心となる空燃比(本発明による実施例では理論空燃比)をそれぞれ表している。
このようにして算出された酸素過不足量を積算した積算酸素過不足量が、予め定められた切替基準値以上、本発明による実施例では予め定められた切替基準吸蔵量Cref以上になると、それまでリーン設定空燃比だった目標空燃比が、リッチ設定空燃比に切替えられ、その後、このリッチ設定空燃比に維持される。このリッチ設定空燃比は、理論空燃比(制御中心となる空燃比)よりも或る程度リッチである予め定められた空燃比であり、例えば、12〜14.58、好ましくは13〜14.57、より好ましくは14〜14.55程度とされる。また、リッチ設定空燃比は、制御中心となる空燃比(本発明による実施例では理論空燃比)からリッチ補正量を減算した空燃比として表すこともできる。なお、本発明による実施例では、リッチ設定空燃比と理論空燃比との差(リッチ度合い)は、リーン設定空燃比と理論空燃比との差(リーン度合い)以下とされる。
その後、下流側空燃比センサ41の出力空燃比が再びリッチ判定空燃比以下となったときに、目標空燃比が再びリーン設定空燃比に切替えられ、その後、同様な操作が繰り返される。このように本発明による実施例では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリーン設定空燃比とリッチ設定空燃比とに交互に設定される。
ただし、上述したような制御を行った場合であっても、積算酸素過不足量が切替基準値に到達する前に上流側排気浄化触媒20の実際の酸素吸蔵量が最大吸蔵可能酸素量に到達する場合がある。その原因としては、例えば、上流側排気浄化触媒20の最大吸蔵可能酸素量が低下したり、一時的に上流側排気浄化触媒20に流入する排気ガスの空燃比が急激に変化したりすることが挙げられる。このように酸素吸蔵量が最大吸蔵可能酸素量に到達すると、上流側排気浄化触媒20からはリーン空燃比の排気ガスが流出することになる。そこで、本発明による実施例では、下流側空燃比センサ41の出力空燃比がリーン空燃比となったときには、目標空燃比はリッチ設定空燃比に切り替えられる。特に、本発明による実施例では、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリーンであるリーン判定空燃比(例えば、14.65)以上になったときに、下流側空燃比センサ41の出力空燃比がリーン空燃比になったと判断される。
<タイムチャートを用いた空燃比制御の説明>
図5を参照して、上述したような操作について具体的に説明する。図5は、本発明による実施例において用いられている空燃比制御を行った場合における、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の実際の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び上流側排気浄化触媒20から流出する排気ガス中のNOx濃度のタイムチャートである。
なお、空燃比補正量AFCは、上流側排気浄化触媒20に流入する排気ガスの目標空燃比に関する補正量である。空燃比補正量AFCが0のときには目標空燃比は制御中心となる空燃比(以下、「制御中心空燃比」という)に等しい空燃比(本発明による実施例では、理論空燃比)とされ、空燃比補正量AFCが正の値であるときには目標空燃比は制御中心空燃比よりもリーンな空燃比(本実施形態では、リーン空燃比)となり、空燃比補正量AFCが負の値であるときには目標空燃比は制御中心空燃比よりもリッチな空燃比(本発明による実施例では、リッチ空燃比)となる。また、「制御中心空燃比」は、機関運転状態に応じて空燃比補正量AFCを加算する対象となる空燃比、すなわち空燃比補正量AFCに応じて目標空燃比を変動させる際に基準となる空燃比を意味する。
図5に示される例では、時刻t1以前の状態では、空燃比補正量AFCがリッチ設定補正量AFCrich(リッチ設定空燃比に相当)とされている。すなわち、目標空燃比はリッチ設定空燃比とされており、それにより上流側空燃比センサ40の出力空燃比がリッチ空燃比となる。このとき上流側排気浄化触媒20に流入する排気ガス中に含まれているHC、COを還元するために上流側排気浄化触媒20に吸蔵されている酸素が消費されそそれに伴って、上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に減少していく。また、積算酸素過不足量ΣOEDも徐々に減少していく。このとき上流側排気浄化触媒20から流出する排気ガスの空燃比は理論空燃比となっているので、下流側空燃比センサ41の出力空燃比AFdwnはほぼ理論空燃比となり、上流側排気浄化触媒20からのNOx排出量はほぼゼロとなる。
上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に減少すると、酸素吸蔵量OSAは時刻t1においてゼロに近づき、これに伴って、上流側排気浄化触媒20に流入したHC、COの一部は上流側排気浄化触媒20で酸化されずに流出し始める。これにより、時刻t1以降、下流側空燃比センサ41の出力空燃比AFdwnが徐々に低下する。その結果、時刻t2において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。
本発明による実施例では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になると、酸素吸蔵量OSAを増大させるべく、空燃比補正量AFCがリーン設定補正量AFClean(リーン設定空燃比に相当)に切り替えられる。したがって、目標空燃比はリッチ設定空燃比からリーン設定空燃比へと切り替えられる。また、このとき、積算酸素過不足量ΣOEDは0にリセットされる。
なお、本発明による実施例では、下流側空燃比センサ41の出力空燃比AFdwnが低下してリッチ判定空燃比AFrichに到達したときに、空燃比補正量AFCの切替を行っている。これは、上流側排気浄化触媒20の酸素吸蔵量が十分であっても、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比から極わずかにずれてしまう場合があるためである。逆に言うと、リッチ判定空燃比は、上流側排気浄化触媒20の酸素吸蔵量が十分であるときには上流側排気浄化触媒20から流出する排気ガスの空燃比が到達することのないような空燃比とされる。
時刻t2において、目標空燃比をリーン空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比からリーン空燃比に変化する。また、これに伴って、上流側空燃比センサ40の出力空燃比AFupがリーン空燃比となる(実際には、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が変化するまでには遅れが生じるが、図示した例では便宜上同時に変化するものとしている)。時刻t2において上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAは増大する。このとき、積算酸素過不足量ΣOEDも徐々に増大していく。
このとき、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力空燃比AFdwnも理論空燃比に戻る。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているが、上流側排気浄化触媒20の酸素吸蔵能力には十分な余裕があるため、流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵され、上流側排気浄化触媒20の表面上においてHC、CO、NOxが同時に浄化される。このため、上流側排気浄化触媒20からのNOxの排出はほぼゼロとなる。
その後、上流側排気浄化触媒20の酸素吸蔵量OSAが増大すると、時刻t3において、上流側排気浄化触媒20の酸素吸蔵量OSAが切替基準吸蔵量Crefに到達する。このとき、積算酸素過不足量ΣOEDも、切替基準吸蔵量Crefに相当する切替基準値OEDrefに到達する。本発明による実施例では、積算酸素過不足量ΣOEDが切替基準値OEDref以上になると、上流側排気浄化触媒20への酸素の吸蔵を中止すべく、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。したがって、目標空燃比はリッチ空燃比とされる。また、このとき、積算酸素過不足量ΣOEDが0にリセットされる。
ここで、図5に示した例では、時刻t3において目標空燃比を切り替えると同時に酸素吸蔵量OSAが低下しているが、実際には目標空燃比を切り替えてから酸素吸蔵量OSAが低下するまでには遅れが発生する。また、内燃機関を搭載した車両の加速により機関負荷が高くなって吸入空気量が瞬間的に大きくずれた場合等、上流側排気浄化触媒20に流入する排気ガスの空燃比が意図せずに瞬間的に目標空燃比から大きくずれる場合がある。
これに対し、切替基準吸蔵量Crefは上流側排気浄化触媒20が新品であるときの最大吸蔵可能酸素量Cmaxよりも十分に低く設定されている。このため、上述したような遅れが生じたり実際の排気ガスの空燃比が意図せずに目標空燃比から瞬間的に大きくずれたりしたときであっても、酸素吸蔵量OSAは最大吸蔵可能酸素量Cmaxには到達しない。逆に言うと、切替基準吸蔵量Crefは、上述したような遅れや意図しない空燃比のずれが生じても、酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxには到達しないように十分少ない量とされる。例えば、切替基準吸蔵量Crefは、上流側排気浄化触媒20が新品であるときの最大吸蔵可能酸素量Cmaxの3/4以下、好ましくは1/2以下、より好ましくは1/5以下とされる。
時刻t3において目標空燃比がリッチ設定空燃比に切り替えられると、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比からリッチ空燃比に変化する。これに伴って、上流側空燃比センサ40の出力空燃比AFupがリッチ空燃比となる(実際には、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が変化するまでには遅れが生じるが、図示した例では便宜上同時に変化するものとしている)。このとき上流側排気浄化触媒20に流入する排気ガス中にはHC、COが含まれているため、上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に減少していき、時刻t4において、時刻t1と同様に、下流側空燃比センサ41の出力空燃比AFdwnが低下し始める。このときも、上流側排気浄化触媒20からのNOxの排出はほぼゼロされる。
次いで、時刻t5において、時刻t2と同様に、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。これにより、空燃比補正量AFCがリーン設定空燃比に相当する値AFCleanに切り替えられる。その後、上述した時刻t〜t5のサイクルが繰り返される。
以上の説明から分かるように本発明による実施例によれば、上流側排気浄化触媒20からのNOx排出量を常に抑制することができる。すなわち、上述した制御を行っている限り、基本的には上流側排気浄化触媒20からのNOx排出量をほぼゼロとすることができる。
なお、上記実施例では、時刻t2〜t3において、空燃比補正量AFCはリーン設定補正量AFCleanに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。或いは、時刻t2〜t3の期間中において、一時的に空燃比補正量AFCを0よりも小さな値(例えば、リッチ設定補正量等)としてもよい。すなわち、時刻t2〜t3の期間中において、一時的に目標空燃比をリッチ空燃比としてもよい。
同様に、上記実施例では、時刻t3〜t5において、空燃比補正量AFCはリッチ設定補正量AFCrichに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に増大させる等、変動するように設定されてもよい。或いは、図6に示したように、時刻t3〜t5の期間中において、一時的に空燃比補正量AFCを0よりも大きな値(例えば、リーン設定補正量等)としてもよい(図6の時刻t6、t7等)。すなわち、時刻t3〜t5の期間中において、一時的に目標空燃比をリーン空燃比としてもよい。
<上流側空燃比センサにおけるずれ>
ところで、機関本体1が複数の気筒を有する場合、各気筒から排出される排気ガスの空燃比には気筒間でずれが生じる場合がある。一方、上流側空燃比センサ40は排気マニホルド19の集合部に配置されるが、その配置位置に応じて各気筒から排出された排気ガスが上流側空燃比センサ40に曝される程度が気筒間で異なる。この結果、上流側空燃比センサ40の出力空燃比は、或る特定の気筒から排出された排気ガスの空燃比の影響を強く受けることになる。このため、この或る特定の気筒から排出された排気ガスの空燃比が全気筒から排出される排気ガスの平均空燃比とは異なる空燃比となっている場合、平均空燃比と上流側空燃比センサ40の出力空燃比との間にはずれが生じる。すなわち、上流側空燃比センサ40の出力空燃比は実際の排気ガスの平均空燃比よりもリッチ側又はリーン側にずれることになる。
また、排気ガス中に含まれる未燃ガスのうち水素はHC、COに比べて空燃比センサの拡散律速層を通過する速度が速い。一方、空燃比センサは拡散律速層を通過する未燃成分の速度が速くなると実際の排気ガスの空燃比よりも低い側、即ちリッチ側の出力を発生する性質を有している。従って、排気ガス中の水素濃度が高いと、上流側空燃比センサ40の出力空燃比が排気ガスの実際の空燃比よりもリッチ側にずれてしまうことになる。
このように上流側空燃比センサ40の出力空燃比にずれが生じていると、上述したような制御を行っていても、上流側排気浄化触媒20からNOxが流出したり、HC、CO等の未燃ガスの流出頻度が高くなったりしてしまう場合がある。次に、図7及び図8を参照して斯かる現象について説明する。
図7は、図5と同様な、上流側排気浄化触媒20の酸素吸蔵量OSA等のタイムチャートである。図7は、上流側空燃比センサ40の出力空燃比がリッチ側にずれている場合を示している。図中、上流側空燃比センサ40の出力空燃比AFupにおける実線は、上流側空燃比センサ40の出力空燃比を示している。一方、破線は、上流側空燃比センサ40周りを流通する排気ガスの実際の空燃比を示している。
図7に示した例においても、時刻t1以前の状態では、空燃比補正量AFCがリッチ設定補正量AFCrichとされており、よって目標空燃比がリッチ設定空燃比とされている。これに伴い、上流側空燃比センサ40の出力空燃比AFupはリッチ設定空燃比と等しい空燃比となる。しかしながら、上述したように、上流側空燃比センサ40の出力空燃比はリッチ側にずれているため、排気ガスの実際の空燃比はリッチ設定空燃比よりもリーン側の空燃比となっている。即ち、上流側空燃比センサ40の出力空燃比AFupは、実際の空燃比(図中の破線)よりも低く(リッチ側)なっている。このため、即ち、排気ガスの実際の空燃比がリーン側にずれているため、上流側排気浄化触媒20の酸素吸蔵量OSAの減少速度は遅くなっている。
次いで、時刻t2において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達すると空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられ、目標空燃比がリーン設定空燃比に切り替えられる。それにより、上流側空燃比センサ40の出力空燃比AFupはリーン設定空燃比に等しい空燃比となる。しかしながら、上述したように、上流側空燃比センサ40の出力空燃比はリッチ側にずれているため、排気ガスの実際の空燃比(図中の破線)はリーン設定空燃比よりもリーンの空燃比となっている。このため、上流側排気浄化触媒20の酸素吸蔵量OSAの増加速度は速くなると共に、目標空燃比をリーン設定空燃比としている間に上流側排気浄化触媒20に供給される実際の酸素量は切替基準酸素量Crefよりも多くなる。
また、上流側空燃比センサ40の出力空燃比のずれが大きいと、上流側排気浄化触媒20の酸素吸蔵量OSAの増加速度は極端に速くなる。したがって、この場合、図8に示すように、上流側空燃比センサ40の出力空燃比AFupに基づいて算出された積算酸素過不足量ΣOEDが切替基準値OEDrefに到達する前に、実際の酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxに到達することになる。この結果、上流側排気浄化触媒20からはNOxが流出することになる。
一方、上述した例とは逆に、上流側空燃比センサ40の出力空燃比がリーン側にずれていると、酸素吸蔵量OSAの増加速度が遅くなると共に減少速度が速くなる。この場合、時刻t2から時刻t5までのサイクルが速くなり、上流側排気浄化触媒20からのHC,CO等の未燃成分の流出頻度が高くなる。
上述の説明により、上流側空燃比センサ40の出力空燃比におけるずれを検出することが必要になると共に、検出されたずれに基づいて出力空燃比等の補正を行うことが必要であることがわかる。
<通常学習制御>
そこで、本発明の実施例では、上流側空燃比センサ40の出力空燃比におけるずれを補償すべく、通常運転中、即ち、上述したように目標空燃比に基づいてフィードバック制御を行っているときに学習制御が行われる。そこでまず初めに、通常学習制御について説明する。
ここで以下、目標空燃比をリーン空燃比に切り替えてから積算酸素過不足量ΣOEDが切替基準値OEDref以上になるまでの期間を酸素増大期間(第1期間)と称する。同様に、目標空燃比をリッチ空燃比に切り替えてから下流側空燃比センサ41の出力空燃比がリッチ判定空燃比以下になるまでの期間を酸素減少期間(第2期間)と称する。さて、本発明の実施例における通常学習制御では、酸素増大期間における積算酸素過不足量ΣODEの絶対値としてリーン酸素量積算値(第1酸素量積算値)が算出され、更に、酸素減少期間における積算酸素過不足量の絶対値としてリッチ酸素量積算値(第2酸素量積算値)が算出される。そして、これらリーン酸素量積算値とリッチ酸素量積算値との差が小さくなるように制御中心空燃比AFRが補正される。図9にこの様子を示す。
図9は、制御中心空燃比AFR、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び学習値sfbgのタイムチャートを示している。また図9は、図7と同様に、上流側空燃比センサ40の出力空燃比AFupが低い側(リッチ側)にずれている場合を示している。なお、学習値sfbgは、上流側空燃比センサ40の出力空燃比(出力電流)のずれに応じて変化する値であり、本発明の実施例では制御中心空燃比AFRを補正するのに用いられる。また、図9において、実線は上流側空燃比センサ40の出力空燃比AFupを示しており、破線は、上流側空燃比センサ40周りを流通する排気ガスの実際の空燃比を示している。また、一点鎖線は、目標空燃比、即ち空燃比補正量AFCに相当する空燃比を示している。
図9に示される例では、図5及び図7と同様に、時刻t1以前の状態では、制御中心空燃比が理論空燃比とされ、空燃比補正量AFCがリッチ設定補正量AFCrichとされている。このとき、上流側空燃比センサ40の出力空燃比AFupは実線で示したようにリッチ設定空燃比に相当する空燃比となる。しかしながら、上流側空燃比センサ40の出力空燃比にはずれが生じているため、排気ガスの実際の空燃比はリッチ設定空燃比よりもリーンの空燃比となっている(図9の破線)。ただし、図9に示した例では、図9の破線から分かるように、時刻t1以前の実際の排気ガスの空燃比はリッチ設定空燃比よりもリーンながらも、リッチ空燃比となっている。したがって、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少していく。
時刻t1において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。これにより、上述したように、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。時刻t1以降は、上流側空燃比センサ40の出力空燃比はリーン設定空燃比に相当する空燃比となる。しかしながら、上流側空燃比センサ40の出力空燃比のずれにより、排気ガスの実際の空燃比は、リーン設定空燃比よりもリーンな空燃比、すなわちリーン度合いの大きい空燃比となる(図9の破線を参照)。このため、上流側排気浄化触媒20の酸素吸蔵量OSAは急速に増大する。
一方、酸素過不足量は、上流側空燃比センサ40の出力空燃比AFup(より正確には、出力空燃比AFupと制御中心空燃比AFRとの差)に基づいて算出される。しかしながら、上述したように、上流側空燃比センサ40の出力空燃比AFupにはずれが生じており、従って、算出された積算酸素過不足量ΣOEDは、実際に吸蔵されたの酸素量よりも少なくなっている。従って、積算酸素過不足量ΣOEDは酸素吸蔵量OSAに比べてゆっくりと増大する。
時刻t2では、積算酸素過不足量ΣOEDが切替基準値OEDrefに到達する。このため、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。従って、目標空燃比はリッチ空燃比とされる。このとき、実際の酸素吸蔵量OSAは図9に示したように切替基準吸蔵量Crefよりも多くなっている。
時刻t2以降は、時刻t1以前の状態と同様に、空燃比補正量AFCがリッチ設定補正量AFCrichとされ、よって目標空燃比はリッチ空燃比とされる。このときも、排気ガスの実際の空燃比はリッチ設定空燃比よりもリーンの空燃比となっている。その結果、上流側排気浄化触媒20の酸素吸蔵量OSAの減少速度は遅くなる。加えて、上述したように、時刻t2において、上流側排気浄化触媒20の実際の酸素吸蔵量は切替基準吸蔵量Crefよりも多くなっている。このため、上流側排気浄化触媒20の実際の酸素吸蔵量がゼロに到達するまでには時間がかかる。
時刻t3では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。これにより、上述したように、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。したがって、目標空燃比がリッチ設定空燃比からリーン設定空燃比へと切り替えられる。
ところで、本発明の実施例では、上述したように、時刻t1から時刻t2までにおいて、積算酸素過不足量ΣOEDが算出される。ここで、目標空燃比をリーン空燃比に切り替えた時(時刻t1)から上流側排気浄化触媒20の酸素吸蔵量OSAの推定値が切替基準吸蔵量Cref以上になった時(時刻t2)までの期間を酸素増大期間Tincと称すると、本発明の実施例では、酸素増大期間Tincに積算酸素過不足量ΣOEDが算出される。図9では、時刻t1〜時刻t2の酸素増大期間Tincにおける積算酸素過不足量ΣOEDの絶対値をR1で示している。
この酸素増大期間Tincの積算酸素過不足量ΣOED(R1)は、時刻t2における酸素吸蔵量OSAに相当する。しかしながら、上述したように、酸素過不足量の算出には上流側空燃比センサ40の出力空燃比AFupが用いられ、この出力空燃比AFupにはずれが生じている。このため、図9に示した例では、時刻t1〜時刻t2の酸素増大期間Tincにおける積算酸素過不足量ΣOEDは、時刻t2における実際の酸素吸蔵量OSAに相当する値よりも少ない値となっている。
また、本発明の実施例では、時刻t2から時刻t3までにおいても、積算酸素過不足量ΣOEDが算出される。ここで、目標空燃比をリッチ空燃比に切り替えた時(時刻t2)から下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する時(時刻t3)までの期間を酸素減少期間Tdecと称すると、本発明の実施例では、酸素減少期間Tdecに積算酸素過不足量ΣOEDが算出される。図9では、時刻t2〜時刻t3の酸素減少期間Tdecにおける積算酸素過不足量ΣOEDの絶対値をF1で示している。
この酸素減少期間Tdecの積算酸素過不足量ΣOED(F1)は、時刻t2から時刻t3までに上流側排気浄化触媒20から放出された総酸素量に相当する。しかしながら、上述したように、上流側空燃比センサ40の出力空燃比AFupにはずれが生じている。このため、図9に示した例では、時刻t2〜時刻t3の酸素減少期間Tdecにおける積算酸素過不足量ΣOEDは、時刻t2から時刻t3までに上流側排気浄化触媒20から実際に放出された総酸素量に相当する値よりも多きい値となっている。
ここで、酸素増大期間Tincでは上流側排気浄化触媒20に酸素が吸蔵されると共に、酸素減少期間Tdecでは吸蔵されていた酸素が全て放出される。従って、酸素増大期間Tincにおける積算酸素過不足量の絶対値R1と、酸素減少期間Tdecにおける積算酸素過不足量の絶対値F1とは理論的に同一の値になるはずである。ところが、上述したように、上流側空燃比センサ40の出力空燃比AFupにずれが生じている場合、このずれに応じてこれら積算値の値も変化する。上述したように、上流側空燃比センサ40の出力空燃比が低い側(リッチ側)にずれている場合、絶対値R1に対して絶対値F1の方が多くなる。逆に、上流側空燃比センサ40の出力空燃比が高い側(リーン側)にずれている場合、絶対値R1に対して絶対値F1の方が少なくなる。この場合、酸素増大期間Tincにおける積算酸素過不足量の絶対値R1と酸素減少期間Tdecにおける積算酸素過不足量の絶対値F1の差ΔΣOED(=R1−F1 以下、「過不足量誤差」という)は上流側空燃比センサ40の出力空燃比におけるずれの程度を表している。これら絶対値R1、F1の差が大きくなるほど、上流側空燃比センサ40の出力空燃比におけるずれが大きいといえる。
そこで、本発明の実施例では、過不足量誤差ΔΣOEDに基づいて、制御中心空燃比AFRを補正するようにしている。特に、本発明の実施例では、酸素増大期間Tincにおける積算酸素過不足量の絶対値R1と酸素減少期間Tdecにおける積算酸素過不足量の絶対値F1の差ΔΣOEDが小さくなるように制御中心空燃比AFRを補正するようにしている。
具体的には、本発明の実施例では下記式(2)により学習値sfbgを算出すると共に、下記式(3)により制御中心空燃比AFRが補正される。
sfbg(n)=sfbg(n−1)+k1・ΔΣOED …(2)
AFR=AFRbase+sfbg(n) …(3)
なお、上記式(2)において、sfbg(n−1)は前回算出された学習値を示しており、sfbg(n)は今回算出された学習値を示している。また、上記式(2)におけるk1は、過不足量誤差ΔΣOEDを制御中心空燃比AFRに反映させる程度を表すゲインである。ゲインk1の値が大きいほど制御中心空燃比AFRの補正量が大きくなる。更に、上記式(3)において、基本制御中心空燃比AFRbaseは、基本となる制御中心空燃比であり、本発明の実施例では理論空燃比である。
図9の時刻t3においては、上述したように、絶対値R1、F1に基づいて学習値sfbgが算出される。特に、図9に示した例では、酸素増大期間Tincにおける積算酸素過不足量の絶対値R1よりも酸素減少期間Tdecにおける積算酸素過不足量の絶対値F1の方が大きいことから、時刻t3において学習値sfbgは減少せしめられる。
このとき、上記式(3)からわかるように、制御中心空燃比AFRは、学習値sfbgに基づいて補正される。図9に示した例では、学習値sfbgは負の値となっているため、制御中心空燃比AFRは、基本制御中心空燃比AFRbaseよりも小さな値、すなわちリッチ側の値となる。従って、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ側に補正されることになる。
その結果、時刻t3以降、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比の目標空燃比に対するずれは、時刻t3以前と比べて小さくなる。従って、時刻t3以降、実際の空燃比を表す破線と目標空燃比を表す一点鎖線との間の差は、時刻t3以前における差よりも小さくなる。
また、時刻t3以降も、時刻t1〜時刻t2における操作と同様な操作が行われる。したがって、時刻t4において積算酸素過不足量ΣOEDが切替基準値OEDrefに到達すると、目標空燃比がリーン設定空燃比からリッチ設定空燃比へと切り替えられる。その後、時刻t5において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達すると、再度、目標空燃比がリーン設定空燃比に切り替えられる。
即ち、時刻t3〜時刻t4は、上述したように酸素増大期間Tincに該当し、よってこの間の積算酸素過不足量ΣOEDの絶対値は図9のR2で表せる。また、時刻t4〜時刻t5は、上述したように酸素減少期間Tdecに該当し、よってこの間の積算酸素過不足量ΣOEDの絶対値は図9のF2で表せる。そして、これら絶対値R2、F2の差ΔΣOED(=R2−F2)に基づいて、上記式(2)を用いて学習値sfbgが更新される。本発明の実施例では、時刻t5以降も同様な制御が繰り返され、これにより学習値sfbgの更新が繰り返される。
通常学習制御により上述のように学習値sfbgの更新を行うことにより、上流側空燃比センサ40の出力空燃比AFupは徐々に目標空燃比から離れていくが、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比は徐々に目標空燃比に近づいていく。これにより、上流側空燃比センサ40の出力空燃比におけるずれを修正することができる。このように本発明では、通常学習制御により学習値の更新が行われ、従って本発明の実施例では、この通常学習制御は学習値更新制御とも称される。
なお、上記実施例では、基本的な空燃比制御において、下流側空燃比センサ41よって検出された空燃比がリッチ判定空燃比以下になったときに目標空燃比がリーン空燃比に切り替えられる。また、積算酸素過不足量ΣOEDが所定の切替基準値OEDref以上になったときに目標空燃比がリッチ空燃比に切り替えられる。しかしながら、基本的な空燃比制御として、別の制御を用いてもよい。斯かる別の制御としては、例えば、下流側空燃比センサ41の出力空燃比がリーン判定空燃比以上になったときに目標空燃比をリッチ空燃比に切り替え、積算酸素過不足量ΣOEDが所定の切替基準値OEDref以下になったときに目標空燃比をリーン空燃比に切り替える制御が考えられる。
この場合、目標空燃比をリッチ空燃比に切り替えてから積算酸素過不足量ΣOEDが所定の切替基準値OEDref以下になるまでの酸素減少期間における積算酸素過不足量の絶対値としてリッチ酸素量積算値が算出され、目標空燃比をリーン空燃比に切り替えてから下流側空燃比センサ41の出力空燃比がリーン判定空燃比以上になるまでの酸素増大期間における積算酸素過不足量の絶対値としてリーン酸素量積算値が算出される。そして、これらリッチ酸素量積算値とリーン酸素量積算値との差が小さくなるように制御中心空燃比等が補正されることになる。
<上流側空燃比センサにおける大きなずれ>
ところで、図7及び図8に示した例では、上流側排気浄化触媒20の出力空燃比にずれが生じているが、その程度はそれほど大きくない場合を示している。したがって、図7及び図8の破線からもわかるように、目標空燃比がリッチ設定空燃比に設定されている場合において、実際の排気ガスの空燃比は、リッチ設定空燃比よりもリーンながらも、リッチ空燃比となっている。
これに対して、上流側排気浄化触媒20に生じているずれが大きくなると、目標空燃比がリッチ設定空燃比に設定されていても、実際の排気ガスの空燃比が理論空燃比になってしまう場合がある。この様子を、図10に示す。
図10では、時刻t1以前において、空燃比補正量AFCがリーン設定補正量AFCleanとされている。これにより、上流側空燃比センサ40の出力空燃比AFupはリーン設定空燃比となる。ただし、上流側空燃比センサ40の出力空燃比は大きくリッチ側にずれているため、排気ガスの実際の空燃比はリーン設定空燃比よりもリーンな空燃比となっている(図中の破線)。
その後、時刻t1において上流側空燃比センサ40の出力空燃比AFupに基づいて算出された積算酸素過不足量ΣOEDが切替基準値OEDrefに到達すると、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。これに伴い、上流側空燃比センサ40の出力空燃比AFupはリッチ設定空燃比に相当する空燃比となる。しかしながら、上流側空燃比センサ40の出力空燃比は大きくリッチ側にずれているため、排気ガスの実際の空燃比は理論空燃比となっている(図中の破線)。
その結果、上流側排気浄化触媒20の酸素吸蔵量OSAは変化せずに一定の値に維持される。従って、空燃比補正量AFCをリッチ設定補正量AFCrichに切り替えてから長時間が経過しても、下流側空燃比センサ41の出力空燃比AFdwnはほぼ理論空燃比のまま維持される。上述したように、空燃比補正量AFCのリッチ設定補正量AFCrichからリーン設定補正量AFCleanへの切替は、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達した時に行われる。しかしながら、図10に示した例では、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比のまま維持されることから、空燃比補正量AFCは長時間に亘ってリッチ設定補正量AFCrichに維持されることになる。ところで、上述した通常学習制御、即ち学習値更新制御は、空燃比補正量AFCがリッチ設定補正量AFCrichとリーン設定補正量AFCleanとの間で交互に切り替えられることを前提としている。従って、上流側空燃比センサ40の出力空燃比が大きくずれている場合には、空燃比補正量AFCの切替が行われず、従って上述した通常学習制御、即ち、学習値更新制御は行われない。その結果、上流側空燃比センサ40の出力空燃比におけるずれの修正が行われない。
図11は、上流側空燃比センサ40の出力空燃比が極めて大きくリッチ側にずれている場合を示す図10と同様な図である。図11に示した例では、図10に示した例と同様に、時刻t1において、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。即ち、時刻t1において目標空燃比がリッチ設定空燃比に設定される。しかしながら、上流側空燃比センサ40の出力空燃比のずれにより、実際の排気ガスの空燃比がリーン空燃比になっている(図中の破線)。
その結果、空燃比補正量AFCがリッチ設定補正量AFCrichに設定されているにもかかわらず、上流側排気浄化触媒20にはリーン空燃比の排気ガスが流入する。そのため、上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に増大していき、ついには時刻t2において最大吸蔵可能酸素量Cmaxに到達する。このように、酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxに到達すると、上流側排気浄化触媒20はもはやこれ以上排気ガス中の酸素を吸蔵することができない。このため、上流側排気浄化触媒20からは流入する排気ガス中に含まれているNOxがそのまま流出し、下流側空燃比センサ41の出力空燃比AFdwnが上昇してリーン空燃比を示す。一方、空燃比補正量AFCのリッチ設定補正量AFCrichからリーン設定補正量AFCleanへの切替は、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達した時に行われる。従って、このように上流側空燃比センサ40の出力空燃比が極めて大きくずれている場合には、空燃比補正量AFCの切替が行われず、従ってこの場合も、上述した通常学習制御、即ち、学習値更新制御は行われない。その結果、上流側空燃比センサ40の出力空燃比におけるずれの修正が行われない。
<張付き学習制御>
そこで、本発明の実施例ではでは、上流側空燃比センサ40の出力空燃比におけるずれが大きな場合であってもそのずれを修正すべく、上述した通常学習制御、即ち、学習値更新制御に加えて、理論空燃比張付き学習制御、リーン張付き学習制御及びリッチ張付き学習制御が行われる。
<理論空燃比張付き学習>
まず、理論空燃比張付き学習制御について説明する。理論空燃比張付き学習制御は、図10に示した例のように、下流側空燃比センサ41によって検出される空燃比が理論空燃比に張り付いてしまっている場合に行われる学習制御である。
ここで、リッチ判定空燃比AFrichとリーン判定空燃比AFleanとの間の空燃比領域を理論空燃比近傍領域Mと称する。理論空燃比張付き学習制御では、空燃比補正量AFCをリッチ設定補正量AFCrichに切り替えてから、すなわち目標空燃比をリッチ設定空燃比に切り替えてから、下流側空燃比センサ41の出力空燃比AFdwnが予め定められた理論空燃比維持判定時間以上に亘って理論空燃比近傍領域M内に維持されているか否かが判断される。そして、下流側空燃比センサ41の出力空燃比AFdwnが予め定められた理論空燃比維持判定時間以上に亘って理論空燃比近傍領域M内に維持されている場合には、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ側に変化するように学習値sfbgが減少せしめられる。図12にこの様子を示す。
図12は、空燃比補正量AFC等のタイムチャートを示す図9と同様な図である。図12は、図10と同様に、上流側空燃比センサ40の出力空燃比AFupが低い側(リッチ側)に大きくずれている場合を示している。
図12に示された例では、図10と同様に、時刻t1以前において、空燃比補正量AFCがリーン設定補正量AFCleanとされている。その後、時刻t1において、積算酸素過不足量ΣOEDが切替基準値OEDrefに到達し、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。しかしながら、上流側空燃比センサ40の出力空燃比は大きくリッチ側にずれているため、図10に示した例と同様に、排気ガスの実際の空燃比はほぼ理論空燃比となっている。このため、時刻t1以降、上流側排気浄化触媒20の酸素吸蔵量OSAは一定の値に維持される。従って、下流側空燃比センサ41の出力空燃比AFdwnは長期間に亘って理論空燃比近傍領域M内に維持される。
そこで、本発明の実施例では、空燃比補正量AFCをリッチ設定補正量AFCrichに切り替えてから予め定められた理論空燃比維持判定時間Tsto以上に亘って下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比近傍領域M内に維持されている場合には、制御中心空燃比AFRを補正するようにしている。本発明の実施例では、このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ側に変化するように学習値sfbgが更新される。
具体的には、本実施形態では、下記式(4)により学習値sfbgを算出すると共に、上記式(3)により制御中心空燃比AFRが補正される。
sfbg(n)=sfbg(n−1)+k2・AFCrich …(4)
なお、上記式(4)において、k2は、制御中心空燃比AFRを補正する程度を表すゲインである(0<k2≦1)。ゲインk2の値が大きいほど、制御中心空燃比AFRの補正量が大きくなる。
ここで、上述したように、空燃比補正量AFCの切替後に長期間に亘って下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比近傍領域M内に維持されている場合には、排気ガスの実際の空燃比はほぼ理論空燃比近傍の値となっている。このため、上流側空燃比センサ40におけるずれは、制御中心空燃比(理論空燃比)と目標空燃比(この場合は、リッチ設定空燃比)との差と同程度になっている。本発明の実施例では、上記式(4)に示したように制御中心空燃比と目標空燃比との差に相当する空燃比補正量AFCに基づいて学習値sfbgを更新しており、これにより、より適切に上流側空燃比センサ40の出力空燃比におけるずれを修正することができる。
図12に示した例では、時刻t1から理論空燃比維持判定時間Tstoが経過した時刻t2まで、空燃比補正量AFCはリッチ設定補正量AFCrichとされる。そのため、式(4)からわかるように、時刻t2において学習値sfbgが減少せしめられる。その結果、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比はリッチ側に変化することになる。これにより、時刻t2以降、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比の目標空燃比に対するずれは時刻t2以前と比べて小さくなる。従って、時刻t2以降、実際の空燃比を表す破線と目標空燃比を表す一点鎖線との間の差は、時刻t2以前における差よりも小さくなっている。
図12に示した例では、ゲインk2を比較的小さい値にした例を示している。このため、時刻t2において学習値sfbgの更新が行われてもなお、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比の目標空燃比に対するずれが残っている。このため、排気ガスの実際の空燃比は、リッチ設定空燃比よりもリーンな空燃比、すなわちリッチ度合いの小さい空燃比となる(図12の破線参照)。このため、上流側排気浄化触媒20の酸素吸蔵量OSAの減少速度は遅い。
この結果、時刻t2から理論空燃比維持判定時間Tstoが経過した時刻t3まで、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比近傍領域M内に維持される。そのため、図12に示した例では、時刻t3においても、式(4)を用いて、学習値sfbgの更新が行われる。その後、図12に示した例では、時刻t4において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下となる。このように、出力空燃比AFdwnがリッチ判定空燃比AFrich以下になった後には、上述したように空燃比補正量AFCがリーン設定補正量AFCleanとリッチ設定補正量AFCrichとに交互に設定される。このときには、上述した通常学習制御、即ち、学習値更新制御が行われるようになる。
理論空燃比張付き学習制御によりこのように学習値sfbgの更新を行うことにより、上流側空燃比センサ40の出力空燃比AFupのずれが大きい場合であっても、学習値の更新を行うことができる。これにより、上流側空燃比センサ40の出力空燃比におけるずれを修正することができる。
なお、上記実施形態では、理論空燃比維持判定時間Tstoは予め定められた時間とされている。この場合、理論空燃比維持判定時間は、目標空燃比をリッチ空燃比に切り替えてからの積算酸素過不足量ΣOEDの絶対値が新品時の上流側排気浄化触媒20の最大吸蔵可能酸素量に到達するまでに通常かかる時間以上とされる。具体的には、その2倍〜4倍程度の時間とするのが好ましい。
一方、理論空燃比維持判定時間Tstoは、目標空燃比をリッチ空燃比に切り替えてからの積算酸素過不足量ΣOED等、他のパラメータに応じて変化させてもよい。具体的には、例えば、積算酸素過不足量ΣOEDが多くなるほど、理論空燃比維持判定時間Tstoが短くされる。それにより、目標空燃比をリッチ空燃比に切り替えてからの積算酸素過不足量ΣOEDが所定の量(例えば、図12のOEDsw)になったときに上述したような学習値sfbgの更新を行うようにすることもできる。
<リッチ・リーン張付き学習>
次に、リーン張付き学習制御について説明する。リーン張付き学習制御は、図11に示した例のように、目標空燃比をリッチ空燃比にしているにもかかわらず、下流側空燃比センサ41によって検出される空燃比がリーン空燃比に張り付いてしまっている場合に行われる学習制御である。リーン張付き学習制御では、空燃比補正量AFCをリッチ設定補正量AFCrichに切り替えてから、すなわち目標空燃比をリッチ設定空燃比に切り替えてから、下流側空燃比センサ41の出力空燃比AFdwnが予め定められたリーン空燃比維持判定時間以上に亘ってリーン空燃比に維持されているかを判断する。そして、リーン空燃比維持判定時間以上に亘ってリーン空燃比に維持されている場合には、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ側に変化するように学習値sfbgが減少せしめられる。図13にこの様子を示す。
図13は、空燃比補正量AFC等のタイムチャートを示す図9と同様な図である。図13は、図11と同様に、上流側空燃比センサ40の出力空燃比AFupが低い側(リッチ側)に極めて大きくずれている場合を示している。
図13に示される例では、時刻t0において、空燃比補正量AFCがリーン設定補正量AFCleanからリッチ設定補正量AFCrichに切り替えられる。しかしながら、上流側空燃比センサ40の出力空燃比は極めて大きくリッチ側にずれているため、図11に示した例と同様に、排気ガスの実際の空燃比はリーン空燃比となっている。このため、時刻t0以降、下流側空燃比センサ41の出力空燃比AFdwnはリーン空燃比に維持される。
そこで、本発明の実施例では、空燃比補正量AFCがリッチ設定補正量AFCrichに設定されてから、予め定められたリーン空燃比維持判定時間Tlean以上に亘って下流側空燃比センサ41の出力空燃比AFdwnがリーン空燃比に維持されている場合には、空燃比補正量AFCを補正するようにしている。この場合、本発明の実施例では、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ側に変化するように学習値sfbgが補正される。
具体的には、本発明の実施例では、下記式(5)により学習値sfbgを算出すると共に、上記式(3)により学習値sfbgに基づいて制御中心空燃比AFRが補正される。
sfbg(n)=sfbg(n−1)+k3・(AFCrich−(AFdwn−14.6)) …(5)
なお、上記式(5)において、k3は、制御中心空燃比AFRを補正する程度を表すゲインである(0<k3≦1)。ゲインK3の値が大きいほど、制御中心空燃比AFRの補正量が大きくなる。
ここで、図13に示した例では、空燃比補正量AFCがリッチ設定補正量AFCrichに設定されているときに、下流側空燃比センサ41の出力空燃比AFdwnがリーン空燃比に維持されている。この場合、上流側空燃比センサ40におけるずれは、目標空燃比と下流側空燃比センサ41の出力空燃比との差に相当する。これを分解すると、上流側空燃比センサ40におけるずれは、目標空燃比と理論空燃比との差(リッチ設定補正量AFCrichに相当)と、理論空燃比と下流側空燃比センサ41の出力空燃比との差とを加算した量と同程度となっているといえる。そこで、本発明の実施例では、上記式(5)に示したように、リッチ設定補正量AFCrichに下流側空燃比センサ41の出力空燃比と理論空燃比との差を加算した値に基づいて学習値sfbgを更新している。特に、上述した理論空燃比張付き学習では、リッチ設定補正量AFCrich相当分だけ学習値を補正しているのに対して、リーン張付き学習ではこれに加えて下流側空燃比センサ41の出力空燃比AFdwn相当分だけ学習値を補正している。また、ゲインk3はゲインk2と同程度とされる。このため、リーン張付き学習における補正量は、理論空燃比張付き学習における補正量よりも大きい。
図13に示した例では、式(5)からわかるように、時刻t1において、学習値sfbgは減少せしめられる。その結果、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比はリッチ側に変化することになる。これにより、時刻t1以降、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比の目標空燃比に対するずれは時刻t1以前と比べて小さくなる。従って、時刻t1以降、実際の空燃比を表す破線と目標空燃比を表す一点鎖線との間の差は、時刻t1以前における差よりも小さくなっている。
図13では、ゲインk3を比較的小さい値にした例を示している。このため、時刻t1において学習値sfbgの更新が行われてもなお、上流側空燃比センサ40の出力空燃比におけるずれが残っている。特に、図13に示される例では、時刻t1以降も、排気ガスの実際の空燃比はリーン空燃比のままとなっている。この結果、時刻t1からリーン空燃比維持判定時間Tleanに亘って下流側空燃比センサの出力空燃比AFdwnがリーン空燃比に維持される。このため、図13に示される例では、時刻t2においても、リーン張付き学習により、上記式(5)を用いて学習値sfbgの補正が行われる。
時刻t2において学習値sfbgの補正が行われると、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比の目標空燃比に対するずれが小さくなる。これにより、図12に示される例では、時刻t2以降には、排気ガスの実際の空燃比は理論空燃比よりも僅かにリッチとなり、これに伴って下流側空燃比センサ41の出力空燃比AFdwnはリーン空燃比からほぼ理論空燃比に変化する。また、図13に示される例では、時刻t2から時刻t3まで理論空燃比維持判定時間Tstoに亘って下流側空燃比センサ41の出力空燃比AFdwnがほぼ理論空燃比、すなわち理論空燃比近傍領域M内に維持される。そのため、時刻t3において、理論空燃比張付き学習により、上記式(4)を用いて学習値sfbgの補正が行われる。
リーン張付き学習制御により学習値sfbgの更新を行うことにより、上流側空燃比センサ40の出力空燃比AFupのずれが極めて大きい場合であっても、学習値の更新を行うことができる。これにより、上流側空燃比センサ40の出力空燃比におけるずれを小さくすることができる。
なお、上述の実施例では、リーン空燃比維持判定時間Tleanは予め定められた時間とされている。この場合、リーン空燃比維持判定時間Tleanは、目標空燃比をリッチ空燃比に切り替えてから下流側空燃比センサ41の出力空燃比がリッチ空燃比に変化するまでに通常かかる下流側空燃比センサの応答遅れ時間以上とされる。具体的には、その2倍〜4倍程度の時間とするのが好ましい。また、リーン空燃比維持判定時間Tleanは、目標空燃比をリッチ空燃比に切り替えてからの積算酸素過不足量ΣOEDの絶対値が新品時の上流側排気浄化触媒20の最大吸蔵可能酸素量に到達するまでに通常かかる時間よりも短い。したがって、リーン空燃比維持判定時間Tleanは、上述した理論空燃比維持判定時間Tstoよりも短い。
一方、リーン空燃比維持判定時間Tleanは、目標空燃比をリッチ空燃比に切り替えてから積算された排気ガス流量等、他のパラメータに応じて変化させてもよい。具体的には、例えば、積算排気ガス流量ΣGeが多くなるほど、リーン空燃比維持判定時間Tleanが短くされる。これにより、目標空燃比をリッチ空燃比に切り替えてからの積算排気ガス流量が所定の量(例えば、図13のΣGesw)になったときに、上述したような学習値sfbgの更新を行うようにすることもできる。また、この場合、所定の量は、目標空燃比を切り替えてからそれに応じて下流側空燃比センサ41の出力空燃比が変化するまでに必要な排気ガスの総流量以上とすることが必要である。具体的には、斯かる総流量の2倍〜4倍程度の量とすることが好ましい。
次に、リッチ張付き学習制御について説明する。リッチ張付き学習制御は、リーン張付き学習制御と同様な制御であり、目標空燃比をリーン空燃比にしているにもかかわらず、下流側空燃比センサ41によって検出される空燃比がリッチ空燃比に張り付いてしまっている場合に行われる学習制御である。リッチ張付き学習制御では、空燃比補正量AFCをリーン設定補正量AFCleanに切り替えてから、すなわち目標空燃比をリーン設定空燃比に切り替えてから、下流側空燃比センサ41の出力空燃比AFdwnが予め定められたリッチ空燃比維持判定時間(リーン空燃比維持判定時間と同様)以上に亘ってリッチ空燃比に維持されているかを判断する。そして、リッチ空燃比維持判定時間以上に亘ってリッチ空燃比に維持されている場合には、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン側に変化するように学習値sfbgが増大せしめられる。すなわち、リッチ張付き学習制御では、上述したリーン張付き学習制御とはリッチ及びリーンが逆にした制御が行われる。
<下流側空燃比センサの異常検出>
さて、これまで下流側空燃比センサ41が正常であることを前提として、基本的な空燃比制御や通常学習制御、即ち学習値更新制御や張付き学習制御について説明してきた。これまでの説明から、下流側空燃比センサ41が正常である限り、たとえ上流側空燃比センサ40の出力空燃比にずれが生じたとしても、通常学習制御、即ち学習値更新制御や張付き学習制御によって、上流側空燃比センサ40の出力空燃比のずれが修正され、上流側排気浄化触媒20に流入する排気ガスの空燃比を、目標とする設定空燃比に正確に一致させることができることがわかる。しかしながら、下流側空燃比センサ41が異常になった場合には、上流側排気浄化触媒20に流入する排気ガスの空燃比を、目標とする設定空燃比に正確に一致させることは困難となる。従って、下流側空燃比センサ41に異常が生じた場合には、下流側空燃比センサ41に異常が生じたことをただちに検出する必要がある。
ところがこの場合、基本的な空燃比制御に加えて通常学習制御、即ち学習値更新制御や張付き学習制御を行っていると、そのときの学習値sfbgの挙動から下流側空燃比センサ41に異常が生じたか否かを検出し得ることが判明したのである。次に、この新たな下流側空燃比センサの異常検出方法について説明する。さて、空燃比センサは通常、センサ検出部が排気ガス中に位置するようにして、排気管に形成された取り付け穴内に外部から挿入されており、センサ検出部の周囲は筒状の保護カバーで包囲されている。この場合、空燃比センサは、排気管の取り付け穴内に密封的に固着されているが、時間が経過すると
この密封的固着部を介して外気が保護カバー内のセンサ検出部周りに漏洩することがある。このことは、本発明の実施例において用いられている下流側空燃比センサ41についても同様である。
ところで、本発明の実施例では、上流側排気浄化触媒20から排出される排気ガスは、通常、理論空燃比となっており、従って下流側空燃比センサ41の出力空燃比は通常、理論空燃比となるはずである。ところが、上述したように、外気が保護カバー内のセンサ検出部周りに漏洩すると、排気ガスの実際の空燃比が理論空燃比であったとしても、下流側空燃比センサ41により検出される空燃比はリーンとなり、下流側空燃比センサ41の出力は、いわゆるリーンずれを生ずることになる。このように下流側空燃比センサが、下流側空燃比センサ41の出力がリーン側にずれるという異常を生ずると、もはや上流側排気浄化触媒20に流入する排気ガスの空燃比を、目標とする設定空燃比に正確に一致させることができなくなる。この場合、下流側空燃比センサ41の出力は、何らかの理由により、リッチ側にずれる異常を生ずることもあるが、実際には下流側空燃比センサ41の出力は、リーンずれを生ずることが多い。従って、以下下流側空燃比センサ41の出力がリーンにずれを生じた場合を例にとって、下流側空燃比センサの異常検出方法を説明する。
図14は、下流側空燃比センサ41の出力がリーンずれを生じた場合の第1の例のタイムチャートを示している。この図14は図9と同様な図であって、図14には、制御中心空燃比AFR、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び学習値sfbgの変化が示されている。また、図14において、Tleanは図13に示されるリーン空燃比維持判定時間Tleanと同じリーン空燃比維持判定時間を示している。なお、図14に示される下流側空燃比センサ41の異常検出方法では、上流側空燃比センサ40の出力空燃比にリーンずれ或いはリッチずれが生じているか否かにかかわらずに、下流側空燃比センサ41の異常を検出することができるが、本発明を理解しやすくするために、上流側空燃比センサ40の出力空燃比がずれを生じていない場合について図14を参照しつつ最初に説明する。
図14に示される例では、図9と同様に、時刻t1以前の状態では、制御中心空燃比AFRが理論空燃比とされ、空燃比補正量AFCがリッチ設定補正量AFCrichとされている。このとき、上流側空燃比センサ40の出力空燃比AFupは実線で示したようにリッチ設定空燃比に相当する空燃比となる。一方、時刻t1以前の状態では、上流側排気浄化触媒20の酸素吸蔵量OSAが正の値であるので、上流側排気浄化触媒20から流出する排気ガスの実際の空燃比は理論空燃比となっている。しかしながら、このとき下流側空燃比センサ41の出力空燃比AFdwnはリーン側にずれていて、図14に示されるようにリーン空燃比AFsとなっている。即ち、図14は、下流側空燃比センサ41に向けて流れる排気ガスの実際の空燃比は理論空燃比であるときに、下流側空燃比センサ41の出力空燃比AFdwnがリーン空燃比AFsを示してしまう異常状態を表している。
次いで、上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に減少してゼロになると、即ち時刻t1 に達すると、上流側排気浄化触媒20からHC,COを還元するための酸素を供給し得なくなるために、上流側排気浄化触媒20から流出する排気ガスの空燃比は、上流側空燃比センサ40の出力空燃比AFupで示されるリッチ空燃比となる。その結果、下流側空燃比センサ41の出力空燃比AFdwnは低下する、即ちリッチ側に変化する。図14は、このように下流側空燃比センサ41の出力空燃比AFdwnがリッチ側に変化しても下流側空燃比センサ41の出力空燃比AFdwnが依然としてリーンである場合を示している。
次いで、時刻t において、下流側空燃比センサ41の出力空燃比AFdwnが、予め定められたリーン空燃比維持判定時間Tlean以上に亘ってリーン空燃比であったと判断されると、前記式(5)により学習値sfbgが算出され、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ側に変化するように学習値sfbgが補正される。即ち、制御中心空燃比AFRが算出された学習値sfbgだけ低下せしめられ、それによって上流側空燃比センサ40の出力空燃比AFupが低下する、即ち更にリッチ側に変化する。言い換えると、このとき、張付き学習制御によって学習値sfbgが低下せしめられる。なお、図14は、このように下流側空燃比センサ41の出力空燃比AFdwnがリッチ側に変化しても下流側空燃比センサ41の出力空燃比AFdwnが依然としてリーンである場合を示している。
次いで、時刻t において、下流側空燃比センサ41の出力空燃比AFdwnが、予め定められたリーン空燃比維持判定時間Tlean以上に亘ってリーン空燃比であったと判断されると、前記式(5)により学習値sfbgが算出され、上流側排気浄化触媒20に流入する排気ガスの空燃比が更にリッチ側に変化するように学習値sfbgが補正される。即ち、制御中心空燃比AFRが算出された学習値sfbgだけ更に低下せしめられ、それによって上流側空燃比センサ40の出力空燃比AFupが更に低下する、即ち更にリッチ側に変化する。言い換えると、このとき、張付き学習制御によって学習値sfbgが更に低下せしめられる。
図14に示される例では、このとき、即ち時刻tにおいて張付き学習制御により学習値sfbgが更に低下せしめられたときに、時刻tにおいて下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達すると、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられ、それにより上流側空燃比センサ40の出力空燃比AFupはリーン空燃比となる。空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられると、図14に示されるように、上流側排気浄化触媒20の酸素吸蔵量OSAが増大し始め、積算酸素過不足量ΣOEDが増大し始める。上流側排気浄化触媒20の酸素吸蔵量OSAが正の値になると、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比となり、従ってこのとき、下流側空燃比センサ41の出力空燃比AFdwnはリーン空燃比AFsを示すことになる。
さて、時刻t 以降では、上流側空燃比センサ40の出力空燃比AFupからわかるように、排気ガスの実際の空燃比は、リーン設定空燃比よりもかなりリーン度合いの低い空燃比となっている。その結果、図14に示されるように、上流側排気浄化触媒20の酸素吸蔵量OSAの増大速度は極めて低くなる。一方、酸素過不足量は、上流側空燃比センサ40の出力空燃比AFup(より正確には、出力空燃比AFupと制御中心空燃比AFRとの差)に基づいて算出される。従って、積算酸素過不足量ΣOEDは酸素吸蔵量OSAにくらべて急速に増大する。
次いで、時刻tにおいて、積算酸素過不足量ΣOEDが切替基準値OEDrefに到達する。積算酸素過不足量ΣOEDが切替基準値OEDrefに到達すると、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。従って、上流側空燃比センサ40の出力空燃比AFupからわかるように、排気ガスの実際の空燃比は、リッチ空燃比に切り替わる。このとき、積算酸素過不足量ΣOEDは一旦ゼロにされ、積算酸素過不足量ΣOEDの算出が再開される。また、このとき、上流側排気浄化触媒20の酸素吸蔵量OSAは減少し始める。ところでこのとき、排気ガスの実際の空燃比は、設定リッチ空燃比に比べてかなりリッチ度合いの高い空燃比となっている。従って、図14に示されるように、酸素吸蔵量OSAは急速に低下する。
上述したように時刻t 以降における酸素吸蔵量OSAの増大速度は極めて低く、その結果積算酸素過不足量ΣOEDが切替基準値OEDrefに到達したときの、即ち時刻tにおける酸素吸蔵量OSAは極めて少量となっている。一方、上述したように、時刻tにおいて空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられると、酸素吸蔵量OSAは急速に低下する。次いで時刻tにおいて酸素吸蔵量OSAがゼロになると、上流側排気浄化触媒20から流出する排気ガスの空燃比は理論空燃比からかなりリッチなリッチ空燃比に変化する。その結果、時刻tにおいて、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。このとき、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。このとき、積算酸素過不足量ΣOEDは一旦ゼロにされ、積算酸素過不足量ΣOEDの算出が再開される。また、このとき、上流側排気浄化触媒20の酸素吸蔵量OSAは増大し始める。
このように排気ガスの実際の空燃比がかなりリッチにされているときに、時刻t において下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達することにより空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられると、その後空燃比補正量AFCが再びリッチ設定補正量AFCrichに切り替えられたときに短時間のうちに積算酸素過不足量ΣOEDが再び切替基準値OEDrefに到達する。このように積算酸素過不足量ΣOEDが切替基準値OEDrefに到達してから積算酸素過不足量ΣOEDが再び切替基準値OEDrefに到達するまでの時間が短くなると、図14からわかるように、時刻tにおける積算酸素過不足量ΣOED(R)が時刻tにおける積算酸素過不足量ΣOED(F)に比べてかなり大きくなる。
この場合、積算酸素過不足量ΣOED(R)が積算酸素過不足量ΣOED(F)に比べて大きいということは、排気ガスの実際の空燃比がリッチ設定空燃比に対してリッチ側にずれていること意味している。従って、このときには、図9を参照しつつ既に説明した通常学習制御、即ち、学習値更新制御によって、積算酸素過不足量ΣOED(R)の絶対値と積算酸素過不足量ΣOED(F)の絶対値との差過不足量誤差ΔΣOEDが小さくなるように学習値sfbgが増大せしめられる。このとき本発明の実施例では、前記式(2)により学習値sfbgが算出されると共に、前記式(3)により制御中心空燃比AFRが補正される。即ち、図14に示されるように、時刻tにおいて学習値sfbgが増大され、制御中心空燃比AFRが学習値sfbgだけ増大せしめられる。
さて、時刻tにおいて、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられると、このときには制御中心空燃比AFRが学習値sfbgだけ増大せしめられているので、上流側空燃比センサ40の出力空燃比AFupからわかるように、排気ガスの実際の空燃比は少し増大される、即ち少しリーン側に変化せしめられる。次いで、時刻tにおいて、積算酸素過不足量ΣOEDが切替基準値OEDrefに到達すると空燃比補正量AFCが再びリッチ設定補正量AFCrichに切り替えら、このとき積算酸素過不足量ΣOEDは一旦ゼロにされ、積算酸素過不足量ΣOEDの算出が再開される。また、このとき、上流側排気浄化触媒20の酸素吸蔵量OSAは減少し始める。
図14は、時刻tにおける学習値sfbgの低下量と時刻tにおける学習値sfbgの増大量がほぼ同じである場合を示している。この場合には、時刻tにおいて、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられた後、時刻t10において酸素吸蔵量OSAがゼロになると、このときには図14からわかるように制御中心空燃比AFRの値が、時刻tから時刻tにおける制御中心空燃比AFRの値と同じ値になっているので、下流側空燃比センサ41の出力空燃比AFdwnは時刻tから時刻tにおける下流側空燃比センサ41の出力空燃比AFdwnと同じリーン空燃比となっている。即ち、時刻t以降の状態と時刻t10以降の状態とは同じ状態となる。
従って、時刻tにおいて下流側空燃比センサ41の出力空燃比AFdwnがリーン空燃比になった後、下流側空燃比センサ41の出力空燃比AFdwnが、予め定められたリーン空燃比維持判定時間Tlean以上に亘ってリーン空燃比であったと判断されると、再び時刻t11において、張付き学習制御により学習値sfbgが低下せしめられる。次いで、時刻t11以降、制御中心空燃比AFR、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び学習値sfbgは、時刻tから時刻t11に示される変化と同じ変化を繰り返すことになる。
このように、下流側空燃比センサ41の出力空燃比AFdwnがリーンずれを生ずると、張付き学習制御による学習値sfbgの低下作用と通常学習制御、即ち、学習値更新制御による学習値sfbgの増大作用とが交互に繰り返されることになり、従って学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されることになる。一方、上流側空燃比センサ40の出力空燃比がリーンずれを生じている場合にも図13に示されるように下流側空燃比センサ41の出力空燃比AFdwnがリーンにずれ、従って下流側空燃比センサ41の出力空燃比AFdwnがリーンにずれた場合、上流側空燃比センサ40の出力空燃比がリーンずれを生じているのか、或いは下流側空燃比センサ41の出力空燃比AFdwnがリーンずれを生じているのかはわからない。
しかしながら、上流側空燃比センサ40の出力空燃比がリーンずれを生じている場合には、図13に示されるように、学習値sfbgは徐々に減少して一定値に収束していく。即ち、上流側空燃比センサ40の出力空燃比がリーンずれを生じている場合には、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されることはない。
一方、上流側空燃比センサ40の出力空燃比がリッチずれを生じている場合には、学習値sfbgは徐々に増大して一定値に収束していく。従って、上流側空燃比センサ40の出力空燃比がリッチずれを生じている場合にも、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されることはない。
また、上流側空燃比センサ40の出力空燃比がリーンずれ或いはリッチずれを生じており、下流側空燃比センサ41の出力空燃比が共にリーンずれを生じている場合には、一定値に向かう学習値sfbgの収束作用に、交互に繰り返される学習値sfbgの増大低下作用が重畳されることになる。この場合には、上流側空燃比センサ40の出力空燃比の修正が完了すれば、一定値に向かう学習値sfbgの収束作用は完了し、その後は下流側空燃比センサ41の出力空燃比がリーンずれに基づく学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されることになる。
このように、上流側空燃比センサ40の出力空燃比が正常であるときはもとより、上流側空燃比センサ40の出力空燃比がリーンずれを生じている場合であってもリッチずれを生じている場合であっても、下流側空燃比センサ41の出力空燃比がリーンずれを生じていない限り、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されることはない。一方、下流側空燃比センサ41の出力空燃比がリーンずれを生じている場合には必ず、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返される。従って、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されたときには、下流側空燃比センサ41の出力空燃比がリーンずれを生じていると判断できることになる。
図15は、図14の時刻tにおいて、通常学習制御、即ち、学習値更新制御によって学習値sfbgが増大されたときに、学習値sfbgの増大量が大きく、その結果、制御中心空燃比AFRが理論空燃比まで増大せしめられた場合を示している。この場合には、図15に示されるように、時刻tにおいて下流側空燃比センサ41の出力空燃比AFdwnがリーン空燃比AFsまで増大した後、時刻t以降と同様に、張付き学習制御による学習値sfbgの低下作用が2回行われ、その後通常学習制御、即ち、学習値更新制御によって学習値sfbgの増大作用が1回行われる。即ち、この場合には、学習値sfbgの低下作用が2回行われた後、学習値sfbgの増大作用が1回行われ、これが繰り返される。
図16は、図14の時刻tにおいて、張付き学習制御により学習値sfbgが低下せしめられた後、下流側空燃比センサ41の出力空燃比AFdwnが、図12を参照しつつ説明した理論空燃比維持判定時間Tsto以上に亘って、理論空燃比近傍領域M内に維持されている場合を示している。この場合には、時刻tにおいて、理論空燃比張付き学習制御により学習値sfbgが低下せしめられる。次いで、時刻tにおいて、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達した後は、時刻t10に達するまでの間、制御中心空燃比AFR、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び学習値sfbgは、図14の時刻tから時刻t10に示される変化と同様な変化を行う。
次いで、時刻t10において、下流側空燃比センサ41の出力空燃比AFdwnは理論空燃比近傍領域M内まで低下し、その後、下流側空燃比センサ41の出力空燃比AFdwnが、理論空燃比維持判定時間Tsto以上に亘って理論空燃比近傍領域M内に維持されている場合には、時刻t11において、学習値sfbgが再び低下せしめられる。次いで、時刻t11以降、制御中心空燃比AFR、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び学習値sfbgは、時刻tから時刻t11に示される変化と同じ変化を繰り返すことになる。従って、この場合も、張付き学習制御による学習値sfbgの低下作用と通常学習制御、即ち、学習値更新制御による学習値sfbgの増大作用とが交互に繰り返されることになる。
さて、上述したように、学習値sfbgの低下作用と学習値sfbgの増大作用とが繰り返されたときには、下流側空燃比センサ41の出力空燃比がリーンずれを生じている、即ち下流側空燃比センサ41に異常があると判断することができる。下流側空燃比センサ41の出力空燃比がリーンずれを生じているときに学習値sfbgの低下作用と学習値sfbgの増大作用とが繰り返されるのは、張付き学習制御と通常学習制御、即ち、学習値更新制御とが行われているからであり、従って本発明による下流側空燃比センサ41の異常検出方法においては、張付き学習制御および通常学習制御、即ち、学習値更新制御が行われていることが前提である。
この場合、張付き学習制御について言うと、何回目(場合によっては1回目)かの張付き学習制御を行ったときに下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達することが必要であり、従って張付き学習制御による学習値sfbgの低下量は、張付き学習制御を行ったときに下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達し得るように設定されている。一方、通常学習制御、即ち、学習値更新制御について言うと、通常学習制御、即ち、学習値更新制御を行ったときには続いて張付き学習制御が行われることが必要であり、従って通常学習制御、即ち、学習値更新制御による学習値sfbgの増大量は、通常学習制御、即ち、学習値更新制御を行ったときに続いて張付き学習制御が行われるように設定されている。
ところで、図14および図16に示される例では、下流側空燃比センサ41の出力空燃比がリーンずれを生じているときには、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返される。これに対し、図15に示される例では、下流側空燃比センサ41の出力空燃比がリーンずれを生じているときには、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返されず、2回の学習値sfbgの低下作用が行われた後、1回の学習値sfbgの増大作用が行われ、以後これが繰り返される。このい場合でも、学習値sfbgの低下作用と学習値sfbgの増大作用とが繰り返されていることになる。
なお、通常学習制御、即ち、学習値更新制御が行われている場合においても、学習値sfbgがなかなか収束しないために、学習値sfbgが増大および低下を繰り返す場合がある。しかしながら、この場合の学習値sfbgが低下量および増大量は、夫々張付き学習制御による学習値sfbgの低下量および通常学習制御、即ち、学習値更新制御による学習値sfbgの増大量に比べてかなり小さい。従って、この場合、学習値sfbgが予め定められた一定値以上低下し、学習値sfbgが予め定められた一定値以上増大し、これが繰り返されたときには下流側空燃比センサ41の出力空燃比がリーンずれを生じていると判断することができる。即ち、学習値sfbgの一定値以上の低下と学習値sfbgの一定値以上の増大とが繰り返されたときには下流側空燃比センサ41に異常があると判断することができる。これら一定値は、通常学習制御、即ち、学習値更新制御が行われているときの学習値sfbgが低下量および増大量と、張付き学習制御および通常学習制御、即ち、学習値更新制御が繰り返されるときの学習値sfbgが低下量および増大量との中間値であり、実験等によって決定される。
従って、本発明による空燃比センサの異常検出方法によれば、酸素吸蔵能力を有する排気浄化触媒20に流入する排気ガスの目標空燃比を、理論空燃比よりもリッチなリッチ設定空燃比と理論空燃比よりもリーンなリーン設定空燃比との間で交互に切り替え、排気浄化触媒20から流出した排気ガスの空燃比を下流側空燃比センサ41により検出し、下流側空燃比センサ41により検出された空燃比に基づいて排気浄化触媒20に流入する排気ガスの空燃比を目標空燃比に近づけるのに必要な空燃比補正値を学習すると共に、学習により得られた空燃比補正値の学習値sfbgを用いて排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御し、目標空燃比がリッチ設定空燃比に設定されているときに下流側空燃比センサ41により検出された空燃比が予め定められた期間に亘ってリーンに維持されている場合には、排気浄化触媒20に流入する排気ガスの空燃比を小さくさせるために学習値sfbgを低下させる張付き学習制御を行い、下流側空燃比センサ41により検出された空燃比に基づいて、排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比よりもリッチ側にずれていると判別されたときには学習値sfbgを増大させかつ排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比よりもリーン側にずれていると判別されたときには学習値sfbgを低下させる学習値更新制御を行い、学習値sfbgの一定値以上の低下と学習値sfbgの一定値以上の増大とが繰り返されたときには下流側空燃比センサ41に異常があると判定する。
一方、本発明の実施例では、下流側空燃比センサ41により検出された空燃比が予め定められているリーン判定空燃比AFlean以上になったときに下流側空燃比センサ41により検出された空燃比AFdwnがリーンになったと判定され、下流側空燃比センサ41により検出された空燃比が予め定められているリッチ判定空燃比AFrich以下になったときに下流側空燃比センサ41により検出された空燃比AFdwnがリッチになったと判定される。そして、図14および図15に示される場合には、張付き学習制御によって、目標空燃比がリッチ設定空燃比に設定されているときに下流側空燃比センサ41により検出された空燃比AFdwnが予め定められた期間Tleanに亘ってリーン判定空燃比AFlean以上のリーンに維持されている場合には、学習値sfbgが低下せしめられ、図16に示される場合には、張付き学習制御によって、目標空燃比がリッチ設定空燃比に設定されているときに下流側空燃比センサ41により検出された空燃比AFdwnが予め定められた期間Tstoに亘ってリッチ判定空燃比AFrichとリーン判定空燃比AFleanとの間に維持されている場合には、排気浄化触媒20に流入する排気ガスの空燃比を小さくさせるために学習値sfbgが低下せしめられる。
また、本発明の実施例では、目標空燃比は下流側空燃比センサ41によって検出された空燃比AFdwnがリッチ判定空燃比AFrich以下になったときにリーン設定空燃比に切り替えられると共に、目標空燃比は排気浄化触媒20の酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxよりも少ない予め定められた切替基準吸蔵量Cref以上になったときにリッチ設定空燃比に切り替えられ、通常学習制御、即ち、学習値更新制御は、下流側空燃比センサ41により検出された空燃比AFdwnがリッチ判定空燃比AFrichに到達したとき、即ちリッチ判定空燃比AFrich以下になったときに行われる。
この場合、本発明の実施例では、目標空燃比がリーンであるときに排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比であれば排気浄化触媒20に単位時間当り吸蔵される酸素量および目標空燃比がリッチであるときに排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比であれば排気浄化触媒20から単位時間当り放出される酸素量が酸素過不足量として積算されており、通常学習制御、即ち、学習値更新制御は、目標空燃比がリーン設定空燃比に切り替えられてから排気浄化触媒20の酸素吸蔵量OSAが切替基準吸蔵量Cref以上になるまでに積算された酸素過不足量の積算値ΣOEDと、目標空燃比がリッチ設定空燃比に切り替えられてから下流側空燃比センサ41によって検出された空燃比がリッチ判定空燃比AFrich以下になるまでに積算された積算酸素過不足量の積算値ΣOEDとの差が小さくなるように学習値sfbgを更新する。
また、図14および図16に示される場合には、下流側空燃比センサ41の出力空燃比がリーンずれを生じているときには、学習値sfbgの低下作用と学習値sfbgの増大作用とが交互に繰り返され、従って、本発明による一実施例では、学習値sfbgの一定値以上の低下と学習値sfbgの一定値以上の増大とが交互に繰り返されたときに下流側空燃比センサ41に異常があると判定される。なお、上述したように、学習値sfbgがなかなか収束しないために、学習値sfbgが増大および低下を繰り返す場合があり、このような場合と明確に区別するために、本発明の実施例では、学習値sfbgの一定値以上の低下が張り付き制御によって行われたときに下流側空燃比センサ41に異常があると判定される。
一方、図17は、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になると、酸素吸蔵量OSAを減少させるべく、空燃比補正量AFCがリッチ設定補正量AFCrich(リッチ設定空燃比に相当)に切り替えるようにした場合において下流側空燃比センサ41の出力空燃比AFdwnがリッチずれを生じた場合における、制御中心空燃比AFR、空燃比補正量AFC、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、下流側空燃比センサ41の出力空燃比AFdwn及び学習値sfbgの変化を示している。この場合には、前述したリッチ張付き学習制御が用いられ、下流側空燃比センサ41の出力空燃比AFdwnが予め定められたリッチ空燃比維持判定時間Trich以上に亘ってリッチ空燃比に維持されているかが判断される。この結果、下流側空燃比センサ41の出力空燃比AFdwnが予め定められたリッチ空燃比維持判定時間Trich以上に亘ってリッチ空燃比に維持されていると判別された場合には、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン側に変化するように学習値sfbgが増大せしめられる。すなわち、リッチ張付き学習制御では、上述したリーン張付き学習制御とはリッチ及びリーンが逆にした制御が行われる。
図17に示される場合にも、リッチ張付き学習制御による学習値sfbgの増大作用と通常学習制御、即ち、学習値更新制御による学習値sfbgの低下作用とが交互に繰り返される。従って、この場合にも、学習値sfbgの増大作用と学習値sfbgの低下作用とが交互に繰り返されたときには、下流側空燃比センサ41の出力空燃比がリッチずれを生じていると、即ち下流側空燃比センサ41に異常があると判断できることになる。
<具体的な制御の説明>
次に、図18から図23を参照しつつ、本発明の実施例において用いられている空燃比制御装置について具体的に説明する。本発明の実施例において用いられている空燃比制御装置は、機能ブロック図である図18に示したように、A1〜A11の各機能ブロックを含んで構成されている。以下、図18を参照しながら各機能ブロックについて説明する。これら各機能ブロックA1〜A11における操作は、基本的にECU31において実行される。
<燃料噴射量の算出>
まず、燃料噴射量の算出について説明する。燃料噴射量の算出に当たっては、筒内吸入空気量算出手段A1、基本燃料噴射量算出手段A2、及び燃料噴射量算出手段A3が用いられる。
吸入空気量算出手段A1は、吸入空気流量Gaと、機関回転数NEと、ECU31のROM34に記憶されたマップ又は計算式とに基づいて、各気筒への吸入空気量Mcを算出する。吸入空気流量Gaは吸入空気流量39によって計測され、機関回転数NEはクランク角センサ44の出力に基づいて算出される。
基本燃料噴射量算出手段A2は、吸入空気量算出手段A1によって算出された各気筒への吸入空気量Mcを、目標空燃比AFTで除算することにより、基本燃料噴射量Qbaseを算出する(Qbase=Mc/AFT)。目標空燃比AFTは、後述する目標空燃比設定手段A8によって算出される。
燃料噴射量算出手段A3は、基本燃料噴射量算出手段A2によって算出された基本燃料噴射量Qbaseに、後述するF/B補正量DQiを加えることで燃料噴射量Qiを算出する(Qi=Qbase+DQi)。このようにして算出された燃料噴射量Qiの燃料が燃料噴射弁11から噴射されるように、燃料噴射弁11に対して噴射指示が行われる。
<目標空燃比の算出>
次に、目標空燃比の算出について説明する。目標空燃比の算出に当たっては、酸素過不足量算出手段A4、空燃比補正量算出手段A5、学習値算出手段A6、制御中心空燃比算出手段A7、目標空燃比設定手段A8が用いられる。
酸素過不足量算出手段A4は、燃料噴射量算出手段A3によって算出された燃料噴射量Qi及び上流側空燃比センサ40の出力空燃比AFupに基づいて積算酸素過不足量ΣOEDを算出する。例えば、酸素過不足量算出手段A4は、上流側空燃比センサ40の出力空燃比と制御中心空燃比との差分に燃料噴射量Qiを乗算し、乗算結果を積算することによって積算酸素過不足量ΣOEDを算出する。
空燃比補正量算出手段A5では、酸素過不足量算出手段A4によって算出された積算酸素過不足量ΣOEDと、下流側空燃比センサ41の出力空燃比AFdwnとに基づいて、目標空燃比の空燃比補正量AFCが算出される。具体的には、図19に示したフローチャートに基づいて空燃比補正量AFCが算出される。
学習値算出手段A6では、下流側空燃比センサ41の出力空燃比AFdwn、酸素過不足量算出手段A4によって算出された積算酸素過不足量ΣOED等に基づいて学習値sfbgが算出される。具体的には、図20に示した通常学習制御、即ち、学習値更新制御のフローチャート及び図21に示した張付き学習制御のフローチャートに基づいて学習値sfbgが算出される。このようにして算出された学習値sfbgは、ECU31のRAM33のうち、イグニッションキーがオフにされても消去されない記憶媒体に保存される。
制御中心空燃比算出手段A7では、基本制御中心空燃比AFRbase(例えば、理論空燃比)と、学習値算出手段A6によって算出された学習値sfbgとに基づいて制御中心空燃比AFRが算出される。具体的には、前述した式(3)に示したように、基本制御中心空燃比AFRbaseに学習値sfbgを加算することによって制御中心空燃比AFRが算出される。
目標空燃比設定手段A8は、制御中心空燃比算出手段A7によって算出された制御中心空燃比AFRに、空燃比補正量算出手段A5で算出された空燃比補正量AFCを加算することで、目標空燃比AFTを算出する。このようにして算出された目標空燃比AFTは、基本燃料噴射量算出手段A2及び後述する空燃比偏差算出手段A9に入力される。
<F/B補正量の算出>
次に、上流側空燃比センサ40の出力空燃比AFupに基づいたF/B補正量の算出について説明する。F/B補正量の算出に当たっては、空燃比偏差算出手段A9、F/B補正量算出手段A10が用いられる。
空燃比偏差算出手段A9は、上流側空燃比センサ40の出力空燃比AFupから目標空燃比設定手段A8によって算出された目標空燃比AFTを減算することによって空燃比偏差DAFを算出する(DAF=AFup−AFT)。この空燃比偏差DAFは、目標空燃比AFTに対する燃料供給量の過不足を表す値である。
F/B補正量算出手段A10は、空燃比偏差算出手段A9によって算出された空燃比偏差DAFを、比例・積分・微分処理(PID処理)することで、下記式(6)に基づいて燃料供給量の過不足を補償するためのF/B補正量DFiを算出する。このようにして算出されたF/B補正量DFiは、燃料噴射量算出手段A3に入力される。
DFi=Kp・DAF+Ki・SDAF+Kd・DDAF …(6)
なお、上記式(6)において、Kpは予め設定された比例ゲイン(比例定数)、Kiは予め設定された積分ゲイン(積分定数)、Kdは予め設定された微分ゲイン(微分定数)である。また、DDAFは、空燃比偏差DAFの時間微分値であり、今回更新された空燃比偏差DAFと前回更新されていた空燃比偏差DAFとの偏差を更新間隔に対応する時間で除算することで算出される。また、SDAFは、空燃比偏差DAFの時間積分値であり、この時間積分値DDAFは前回更新された時間積分値DDAFに今回更新された空燃比偏差DAFを加算することで算出される(SDAF=DDAF+DAF)。
<空燃比補正量算出制御のフローチャート>
図19は、空燃比補正量AFCの算出制御ルーチンを示している。このルーチンは一定時間間隔の割り込みによって行われる。
図19に示されるように、まず初めに、ステップS11において空燃比補正量AFCの算出条件が成立しているか否かが判定される。空燃比補正量AFCの算出条件が成立している場合とは、フィードバック制御が行われている通常制御中であること、例えば燃料噴射停止制御中等ではないこと等が挙げられる。ステップS11において目標空燃比の算出条件が成立していると判定された場合には、ステップS12へと進む。ステップS12では、上流側空燃比センサ40の出力空燃比AFup及び燃料噴射量Qiに基づいて積算酸素過不足量ΣOEDが算出される。
次いでステップS13において、リーン設定フラグFrが0に設定されているか否かが判定される。リーン設定フラグFrは、空燃比補正量AFCがリーン設定補正量AFCleanに設定されると1とされ、それ以外の場合には0とされる。ステップS13においてリーン設定フラグFrが0に設定されている場合には、ステップS14へと進む。ステップS14では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下であるか否かが判定される。下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きいと判定された場合には処理サイクルを完了する。
一方、上流側排気浄化触媒20の酸素吸蔵量OSAが減少して、上流側排気浄化触媒20から流出する排気ガスの空燃比が低下すると、ステップS14にて下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下であると判定される。この場合には、ステップS15へと進み、空燃比補正量AFCがリーン設定補正量AFCleanとされる。次いで、ステップS16では、リーン設定フラグFrが1に設定され、処理サイクルを完了する。
次の処理サイクルでは、ステップS13において、リーン設定フラグFrが0に設定されていないと判定され、ステップS17へと進む。ステップS17では、ステップS12で算出された積算酸素過不足量ΣOEDが判定基準値OEDrefよりも少ないか否かが判定される。積算酸素過不足量ΣOEDが判定基準値OEDrefよりも少ないと判定された場合にはステップS18へと進み、空燃比補正量AFCが引き続きリーン設定補正量AFCleanとされる。一方、上流側排気浄化触媒20の酸素吸蔵量が増大すると、やがてステップS17において積算酸素過不足量ΣOEDが判定基準値OEDref以上であると判定され、ステップS19へと進む。ステップS19では、空燃比補正量AFCがリッチ設定補正量AFCrichとされ、次いで、ステップS20では、リーン設定フラグFrが0にリセットされる。次いで、処理サイクルを完了する。
<通常学習制御、即ち、学習値更新制御のフローチャート>
図20は、通常学習制御、即ち、学習値更新制御の制御ルーチンを示している。このルーチンも一定時間間隔の割り込みによって行われる。
図20に示されるように、まず初めに、ステップS21において、学習値sfbgの更新条件が成立しているか否かが判定される。更新条件が成立している場合とは、例えば、通常制御中であること、図21に示される張付き学習制御ルーチンが実行されていないこと等が挙げられる。ステップS21において、学習値sfbgの更新条件が成立していると判定された場合には、ステップS22へと進む。ステップS22では、リーンフラグFlが0に設定されているか否かが判定される。ステップS22において、リーンフラグFlが0に設定されていると判定された場合には、ステップS23へと進む。
ステップS23では、空燃比補正量AFCが0よりも大きいか否か、すなわち目標空燃比がリーン空燃比であるか否かが判定される。ステップS23において、空燃比補正量AFCが0よりも大きいと判定された場合には、ステップS24へと進む。ステップS24では、積算酸素過不足量ΣOEDに現在の酸素過不足量OEDが加算される。
その後、目標空燃比がリッチ空燃比へと切り替えられると、次の制御ルーチンではステップS23において空燃比補正量AFCが0以下であると判定され、ステップS25へと進む。ステップS25では、リーンフラグFlが1にセットされ、次いで、ステップS26ではRnが現在の積算酸素過不足量ΣOEDの絶対値とされる。次いで、ステップS27では、積算酸素過不足量ΣOEDが0にリセットされ、処理サイクルを完了する。
一方、リーンフラグFlが1にセットされると、次の制御ルーチンでは、ステップS22からステップS28へと進む。ステップS28では、空燃比補正量AFCが0よりも小さいか否か、すなわち目標空燃比がリッチ空燃比であるか否かが判定される。ステップS28において、空燃比補正量AFCが0よりも小さいと判定された場合にはステップS29へと進む。ステップS29では、積算酸素過不足量ΣOEDに現在の酸素過不足量OEDが加算される。
その後、目標空燃比がリーン空燃比へと切り替えられると、次の制御ルーチンではステップS28において空燃比補正量AFCが0以上であると判定され、ステップS30へと進む。ステップS30では、リーンフラグFlが0にセットされ、次いで、ステップS31では、Fnが現在の積算酸素過不足量ΣOEDの絶対値とされる。次いで、ステップS32では、積算酸素過不足量ΣOEDが0にリセットされる。次いで、ステップS33では、ステップS26で算出されたRnとステップS31で算出されたFnに基づいて学習値sfbgが更新され、処理サイクルを完了する。
<張付き学習制御のフローチャート>
図21は、張付き学習制御(理論空燃比張付き制御、リッチ張付き制御及びリーン張付き制御)の制御ルーチンを示している。このルーチンも一定時間間隔の割り込みによって行われる。
図21に示されるように、まず始めに、ステップS41において、リーンフラグFlが0に設定されているか否かが判定される。ステップS41において、リーンフラグFlが0に設定されていると判定された場合には、ステップS42へと進む。ステップS42では、空燃比補正量AFCが0よりも大きいか否か、すなわち目標空燃比がリーン空燃比であるか否かが判定される。ステップS42において、空燃比補正量AFCが0以下であると判定された場合には、ステップS43へと進む。
ステップS43では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFleanよりも大きいか否かが判定され、ステップS44では、出力空燃比AFdwnがリッチ判定空燃比AFrichとリーン判定空燃比AFleanとの間の値であるか否かが判定される。ステップS43、S44において、出力空燃比AFdwnがリッチ判定空燃比AFrichよりも小さいと判定された場合、すなわち出力空燃比がリッチ空燃比であると判定された場合には処理サイクルを完了する。一方、ステップS43、S44において、出力空燃比AFdwnがリーン判定空燃比AFleanよりも大きいと判定された場合、すなわち出力空燃比がリーン空燃比であると判定された場合には、ステップS45へと進む。
ステップS45では、積算排気ガス流量ΣGeに現在の排気ガス流量Geを加算した加算結果が新たな積算排気ガス流量ΣGeとされる。なお、排気ガス流量Geは、例えば、吸入空気流量検出器39の出力等に基づいて算出される。次いで、ステップS46では、ステップS45で算出された積算排気ガス流量ΣGeが予め定められた所定量ΣGesw以上であるか否かが判定される。ステップS46において、ΣGeがΣGeswよりも小さいと判定された場合には処理サイクルを完了する。一方、積算排気ガス流量ΣGeが増大し、ステップS46において、ΣGeがΣGesw以上であると判定された場合には、ステップS47へと進む。ステップS47では、前述した式(5)を用いて学習値sfbgが更新される。
一方、ステップS44において、出力空燃比AFdwnがリッチ判定空燃比AFrichとリーン判定空燃比AFleanとの間の値であると判定された場合には、ステップS48へと進む。ステップS48では、積算酸素過不足量ΣOEDに現在の酸素過不足量OEDを加算した加算結果が新たな積算酸素過不足量ΣOEDとされる。次いで、ステップS49では、ステップS48で算出された積算酸素過不足量ΣOEDが予め定められた所定量OEDsw以上であるか否かが判定される。ステップS49において、ΣOEDがOEDswよりも小さいと判定された場合には処理サイクルが終了する。一方、積算酸素過不足量ΣOEDが増大し、ステップS49において、ΣOEDがOEDsw以上であると判定された場合には、ステップS50へと進む。ステップS50では、前述した式(4)を用いて学習値sfbgが更新される。
その後、目標空燃比が切り替えられ、ステップS42において、空燃比補正量AFCが0よりも大きいと判定された場合には、ステップS51へと進む。ステップS51では、積算排気ガス流量ΣGe及び積算酸素過不足量ΣOEDが0にリセットされる。次いで、ステップS52では、リーンフラグFlが1にセットされる。
リーンフラグFlが1にセットされると、次の処理サイクルでは、ステップS41からステップS53へと進む。ステップS53では、空燃比補正量AFCが0よりも小さいか否か、すなわち目標空燃比がリッチ空燃比であるか否かが判定される。ステップS53において、空燃比補正量AFCが0以上であると判定された場合には、ステップS54へと進む。
ステップS54では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも小さいか否かが判定される。ステップS54において、出力空燃比AFdwnがリッチ判定空燃比AFrich以上であると判定された場合、すなわち出力空燃比がリーン空燃比であると判定された場合には処理サイクルを完了する。一方、ステップS54において、出力空燃比AFdwnがリッチ判定空燃比AFrichよりも小さいと判定された場合、すなわち出力空燃比がリッチ空燃比であると判定された場合には、ステップS55へと進む。
ステップS55では、積算排気ガス流量ΣGeに現在の排気ガス流量Geを加算した加算結果が新たな積算排気ガス流量ΣGeとされる。次いで、ステップS56では、ステップS55で算出された積算排気ガス流量ΣGeが予め定められた所定量ΣGesw以上であるか否かが判定される。ステップS56において、ΣGeがΣGeswよりも小さいと判定された場合には処理サイクルを完了する。一方、積算排気ガス流量ΣGeが増大し、ステップS56において、ΣGeがΣGesw以上であると判定された場合には、ステップS57へと進む。ステップS57では、前述した式(5)を用いて学習値sfbgが更新される。
その後、目標空燃比が切り替えられて、ステップS53において、空燃比補正量AFCが0よりも小さいと判定された場合には、ステップS58へと進む。ステップS58では、積算排気ガス流量ΣGe及び積算酸素過不足量ΣOEDが0にリセットされる。次いで、ステップS59では、リーンフラグFlが0にセットされ、処理サイクルを完了する。
<空燃比センサの異常検出>
図22は、空燃比センサの異常検出ルーチンの第1実施例を示している。このルーチンも一定時間間隔の割り込みによって行われる。
図19に示されるように、まず始めに、ステップS60において、現在の学習値sfbgが、前回の割り込み時における学習値sfbg1に予め定められた一定値αを加算した値(sfbg1+α)よりも大きいか否かが判別される。現在の学習値sfbgが(sfbg1+α)よりも大きくないときにはステップS64に進んで、前回の割り込み時における学習値sfbg1から予め定められた一定値αを減算した値(sfbg1―α)よりも小さいか否かが判別される。現在の学習値sfbgが(sfbg1―α)よりも小さくないときにはステップS68に進んで、前回の割り込み時における学習値sfbgが学習値sfbg1とされる。次いでステップS69では、機関の運転が開始されてから、予め設定されている設定時間を越えたか否かが判別され、機関の運転が開始されてから、予め設定されている設定時間を越えていないときには処理サイクルを完了する。
一方、ステップS60において、現在の学習値sfbgが(sfbg1+α)よりも大きいと判別されたときにはステップS61に進んで、学習値sfbgが一定値α以上増大したことを示す増大フラグがセットされているか否かが判別される。増大フラグがセットされていないときにはステップS62に進んで、カウント値NFが1だけインクリメントされる。次いでステップS63では増大フラグがセットされ、学習値sfbgが一定値α以上低下したことを示す低下フラグがリセットされる。次いでステップS68に進む。次の処理サイクルにおいて再び現在の学習値sfbgが(sfbg1+α)よりも大きいと判別されたときには、増大フラグがセットされているのでステップS61からステップS68にジャンプし、従ってこのときにはカウント値NFのインクリメント作用は行われない。即ち、図22に示される例では、学習値sfbgが(sfbg1+α)以上続けて複数回増大してもカウント値NFは1だけしかインクリメントされないようにしている。
一方、ステップS64において、現在の学習値sfbgが(sfbg1―α)よりも小さいと判別されたときにはステップS65に進んで、低下フラグがセットされているか否かが判別される。低下フラグがセットされていないときにはステップS66に進んで、カウント値NFが1だけインクリメントされる。次いでステップS67において低下フラグがセットされ、増大フラグがリセットされる。次いでステップS68に進む。次の処理サイクルにおいて再び現在の学習値sfbgが(sfbg1―α)よりも小さいと判別されたときには、低下フラグがセットされているのでステップS65からステップS68にジャンプし、従ってこのときにはカウント値NFのインクリメント作用は行われない。即ち、図22に示される例では、学習値sfbgが(sfbg1―α)以上続けて複数回低下してもカウント値NFは1だけしかインクリメントされないようにしている。
ステップS69において、機関の運転が開始されてから、予め設定されている設定時間を越えたと判断されたときには、ステップS70に進んで、カウント値NFが予め定められたカウント値NFOよりも大きいか否かが判別される。カウント値NFが予め定められたカウント値NFOよりも大きいときにはステップS71にすすんで、下流側空燃比センサ41に異常があると判定される。次いで、処理サイクルを完了する。
図23は、空燃比センサの異常検出ルーチンの第2実施例を示している。このルーチンも一定時間間隔の割り込みによって行われる。
図23に示されるルーチンは、図22に示されるルーチンと比べて、ステップS64−1が追加されていることだけが異なっており、その他のステップについては図22に示されるルーチンの対応する各ステップと同じである。従って以下、このステップS64−1に関係する部分についてのみ説明する。
さて、図23に示されるルーチンを参照すると、ステップS64において、現在の学習値sfbgが(sfbg1―α)よりも小さいと判別されたときにはステップS64−1に進んで、張付き学習制御が行われたか否かが判別される。張付き学習制御が行われていないときにはステップS68にジャンプする。これに対し、張付き学習制御が行われたと判別されたときにはステップS65に進んで、低下フラグがセットされているか否かが判別される。低下フラグがセットされていないときにはステップS66に進んで、カウント値NFが1だけインクリメントされる。
即ち、図23に示される例では、張付き学習制御により学習値sfbgが一定値α以上低下せしめられたときにカウント値NFが1だけインクリメントされ、張付き学習制御以外の何かによって学習値sfbgが一定値α以上低下せしめられた場合には、カウント値NFのインクリメント作用は行われない。即ち、前述したように、学習値sfbgがなかなか収束しないために、学習値sfbgが増大および低下を繰り返す場合がある。この例では、このような場合にはカウント値NFのインクリメント作用が行われないように、学習値sfbgの一定値以上の低下が張り付き制御によって行われたときに限って、カウント値NFのインクリメント作用が行われるようにしている。
1 機関本体
5 燃焼室
7 吸気ポート
9 排気ポート
19 排気マニホルド
20 上流側排気浄化触媒
24 下流側排気浄化触媒
31 ECU
40 上流側空燃比センサ
41 下流側空燃比センサ

Claims (7)

  1. 酸素吸蔵能力を有する排気浄化触媒に流入する排気ガスの目標空燃比を、理論空燃比よりもリッチなリッチ設定空燃比と理論空燃比よりもリーンなリーン設定空燃比との間で交互に切り替え、排気浄化触媒から流出した排気ガスの空燃比を排気浄化触媒の下流側に配置された下流側空燃比センサにより検出し、下流側空燃比センサにより検出された空燃比に基づいて排気浄化触媒に流入する排気ガスの空燃比を該目標空燃比に近づけるのに必要な空燃比補正値を学習すると共に、学習により得られた空燃比補正値の学習値を用いて排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御し、目標空燃比が該リッチ設定空燃比に設定されているときに下流側空燃比センサにより検出された空燃比が予め定められた期間に亘ってリーンに維持されている場合には、排気浄化触媒に流入する排気ガスの空燃比を小さくさせるために該学習値を低下させる張付き学習制御を行い、下流側空燃比センサにより検出された空燃比に基づいて、排気浄化触媒に流入する排気ガスの空燃比が目標空燃比よりもリッチ側にずれていると判別されたときには該学習値を増大させかつ排気浄化触媒に流入する排気ガスの空燃比が目標空燃比よりもリーン側にずれていると判別されたときには該学習値を低下させる学習値更新制御を行い、該学習値の一定値以上の低下と該学習値の一定値以上の増大とが繰り返されたときには下流側空燃比センサに異常があると判定する空燃比センサの異常検出方法。
  2. 下流側空燃比センサにより検出された空燃比が予め定められているリーン判定空燃比以上になったときに下流側空燃比センサにより検出された空燃比がリーンになったと判定され、上記張付き学習制御は、目標空燃比が該リッチ設定空燃比に設定されているときに下流側空燃比センサにより検出された空燃比が予め定められた期間に亘って該リーン判定空燃比以上のリーンに維持されている場合には、該学習値を低下させる請求項1に記載の空燃比センサの異常検出方法。
  3. 下流側空燃比センサにより検出された空燃比が予め定められているリッチ判定空燃比以下になったときに下流側空燃比センサにより検出された空燃比がリッチになったと判定され、上記張付き学習制御は、目標空燃比が該リッチ設定空燃比に設定されているときに下流側空燃比センサにより検出された空燃比が予め定められた期間に亘って該リッチ判定空燃比と該リーン判定空燃比との間に維持されている場合にも、排気浄化触媒に流入する排気ガスの空燃比を小さくさせるために該学習値を低下させる請求項2に記載の空燃比センサの異常検出方法。
  4. 下流側空燃比センサにより検出された空燃比が予め定められているリッチ判定空燃比以下になったときに下流側空燃比センサにより検出された空燃比がリッチになったと判定され、上記目標空燃比は下流側空燃比センサによって検出された空燃比が該リッチ判定空燃比以下になったときに上記リーン設定空燃比に切り替えられると共に、上記目標空燃比は排気浄化触媒の酸素吸蔵量が最大吸蔵可能酸素量よりも少ない予め定められた切替基準吸蔵量以上になったときに上記リッチ設定空燃比に切り替えられ、上記学習値更新制御は、下流側空燃比センサにより検出された空燃比が該リッチ判定空燃比以下になったときに行われる請求項1に記載の空燃比センサの異常検出方法。
  5. 上記目標空燃比がリーンであるときに排気浄化触媒に流入する排気ガスの空燃比が目標空燃比であれば排気浄化触媒に単位時間当り吸蔵される酸素量および目標空燃比がリッチであるときに排気浄化触媒に流入する排気ガスの空燃比が目標空燃比であれば排気浄化触媒から単位時間当り放出される酸素量が酸素過不足量として積算されており、上記学習値更新制御は、目標空燃比がリーン設定空燃比に切り替えられてから排気浄化触媒の酸素吸蔵量が上記切替基準吸蔵量以上になるまでに積算された酸素過不足量の積算値と、目標空燃比がリッチ設定空燃比に切り替えられてから下流側空燃比センサによって検出された空燃比がリッチ判定空燃比以下になるまでに積算された積算酸素過不足量の積算値との差が小さくなるように学習値を更新する請求項4に記載の空燃比センサの異常検出方法。
  6. 学習値の一定値以上の低下と該学習値の一定値以上の増大とが交互に繰り返されたときに下流側空燃比センサに異常があると判定される請求項1に記載の空燃比センサの異常検出方法。
  7. 該学習値の一定値以上の低下が上記張付き学習制御によって行われたときに下流側空燃比センサに異常があると判定される請求項1に記載の空燃比センサの異常検出方法。
JP2014149723A 2014-07-23 2014-07-23 空燃比センサの異常検出方法 Expired - Fee Related JP6156276B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014149723A JP6156276B2 (ja) 2014-07-23 2014-07-23 空燃比センサの異常検出方法
US15/325,221 US10006394B2 (en) 2014-07-23 2015-07-21 Method of detecting abnormality of air-fuel ratio sensor
PCT/JP2015/003655 WO2016013211A1 (en) 2014-07-23 2015-07-21 Method of detecting abnormality of air-fuel ratio sensor
CN201580037910.XA CN106574563B (zh) 2014-07-23 2015-07-21 空燃比传感器的异常检测方法
EP15747574.0A EP3172423B1 (en) 2014-07-23 2015-07-21 Method of detecting abnormality of air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149723A JP6156276B2 (ja) 2014-07-23 2014-07-23 空燃比センサの異常検出方法

Publications (2)

Publication Number Publication Date
JP2016023614A JP2016023614A (ja) 2016-02-08
JP6156276B2 true JP6156276B2 (ja) 2017-07-05

Family

ID=53783801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149723A Expired - Fee Related JP6156276B2 (ja) 2014-07-23 2014-07-23 空燃比センサの異常検出方法

Country Status (5)

Country Link
US (1) US10006394B2 (ja)
EP (1) EP3172423B1 (ja)
JP (1) JP6156276B2 (ja)
CN (1) CN106574563B (ja)
WO (1) WO2016013211A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267202B2 (en) * 2016-10-04 2019-04-23 Ford Global Technologies, Llc Method and system for catalyst feedback control
DE102017215849B4 (de) 2017-09-08 2019-07-18 Continental Automotive Gmbh Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit
KR102563441B1 (ko) * 2018-11-12 2023-08-03 현대자동차 주식회사 배출 가스 정화 장치
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739614A (en) * 1985-02-22 1988-04-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
JPS61192825A (ja) * 1985-02-22 1986-08-27 Toyota Motor Corp 内燃機関の空燃比制御装置
EP1128045B1 (en) * 2000-02-23 2005-12-28 Nissan Motor Co., Ltd. Engine air-fuel ratio controller
JP2004285859A (ja) * 2003-03-19 2004-10-14 Toyota Motor Corp 酸素センサの劣化判定装置
JP2005337139A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4353070B2 (ja) * 2004-10-27 2009-10-28 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4803502B2 (ja) * 2007-06-22 2011-10-26 トヨタ自動車株式会社 空燃比センサの異常診断装置
WO2014118892A1 (ja) 2013-01-29 2014-08-07 トヨタ自動車株式会社 内燃機関の制御装置
JP6107586B2 (ja) 2013-10-02 2017-04-05 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP3172423A1 (en) 2017-05-31
US20170191438A1 (en) 2017-07-06
JP2016023614A (ja) 2016-02-08
US10006394B2 (en) 2018-06-26
WO2016013211A1 (en) 2016-01-28
CN106574563A (zh) 2017-04-19
EP3172423B1 (en) 2018-05-09
CN106574563B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
JP6098735B2 (ja) 内燃機関の制御装置
JP6308150B2 (ja) 内燃機関の排気浄化装置
JP4244237B2 (ja) 内燃機関の空燃比制御装置
JP6213540B2 (ja) 内燃機関の排気浄化装置
JP6107586B2 (ja) 内燃機関の制御装置
JP6314727B2 (ja) 内燃機関
JP6358148B2 (ja) 内燃機関の排気浄化装置
JP2017002843A (ja) 内燃機関
JP6269367B2 (ja) 内燃機関の制御装置
JP6156276B2 (ja) 空燃比センサの異常検出方法
JP6344080B2 (ja) 内燃機関の制御装置
JP6269371B2 (ja) 内燃機関
JP6287939B2 (ja) 内燃機関の排気浄化装置
JP4661691B2 (ja) 内燃機関の空燃比制御装置
JP6058106B1 (ja) エンジン制御装置
JP6079608B2 (ja) 内燃機関の制御装置
JP4419952B2 (ja) 内燃機関の空燃比制御装置
JP2016217155A (ja) 内燃機関
JP2015172356A (ja) 内燃機関の制御装置
JP2015132189A (ja) 内燃機関の制御装置
JPH04342848A (ja) 内燃機関の空燃比制御装置
JPH05272380A (ja) エンジンの空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees