WO2008117883A1 - 合成砥石 - Google Patents

合成砥石 Download PDF

Info

Publication number
WO2008117883A1
WO2008117883A1 PCT/JP2008/056279 JP2008056279W WO2008117883A1 WO 2008117883 A1 WO2008117883 A1 WO 2008117883A1 JP 2008056279 W JP2008056279 W JP 2008056279W WO 2008117883 A1 WO2008117883 A1 WO 2008117883A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polishing
synthetic
processing
grindstone
Prior art date
Application number
PCT/JP2008/056279
Other languages
English (en)
French (fr)
Inventor
Yuji Yoshida
Hiroshi Eda
Libo Zhou
Masaaki Kenmochi
Yoshiaki Tashiro
Sumio Kamiya
Hisao Iwase
Teruki Yamashita
Noboru Otake
Original Assignee
Tokyo Diamond Tools Mfg.Co., Ltd.
Toyota Motor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Diamond Tools Mfg.Co., Ltd., Toyota Motor Corporation filed Critical Tokyo Diamond Tools Mfg.Co., Ltd.
Priority to JP2009506388A priority Critical patent/JP5010675B2/ja
Priority to AT08751823T priority patent/ATE550144T1/de
Priority to KR1020097019852A priority patent/KR101503545B1/ko
Priority to EP08751823A priority patent/EP2140974B1/en
Priority to US12/450,366 priority patent/US8377159B2/en
Priority to CN2008800100996A priority patent/CN101678533B/zh
Publication of WO2008117883A1 publication Critical patent/WO2008117883A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention provides a fixed abrasive that replaces a series of processes including a process using a conventional polishing pad with a surface process applicable to a silicon wafer made of a silicon single crystal, and in particular, a wafer wafer and a vacuum cleaner.
  • This is related to the synthetic whetstone used for polishing.
  • This synthetic grindstone can also be applied to the polishing of the backside of a silicon wafer on which a single-layer / multi-layer integrated circuit substrate with IC circuits formed on the surface is formed by device wiring.
  • the processing of the surface of a silicon wafer serving as a substrate of a semiconductor device is performed through several steps such as wrapping, etching, prepolishing, and polishing of a wafer obtained by slicing a silicon single crystal ring. It is common to finish on a mirror surface. Dimensional accuracy and shape accuracy such as parallelism and flatness were obtained in the lapping process, then the work-affected layer formed in the rubbing process was removed in the etching process, and good shape accuracy was maintained in the pre-polishing and polishing processes.
  • the general process is to obtain a wafer having a mirror-like surface roughness.
  • This pre-polishing and polishing step is usually performed by using a polishing pad and dripping a liquid of a polishing composition containing an abrasive slurry.
  • This polishing composition contains an acidic component or a basic component, and can be processed by applying an action of a chemical action by an acid or base (corrosion action to silicon) and a mechanical action by the fine abrasive grains contained at the same time. It is advanced.
  • the above-described method is, for example, pre-polishing using a foam sheet of hard urethane, and then a non-woven resin-treated product such as a suede-like synthetic leather. This is done by padding policing. While pressing a work such as silicon wafer on the surface plate to which these sheets and pads are affixed, and supplying the polishing composition liquid containing fine abrasive slurry to the surface, the surface plate and the work A method is adopted in which both are rotated and chemical mechanical polishing (chemical mechanical polishing) is performed.
  • This processing mechanism is different from the processing mechanism using hard, free-form alumina-based abrasive fine particles, etc., which is performed in the lapping process, which is the preceding process.
  • the polishing solution composition This is an application of the chemical action of acidic or basic components, specifically the corrosive action on workpieces such as silicon wafers.
  • a thin soft erosion reaction layer is formed on the surface of the workpiece such as silicon wafer.
  • Processing proceeds by removing the chemically weakened thin layer by the mechanical and chemical action of fine abrasive grains.
  • the normal polishing process requires the use of abrasive particles that are harder than the workpiece, but this chemical mechanical polishing process does not require the use of abrasive particles that are harder than the workpiece. It can be said that it is a processing with a small load.
  • the liquid of this polishing composition contains colloidal silica (colloidal silica) as the main abrasive component and contains an acid or alkali component (for example, Patent Document 1), or other than the colloidal sill force.
  • colloidal silica colloidal silica
  • a combination of abrasive grains such as cerium oxide for example, Patent Document 2 is usually used.
  • rotation is performed while applying high pressure in a wet state, and processing is performed in a friction state. Therefore, dimensional accuracy, shape accuracy, and sustainability of the effect can be achieved by using a polishing pad that is easily deformable.
  • There was a problem with stability and the occurrence of a sag (roll-off) phenomenon at the edge of the workpiece, which was observed in the woofer after machining, was inevitable.
  • a synthetic grindstone is also used as a processing means.
  • a synthetic grindstone refers to a combination of fine abrasive grains with a binder, and the abrasive grains are fixed in the grindstone structure. All commonly used abrasive grains are used, and any binder can be used as long as it has the ability to fix abrasive grains. Generally, however, metals, rubber, ceramics, Often, a resin or the like is used.
  • Patent Document 4 a component that dissolves in water and exhibits acidity or alkalinity as a solid content is preliminarily contained in a synthetic grindstone to form a specific pH environment during actual use, and chemical mechanical grinding is performed.
  • a synthetic whetstone (CM whetstone) has been proposed.
  • CM whetstone has been proposed.
  • this synthetic wheel it has been shown that it is also effective to use abrasive grains having a hardness lower than that of diamond abrasive grains.
  • cerium oxide as abrasive grains gives good results. Is described.
  • Patent Document 7 discloses a workpiece surface processing method using a cerium oxide grindstone, but this document relates to a polishing method using a grindstone containing cerium oxide as abrasive grains. Therefore, the composition and structure of the grindstone used, and the polishing action are not fully touched. Also, the purity of cerium oxide and its influence, and the types and effects of fillers, additives, etc. It is not touched specifically.
  • Patent Document 8 a technique is disclosed in which cluster diamond whose surface is graphitized is used as an abrasive grain component of a polishing composition (for example, Patent Document 8). Further, Patent Document 9 discloses a Dallasite as a solid lubricant. The metal bond grindstone used as is described. This are technologies that utilize the inherent lubricity of graphite for polishing, and are aimed at improving the smoothness of polishing.
  • Patent Document 1 U.S. Pat. Nos. 3, 3 2 8 and 14 1
  • Patent Document 2 US Patent Nos. 5, 2 6 4 and 0 10
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 1-3 2 8 0 6 5
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 2 1 3 5 5 7 6 3
  • Patent Document 5 Japanese Patent Laid-Open No. 2 00 0 1 3 1 7 8 4 2
  • Patent Document 6 Japanese Patent Laid-Open No. 2 0 0 1-2 0 5 5 6 5
  • Patent Document 7 Japanese Patent Laid-Open No. 2 0 0 5 1 1 3 6 2 2 7
  • Patent Document 8 Japanese Patent Laid-Open No. 2 0 0 5 1 1 8 6 2 4 6
  • Patent Document 9 Japanese Patent Laid-Open No. 2 0 0 2 — 0 6 6 9 2 8
  • Patent Document 10 Japanese Patent Laid-Open No. 2000-06-2 8 1 4 1 2 Disclosure of Invention
  • the inventors of the present invention have made extensive studies on the above-mentioned prior art, and the purpose of the present invention is silicon wafer, polishing of the surface of a semiconductor element made of silicon wafer, especially the surface of a wafer, and planarization processing. It is to provide a synthetic grindstone that can be performed more efficiently without strain (work-affected layer, no residual stress) and without Si atoms. That is, the inventors of the present invention are mainly composed of high-purity cerium oxide (C e 0 2 ) fine particles as abrasive grains, resins as binders, salts and fillers as fillers, and the like.
  • C e 0 2 high-purity cerium oxide
  • nanodiamonds nanodiamonds (nanometer-sized ultrafine diamond) as a result, a grinding wheel with little change in performance function and excellent polishing efficiency can be obtained.
  • the Si atom bond potential in the machining area is weakened at the moment of machining by machining the silicon wafer or the like using the synthetic grinding wheel having such a configuration. 6
  • nano-diamond additive is excellent in homogeneity, shape stability against heat and pressure, heat resistance, pressure resistance, polishing heat conduction and transmission, and the deformation of the grinding wheel, friction and wear associated with use.
  • nanodiamond refers to a cluster diamond and a completely graphite (graphite) or a part of a surface layer partially graphitized (graphite cluster diamond). : GCD).
  • cerium oxide purity refers to the product of cerium oxide purity when the above two are listed together.
  • the above-mentioned object is a structure containing, as main components, fine particles of cerium oxide as abrasive grains, a resin as a binder, and nanodiamond as a salt and salt additive as a filler.
  • the purity of cerium is 60% by weight or more, and the content of salts as fillers is in the range of 1% or more and less than 20% in terms of the volume content with respect to the entire structure.
  • FIG. 1 shows a TEM image and an electron diffraction pattern (bottom right) of the surface of a silicon wafer processed with the grindstone of Example 3.
  • Figure 2 shows a TEM image and electron diffraction pattern (bottom right) of the surface of a silicon wafer processed by chemical mechanical polishing.
  • the first important point of the synthetic grindstone according to the present invention is that the purity of the cerium oxide used as the abrasive grains is a high purity product of 60% by weight or more.
  • cerium oxide produced as vanest site ore has a high content of other coexisting rare earth elements and impurity elements such as hafnium, and its removal is difficult, so it is usually about 40 to 60% by weight. Pure ones are used as cerium oxide abrasive grains.
  • the present inventors have found that general low-purity cerium oxide used for polishing glass or the like is used as abrasive grains.
  • cerium oxide having a purity of 60% by weight or more Such an effect becomes remarkable by the use of cerium oxide having a purity of 60% by weight or more, and an extremely remarkable effect can be obtained by using cerium oxide having a purity of 90% by weight or more.
  • the lattices are aligned at regular intervals, and also appear in the electron beam diffraction image. That is, the synthetic whetstone of the present invention has a purity of 60 wt. This is achieved for the first time by using high-purity cerium oxide fine particles of / 0 or more as abrasive grains.
  • the more preferable purity of cerium oxide is 95% by weight or more, but if it is 99% by weight or more, there is no problem in terms of performance, but there is a slight difficulty in terms of economic competitiveness.
  • the preferable content of cerium oxide is 15 to 70% in terms of volume content relative to the whole structure. If the amount is less than 5%, the effect as an abrasive will not be sufficient, and if it exceeds 70%, excessive cutting edge will be involved, and the thermal gripping force will be restored due to the optimum chemical reaction between the binder, filler, additive and abrasive. Adjustment occurs, the optimum machining conditions are reset, and the structure becomes brittle.
  • high-purity cerium oxide fine particles are aggregates of ultrafine particles of approximately 5 nanometers (nm) or less.
  • Silicon silicon is a single crystal of silicon, and silicon atoms are regularly arranged in a tetrahedral structure with a diamond structure.
  • the radical degree of the processing point is raised and the vibration of crystal lattice atoms When it is raised, it is excited by heat, and the amplitude increases due to the addition of thermal lattice vibration, and the potential ⁇ (r) between atoms decreases.
  • cerium oxide ultrafine particles are produced by the increase in the spatial density of C e 3 + to C e 4 + ions and the thermal activity of S i 0 2 molecules formed by the interaction of S i—C e 0 2.
  • the atomic layer of silicon is removed by the processing force. That is, lattice slip occurs in the (1 1 1) direction, and the layers are peeled off, so that extremely high processing accuracy can be obtained.
  • the effect of this is to place the processing point at a specific processing condition, specifically an active temperature processing condition of 80 ° C to 30 ° C, preferably 15 ° C to 25 ° C. Obtained by.
  • thermosetting resin a resin, preferably a thermosetting resin, as a binder for stably grasping and bonding cerium oxide abrasive particles to the tissue.
  • the cured product of thermosetting resin is obtained by irreversibly reacting and curing the resin used as a raw material, and then changes in heat, changes in usage environment (changes in physical properties and dimensions due to humidity, temperature, etc.), changes in solvent (Dissolution, swelling, shrinkage, plasticization, softening) Since it is a material that has no dimensional change over time, it can contribute to shape and dimensional stability in all aspects of the grindstone when used as a grindstone binder. Is.
  • thermosetting resin used is advanced by the thermosetting of its precursor or prepolymer.
  • the curing temperature of the resin or a slightly higher temperature is required. It is important to take sufficient heat treatment time to complete the curing reaction, and it is also effective to use an appropriate curing (crosslinking) catalyst.
  • thermosetting resin used as a binder in the present invention examples include phenol resins, epoxy resins, melamine resins, rigid urethane resins, urea resins, unsaturated polyester resins, alkyd resins, and polyimid resins.
  • Resin, polyvinylacetal tree At least one of the thermosetting resins selected from the group consisting of fats is preferable. From the viewpoint of thermal stability, toughness (fracture toughness value 1 ⁇ , ⁇ concerned, ⁇ : ⁇ ⁇ ), etc.
  • the most preferred thermosetting resin is fuunol-based resin, which may be an uncured precursor or prepolymer in the manufacturing process.
  • thermosetting resin After it becomes a synthetic grinding wheel, its physical properties such as hardness and shape should not change due to heat or other conditions.
  • synthetic whetstone of the invention it is more effective to improve the stability of the shape by using a curing (crosslinking) catalyst for the thermosetting resin in the production process.
  • the resin ratio refers to the resin content, and is represented by the volume content relative to the entire structure.
  • the third important point of the synthetic grinding wheel according to the present invention is to add salts, particularly metal salts, as fillers.
  • the processing efficiency of the synthetic grindstone of the present invention depends on the processing pressure. Increasing the machining pressure often causes burns on the machined surface or scratches. Such a problem is remarkably improved by adding a metal salt as a filler.
  • the metal salt it is preferable to use an inorganic salt composed of an inorganic acid and an inorganic base.
  • the salt is not particularly limited, but preferred examples include sodium carbonate (N a 2 CO 3).
  • the amount of metal salt added is in the range of 1% or more and 20% or less in terms of volume content with respect to the entire structure It is necessary. If it is less than 1%, the effect is not sufficient, and if it exceeds 20%, the amount is excessive, which not only adversely affects physical properties such as strength or hardness of the grindstone, but also cures the thermosetting resin. It is not preferable because it interferes with the function of the body as a binder and the effect of adding GCD. In particular, a preferable range is a range of 5% or more and 18% or less by volume content with respect to the entire structure.
  • the fourth important point of the synthetic grinding wheel according to the present invention is to use nanodiamond as an additive.
  • the content should be in the range of 0.1% to 20% in terms of the volume content relative to the entire structure.
  • graphite cluster diamond (GCD) is preferably used as the nanodiamond added as an additive.
  • GCD is an intermediate in the process of producing cluster diamond by the explosive synthesis method, and has a graphite layer on its surface. That is, the surface is graphitized and the core is in a diamond state, that is, diamond fine particles coated with graphite are formed. This is called G C D.
  • particles having a particle size of about 5 O A (5 nm) to 30 A (30 nm) give preferable results.
  • the synthetic grindstone according to the present invention can have pores as a structure.
  • the term “pores” refers to the presence of closed cells or open pores in the structure, and the pore shape, size, etc. are relatively homogeneous. Due to the presence of the pores, polishing debris (swarf) generated during the polishing process can be trapped in the pores to prevent the accumulation of polishing debris on the surface and to prevent the accumulation of polishing heat.
  • polishing debris swarf
  • the porosity is 1% or more in terms of volume content relative to the entire structure. Preferably it is less than 30%.
  • the main elements of these static and dynamic wheels provide the appropriate grinding conditions for the synthetic grinding wheel, and the chemical thermal activation field between the C e 0 2 —binders and pores and the Si wafer is chemically treated.
  • the processing behavior of the abrasive grains CeO 2 and S i O 2 as two-body contact sliding can be verified by the following equation.
  • the mechanical abrasive penetration depth is about 0.01 to 1 nm for the CM grinding wheel. In this condition, it is ductile mode. And the following decrease in S i 's covalent bond force eliminates S i 0 2 . Furthermore, it prevents thermal retention of the CeO 2 abrasive grains in the synthetic whetstone, and provides a bond population for S i O 2 (S i — in molecular dynamics) at a polishing heat of 150-250 ° C.
  • silicates are so soft that they are considered to weaken the energy of the atomic layer potential ⁇ (r) of the processed skin and can be easily removed by oxide abrasives even under dry conditions.
  • thermal retention occurs at the interface of the abrasive grains C e 0 2 single binder (including filler)
  • an excess Sio 2 film is generated firmly and a processed layer is formed. in the working layer made of S i ⁇ 2 film does not occur.
  • the important thing at this time is The chemical reaction described above requires a high temperature of 200 ° C. or higher in order for chemical equilibrium to proceed in the right direction.
  • additives that are added to ordinary synthetic wheels can be added as appropriate to the synthetic wheel of the present invention. Specifically, fillers, coupling agents, antioxidants, colorants, lubricants, etc. can be added as necessary.
  • the type of machine that is equipped with a grindstone for processing that is, the type of processing machine.
  • the grindstone and the workpiece are arranged so as to face each other on the same axis, and both the grindstone and / or the workpiece are finely moved according to a preset fine cutting amount while rotating both at high speed.
  • a so-called fixed-size ultra-precision grinding machine that performs the processing or a constant-pressure precision processing device that processes a workpiece with a predetermined pressure set in a similar manner can be used as the processing means.
  • a constant pressure or sizing method is used as a polishing device.
  • a so-called ultra-precise grinding machine that moves workpieces or both of them in accordance with a preset micro-cutting amount and performs workpiece processing. It is preferable to set the conditions. Specifically, for example, it is preferable to use a super-machining machine described in Patent Document 10 or the like. These super-machining machines can control the grinding temperature by processing pressure and relative movement of the wheel.
  • the shape of the grindstone is a cup shape or a disk shape, and both the grindstone and the workpiece are rotated at high speed.
  • the latter apparatus is used, for example, for processing of a wafer, it has an advantage that not only polishing but also lapping, etching and prebending processes can be performed consistently.
  • the production of the synthetic whetstone of the present invention is not particularly limited, and a general resin It can be carried out in accordance with the manufacturing method of the system grindstone.
  • a phenol-based thermosetting resin when used as a binder, it can be manufactured by the following method. That is, a predetermined amount of oxide cerium fine particles, a thermosetting phenolic resin precursor or prepolymer powder, filler, and additive, which are raw materials, are homogeneously mixed, placed in a predetermined mold, and press-molded. Thereafter, it can be obtained by heat treatment at a temperature higher than the curing temperature of the thermosetting phenol resin.
  • the precursor or prepolymer of the thermosetting phenol resin may be liquid or dissolved in a solvent. In this case, it is better to paste it when mixing. If necessary, a curing catalyst, a pore forming material, or other additives may be added as appropriate.
  • the synthetic grindstone of the present invention can produce an Si substrate having a sio 2 film on the surface of the Si semiconductor (single crystal), an Si wafer having no residual stress, no structural change, and no so-called processed layer. Or, it is preferably used in combination with a vertical type super-machining machine, under practical conditions. For example, S i - S i coupling and, between atoms when gripping packed with C e 0 2 in G CD Potensha Le phi (r) is
  • ⁇ (r) D (exp ⁇ - 2 a (r one r 0) ⁇ - 2 exp ⁇ - r 0) - d (r ⁇ ) represented by.
  • r is the interatomic distance (r. Initial position)
  • D is the interatomic potential of the material
  • a is the material constant (A 1 1 ).
  • thermochemical reaction occurs at the interface. Since the decrease in the number of s i bond electrons before and after the reaction indicates a weakening of the Si covalent bond force, this reaction consumes oxygen and releases e-. Therefore,
  • This composite is amorphous with very low bond strength.
  • the micro strength of the single crystal S i (100) is about half that of CeO 2 (5 to 7 GPa) compared to 11 to 13 GPa.
  • this condition has the atomic arrangement of [X e A f 1 5 d 1 6 S 2 of Ce. Therefore, the ionic valence is Ce (1 ll) / C e 3 + force, and C e (IV) / C e 4 +, so that two kinds of oxides Ce 0 2 and Ce 2 O 3 exist. Grinding conditions of grinding wheel and CM grinding wheel are optimally combined. Processing of ⁇ 3 00 mm Si wafer without processing layer by applying processing atmosphere (processing heat 1550 ⁇ 2500 ° C) Can do.
  • abrasive grains cerium oxide fine particles having an average particle diameter of 113 ⁇ m were used.
  • Example with a size of 5.2 X 1 0 X 40 mm 1 1 4 A grindstone of Comparative Example 1_4 was obtained.
  • the firing conditions in grinding wheel molding are as follows.
  • the cerium oxide fine particles used as abrasive grains in Examples 1 and 3 and 5 and Comparative Examples 1 and 3 and 5 had a CeO 2 purity of 96.5 wt. / 0 things
  • oxide Seri ⁇ beam particles used as abrasive grains in Example 4 is C e O 2 purity; 6 5. 8% by weight as oxide Seri ⁇ beam particles used in Comparative Example 4 is C e O 2 Purity; 4 2.5 % by weight.
  • Table 1 shows the abrasive rate, resin rate, filler rate, additive rate, and porosity of the grindstones of Example 1-5 and Comparative Example 1_5.
  • Table 2 shows the qualitative evaluation results.
  • the evaluation criteria in Table 2 are as follows.
  • the first-polished silicon wafer prepared in the same way is a diamond grinding wheel of 5 0 0 0 with a grinding wheel rotation speed of 1 5 0 0 rpm, workpiece (wafer) rotation speed of 5 0 r; pm, feed speed of 1 0 ⁇ mm: min, polished with water as processing fluid
  • the surface roughness and appearance of the wafer obtained by the grinding wheel of the present invention are not much different from those obtained by the chemical mechanical polishing method. There were no regular streaks found on the surface.
  • the surface obtained with the grindstone of the present invention was not significantly different from the surface obtained with the chemical mechanical polishing method, but there was an infinite number of surfaces with the diamond grindstone. A streaky etch pit was observed. The etching depth was not much different from that obtained by the chemical mechanical polishing method.
  • Diamond is a grindstone lubricity, abrasive drop-off property (self-growing ability), C e 0 2 (1 to 3 111 average particle size, about 50 nm or more of fine particles It contributes to the smoothing ability of the fine cutting edge (with a single crystal structure), relaxation of thermal retention in the binder, vibration damping of the abrasive grains, binder, and binder interface, and is essential for developing the abrasive ability of abrasive grains
  • Table 2 and Table 3 are shown.
  • Fig. 1 shows a TEM (transmission electron microscope) image and electron diffraction image of a silicon wafer processed with the grinding wheel of Example 3
  • Fig. 2 shows a TEM of a silicon wafer processed by a normal polishing method (chemical mechanical polishing method).
  • an electron diffraction image As is apparent from this figure, the Si single crystal lattice structure can be observed in the dry polishing using the synthetic grinding wheel of the present invention, whereas in the final finish of the normal chemical mechanical polishing method, the surface is amorphous.
  • the lattice structure cannot be observed due to the presence of the S i O 2 layer. That is, in the dry polishing process using the synthetic CM grindstone of the present invention, the lattice image of the S i (0 0 1) plane is aligned and maintained, while the specified atomic lattice spacing is maintained, This is not seen on the final polishing (chemical mechanical polishing) surface.
  • the atomic lattice diffraction of the Si (0 0 1) plane shows that the CM grinding wheel shows a diffraction pattern at a predetermined diffraction position and angle, whereas a halo appears on the final polishing surface, which is amorphous.
  • An n-pattern which means the generation of S i 0 2 , is observed. This shows that the processed layer of the CM wheel is free from defects such as cracks, plastic strain, and dislocations. Therefore, the CM grindstone has the same defect-free machining as the substrate, that is, machining without a machining layer.
  • the reaction of (C e0 2 ) — and (S i 0 2 ) 2 + proceeds in the polishing process in the composition of abrasive grains + binder + filler + additive.
  • a composite represented by Ce 2 O a .S i 0 2 is formed on the surface. This composite has a bond strength Is very weak amorphous.
  • This composite is a grindstone designed so that C e 0 2 has the optimum polishing exclusion capability, and it depends on the combination of C e 0 2 + GCD + binder + filler + additive and the optimum combination ratio and polishing conditions
  • the optimum machining environment use of a machining temperature of 1550 to 2500 ° C
  • the high-purity cerium oxide fine particles which are abrasive grains
  • the high-purity cerium oxide fine particles which are abrasive grains
  • silicon wafers without a processed layer can be produced.
  • a silicon wafer polishing (chemical mechanical polishing) process conventionally performed by a polishing pad and a polishing composition (slurry) is performed with a synthetic grindstone having fixed abrasive grains.
  • CM grinding wheel machining the adoption of CM grinding using a synthetic grinding wheel not only solves the problem of shape accuracy such as roll-off, which is seen in conventional silicon wafers processed by chemical mechanical polishing, but also provides a polishing pad.
  • problems including secondary performance associated with the use of the polishing composition can be solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

シリコンウェーハの研磨加工に用いられる合成砥石であって、砥粒として酸化セリウム微粒子、結合剤としての樹脂、充填剤としての塩類及び添加剤としてのナノダイヤモンドを含有する構造体であって、前記酸化セリウムの純度が60重量%以上であり、充填剤としての塩類の含有率が1%以上20%以下の範囲にあり、添加剤としてのナノダイヤモンドの含有率が構造全体に対する体積含有率で0.1%以上20%未満の範囲にあり、かつ気孔率が構造全体に対し体積含有率で30%未満の範囲にあることを特徴とする合成砥石を提供する。

Description

明 細 書 合成砥石 技術分野
本発明は、 シリ コン単結晶からなるシリ コンゥエーハ、 特に、 ベアウエーハ、 デパ ィスゥ —ハにも適用可能な表面の加工を従来のポリシングパッ ドを使用した加工を 含む一連の加工に代わって固定砥粒で研磨を行なうために用いる合成砥石に関するも のである。 本合成砥石は、 表面にデバイス配線により I C回路形成された単層 ·多層 を持つ集積回路基板が形成されたシリコンゥヱーハの裏面の研磨加工にも適用できる。 背景技術
半導体素子の基板となるシリコンゥエーハ、 即ち、 デパイスウェーハを含むベアゥ エーハの表面の加工はシリコン単結晶ィンゴッ ドをスライスしたゥエーハをラッピン グ、 エッチング、 プレポリシングおよびポリシング等の数段の工程を経て鏡面に仕上 げるのが一般的である。 ラッピング工程において平行度、 平坦度等の寸法精度、 形状 精度を得、 ついでエッチング工程においてはラッビング工程でできた加工変質層を除 去し、 更にプレポリシングおよびポリシング工程において良好な形状精度を維持した 上で鏡面レベルの面粗さを持ったゥエーハを得るのが一般的な工程である。 このプレ ポリシングおよびポリシング工程は、 通常ポリシングパッ ドを用い、 それに砥粒スラ リーを含んだ研磨用組成物の液を滴下しながら行われる。 この研磨用組成物は酸性成 分あるいは塩基性成分を含み、 酸または塩基による化学的作用 (シリ コンに対する腐 食作用) と、 同時に含まれる微細砥粒による機械的作用を応用した作用により加工が 進められる。
上述の方法は、 一般的には例えば、 硬質ウレタンの発泡体シートを用いたプレポリ シング、 ついで不織布の樹脂処理品、 例えばスエード調合成皮革よりなるポリシング パッ ド用いたポリシングで行なわれる。 これらのシート、 パッ ド等を貼付した定盤上 にシリコンゥエーハ等のワークを押圧し、 その表面に微細砥粒スラリ一を含んだ研磨 用組成物の液を供給しつつ、 定盤およびワークの双方を回転させその作用で化学機械 的ポリシング (ケミカルメカニカルポリシング) 加工を進めるという方法が採られて いる。 この加工のメカニズムは、 その前工程であるラッピング工程で行われるような 硬質な遊離状態のアルミナ系砥粒微粒子等を用いた加工のメカニズムとは異なるもの であって、 例えば研磨用溶液組成物中に含まれる成分である酸性成分あるいは塩基性 成分の化学的作用、 具体的にはシリ コンゥエーハ等ワークに対する腐食 (浸蝕) 作用 を応用したものである。 すなわち、 酸あるいはアルカリの持つ腐食性により、 シリ コ ンゥ ーハ等ワーク表面に薄い軟質の浸蝕反応層が形成される。 その化学的に脆弱化 した薄層を微細な砥粒粒子の機械 ·化学的作用により除去してゆく ことにより加工が 進むのである。 つまり通常の研磨加工はワークよりも硬度の高い研磨材粒子を用いる ことを必須条件とするが、 この化学機械的ポリシング加工の場合はワークよりも硬度 の高い研磨材粒子を用いる必要はなく、 ワークに対する負荷の少ない加工と言える。 そして、 この研磨用組成物の液はコロイ ド状シリカ (コロイダルシリカ) を主たる 研磨剤成分とし酸あるいはアルカリ成分を含むもの (例えば特許文献 1 )、 あるいはコ ロイ ド状シリ力に加えて他の酸化セリ ゥム等の砥粒を併用したもの (例えば特許文献 2 ) が通常用いられる。 この方法においては、 湿潤状態で高い圧力で加圧しながら回 転を行ない摩擦状態で加工を行なうのであるから、 変形しやすいシートゃポリシング パッ ドを用いることによる寸法精度、 形状精度、 効果の持続性及ぴ安定性に問題があ り、 加工後のゥヱーハに見られるワークのエッジ部分のダレ (ロールオフ) 現象の発 生は避けられないものであった。
また、 目詰りや損傷によるポリシングパッ ドの表面状態の変化に伴い加工レートが 刻々と変化するためルーチンでの加工を定量化する技術的難度が高いという問題点も ある。 更に、 スラリーを用いることによる加工特有の欠点、 即ち、 加工後のワーク自 体の汚染、 加工機の汚染、 排液による環境汚染等は避けられず、 それに伴なう洗浄ェ 程の設置、 加工機自体のメンテナンスサイクルの短縮、 廃液処理設備への負荷增大等 も問題点の一^ 3として大きく取り上げられている。
かかる問題点を回避するために、 またナノメーターレベルでのより精緻な表面粗さ、 形状精度、 寸法精度を求める要求には寸法安定性に問題のあるポリシングパッ ドでは 基本的に対応できないという観点から、 特許文献 3に示されるように、 合成砥石を加 工手段として用いることも行なわれている。 一般的に合成砥石とは砥粒微粒子を、 結 合材をもって結合したものを指し、 砥粒は砥石組織内に固定化されている。 砥粒とし ては一般的に使用されているものが全て用いられ、 また、 結合材としては砥粒を固定 する性能を有するものなら何でも使用できるが、 一般的には金属、 ゴム、 セラミック ス、 樹脂等を'用いることが多い。
上述の特許文献においては、 具体的には例えば研削力の強いダイヤモンド砥粒を金 属あるいは硬質樹脂等で固定化した合成砥石を用い、 機械精度の高い転写能力を持つ、 強制切り込みタイプの精密加工機を使用して鏡面仕上げを行うことも試みられている。 この方法は、 寸法 ·形状安定性に問題のあるポリシングパッ ドを使わないため加工に おけるエッジ部分のダレ (ロールオフ) 等形状精度に関する問題を起こす要因を制御 可能で、 かつ砥粒は砥石組織に把持された状態、 即ち固定砥粒として作用するのであ るから、 遊離砥粒を用いた方法よりも理論精度により近く、 仕上げ面の粗さも目的精 度をより容易に制御し、 到達できるという利点を有する。
また、 ロールオフ等の加工材料の面粗さ ·寸法 ·形状安定性に起因する問題の解決 に有効であるだけでなく、 ポリシング以前の工程を含めて工程を削減し、 一貫加工を 行なうことができるという可能性を有するが、 反面、 固定砥粒の使用により固定砥粒 特有な方向性のある幾何学的条痕が入り、 それが潜在的欠陥となる他、 微小チッピン グゃスクラッチ等の欠点も出やすく完全なものとは云い難かった。 特に、 研削力に優 れたダイヤモンド砥粒を使用した場合はその傾向が顕著である。 更に、 使用環境の変 動、 例えば、 温度、 湿度、 圧力等のファクターの変動による砥石自体の形状や寸法の 変化が顕著な場合、 やはり面粗さ ·寸法 ·形状 ·安定性に起因する問題が残ることは やむを得ないことである。
更に、 特許文献 4においては、 合成砥石中に水に溶解して酸性あるいはアルカリ性 を呈する成分を固形分としてあらかじめ含有させておき、 実使用時において特定の p H環境を形成せしめ、 ケミカルメカニカル研削を行なう合成砥石 (C M砥石) が提案 されている。 この合成砥石においてはダイヤモンド砥粒よりも硬度の低い砥粒を用い ることも有効であることが示されており、 就中、 酸化セリ ウムを砥粒として用いるこ とが良好な結果を与えることが記載されている。 この合成砥石は良好な研磨効果を有 するが、 砥石構成砥石き体の均質性、 静的 ·動的形状安定性に難点があり、 使用に伴 う砥石の変形、消耗が激しく、更に条件設定がやや難しいため改善が求められており、 実際には、 例えば 3 0 0 m m φの大口径ゥヱーハの鏡面加工を行なうには不十分であ つた。 比較的純度の高い酸化セリ ゥムを砥粒とした合成砥石も特許文献 5あるいは特 許文献 6に記載されているが、 特許文献 5の場合の研磨対象物は非晶質 (ァモルファ ス) ガラスに限定されており、 かつ砥石摩耗が高く、 研削比が極めて低いために、 シ リコン単結晶からなるシリコンゥエーハの研磨には適していない。 また特許文献 6の 場合の研磨対象物はシリ コンゥエーハ上に形成されたシリ コン酸化膜 (S i 〇2 ) 等 の薄膜に限定されていて、 極めて少ない除去量で均質な面を得ることを目的にするも のであって、 シリ コンベアゥエーハゃデバイスゥエーハの裏面研磨のように除去量の 多い研磨加工には用いられないものである。
更に特許文献 7においては、 酸化セリ ゥム砥石を用いた工作物表面加工方法が開示 されているが、 本文献は酸化セリ ゥムを砥粒として含む砥石を用いた研磨加工方法に 関するものであって、 使用する砥石の組成や構造、 および研磨作用については十分触 れられておらず、 また、 酸化セリ ウムの純度、 およびその影響、 その他充填材、 添加 剤等の種類やその効果についても具体的には触れられていない。
また、 表面がグラフアイ ト化されたクラスタダイヤモンドを研磨用組成物の砥粒成 分として用いる技術が開示されており (例えば特許文献 8 )、 更に特許文献 9にはダラ フアイ トを固体潤滑剤として使用したメタルボンド砥石について記載されている。 こ れらはグラフアイ トの本来持つ潤滑性を研磨作用に利用した技術であって、 研磨の円 滑性向上を目標にしたものである。
更に、 かかる砥石を搭載して送り制御あるいは圧力制御により表面加工を行なう加 ェ機としては、 例えば特許文献 1 0に記載の超加工機械をあげることができる。
特許文献 1 :米国特許 3 、 3 2 8 、 1 4 1号公報
特許文献 2 :米国特許 5 、 2 6 4 、 0 1 0号公報
特許文献 3 : 特開 2 0 0 1 ― 3 2 8 0 6 5号公報
特許文献 4 : 特開 2 0 0 2一 3 5 5 7 6 3号公報
特許文献 5 :特開 2 0 0 0一 3 1 7 8 4 2号公報
特許文献 6 : 特開 2 0 0 1 ― 2 0 5 5 6 5号公報
特許文献 7 : 特開 2 0 0 5一 1 3 6 2 2 7号公報
特許文献 8 :特開 2 0 0 5一 1 8 6 2 4 6号公報
特許文献 9 : 特開 2 0 0 2 ― 0 6 6 9 2 8号公報
特許文献 1 0 : 特開 2 0 0 6 ― 2 8 1 4 1 2号公報 発明の開示
本発明者等は上述の先行技術について鋭意検討を行なったものであり、 本発明の目 的はシリ コンゥエーハ、 シリ コンゥエーハを素材とした半導体素子, 特にべアウエ一 ハの表面のポリシング、 平坦化加工を無歪 (加工変質層、 残留応力のない)、 S i原子 無欠陥の状態でより効率的に行なうことのできる合成砥石を提供することにある。 即ち、 本発明者等は合成砥石を構成する主たる成分を、 砥粒としての高純度酸化セ リ ウム (C e 0 2 ) 微粒子、 結合材としての樹脂、 充填材と しての塩類及び添加剤と してのナノダイヤモンド (ナノメーターサイズの超微粒子ダイヤモンド) とすること により、 性能機能の変化の少ない研磨効率に優れた砥石が得られることを見出したの である。 即ち、 このような構成の合成砥石を用いてシリ コンゥエーハ等の加工を行な うことにより、 加工領域の S i原子結合ポテンシャルを、 加工瞬時において弱体化せ 6 しめ、 その瞬時に選択的に一 O— S i —o—を低圧掃き出しすることができる。 ここ において、 添加剤をナノダイヤモンドとすることによって均質性、 熱や圧力に対する 形状安定性、 耐熱性、 耐圧性、 研磨熱の伝導、 伝達性に優れ、 使用に伴う砥石の変形、 摩擦や摩耗が均質かつ定常的に小さく、 性能機能の変化の少ない研磨効率に優れた砥 石が得られることを見出したのである。 特に酸化セリ ゥムの純度が合成砥石の研磨力 向上及ぴスクラッチ (条痕) 等の欠点発生の抑止に効果的に貢献し、 更に添加剤であ るナノダイヤモンドの種類と量との選定が合成砥石の熱や圧力に対する寸法 ·形状安 定性 ·砥粒 (m) ·減衰 ( c) *パネ (k) の動的振動による吸振性、 及ぴ切削要素低 減による、 研磨力の向上に寄与することを見出したものである。
充填材としての塩類は S i原子結合ポテンシャルを瞬時 ; p s (ピコ秒) オーダー で弱体化させ、 引つ搔き除去機能発現効果を得る。 更に、 添加剤としてのナノダイヤ モンドは、 一 O— S i — O—を、 潤滑と熱放散により一 O— S i 一 O—を選択的に低 圧搔き出し効果をもつ。 なお、 本発明においてナノダイヤモンドとは、 クラスタダイ ャモンド及びそれを完全に黒鉛 (グラフアイ ト) 化したものあるいは表層部分を部分 的に黒鉛 (グラフアイ ト) ィ匕したもの (グラフアイ トクラスタダイヤモンド: GCD) を示す。
近年、 酸化セリ ウムとして扱われるものの酸化セリ ウム純分 (純度) は、 全体に対 する希土類酸化物 (TRO) の重量。 /0と、 希土類酸化物中に含まれる酸化セリ ウムの 重量% (C e 02 /TRO) とを併記して表示されることが多い。 本発明においては 酸化セリ ウム純度とは、 上記の两者が併記されている場合には、 その積をもって酸化 セリ ウム純度とする。 例えば TROの重量0 /0が 90 %、 C e 02 ZTRO重量%が 5 0%の場合は、 (9 0 X 5 0) / 1 0 0 = 45重量%とする。
上述の目的は、 砥粒としての酸化セリ ウム微粒子、 結合材としての樹脂、 充填材と しての塩類おょぴ添加剤としてのナノダイヤモンドを主要成分として含有する構造体 であって、 前記酸化セリ ウムの純度が 6 0重量%以上であり、 充填材としての塩類の 含有量が構造全体に対する体積含有率で 1 %以上 2 0%未満の範囲にありかつ添加剤 と してのナノダイヤモンドの含有量が構造全体に対する体積含有率で 0. 1 %以上 2 0 %未満の範囲にあることを特徴とする合成砥石にて達成される。 図面の簡単な説明
図 1は、 実施例 3の砥石で加工したシリコンゥエーハの表面の TEM像および電子 線回折図 (右下図) である。
図 2は、 化学機械的ポリシングで加工したシリコンゥエーハの表面の TEM像およ ぴ電子線回折図 (右下図) である。 発明を実施するための最良の形態
本発明になる合成砥石の第一の肝要は、 砥粒として用いる酸化セリ ゥムの純度を 6 0重量%以上の髙純度品とする点にある。 一般的にバネストサイ ト鉱として産する酸 化セリ ゥムは共存する他の希土類元素やハフニウム等の不純物元素の含有率が髙くま たその除去が難しいため、 通常 4 0ないし 6 0重量%程度の純度のものが酸化セリ ゥ ム研磨材砥粒として用いられている。 本発明者等は、 本発明になる合成砥石に使用す る研磨材砥粒のグレードについて鋭意検討を行なった結果、 ガラス等のポリシングに 用いられる一般的な低純度酸化セリ ゥムを砥粒と して使用した場合において見られる 被研磨体表面スクラツチ等の欠点の発生は、 高純度品を用いることにより抑制され、 その加工に要する時間はべアウエーハの通常の化学機械的ポリシング加工と同等ある いはそれ以下であることを見出したのである。 即ち、 砥粒としての酸化セリ ウム微粒 子は、 その純度が 6 0重量。 /0よりも高くなるにつれて、 S i 02 分子、 S i原子と C e 02 との間で活発な化学反応環境が構成され、 S i —02 と C e— 02 において、 S i -02 に C e 3 + イオンが作用し S i — C e 02 を瞬時に形成することが見出さ れた。 たとえば、 5 0〜 3 0 0 Aの G C Dを 0. 1〜 2 0 %添加すると、 C e O 2 — N a 2 C03 一 GCD— C a C03 —結合剤の熱伝導性、 親和性、 振動減衰性等の物 理 -化学的性質が向上、 安定化する。 その結果、 砥粒近傍の熱停留を防止し、 研削熱 1 5 0〜2 5 0°Cにおける砥粒 C e O 2 一 S i O 2 結合ポテンシャルの弱体化が 0. 5 p s〜 l p sのような瞬時の定低圧加工環境下で起こる。 この C e 02 — S i 02 のラジカル弱体化現象は以下のように説明できる。 即ち、 乾式、 1 5 0~ 2 5 0°Cの 環境下においては、 S i s i o 2 —Os i 0 2 の結合ポテンシャル φ ( r ) C r :原子 間距離〕 は零に近づき、 砥粒は通過する。 この変化は、 C e 02 が瞬時であるのに対 して、 S i 〇 2 は極めてゆつく り続く。 これにより、 表面に S iが生成する。 本発明 の砥石を用いた加工において、 研磨液を用いることなく化学的活性の加工環境を構成 すると、 自然酸化膜 (S i 02 ) 及び S i原子格子の歪みのない、 同時に、 残留応力 のない完全な表面が得られる。
かかる効果は 6 0重量%以上の純度の酸化セリ ゥムの使用により顕著になり、 更に 9 0重量%以上の純度の酸化セリ ウムとすることにより極めて顕著な効果が得られる のである。格子が一定間隔で整列している、また電子線回折像にも対応し現れている。 即ち、 本発明の合成砥石は、 純度が 6 0重量。 /0以上の高純度酸化セリ ウム微粒子を砥 粒として用いることによりはじめて達成されるのである。 より好ましい酸化セリ ウム の純度は 9 5重量%以上であるが、 9 9重量%以上となると性能面では問題ないが経 済的競争力の面でやや難点がある。
本発明において好ましい酸化セリ ゥムの含有量は構造全体に対する体積含有率で 1 5ないし 70%である。 1 5 %より少ないと砥粒としての効果が十分でなく、 7 0 % を超えると切れ刃の過剰関与、 結合剤 +充填剤 +添加剤と砥粒の最適化学反応による 熱的把持力の再調整が生じ、 最適加工条件の再設定が起こる、 また構造的に脆弱にな つて砥石破壌靱性の面でも好ましくない。
高純度酸化セリ ゥム微粒子を砥粒として用いることにより極めて高い加工精度が得 られることの理由は以下の通り説明される。 即ち、 大略 3 w m以下の髙純度酸化セリ ゥム砥粒は、 約 5ナノメートル (nm) 以下の超微粒子の集合体である。 シリ コンゥ ヱーハは珪素の単結晶であり、 珪素原子はダイヤモンド構造の 4面体構造で規則正し く配列されている。 加工において加工点のラジカル度を上げ、 結晶格子原子の振動を 上げると熱励起され、 熱格子振動の付加により振幅が大きくなり、 原子間のポテンシ ャル φ ( r ) が低下する。 この状態になると C e 3 + から C e 4 + イオンの空間密度 上昇と、 S i— C e 0 2 の相互反応により形成された S i 0 2 分子の熱活性により、 酸化セリ ゥム超微粒子の加工力で珪素の原子層が除去される。 即ち、 ( 1 1 1 ) 方向に 格子滑りが生じ、 層が剥離されて行くために極めて高い加工精度が得られるのである。 この効果は加工点を特定の加工条件におくこと、 具体的には 8 0 °Cないし 3 0 0 °C、 好ましくは 1 5 0 °Cないし 2 5 0 °Cの活性温度加工条件とすることによって得られる。 更に、 本発明になる合成砥石の第二の肝要は、 酸化セリ ウム砥粒微粒子を組織內に 安定して把持結合する結合材として樹脂、 好ましくは熱硬化性樹脂を用いることにあ る。 熱硬化性樹脂の硬化体は、 原料になる樹脂が熱により不可逆的に反応硬化したも のであり、その後の熱変化、使用環境変化 (湿度、温度等による物性変化、寸法変化)、 溶剤に対する変化 (溶解、 膨潤、 収縮、 可塑化、 軟化)、 経時による寸法変化のない素 材であるから、 砥石の結合材として用いた場合、 砥石のあらゆる面での、 形状、 寸法 安定性に寄与しうるものである。 かかる機能、 即ち、 熱安定性、 耐侯性、 耐溶剤性等 はナノメーターレベルでのより精緻な形状精度、 寸法精度を求める合成砥石にとって 欠くべからざるものであり、 重要なポイントである。 このような性能を安定化させる ためには使用する熱硬化性樹脂の硬化反応が完全に完結していることが求められる。 つまり、 合成砥石の実使用段階においても硬化反応が進むようなものであってはなら ない。 使用する熱硬化性樹脂の硬化反応は、 その前駆体またはプレボリマーの熱硬化 によって進められるものであるが、 製造工程においてその硬化を完結させるためには、 樹脂の硬化温度あるいはそれより多少高い温度での熱処理時間を十分にとり、 硬化反 応を完結させることが肝要であり、 適当な硬化 (架橋) 触媒を使用することも効果的 である。
本発明において結合材として使用される熱硬化性樹脂としては、 フエノール系樹脂、 エポキシ系樹脂、 メラミン系樹脂、 硬質ウレタン系樹脂、 尿素系樹脂、 不飽和ポリエ ステル系樹脂、 アルキッ ド系樹脂、 ポリイミ ド系樹脂、 ポリ ビニールァセタール系樹 脂からなる群より選ばれる熱硬化性樹脂のうち少なく とも一つであることが好ましく、 熱安定性、 強靭性 (破壊靱性値 1^、 Κ„、 Κ: Ι Ι) 等の観点から、 これらの熱硬化性 樹脂のうち、最も好ましい熱硬化性樹脂はフユノール系榭脂 (ベークライ ト) である。 これらの樹脂は製造過程においては未硬化の前駆体あるいはプレボリマーであっても よいが、 製品となった際には熱硬化が完結したものでなくてはならない。 即ち、 合成 砥石となった後は、 熱あるいはその他の条件により硬度等の物性、 形状が変化するも のであってはならない。 本発明の合成砥石においては、 製造過程において、 前記熱硬 化性樹脂の硬化 (架橋) 触媒を併用することが形状の安定性向上のためにより効果的 である。
なお、 本発明において樹脂率とは、 樹脂の含有率を示すものであり、 構造体全体に対 する体積含有率で示す。
本発明になる合成砥石の第三の肝要は、 充填材として塩類、 特に金属塩を加えるこ とである。 本発明の合成砥石の加工能率は加工圧力に依存する。 加工圧力を上げてゆ く と、 加工面での焼けが発生したり、 スクラッチが発生するようになることが多い。 かかる問題点は充填材として金属塩を加えることにより顕著に改善される。 金属塩と しては、 無機酸と無機塩基よりなる無機質の塩を用いることが好ましく、 具体的には 特に限定を受けるものではないが、 好ましい例としては炭酸ナトリ ウム (N a 2 CO 3 ), 炭酸力リ ウム (K2 COs )、 炭酸カルシウム (C a C03 )、 水ガラス (珪酸ナ トリ ウム N a 2 S i 03 )、 硫酸ナトリウム (N a 2 S〇4 )、 等を挙げることがで きる。 かかる組成とすることにより、 高い加工圧力に耐える合成砥石を得ることがで きる。 即ち、 熱硬化性樹脂のみを結合剤として用いた合成砥石の場合砥石面にかけ得 る圧力の上限は 0. 0 5 MP a程度であり、 これ以上であると加工面の焼けが発生し、 研磨加工はできなくなる。 金属塩を併用することによりその上限値は 0. 1 2MP a 程度にまで改善される。 また、 0. 0 5MP aの加工圧力で研磨加工した場合も、 両 者を併用した場合の方が加工能率は良好である。
金属塩の添加量は構造体全体に対し体積含有率で 1 %以上 2 0 %以下の範囲にある ことが必要である。 1 %未満であるとその効果は十分でなく、 また、 2 0 %を超える と量的に過剰であり、 砥石の強度あるいは硬度等の物性に悪影響を与えるだけでなく、 熱硬化性樹脂の硬化体の結合材としての機能や G C Dの添加の効果を阻害するので好 ましくない。 特に、 好ましい範囲は構造体全体に対し体積含有率で 5 %以上 1 8 %以 下の範囲である。
本発明になる合成砥石の第四の肝要は、 添加剤としてのナノダイヤモンドを用いる ことにある。 その含有量は構造体全体に対する体積含有率で 0 . 1 %以 2 0 %以下の 範囲にあることが必要である。 本発明の合成砥石において、 添加剤として加えられる ナノダイヤモンドとしてはグラフアイ トクラスタダイヤモンド ( G C D ) が好ましく 用いられる。 G C Dとは、 爆発合成方法にてクラスタダイヤモンドを製造する過程に おける中間体として、 その表層にグラフアイ ト層をもったものができる。 即ち、 表面 がグラフアイ ト化され芯はダイヤモンドの状態のもの、 つまりグラフアイ トでコーテ イングされたダイヤモンド微粒子ができる。 これを G C Dと呼ぶ。 中でもその粒径が 5 O A ( 5 n m ) ないし 3 0 0 A ( 3 0 n m ) 程度のものが好ましい結果を与える。 かかるナノダイヤモンドの所定量を添加することにより、 一 0 _ S i一 O—を低圧で 搔き出す効果を与え、 研磨性能の変動がなくて効果的かつ均質な研磨加工を継続的に 行なうことができ、 更に砥粒把持力の均質等方化、 研削熱等方伝導並びに伝達性、 摩 擦,摩耗低減、 砥粒自生発刃能力の安定維持、 砥粒振動減衰 (約 1 0倍) 等の向上効 果も引き出すことができる。
本発明になる合成砥石は構造体として気孔を有することができる。 ここでいう気孔 とは、 構造体中に独立気泡あるいは連続気孔として存在するものであり、 その気孔形 状、 サイズ等は比較的均質なものである。 気孔の存在により、 研磨加工中に発生する 研磨屑 (切粉) をこの気孔中に捕捉し、 表面への研磨屑の堆積を防止し、 更に研磨熱 の停留蓄積を防ぐことができる。 気孔の形成は、 適当な気孔形成材を製造時に配合し て行なう方法、 あるいは原料配合、 焼成時に加圧条件を加減して気孔を形成せしめる 方法等がある。 本発明においては、 気孔率は構造全体に対する体積含有率で 1 %以上 30 %未満であることが好ましい。
このような静的 ·動的砥石主要要素が揃うことによって、 合成砥石に適切な研磨条 件を与え、 化学的に C e 02 —結合材ー気孔と S i ゥエーハとの研磨熱活性場を構成 することにより、 ほぼ S i原子格子の歪みが零に近く、 かつ自然酸化膜 S i o2 発生 などの組織変化がない、 S i完全結晶の加工表面が得られる。 より詳細には、 砥粒 C e O 2 一 S i O 2 の 2体接触滑動としての加工挙動は次式で除去能力の存在を検証可 能である。 砥粒の貫入深さ 1 = 3/ 4 φ (P/2 C Ε) 2 / 3 となる。 圧力 Ρ (本条 件では 5 k p a〜 5Mp a )、 砥粒径 φ (2. 3 m)、 砥粒集中度 C (= 7 0%)、 S iのヤング率 E (= 1 7 0 G P a ) を、 式に代入すると、 機械的な砥粒貫入深さが、 CM砥石の場合は、 0. 0 1〜 1 nm程度である。 この条件では、 延性モードである。 そして次に述べる S iの共有結合力の低下により、 浚うように S i 02 が排除される。 さらに、 合成砥石中の C e O 2 砥粒の熱停留を防止し、 研磨熱 1 5 0〜2 5 0°Cにお ける S i O 2 に対するボンドボピュレーション (分子動力学における S i — o2 結合 ポテンシャルお) の弱体化のラジカルを安定化し、 持続する効果が発現することに起 因すると考察できる。 このよ うな効果は分子動力学シミユレーショ ンからも裏付けさ れる。 結果的に確認した場合、 CM砥石の貫入深さ d = 0. 0 1〜 l nmの深さにか かわらず、 毎分数 nm〜数 1 0 0 nm (ゥヱーハの厚さ変化から算定) の S i除去を 実現している。 このように乾式研削において、 化学反応が寄与していることが明らか である。 例えば、 S i ゥエーハ表面に形成された S i O 2 力 C e 02 砥粒と固相反 応してケィ酸塩類を成した次に示す化学反応式である。
2 C e O 2 + 2 S i - O - S i ~~ 2 S i一 0 = C e— O— S i + O 2
このケィ酸塩類は非常に柔らかくなるため、 加工表皮の原子層ポテンシャル Φ (r ) のエネルギを弱体化するとみなされるので、 乾式条件下でも酸化物である砥粒によつ て簡単に除去できる。熱停留が砥粒 C e 02 一結合材(含む充填材) 界面で生じると、 過剰 S i o2 膜が強固に発生することになり加工層が形成されるが、 本発明になる合 成砥石においては、 S i ◦ 2 膜よりなる加工層は発生しない。 この時重要なことは、 前記の化学反応は、 化学平衡を右方向に進行させるためには 2 0 0 °C以上の高温が必 要である。
本発明の合成砥石には上記のほか、 通常の合成砥石に添加する添加剤を適宜加える ことができる。 具体的には、 フィラー、 カップリング剤、 酸化防止剤、 着色剤、 滑剤 等を必要に応じて加えることができる。
本発明においては、 砥石を装着し加工を行なう装置、 すなわち加工機のタイプにつ いては特に限定を受けるものではない。 一般的にポリシング用として用いられている 装置のポリシングパッ ドの代わりに砥石を載置した定盤上にワーク (被研磨体) を一 定圧力で押圧し、 双方を回転しながら加工を行なう装置を使用することも可能である。 また、砥石とワークを同一軸上に対向するように配置し、双方を高速回転させながら、 予め設定された微小切込量に従って砥石およびワークの双方あるいはその一方を微小 移動させ、 ワークの加工を行なうといういわゆる定寸方式の超精密研削盤、 あるいは 同様の形式においてあらかじめ設定された一定の圧力によってワークの加工を行なう 定圧方式の精密加工装置を加工手段として用いることもできる。
就中、 研磨熱を前述の 8 0でないし 3 0 0 °C、 好ましくは 1 5 0 ないし 2 5 0 °C の活性温度加工条件温度に到達せしめるには、 研磨装置として、 定圧あるいは定寸方 式の研磨加工機、 例えば予め設定された微小切込量に従って砥石おょぴワークの双方 あるいはその一方を微小移動させ、 ワークの加工を行なう といういわゆる超精密研削 盤を用い、 回転条件等を特定の条件に設定することが好ましい。 具体的には、 例えば 特許文献 1 0等に記載の超加工機械を用いることが好ましい。 これらの超加工機械は 加工圧力、 砥石相対運動による研削温度制御が可能である。 この場合砥石形状はカツ プ型あるいはディスク型とし、 砥石とワークの双方を高速回転して用いる。 後者の装 置を、 例えばべアウエーハの加工に用いる場合は、 ポリシングのみならず、 それに先 立つラッピング、 エッチング、 プレボリシングの工程までを一貫して行なえるという 利点をも有する。
本発明の合成砥石の製造については特に限定を受けるものではなく、 一般的な樹脂 系の砥石の製法に準じて行なうことができる。 例えばフエノール系の熱硬化樹脂を結 合材として用いる場合は以下のような方法で製造が可能である。 即ち、 原料である酸 化セリ ゥム微粒子、 熱硬化性フエノール樹脂の前駆体あるいはプレポリマ一の粉末、 充填材、 添加剤を所定量均質混合し、 所定の型枠に入れて加圧成型し、 然る後熱硬化 性フヱノール樹脂の硬化温度以上の温度にて熱処理することによって得ることができ る。 熱硬化性フエノール樹脂の前駆体あるいはプレポリマーは液状のもの、 あるいは 溶剤に溶解したものであってもよい。 この場合は混合時にペース ト状とすることがよ い。 また必要に応じて硬化触媒、 気孔形成材あるいはその他の添加材を適宜加えても よい。
本発明の合成砥石が、 S i半導体表面表皮に s i o2 膜を持つ S i基板 (単結晶) を、 残留応力、 組織変化なし、 所謂加工層無しの s iゥエーハを製造するには、 前述 の横型又は縦型の超加工機械との組み合わせ、 実用的条件にて用いることが好ましい。 例えば、 S i — S i結合と、 G CDで C e 02 を把持充填した時の原子間ポテンシャ ル φ ( r ) は、
φ ( r ) =D ( e x p {- 2 a ( r一 r 0 ) }— 2 e x p {- d ( r - r 0 )}) で表さ れる。 但し、 r :原子間距離 (r。 初期位置)、 D :材料の原子間ポテンシャル、 a : 材料定数 (A一 1 ) とする。
仮に、 φ ( r ) = 0 e Vの時、 S i — S i原子、 r 2. 2 A、 S i — C (G CD) 原子は、 r = 1. 8 A、 また、 原子間力 f ( r ) = 0は、 S i — S i原子 r ^ 2. 2 A、 S i — C原子 r ^ 2. O Aであるから、 G CD添加により、 S i原子層を一層ず つ、 より整然と切削機能なしに、 搔き出すことがわかる。 このシミュレーショ ン結果 の検証は、 3. 94A (理論値 3. 8 4 A) の格子間隔の発現 〔 S i (0 0 1)〕 から わ力 る。
本発明の合成砥石は、 C e 02 — G CD—結合剤一充填剤一添加剤一気孔の適性含 有0 /0において、 前記砥石 + S i O 2 — S iの組み合わせを構成する。 その時 (C e O 2 ) 一 と (S i O。 ) 2 + の反応が、 本加工条件 (加工圧力 1 MP a、 相対速度 1 5 m/ s ) で研磨すると、 1 5 0〜 2 5 0 °Cの研磨熱が発生する。 すると砥粒と S i O 2 、 S iの間で、
S i +02 → (S i 02 ) 2 + + 2 e ~ →S i Oz
の熱化学反応が界面で発生する。 反応前後の s i結合電子数の減少は、 S i共有結合 力の弱体化を示しているから、 この反応では、 酸素を消費して、 e— を放出すること になる。 よって、
2 (C e O 2 ) + 2 e— < ~~ > 2 (C e O 2 ) - ~~ C e O 3 + 1 / 20 - は右辺に進行することになる。 さらに前記 2つの式の中間生成物 (C e 02 ) — と (S i 02 ) 2 + が反応して、 複合物 (C e _0— S i ) が形成される。
( S i O 2 ) 2 + + 2 (C e O 2 ) 一 < ~~ >C e 2 O 3 · S i 02
この複合物は結合強さが非常に弱い非晶質である。 単結晶 S i ( 1 0 0) のマイクロ 強さは、 1 1〜 1 3 G P aに比べて C e O 2 の硬さはその半分 ( 5 ~ 7 G p a ) 程度 である。 ここで S i を C e 02 で除去することは困難である。 それ故に、 CM砥石加 ェでは切削機能はほぼ働かないために、 加工層が形成されない。 つまりこの条件は C eの [X e A f 1 5 d 1 6 S 2 の原子配列を有する。 よってそのイオン価が C e ( 1 l l ) /C e 3 + 力、、 C e ( I V) /C e 4 + によって、 2種類の酸化物 C e〇 2 、 C e 2 O 3 が存在する固定砥石の研磨条件と CM砥石の組み合わせ条件が最適加工雰 囲気 (加工熱 1 5 0 ~ 2 5 0 °C) の付与によつて加工層のない φ 3 0 0 mm S i ゥェ ーハの加工ができる。
以下、 実施例および比較例に従い本発明の具体的実施態様を説明するが、 それにより 限定を受けるものではない。 実施例および比較例
砥石製造
砥粒として平均粒子径が 1一 3 μ mの酸化セリ ゥム微粒子を用いた。 結合材として 熱硬化性フエノール榭脂粉体、 充填材として炭酸ナトリ ウム、 添加剤として粒径約 1 0 O Aのグラフアイ トクラスタダイヤモンドを用い、 この四者を均一に混合し所定の 型枠に入れて加熱加圧成型法にて 5. 2 X 1 0 X 40 mmのサイズの実施例 1一 4、 比較例 1 _ 4の砥石を得た。 砥石成型における焼成条件は、 次の通りである。
室温→ 8 0°C昇温: 1 0分
8 0 °C保持: 5分
8 0 °C→ 1 00 °C加圧昇温: 1 0分
1 00 °C→ 1 9 0 °C昇温: 1 5分
1 9 0 ^保持: 1 8時間
室温まで冷却 : 3 0分
なお、 実施例 1一 3、 5及び、 比較例 1一 3及び 5で砥粒として用いた酸化セリ ウ ム微粒子は C e O 2 純度 ; 9 6. 5重量。 /0のもの、 実施例 4で砥粒として用いた酸化 セリ ゥム微粒子は C e O 2 純度 ; 6 5. 8重量%のもの、 比較例 4で用いた酸化セリ ゥム微粒子は C e O 2 純度; 4 2. 5重量%のものである。 実施例 1— 5、 比較例 1 _ 5の砥石の砥粒率、 樹脂率、 充填材率、 添加剤率、 気孔率を表 1に示す。
表 1
Figure imgf000018_0001
合成砥石による試験 1
上述の各砥石を横型超精密研削盤に取り付け、 シリコンべアウエーハ (3インチサ ィズ) の加工試験を行なった。 ここでの試験は砥石の良否を定性的に判定するもので あり、 詳細な評価は行っていない。 加工条件は、 砥石回転数 5 0 0 r pm、 ワーク (ゥユーハ) 回転数 5 0 r p m、 加工 圧力 0. 1 k g f / c m2 で行ない、 加工液は使用しなかった。 なお、 砥石の形状安 定性とは外力あるいは熱変化に対する変位の程度を示すものであり、 砥石の変形、 消 耗とは実際の使用時の変形、 消耗を示すものである。
定性的な評価結果を表 2に示す。 表 2における評価基準は以下の通りである。
◎ :非常に良好 O : 良好
Δ :やや不良 X :不良
表 2
Figure imgf000019_0001
合成砥石による試験 2
上述の定性的研磨試験の結果において最も優れた結果が得られた実施例 5の砥石及 ぴ純度 6 0重量%以下の酸化セリ ゥムを用いた比較例 5の砥石を用いて、 8 0 0番の ダイャモンド砥石で一次研磨を行なった後の 3 0 0 mm φのべァシリコンゥエーハの 加工を行なった。 一次研磨後のシリコンゥエーハの面粗さ R aは 1 3. 3 0 ηπιであ つた。 加工条件は、 砥石回転数 5 00 1- p m、 ワーク (ゥエーハ) 回転数 5 0 r p m、 加工圧力 0. 1 k g f / c m2 で行ない、 加工液は使用しなかった。 加工後の表面の 評価結果を第 3表に示す。
参考のために同様にして準備した一次研磨後のシリコンゥヱーハを 5 0 0 0番のダイ ャモンド砥石で砥石回転数 1 5 0 0 r p m、 ワーク (ゥエーハ) 回転数 5 0 r ;pm、 送り速度 1 0 μ mm : m i n、 水を加工液として研磨を行なったもの、 及ぴ従来のポ リシング法にて得られたポリシドウヱーハの評価結果を第 3表に併記する。 なお、 ェ ツチングはフッ酸:硝酸:酢酸 = 9 : 1 9 : 2の混酸を用い、 室温で 3 0分間行った。 なお、 表 3において、 表面粗さについては Z YGO社製の位相干渉計 (N e wV i e w 2 0 0) で測定した結果を示す。 また、 それ以外の外観の評価は目視による評価 結果である。
表 3
Figure imgf000020_0001
表 3の結果から明らかな通り、 本発明の砥石 (実施例 5) によって得られたゥエー ハの面粗さおよび外観は化学機械的ポリシング法にて得られたものと大差なく、 ダイ ャモンド砥石による面に見られる規則的条痕は全く認められなかった。 加工面を混酸 にてエッチングした所、 本発明の砥石によって得られた面は化学機械的ポリシング法 にて得られた面と大差なくエッチピッ トは認められなかったが、 ダイヤモンド砥石に よる面では無数の筋状エッチピッ トが認められた。 エッチング深さも、 化学機械的ポ リシング法にて得られたものと大差なかった。 添加剤としてのグラフアイ トクラスタ ダイヤモンドは砥石の潤滑性、 砥粒脱落性 (自生発刃能力)、 C e 02 (1 ~3 111平 均粒径に対し、 約 5 0 nm以上の微細粒子の単結晶構造を持つ) の微小切れ刃の平滑 能力、 結合剤への熱停留緩和、 砥粒、 結合剤、 結合剤界面の振動減衰に寄与し、 砥粒 の研磨能力発現に必須であることが表 2、 表 3の結果が示している。
また、 純度が 6 0重量%以下の酸化セリ ゥムを砥粒として用いた比較例 4の砥石は僅 かではあるが浅いスクラツチが不規則に発生し、 実際の使用に耐え得るものではなか つた。 図 1は実施例 3の砥石で加工したシリコンゥヱーハの TEM (透過型電子顕微鏡) による像と電子線回折像であり、 図 2は通常ポリシング法 (化学機械的ポリシング法) で加工したシリ コンゥエーハの TEMによる像と電子線回折像である。 この図から明 らかなように本発明の合成砥石を用いた乾式研磨加工では S i単結晶の格子構造が観 察できるのに対し、 通常の化学機械的ポリシング法の最終仕上げでは表面に非晶質 S i O 2 の層が存在し格子構造は観察できない。 即ち、 本発明の合成 CM砥石を用いた 乾式研磨加工では、 S i (0 0 1 ) 面の格子像が整列配位し、 規定の原子格子間隔を 保っているのに対して、 遊離砥粒による最終ポリシング (化学機械的研磨) 面には、 それが見られない。 また、 S i (0 0 1) 面の原子格子回折は、 CM砥石は所定の回 折位置と角度において回折像を示すのに対して、 最終ポリシング面には、 ハローが現 れ、 非晶質 S i 〇2 の生成を意味する n—パターンが認められる。 CM砥石の加工層 には、 亀裂、 塑性歪み、 転位などの欠陥がないことを示している。 従って、 素地と同 じ無欠陥、 つまり加工層無しの加工が CM砥石によって得られている。
本発明の合成砥石を用いて研磨試験で得られた 3 0 Οπιιηφシリコンゥエーハの Τ ΕΜ観察 (40 0 KV、 8 0万倍で観察) 及び高分解能原子間力プローブ顕微鏡 (A s 1 urn R e s e a r c h I n c社製、 M F P - 3 0 ) を使って 3. 5 n m X 7 nmの領域を測定した結果、 S i単結晶原子格子 (0 1 1 ) 面間隔 3. 9 4 Aで、 理論空間波長 3. 84 Aとほぼ一致する。 このことは、 0. 1 Aの格子歪みであり、 いわゆる残留応力はほぼ零ということになる。 図 1の TEM像 (CM砥石加工による 面) には、 各格子面が鮮明に現れており、 S i単結晶構造を、 表面から作っているこ とが解る。 よって本発明になる合成砥石を用いることにより、 シリ コン単結晶の構造 のまま、 加工層がない 3 0 0 mm φシリコンゥエーハの加工が実現できていることは 明らかである。
本発明になるシリコンゥユーハ研磨用合成砥石は、 砥粒 +結合剤 +充填材 +添加剤 の組成において (C e〇2 ) — と (S i 02 ) 2 + の反応が研磨過程において進み、 表面に C e 2 O a . S i 02 で示される複合物が生成する。 この複合物は、 結合強さ が非常に弱い非晶質である。 この複合物は C e 0 2 が最適研磨排除能力を持つように 設計した砥石、 C e 0 2 + G C D +結合剤 +充填材 +添加剤の組み合わせと配合比の 最適条件と研磨条件の組み合わせにより最適加工環境 (加工温度 1 5 0 ~ 2 5 0 °Cの 利用) の付与によって、 砥粒である高純度酸化セリ ウム微粒子によって容易に切削機 能の作用なく、 C M砥石の定圧制御加工、 即ち機械精度を凌ぐことが可能な進化の加 ェ原理を適用することによって、 加工層のないシリコンゥエーハができる。 産業上の利用の可能性
上述の通り、 本発明の砥石によれば、 従来ポリシングパッ ドと研磨用組成物 (スラ リー) によって行われてきたシリ コンゥエーハのポリシング (化学機械的ポリシング) 加工を、 固定砥粒を有する合成砥石での C M砥石加工で行なうことを可能にしたもの である。 即ち、 合成砥石を用いる C M砥石加工の採用により、 従来の化学機械的ポリ シングにより加工されたシリコンゥエーハに見られるロールオフ等形状精度の問題を —気に解決できるのみならず、 ポリシングパッ ドと研磨用組成物を用いることに伴う 2次的性能も含めた問題点も解決できる。 つまり、 加工の持続性に関する不安定さ、 遊離砥粒を用いることによる使用装置の汚染、 ワーク自体の汚染、 廃液による環境汚 染等ポリシング 2次性能の問題点の解決も可能となる。 また、 ァズカツ トゥエーハか らの一貫した連続加工をしかも加工液なしで行なうことも可能であり、 従来の、 髙価 な遊離砥粒ゃスラリーを多量に消費することによる加工コス トを低減でき、 半導体産 業界にとって、 有効な S i ゥエーハ加工技術として貢献できると考える。

Claims

請求の範囲
1 . 砥粒としての酸化セリ ウム微粒子、 結合材としての樹脂、 充填材としての塩類お よび添加剤としてのナノダイャモンドを主要成分として含有する構造体であって、 前 記酸化セリ ゥムの純度は 6 0重量%以上であり、 充填材としての塩類の含有量が構造 全体に対する体積含有率で 1 %以上 2 0 %未満の範囲にありかつ添加剤としてのナノ ダイヤモンドの含有量が構造全体に対する体積含有率で 0 . 1 %以上 2 0 %未満の範 囲にあることを特徴とする合成砥石。
2 . 結合材としての樹脂が、 フエノール系樹脂、 エポキシ系樹脂、 メラミン系樹脂、 硬質ウレタン系樹脂、 尿素系樹脂、 不飽和ポリエステル系樹脂、 アルキッ ド系樹脂、 ポリイミ ド系樹脂、 ポリ ビニールァセタール系樹脂からなる群より選ばれる熱硬化性 樹脂のうち少なく とも一つであることを特徴とする請求の範囲第 1項に記載の合成砥 石。
3 . 充填材としての塩類が無機酸と無機塩基よりなる金属塩であることを特徴とする 請求の範囲第 1項ないし第 2項のいずれかに記載の合成砥石。
4 . 添加剤としてのナノダイヤモンドがグラフアイ トクラスタダイヤモンドの微粒子 であることを特徴とする請求の範囲第 1項ないし第 3項のいずれかに記載の合成砥石。
5 . グラフアイ トクラスタダイヤモンドの粒子径が 5 0オングス トローム ( A ) ない し 3 0 0 Aであることを特徴とする請求の範囲第 1項ないし第 4項のいずれかに記载 の合成砥石。
PCT/JP2008/056279 2007-03-26 2008-03-25 合成砥石 WO2008117883A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009506388A JP5010675B2 (ja) 2007-03-26 2008-03-25 合成砥石
AT08751823T ATE550144T1 (de) 2007-03-26 2008-03-25 Synthetischer schleifstein
KR1020097019852A KR101503545B1 (ko) 2007-03-26 2008-03-25 합성지석
EP08751823A EP2140974B1 (en) 2007-03-26 2008-03-25 Synthetic grindstone
US12/450,366 US8377159B2 (en) 2007-03-26 2008-03-25 Synthetic grinding stone
CN2008800100996A CN101678533B (zh) 2007-03-26 2008-03-25 合成磨石

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007079244 2007-03-26
JP2007-079244 2007-03-26

Publications (1)

Publication Number Publication Date
WO2008117883A1 true WO2008117883A1 (ja) 2008-10-02

Family

ID=39788611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056279 WO2008117883A1 (ja) 2007-03-26 2008-03-25 合成砥石

Country Status (7)

Country Link
US (1) US8377159B2 (ja)
EP (1) EP2140974B1 (ja)
JP (1) JP5010675B2 (ja)
KR (1) KR101503545B1 (ja)
CN (1) CN101678533B (ja)
AT (1) ATE550144T1 (ja)
WO (1) WO2008117883A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251349A (ja) * 2010-05-31 2011-12-15 Mitsubishi Materials Corp 薄刃ブレード
US8771390B2 (en) 2008-06-23 2014-07-08 Saint-Gobain Abrasives, Inc. High porosity vitrified superabrasive products and method of preparation
US8784519B2 (en) 2009-10-27 2014-07-22 Saint-Gobain Abrasives, Inc. Vitrious bonded abbrasive
AU2010315460B2 (en) * 2009-10-27 2014-11-20 Saint-Gobain Abrasifs Resin bonded abrasive
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658578B2 (en) 2010-12-29 2014-02-25 Industrial Technology Research Institute Lubricating oil composition and method for manufacturing the same
KR101594647B1 (ko) * 2013-09-04 2016-02-16 오동석 연마구 조성물 및 그 제조방법
CN105141813B (zh) * 2015-06-18 2021-09-21 江苏苏创光学器材有限公司 蓝宝石摄像头窗口片的制备方法
CN105141812B (zh) * 2015-06-18 2022-02-11 重庆新知创科技有限公司 一种蓝宝石摄像头窗口片的生产方法
CN105127917A (zh) * 2015-08-27 2015-12-09 安徽威铭耐磨材料有限公司 一种高光洁度高磨削精度的超细粒度cbn砂轮及其制备方法
CN105108663A (zh) * 2015-08-27 2015-12-02 安徽威铭耐磨材料有限公司 一种含胶体石墨的自润滑性的超细粒度cbn砂轮及其制备方法
CN105081991A (zh) * 2015-08-27 2015-11-25 安徽威铭耐磨材料有限公司 一种高抗蚀耐温变的超细粒度cbn砂轮及其制备方法
CN105215864A (zh) * 2015-08-27 2016-01-06 安徽威铭耐磨材料有限公司 一种含纳米金刚石的低热膨胀耐温型超细粒度cbn砂轮及其制备方法
CN105081989A (zh) * 2015-08-27 2015-11-25 安徽威铭耐磨材料有限公司 一种高透气隔热的致密型超细粒度cbn砂轮及其制备方法
WO2020158631A1 (ja) * 2019-02-01 2020-08-06 株式会社ノリタケカンパニーリミテド 高硬質脆性材用メタルボンド砥石
JP7229610B1 (ja) 2022-09-26 2023-02-28 株式会社東京ダイヤモンド工具製作所 合成砥石、合成砥石アセンブリ、及び、合成砥石の製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328141A (en) 1966-02-28 1967-06-27 Tizon Chemical Corp Process for polishing crystalline silicon
JPS5594981A (en) * 1979-01-12 1980-07-18 Toyo Seiki Kogyo Kk Abrasive for grind
US5264010A (en) 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
JP2000317842A (ja) 1999-03-11 2000-11-21 Nippon Tokushu Kento Kk ガラス質基板用研磨砥石
JP2001205565A (ja) 2000-01-26 2001-07-31 Nippon Tokushu Kento Kk 半導体用研磨砥石
JP2001328065A (ja) 2000-05-24 2001-11-27 Hiroshi Eda 精密加工装置
JP2002066928A (ja) 2000-09-01 2002-03-05 Mitsubishi Materials Corp ハイブリッド砥石及びその製造方法
JP2002103238A (ja) * 2000-10-03 2002-04-09 Nihon Micro Coating Co Ltd 研磨フィルム及びその製造方法
JP2002355763A (ja) 2001-03-27 2002-12-10 Tokyo Diamond Kogu Seisakusho:Kk 合成砥石
JP2003172839A (ja) * 2001-12-04 2003-06-20 Fujitsu Ltd レジンダイヤモンドブレード及び該ブレードを使用した光導波路の製造方法
JP2004261942A (ja) * 2003-03-04 2004-09-24 Nippon Tokushu Kento Kk 研磨砥石
JP2005136227A (ja) 2003-10-30 2005-05-26 Hiroshi Eda 工作物表面加工方法
JP2005186246A (ja) 2003-12-26 2005-07-14 Tokyo Magnetic Printing Co Ltd 複合材の研磨方法および仕上げ研磨に用いるラッピングオイル組成物
JP2006281412A (ja) 2005-04-04 2006-10-19 Toyota Motor Corp 精密加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985627A (ja) * 1995-09-26 1997-03-31 Matsushita Electric Ind Co Ltd 研削用砥石
JP2005131711A (ja) * 2003-10-28 2005-05-26 Nihon Micro Coating Co Ltd ダイヤモンド研磨粒子及びその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328141A (en) 1966-02-28 1967-06-27 Tizon Chemical Corp Process for polishing crystalline silicon
JPS5594981A (en) * 1979-01-12 1980-07-18 Toyo Seiki Kogyo Kk Abrasive for grind
US5264010A (en) 1992-04-27 1993-11-23 Rodel, Inc. Compositions and methods for polishing and planarizing surfaces
JP2000317842A (ja) 1999-03-11 2000-11-21 Nippon Tokushu Kento Kk ガラス質基板用研磨砥石
JP2001205565A (ja) 2000-01-26 2001-07-31 Nippon Tokushu Kento Kk 半導体用研磨砥石
JP2001328065A (ja) 2000-05-24 2001-11-27 Hiroshi Eda 精密加工装置
JP2002066928A (ja) 2000-09-01 2002-03-05 Mitsubishi Materials Corp ハイブリッド砥石及びその製造方法
JP2002103238A (ja) * 2000-10-03 2002-04-09 Nihon Micro Coating Co Ltd 研磨フィルム及びその製造方法
JP2002355763A (ja) 2001-03-27 2002-12-10 Tokyo Diamond Kogu Seisakusho:Kk 合成砥石
JP2003172839A (ja) * 2001-12-04 2003-06-20 Fujitsu Ltd レジンダイヤモンドブレード及び該ブレードを使用した光導波路の製造方法
JP2004261942A (ja) * 2003-03-04 2004-09-24 Nippon Tokushu Kento Kk 研磨砥石
JP2005136227A (ja) 2003-10-30 2005-05-26 Hiroshi Eda 工作物表面加工方法
JP2005186246A (ja) 2003-12-26 2005-07-14 Tokyo Magnetic Printing Co Ltd 複合材の研磨方法および仕上げ研磨に用いるラッピングオイル組成物
JP2006281412A (ja) 2005-04-04 2006-10-19 Toyota Motor Corp 精密加工方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771390B2 (en) 2008-06-23 2014-07-08 Saint-Gobain Abrasives, Inc. High porosity vitrified superabrasive products and method of preparation
US8784519B2 (en) 2009-10-27 2014-07-22 Saint-Gobain Abrasives, Inc. Vitrious bonded abbrasive
AU2010315460B2 (en) * 2009-10-27 2014-11-20 Saint-Gobain Abrasifs Resin bonded abrasive
US9138866B2 (en) 2009-10-27 2015-09-22 Saint-Gobain Abrasives, Inc. Resin bonded abrasive
JP2011251349A (ja) * 2010-05-31 2011-12-15 Mitsubishi Materials Corp 薄刃ブレード
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same

Also Published As

Publication number Publication date
EP2140974A1 (en) 2010-01-06
EP2140974A4 (en) 2011-05-04
KR101503545B1 (ko) 2015-03-17
ATE550144T1 (de) 2012-04-15
EP2140974B1 (en) 2012-03-21
JPWO2008117883A1 (ja) 2010-07-15
US8377159B2 (en) 2013-02-19
CN101678533B (zh) 2011-11-16
JP5010675B2 (ja) 2012-08-29
KR20100014540A (ko) 2010-02-10
US20100037530A1 (en) 2010-02-18
CN101678533A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
WO2008117883A1 (ja) 合成砥石
Zhang et al. A novel approach of mechanical chemical grinding
EP1917122B1 (en) Use of cmp for aluminum mirror and solar cell fabrication
Liu et al. Grinding wheels for manufacturing of silicon wafers: a literature review
CN100425405C (zh) 冷冻纳米磨料抛光垫及其制备方法
Gao et al. Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel
Tian et al. Effects of chemical slurries on fixed abrasive chemical-mechanical polishing of optical silicon substrates
Filatov Polishing of precision surfaces of optoelectronic device elements made of glass, sitall, and optical and semiconductor crystals: A review
Pandey et al. Chemically assisted polishing of monocrystalline silicon wafer Si (100) by DDMAF
CN113414705B (zh) 一种大尺寸双层柔性抛光垫及制备方法与应用
TW568813B (en) Polishing agent, method of producing this agent, and method of polishing
JP4573492B2 (ja) 合成砥石
JP3990936B2 (ja) 砥粒及びその製造方法、研磨具及びその製造方法、研磨用砥石及びその製造方法、並びに研磨装置
JP2004261942A (ja) 研磨砥石
JP4849590B2 (ja) 研磨工具及びその製造方法
JP4283088B2 (ja) 工作物表面加工方法
KR100491812B1 (ko) 화학 반응성 연마재
JP2013052488A (ja) ダイヤモンド材料研磨用の研磨盤及びダイヤモンド材料の研磨方法
Chen et al. Ultra-Precision Polishing Method of Polymer-Derived Amorphous SiAlCN Ceramics
Sun et al. Research on ice fixed-abrasive polishing mechanism and technology for high-definition display panel glass
Niu et al. Influence of different polishing parameters on sapphire substrate CMP
Feng et al. Study on the Fabrication and Grinding Performance of the Self-sharpening Cr2O3 Gel Abrasive Tool
Shih et al. Analysis of fixed abrasive pads with a nano-sized diamond for silicon wafer polishing
JP2005288571A (ja) 加工工具及び加工方法
JP2001205565A (ja) 半導体用研磨砥石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880010099.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751823

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009506388

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12450366

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097019852

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008751823

Country of ref document: EP