WO2020158631A1 - 高硬質脆性材用メタルボンド砥石 - Google Patents

高硬質脆性材用メタルボンド砥石 Download PDF

Info

Publication number
WO2020158631A1
WO2020158631A1 PCT/JP2020/002631 JP2020002631W WO2020158631A1 WO 2020158631 A1 WO2020158631 A1 WO 2020158631A1 JP 2020002631 W JP2020002631 W JP 2020002631W WO 2020158631 A1 WO2020158631 A1 WO 2020158631A1
Authority
WO
WIPO (PCT)
Prior art keywords
grindstone
grinding
metal bond
abrasive grains
pores
Prior art date
Application number
PCT/JP2020/002631
Other languages
English (en)
French (fr)
Inventor
大樹 古野
息吹 新海
山口 勝
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to US17/425,889 priority Critical patent/US20220048161A1/en
Priority to CN202080010045.0A priority patent/CN113329846B/zh
Priority to KR1020217023142A priority patent/KR20210121024A/ko
Priority to JP2020569595A priority patent/JP7261246B2/ja
Publication of WO2020158631A1 publication Critical patent/WO2020158631A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • B24D3/10Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a long-life grindstone capable of grinding highly hard and brittle materials with high efficiency.
  • Lapping or grinding is also used on the back surface of the wafer on which the device is placed.
  • high hardness materials such as the above-mentioned SiC wafers
  • the SiC substrate, etc. which becomes the material
  • the grinding wheel with high efficiency and long life has been required from the viewpoint of improving productivity and reducing processing cost.
  • a high-strength and high-hardness metal bond grindstone mixed with a metal powder of copper, tin, cobalt, nickel or the like as shown in Patent Document 2 generally has a concentration of 50 to 100, The bond amount is larger than that of the vitrified grindstone, the structure is dense due to the mechanical characteristics, and the abrasive grain holding force is strong, so the grindstone life can be obtained, but the abrasive grains do not fall off when grinding high-hard brittle materials.
  • it has a drawback that it tends to be blinded and is less sharp than a vitrified grindstone.
  • Patent Document 3 a metal bond grindstone for highly brittle materials has been proposed in which the number of abrasive grains and the bond strength for retaining the abrasive grains are controlled. According to this, the bond strength for holding the abrasive grains is suppressed even in the case of a metal bond, so that the abrasive grains are prevented from dropping off during grinding of the high hardness material, the tendency of crushing is suppressed, and sharpness is obtained.
  • the metal bond grindstone for highly brittle material described in Patent Document 3 is effective for coarse particles or fine particles having a large abrasive grain protrusion, for example, a particle size of #230 to #600, but in recent years, it has been Since it is necessary to reduce the damage on the wafer for the purpose of shortening the processing time, the fine size abrasive grains of #2000 (medium diameter is about 5 ⁇ m to 10 ⁇ m) are becoming standard size. In this case, since the metal bond having a concentration of 50 to 100 and holding the abrasive grains is a solidified body of molten metal, it has a dense structure with no pores.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a long-life grindstone capable of grinding a highly hard brittle material with high efficiency.
  • the concentration of abrasive grains is 50 to 100, and the metal binder that holds the abrasive grains is a solidified body such as molten metal. It has a simple structure.
  • the reason why such a metal-bonded grindstone is difficult to achieve both high efficiency grinding and long life is shown by the fact that worn abrasive grains do not fall off. It has been found that the cutting material is rubbed against the metal bond surface, and the sharpness becomes dull due to an increase in grinding resistance.
  • the inventor of the present invention reduces the friction between the work material and the metal bond surface so as to eliminate these points, so that a highly hard and brittle material such as SiC can be stably polished with high efficiency and long life.
  • a metal-bonded grindstone that can be ground to was obtained. The present invention was made based on this finding.
  • the gist of the present invention is a metal bond grindstone for a high-hard brittle material, which grinds a high-hard brittle material, having a pore diameter of 50 to 200 ⁇ m and a porosity of 50 to 65% by volume. It is characterized by having a number of abrasive grains on the ground surface of 700 to 6500/cm 2 and a grindstone strength of 40 to 95 MPa.
  • the pore diameter is 50 to 200 ⁇ m
  • the porosity is 50 to 65% by volume based on the whole metal bond grindstone for highly hard and brittle material, and 700 to 6500. It has a number of abrasive grains on the ground surface of pcs/cm 2 and a grindstone strength of 40 to 95 MPa.
  • the pore diameter is 50 to 200 ⁇ m and the porosity is 50 to 65% by volume, the dropped abrasive grains and chips are trapped in the pores and clogging is suppressed.
  • the pore diameter is set to 50 to 200 ⁇ m, and the porosity of the metal bond grindstone for high-hardness brittle material is set to 50 to 65% by volume, whereby increase in working resistance and brittleness of metal bond are suppressed.
  • the contact surface pressure with respect to the work material can be increased, and appropriate grinding processing can be obtained.
  • the metal bond since the metal bond has the above-mentioned porous structure, the pore contributes as a chip pocket to improve the chip discharging performance and cooling performance during grinding, and the metal bond receding property on the ground surface is also improved. To be enhanced.
  • the pore diameter is less than 50 ⁇ m, the plastic deformation of the metal bond that occurs during processing collapses the pores and the effect of pores cannot be obtained.
  • the pore diameter exceeds 200 ⁇ m, the number of pores decreases and a part of the bond matrix becomes large, which causes a problem of bond rubbing at that part.
  • the porosity is less than 50% by volume, the contact area of the metal bond, which bonds the abrasive grains, to the work material becomes large, and the processing resistance due to bond rubbing increases, making continuous processing impossible.
  • the porosity exceeds 65% by volume, there arises a problem that it is not possible to secure an abrasive grain surface sufficient to grind a highly hard brittle material, that is, a so-called bare surface.
  • the metal bond grindstone for a high-hardness brittle material has an abrasive grain number of 700 to 6500 particles/cm 2 on the ground surface excluding pores.
  • the number of abrasive grains on the ground surface excluding pores to be 700 to 6500/cm 2 , the cutting depth of the abrasive grains with respect to the work material is secured, and the grinding is performed with a low load even at high speed feed. Is possible.
  • the metal bond grindstone for high-hardness brittle material has the above-described pore structure and the number of abrasive grains on the grinding surface excluding pores exceeds 6500/cm 2 , the load per abrasive grain becomes small.
  • the cutting or biting of the abrasive grains into the work material that is, the highly hard and brittle material such as SiC becomes shallow, and the work material does not reach the work material.
  • the number of abrasive grains on the ground surface excluding pores is less than 700/cm 2 , there is a problem that the amount of metal bond per abrasive grain is large, which hinders the replacement of worn abrasive grains. ..
  • the present invention by setting the number of abrasive grains on the grinding surface to 700 to 6500/cm 2 , the cutting depth of the abrasive grains with respect to the work material is secured, and it becomes possible to perform grinding with a low load even at high speed feed. ..
  • the abrasive grains are diamond abrasive grains, and the grain size is 4 ⁇ m to 20 ⁇ m in a median diameter (median diameter), and preferably 5 ⁇ m to 16 ⁇ m in a median diameter.
  • a metal bond grindstone for a high-hard brittle material can be obtained which can polish a high-hard brittle material such as SiC with stable polishing performance, high efficiency and long life.
  • the abrasive grains have a roughness of, for example, a median diameter of more than 20 ⁇ m, the abrasive grains bite deeply and the damage to the work material after machining becomes large, and the load (machining time) in the next step increases.
  • the abrasive grains have a fineness, for example, smaller than 4 ⁇ m in the median diameter, the amount of protrusion from the metal bond becomes small and the abrasive cannot penetrate into the work material, making it difficult to achieve the grinding efficiency and the life required for rough machining.
  • the metal bond grindstone for high hardness brittle material has a grindstone strength of 40 to 95 MPa.
  • the strength of the grindstone is about 2 to 4 times that of the vitrified grindstone for the same purpose as the metal bond grindstone for the high-hardness brittle material, so that unnecessary dropping of abrasive grains can be prevented and a stable load can be secured. And it becomes possible to perform continuous grinding with sharpness.
  • the strength of the grindstone exceeds 95 MPa, the holding force of the grindstone of the grindstone becomes too large, and the worn grind cannot be replaced, resulting in bond rubbing.
  • the grindstone strength is less than 40 MPa, the abrasive grain holding force of the grindstone is excessively reduced, which induces the abrasive grains to fall off and causes bond rubbing.
  • FIG. 3 is a schematic view for explaining a surface contact suppressing action in a grinding state of a metal bond grindstone for material
  • (c) is a schematic diagram for explaining a chip pocket action of pores in a grinding state of a metal bond grindstone for highly hard and brittle material is there. It is a figure explaining the structure and grinding action of the conventional vitrified grindstone
  • (a) is a schematic diagram explaining grinding of a vitrified grindstone, and crushing of an abrasive grain
  • (b) is a grinded state of a vitrified grindstone. It is a schematic diagram explaining the fall of abrasive grains.
  • FIG. 4 is a schematic view for explaining a grinding state of a metal bond grindstone and a progress of abrasion of abrasive grains and a surface contact state of a metal bond.
  • FIG. 6 is a diagram showing evaluation results of a plurality of types of metal bond grindstone samples having different metal bond pore diameters in order to show grinding performance due to the difference in metal bond pore diameters.
  • FIG. 1 is a perspective view showing a cup grindstone 10 for a high-hardness brittle material according to an embodiment of the present invention.
  • the cup grindstone 10 is provided with a disc-shaped base metal 12 made of metal, for example, aluminum, and a plurality of segment grindstones 14 which are fixed in a ring shape along the outer peripheral edge of the lower surface of the base metal 12.
  • the segment grindstones 14 each include a grinding surface 16 that is continuous in an annular shape on the outer peripheral portion of the lower surface of the base metal 12.
  • the base metal 12 is made of a thick metal disc and is attached to a spindle of a grinding device (not shown) to rotate the cup grindstone 10.
  • the cup grindstone 10 has an outer diameter of about 250 mm, and the segment grindstone 14 has a thickness of about 3 mm.
  • the segment grindstone 14 causes the grinding surface 16 to slide-contact with a highly hard brittle material such as a SiC wafer or a sapphire wafer as the base metal 12 rotates, and grinds the highly hard brittle material into a planar shape.
  • the segment grindstone 14 corresponds to the metal bond grindstone for a high-hardness brittle material of the present invention, and bonds the diamond abrasive grains 18 with the diamond abrasive grains 18.
  • the metal bond 20 and the pores 22 formed in the metal bond 20 have a diameter of 50 ⁇ m ⁇ or more and 200 ⁇ m ⁇ or less, a porosity of 50% by volume or more and 65% by volume or less, and 700/cm 2 or more and 6500
  • a metal-bonded grindstone having a number of abrasive grains on the ground surface 16 of not more than /cm 2 and a grindstone strength of not less than 40 MPa and not more than 95 MPa.
  • the segmented grindstone 14 may be the above metal bond grindstone only in the surface grinding layer.
  • the segment grindstone 14 is manufactured by the manufacturing process illustrated in FIG.
  • the grindstone strength substantially corresponds to the strength of the metal bond that constitutes the grindstone together with the abrasive grains.
  • diamond abrasive grains 18 having a median diameter of 4 to 20 ⁇ m, preferably a median diameter of about 5 to 10 ⁇ m, and a metal bond (metal binder) 20 by sintering.
  • a pore-forming agent for forming the pores 22 in the metal bond 20 the pore diameter of 50 ⁇ m ⁇ or more and 200 ⁇ m ⁇ or less, and 50% by volume or more and 65% by volume or less.
  • the number of abrasive grains on the ground surface 16 of 700/cm 2 or more and 6500/cm 2 or less, and a predetermined ratio for having a grindstone strength of 40 MPa or more and 95 MPa or less, and then uniformly Mixed.
  • the diamond abrasive grains are mixed at a concentration ratio that makes the number of abrasive grains on the ground surface 16 of the segment grindstone 14 700 to 6500/cm 2 .
  • the above-mentioned sintered metal powder material is for binding diamond abrasive grains after sintering, and is a mixed material of a main metal material and an additive material. If the main metal is cobalt, it is called a cobalt bond, if it is steel, it is called a steel bond, if it is tungsten, it is called a tungsten bond, if it is nickel, it is called a nickel bond, and if it is copper, it is called a copper bond.
  • the pore-forming agent is a particle that can be eliminated by burning or melting from within the metal bond 20 having a particle diameter of 50 to 200 ⁇ m ⁇ , such as naphthalene, polystyrene, or crosslinked acryl, and has a pore volume of 50 to 65% by volume. Mixed in proportions that yield the rates.
  • the above-mentioned median diameter (median diameter) indicating the particle size of the diamond abrasive grains 18 is a particle diameter defined by Japanese Industrial Standards (JIS Z 8825:2013), and laser diffraction manufactured by Horiba, Ltd. /Volume-based D50 value measured using a scattering type particle size distribution measuring device (LA-960V2).
  • the materials mixed in the mixing step P1 are filled in a predetermined molding die, and are pressed into an arc shape with a predetermined thickness similar to the segment grindstone 14.
  • heat treatment is performed in a firing furnace having a preset sintering temperature of, for example, 400 to 900° C., and the segment grindstone 14 which is a metal bond grindstone. Is manufactured.
  • a bonding step P4 a plurality of segment grindstones 14 are bonded to the base metal 12 as shown in FIG.
  • the finishing step P5 the segment grindstone 14 adhered to the base metal 12 is finished by using a dresser.
  • FIG. 4A and 4B are schematic diagrams for explaining the structure and the grinding action of the segment grindstone 14, wherein FIG. 4A is a schematic diagram showing the structure of the segment grindstone 14, and FIG. 20 is a schematic diagram for explaining the surface-contact suppressing action of 20, and FIG. 14C is a schematic diagram for explaining the chip pocket action of the pores 22 in the grinding state of the segment grindstone 14.
  • the metal bond 20 of the segment grindstone 14 includes diamond abrasive grains 18 and pores 22, and the pores 22 have a pore diameter of 50 to 200 ⁇ m ⁇ and a volume of 50 to 65 volume. % Porosity.
  • the grinding surface 16 of the segment grindstone 14 excluding the pores 22 a part of the pores 22 is opened and contributes as a chip pocket, and the diamond abrasive grains 18 have an areal density of 700 to 6500/cm 2. It is sticking out.
  • the contact area of the metal bond 20 with respect to the work material 30, which is a highly hard brittle material such as a SiC wafer or a sapphire wafer is reduced, and the work material 30 is also reduced.
  • the contact surface pressure of the abrasive grains 18 with respect to is increased.
  • the pores 22 opened in the grinding surface 16 function as chip pockets, and the chips 32 during grinding are temporarily stored and discharged from the grinding surface 16, and the grinding liquid is easily supplied to the grinding surface 16. The cooling of the grinding surface 16 is promoted.
  • FIG. 5 is a figure explaining the structure and grinding action of the conventional vitrified grindstone 80 as shown in patent document 1, (a) is a grinding state of the vitrified grindstone 80, and demonstrates fragmentation of an abrasive grain.
  • FIG. 6B is a schematic diagram for explaining the removal of abrasive grains in the grinding state of the vitrified grindstone 80.
  • the vitrified grindstone 80 is a grindstone with pores in which abrasive grains 82 are bonded by vitrified bonds 84.
  • Such a vitrified grindstone 80 has a concentration of 100 or more and a weak abrasive holding force when grinding a work material 30 which is a highly hard and brittle material. Therefore, as shown in FIG. When a load is applied to the grains 82, the abrasive grains 82 are often dropped off as shown in FIG. 5B, and the life of the grindstone cannot be obtained.
  • FIG. 6 is a diagram for explaining the structure and grinding action of a conventional metal bond grindstone 90 as shown in Patent Document 2, in which (a) is copper, tin, cobalt, nickel or the like of the metal bond grindstone 90.
  • (b) is a metal bond grindstone It is a schematic diagram explaining the state which the abrasion of the abrasive grain 92 and the surface contact of the metal bond 94 progressed in the grinding state of 90.
  • Such a metal-bonded grindstone 90 has a concentration of 50 to 100 when grinding a work material 30 which is a highly hard and brittle material, has a dense structure, and has a strong abrasive grain holding force. The grinding wheel life can be obtained.
  • FIG. 6A when the high hardness material is ground, the abrasive grains 92 are loaded and do not fall off even if they are crushed, and as shown in FIG.
  • the work material 30 is rubbed against the work material 30, so that it has a drawback of being less sharp than the vitrified grindstone 80.
  • the filler 96 is shown in FIGS. 6A and 6B, the filler 96 does not necessarily have to be provided.
  • FIGS. 7 to 10 show the results of grinding under the grinding test conditions shown in Table 1 using a plurality of types of grindstone samples manufactured by the process shown in FIG. 3 and containing diamond abrasive grains having a median diameter of 5 to 10 ⁇ m.
  • the evaluation results (grinding resistance and grindstone wear rate) of the above are shown respectively.
  • FIG. 7 shows the results of “grinding test 1” in which the grinding performance based on the difference in the pore diameter of the metal bond was evaluated, and the characteristic values of a plurality of types of grindstone samples used for the grinding test.
  • FIG. 8 shows the results of “grinding test 2” in which the grinding performance was evaluated by the difference in porosity of metal bonds, and the characteristic values of a plurality of types of grindstone samples used for that.
  • FIG. 9 shows the results of “grinding test 3” in which the grinding performance was evaluated by the difference in the number of abrasive grains on the ground surface, and the characteristic values of the plurality of types of grindstone samples used for that.
  • FIG. 10 shows the results of "grinding test 4" in which the grinding performance was evaluated by the difference in the strength of the grindstone, and the characteristic values of a plurality of kinds of grindstone samples used for the grinding test.
  • the pore diameter is a value obtained by measuring the average diameter of the long diameter and the short diameter of the pores in 10 magnified images of 500 times the grinding surface of the grindstone sample and calculating the average value of all 50 pores.
  • the porosity is a value calculated by calculating the density from the volume and weight of the grindstone sample, and from the calibration curve showing the relationship between the density and the porosity (volume %) obtained in advance, the porosity of the chip-shaped test piece. is there.
  • the number of abrasive grains is a value obtained by counting the number of abrasive grains per unit area (cm 2 ) after performing binarization processing on an enlarged image of a grinding surface of a grindstone sample excluding pores of 500 times.
  • the above-mentioned grindstone strength is an average strength value leading to breakage when a three-point bending test is performed using a plurality of grindstone test pieces each having a length of 40 mm, a width of 7 mm and a thickness of 4 mm.
  • the grinding resistance is a drive current value of an electric motor that rotationally drives the cup grindstone in grinding using the grinding processing test conditions in Table 1.
  • the grindstone wear rate indicates the amount of wear of the grindstone sample in one grinding using the grinding processing test condition in Table 1 above.
  • the pore diameter is 80 ( ⁇ m ⁇ ), and the number of abrasive grains excluding pores on the ground surface is 2300 (pieces/cm 2 ), but 30 (volume %), 40 (volume%) %), 50 (volume %), 60 (volume %), 65 (volume %), and 70 (volume %).
  • 11-16 were prepared in plurality (5 each). Grinding stone sample No. thus obtained When the grindstone strength of 11-16 was measured, the grindstone strength was 28-73 (MPa). Similar to the grinding test 1, the pore diameter, the porosity, and the number of abrasive grains in FIG. 8 are designed aim values and are average values determined by mixing. Then, the grindstone sample No. No.
  • 11-16 was used to grind under the grinding test conditions shown in Table 1, and each grindstone sample No. 11-16 were evaluated. As shown in FIG. 8, the grindstone sample Nos. having porosities of 30 (volume %) and 40 (volume %) were prepared. In Nos. 11 and 12, the pores 22 were too small to sufficiently obtain the chip pocket action by the pores 22, and it was impossible to evaluate the grinding process on the single crystal SiC wafer. Further, a grindstone sample No. having a porosity of 70 (volume %). In No. 16, the volume of the pores 22 was too large to stably manufacture, and the evaluation of grinding was impossible. On the other hand, grindstone sample No. with porosities of 50 (volume %), 60 (volume %), and 65 (volume %). Nos. 13, 14, and 15 had a grinding resistance of 12.0 A to 12.7 A and a grindstone wear rate of 6.2% to 8.5%, and good grinding for a single crystal SiC wafer was obtained. ..
  • the pore diameter, the porosity, and the number of abrasive grains in FIG. 9 are intended values in design and are average values determined by mixing. Then, the grindstone sample No. Nos. 21-28 were used to grind under the grinding processing test conditions shown in Table 1 to obtain grinding stone sample Nos. 21-28 was evaluated. As shown in FIG. 9, the number of abrasive grains per unit area is 500 (pieces/cm 2 ). In No. 21, the number of abrasive grains was small and the grinding ability was not sufficiently obtained, and the evaluation of the grinding process on the single crystal SiC wafer was impossible. In addition, a grindstone sample No.
  • the number of abrasive grains is 700 (pieces/cm 2 ), 1650 (pieces/cm 2 ), 2300 (pieces/cm 2 ), 3650 (pieces/cm 2 ), 5800 (pieces/cm 2 ), and Grinding stone sample No. 6500 (pieces/cm 2 ).
  • Nos. 22, 23, 24, 25, 26, and 27 have a grinding resistance of 10.9 A to 14.9 A and a grindstone wear rate of 3.8% to 10.7%, which are good for a single crystal SiC wafer. Good grinding was obtained.
  • the pore diameter is 80 ( ⁇ m ⁇ ), the porosity is 60 (volume %), and the number of abrasive grains on the ground surface is 2300 (pieces/cm 2 ).
  • Five types of grindstone sample Nos. with target values of 30 (MPa), 40 (MPa), 70 (MPa), 95 (MPa), and 105 (MPa) A plurality of 31-35 (5 each) were prepared. Grinding stone sample No. thus obtained When the grindstone strength of 21-28 was measured, the grindstone strength was 20-37 (MPa), 40-49 (MPa), 65-77 (MPa), 80-95 (MPa), 97-106 as shown in FIG. (MPa).
  • the pore diameter, the porosity, and the number of abrasive grains in FIG. 10 are designed aim values, and are average values determined by mixing. Then, the grindstone sample No. No. 31-35 was used to grind under the grinding test conditions shown in Table 1 to obtain grinding stone sample Nos. 31-35 was evaluated. As shown in FIG. 10, a grindstone sample No. having a grindstone strength of 30 (MPa). In No. 31, the strength of the grindstone was low, the strength of the metal bond was low, and the abrasive grains were often dropped off. Therefore, it was impossible to evaluate the grinding process for the single crystal SiC wafer. Further, a grindstone sample No. having a grindstone strength of 105 (MPa). In No.
  • Nos. 32, 33, and 34 had a grinding resistance of 11.0 A to 12.8 A and a grindstone wear rate of 6.7% to 9.7%, and good grinding for a single crystal SiC wafer was obtained. ..
  • the evaluation that the grinding resistance is 15 A or less and the grindstone wear rate is 11% or less, which is evaluated to obtain good grinding of the single crystal SiC wafer, is that the diameter is 50 ⁇ m or more and 200 ⁇ m or less. Pore diameter, porosity of 50 volume% or more and 65 volume% or less, number of abrasive grains on the grinding surface 16 of 700/cm 2 or more and 6500/cm 2 or less, and grindstone strength of 40 MPa or more and 95 MPa or less, It is realized by preparing.
  • the segment grindstone (metal bond grindstone for highly hard and brittle material) 14 of the cup grindstone 10 of the present embodiment has a pore diameter of 50 to 200 ⁇ m and 50 to 65% by volume of the segment grindstone 14 as a whole.
  • the porosity, the number of abrasive grains on the ground surface 16 of 700 to 6500/cm 2 , and the grindstone strength of 40 to 95 MPa are provided.
  • the pore diameter is 50 to 200 ⁇ m and the porosity is 50 to 65% by volume, the dropped abrasive grains 18 and chips 32 are captured in the pores 22 and clogging is suppressed. It
  • the number of abrasive grains is 700 to 6500/cm 2 on the ground surface excluding the pores 22.
  • the cutting depth of the abrasive grains 18 with respect to the work material 30 is secured, and even at high speed feed, it is low. Grinding is possible under load.
  • the load per abrasive grain is When the size of the abrasive grains 18 becomes small, the cutting or biting of the abrasive grains 18 with respect to the work material 30, that is, a highly hard and brittle material such as SiC becomes shallow, and the work material 30 is not eaten.
  • the number of abrasive grains on the grinding surface 16 excluding the pores 22 is less than 700/cm 2 , the amount of metal bond per abrasive grain is large, which prevents the worn abrasive grains 16 from being replaced.
  • the number of abrasive grains on the grinding surface is set to 700 to 6500/cm 2 , so that the cutting depth of the abrasive grains 18 with respect to the work material 30 is secured, and the grinding can be performed with a low load even at a high speed feed. It will be possible.
  • the abrasive grains 18 are diamond abrasive grains, and the grain size is 4 to 20 ⁇ m in the median diameter, and preferably 5 to 16 ⁇ m in the median diameter.
  • a segment grindstone metal bond grindstone for high-hard brittle material
  • the abrasive grains 18 have a roughness of, for example, a median diameter of more than 20 ⁇ m, the abrasive grains 18 bite deeply and the damage to the work material 30 after machining becomes large, which increases the load (machining time) in the next step. Invite.
  • the abrasive grains 18 have a fineness, for example, a median diameter of less than 4 ⁇ m, the amount of protrusion from the metal bond becomes small and the abrasive cannot penetrate into the work material 30, making it difficult to achieve the grinding efficiency and life required for rough machining. ..
  • the grindstone strength of 40 to 95 MPa is provided.
  • the strength of the grindstone is about 2 to 4 times that of the vitrified grindstone for the same purpose as the metal bond grindstone for the high-hardness brittle material, so that unnecessary dropping of abrasive grains can be prevented and a stable load can be secured. And it becomes possible to perform continuous grinding with sharpness.
  • the grindstone strength exceeds 95 MPa, the holding force of the abrasive grains 18 of the segment grindstone becomes too large and the worn abrasive grains cannot be replaced, resulting in bond rubbing.
  • the grindstone strength is less than 40 MPa, the holding force of the abrasive grains 18 of the segment grindstone 14 is excessively reduced, which induces the abrasive grains 18 to fall off to cause bond rubbing.
  • the arc-shaped segment grindstone 14 fixed to the base metal 12 is a metal bond grindstone for a high-hard brittle material, but it is a metal bond grindstone for a high-hard brittle material formed in a disk shape. It may be.
  • a part of the grindstone that is involved in grinding for example, a grindstone layer formed on a part of the grinding surface 16 side may be a metal bond grindstone for a high-hard brittle material.
  • cup grindstone 12 cup grindstone 12: base metal 14: segment grindstone (metal bond grindstone for highly hard and brittle materials) 16: Ground surface 18: Diamond abrasive grains 20: Metal bond 22: Porosity 30: Work material (highly hard and brittle material) 32: Chips

Abstract

高硬質脆性材を高能率で研削することができる高寿命の砥石を提供する。 高硬質脆性材用メタルボンド砥石であるセグメント砥石14は、セグメント砥石14全体に対し気孔径が50から200μmの気孔22が、50から65体積%の気孔率で備えられている。このように、直径が50から200μmの気孔径と50から65体積%の気孔率とを備えているため、加工抵抗の増大およびメタルボンドの脆性が抑制されるとともに、被削材30に対する接触面圧を高めることができて適切な研削加工が得られる。また、メタルボンド20が上記のような気孔22を備えた有気孔構造であることから、気孔22がチップポケットとして寄与して研削時の切り屑32の排出性能や冷却性能が高められるとともに、研削面におけるメタルボンド20の後退性が高められる。

Description

高硬質脆性材用メタルボンド砥石
 本発明は、高硬質脆性材を高能率で研削することができる高寿命の砥石に関するものである。
 近年、エネルギの有効利用への取り組みが広がる中で、小型で大電力を制御することができるSiCパワーデバイス等が注目されており、その需要の増加に伴って、SiCウエハのような高硬度材、たとえばビッカース硬さHV1が20GPa以上、ヤング率が400GPa以上、破壊靱性値が10MPa・m1/2以下の高硬度材を高能率で研削することが望まれるようになった。従来の加工プロセスは、インゴットをスライス加工し、うねり取りのラップ加工を行った後に、ラップ加工、又は、研削加工による平面加工を行い、最後に平坦化するための研磨加工を行っている。また、デバイスを載せたウエハの裏面にもラップ加工又は研削加工が用いられている。しかしながら、従来は上記SiCウエハのような高硬度材の研削需要が少なかったので、時間をかけて研削加工を行うことで足りたが、パワーデバイスの市場の拡大につれて、その材料となるSiC基板等の高硬質脆性材の研削について、生産性向上や加工コストの低減という見地から、高能率、高寿命の砥石が必要とされるようになった。
 SiCのような高硬質脆性材を研削する研削砥石としては、特許文献1に示されるように有気孔のビトリファイド砥石を用いるのが一般的であった。しかし、このようなビトリファイド砥石は、集中度が100以上であるので切れ味の持続性は確保されるが、砥粒保持力が弱いことから砥粒の脱落により砥石寿命が得られなかった。一方、特許文献2に示されるような、銅、錫、コバルト、ニッケル等の金属粉末を混合した高強度且つ高硬度のメタルボンド砥石は、一般的には、集中度が50から100であり、ビトリファイド砥石よりもボンド量が多く、機械的特性からも組織が密となっていて砥粒保持力は強いので、砥石寿命が得られるが、高硬質脆性材の研削には砥粒が脱落せず、目つぶれ傾向となり、ビトリファイド砥石と比較して切れ味が鈍いという欠点がある。
 これに対して、特許文献3に示すように、砥粒数と砥粒を保持するボンド強度とを制御した高脆性材用メタルボンド砥石が提案されている。これによれば、メタルボンドであっても砥粒を保持するボンド強度が抑制されるので、高硬度材の研削には砥粒が脱落して目つぶれ傾向が抑制され、切れ味が得られる。
特開2017-080847号公報 特開2002-001668号公報 特開2014-205225号公報
 しかしながら、特許文献3に記載の高脆性材用メタルボンド砥石は、砥粒突出しが大きいたとえば#230から#600の粒度を有する粗粒、又は、細粒については有効であるが、近年、後工程の加工時間短縮を目的としてウエハのダメージ軽減が必要とされるため、例えば#2000(中位径が5μmから10μm程度)の微粒の砥粒が標準サイズとなってきつつある。この場合、集中度が50から100で砥粒を保持するメタルボンドは、溶融金属の凝固体であるため、無気孔の密な構造となっている。このため、磨滅した砥粒が脱落せずに切れ味が鈍化する場合と、被削材の研削時に発生する切屑を除去するための気孔が存在しないので、ボンド擦れを生じやすく切れ味が鈍化する場合とがあり、いずれも高能率研削と寿命とを両立できておらず、市場要求を満たすものでなかった。
 本発明は以上の事情を背景として為されたものであり、その目的とするところは、高硬質脆性材を高能率で研削することができる高寿命の砥石を提供することにある。
 従来の高強度且つ高硬度なメタルボンド砥石は、砥粒の集中度が50から100であって、砥粒を保持する金属結合剤は溶融金属のような凝固体であるため、無気孔の密な構造となっている。本発明者等は、上記事情を背景として種々検討を重ねた結果、このようなメタルボンド砥石が高能率研削と長寿命との両立が困難な理由は、磨滅した砥粒が脱落せずに披削材とメタルボンド面とが擦れてしまい、研削抵抗の増大によって切れ味が鈍化する点であるということを見出した。そこで、本発明者は、それらの点が解消されるように被削材とメタルボンド面の擦れを低減すると、SiCのような高硬質脆性材を、安定した研磨性能で、高能率且つ高寿命に研削することができるメタルボンド砥石が得られるという事実を見出した。本発明はこの知見に基づいて為されたものである。
 すなわち、本発明の要旨とするところは、高硬質脆性材を研削する高硬質脆性材用メタルボンド砥石であって、直径が50から200μmの気孔径と、50から65体積%の気孔率と、700から6500個/cmの研削面上の砥粒数と、40から95MPaの砥石強度とを、備えることを特徴とする。
 本発明の高硬質脆性材用メタルボンド砥石によれば、直径が50から200μmの気孔径と、前記高硬質脆性材用メタルボンド砥石全体に対し50から65体積%の気孔率と、700から6500個/cmの研削面上の砥粒数と、40から95MPaの砥石強度とを、備えている。このように、直径が50から200μmの気孔径と50から65体積%の気孔率とを備えているため、脱落した砥粒および切り屑が気孔内に捕捉されて目詰まりが抑制される。
 また、前記気孔の気孔径が50から200μmとされ、高硬質脆性材用メタルボンド砥石の気孔率が50から65体積%とされることにより、加工抵抗の増大およびメタルボンドの脆性が抑制されるとともに、被削材に対する接触面圧を高めることができて適切な研削加工が得られる。また、メタルボンドが上記のような有気孔構造であることから、気孔がチップポケットとして寄与して研削時の切り屑の排出性能や冷却性能が高められるとともに、研削面におけるメタルボンドの後退性が高められる。
 前記気孔径が50μm未満の場合は、加工中に発生するメタルボンドの塑性変形により、気孔が潰れてしまい気孔の効果が得られなくなる。逆に、気孔径が200μmを超える場合は、気孔数が低下して部分的にボンドマトリックスが大きくなる箇所が発生し、その部分でボンド擦れが発生するという問題が発生する。
 前記気孔率が50体積%未満の場合は、砥粒を結合するメタルボンドの被削材への接触面積が大きくなり、ボンド擦れによる加工抵抗が増大して連続加工ができなくなる。反対に、気孔率が65体積%を超えると、高硬質脆性材を削るのに十分な砥粒面、いわゆる素地面を確保できないという問題が発生する。
 ここで、好適には、前記高硬質脆性材用メタルボンド砥石は、気孔を除いた研削面上において700から6500個/cmの砥粒数を備えている。このように、気孔を除いた研削面上の砥粒数が700から6500個/cmとされることにより、砥粒の被削材に対する切り込み深さが確保され、高速送りでも低負荷で研削が可能となる。高硬質脆性材用メタルボンド砥石が上記のような有気孔構造であるとき、気孔を除く研削面の砥粒数が6500個/cmを超える場合は、砥粒一粒当たりの荷重が小さくなって、被削材すなわちSiCのような高硬質脆性材に対する砥粒の切り込みすなわち食い込みが浅くなり、被削材に食いつかなくなる。反対に、気孔を除く研削面の砥粒数が700個/cmを下回る場合は、砥粒一粒当たりのメタルボンド量が多く、磨滅した砥粒の目替わりが阻害されるという問題が生じる。本発明では、研削面上の砥粒数が700から6500個/cmとされることにより、砥粒の被削材に対する切り込み深さが確保され、高速送りでも低負荷で研削が可能となる。
 また、好適には、前記砥粒は、ダイヤモンド砥粒であって、粒度は、中位径(メジアン径)で4μmから20μm、好適には、中位径で5μmから16μmである。このようにすれば、SiCのような高硬質脆性材を、安定した研磨性能で、高能率且つ高寿命に研磨することができる高硬質脆性材用メタルボンド砥石が得られる。砥粒がたとえば中位径で20μmを超える粗さとなると、砥粒が深く食い込んで加工後の被削材へのダメージが大きくなり、次工程での負荷(加工時間)の増大を招く。砥粒がたとえば中位径で4μmを下まわる細かさとなると、メタルボンドからの突出し量が小さくなって被削材へ食い込めず、粗加工に求められる研削能率と寿命の達成が困難となる。
 また、好適には、前記高硬質脆性材用メタルボンド砥石は、40から95MPaの砥石強度を備えている。このように、前記高硬質脆性材用メタルボンド砥石と同様の用途のビトリファイド砥石よりも約2倍から4倍の砥石強度が確保できるため、不必要な砥粒の脱落を防止でき、安定した負荷および切れ味で連続研削することが可能となる。砥石強度が95MPaを超えると砥石の砥粒の保持力が大きくなり過ぎ磨滅した砥粒が目替わりできず、結果としてボンド擦れを発生させる。反対に、砥石強度が40Mpaを下回ると、砥石の砥粒保持力が低下し過ぎ砥粒の脱落を誘発し、ボンド擦れを発生させる。
本実施例の一実施例の高硬質脆性材用メタルボンド砥石を示す斜視図である。 高硬質脆性材用メタルボンド砥石の一例を示すSEM写真である。 図1の高硬質脆性材用メタルボンド砥石を構成するセグメント型メタルボンド砥石の製造方法の要部を説明する工程図である。 図3の高硬質脆性材用メタルボンド砥石の構造および研削作用を説明する図であって、(a)は高硬質脆性材用メタルボンド砥石の構造を示す模式図、(b)は高硬質脆性材用メタルボンド砥石の研削状態であって面当たり抑制作用を説明する模式図、(c)は高硬質脆性材用メタルボンド砥石の研削状態であって気孔のチップポケット作用を説明する模式図である。 従来のビトリファイド砥石の構造および研削作用を説明する図であって、(a)はビトリファイド砥石の研削状態であって砥粒の破砕を説明する模式図、(b)はビトリファイド砥石の研削状態であって砥粒の脱落を説明する模式図である。 従来のメタルボンド砥石の構造および研削作用を説明する図であって、(a)はメタルボンド砥石の砥粒が磨滅して脱落せず、砥粒が切れ込まない状態を示す模式図、(b)はメタルボンド砥石の研削状態であって砥粒の磨滅の進行およびメタルボンドの面当たり状態を説明する模式図である。 メタルボンドの気孔径差による研削性能を示すために、メタルボンドの気孔径が異なる複数種類のメタルボンド砥石試料についての評価結果を示す図である。 メタルボンドの気孔率差による研削性能を示すために、メタルボンドの気孔率が異なる複数種類のメタルボンド砥石試料についての評価結果を示す図である。 研削面上の砥粒数差による研削性能を示すために、研削面上の砥粒数が異なる複数種類のメタルボンド砥石試料についての評価結果を示す図である。 砥石強度差による研削性能を示すために、砥石強度が異なる複数種類のメタルボンド砥石試料についての評価結果を示す図である。
 以下、本発明の一実施例を図面を参照して詳細に説明する。
 図1は、本発明の一実施例の高硬質脆性材用カップ砥石10を示す斜視図である。カップ砥石10は、金属製たとえばアルミニウム製の円盤状の台金12と、台金12の下面の外周縁に沿って円環状に連ねて固着された複数個のセグメント砥石14とを備えている。セグメント砥石14は、台金12の下面の外周部において円環状に連なる研削面16をそれぞれ備えている。
 台金12は、金属製厚肉円板状を成し、図示しない研削装置の主軸に取り付けられることにより、カップ砥石10が回転駆動される。カップ砥石10は、250mm程度の外径を有し、セグメント砥石14は3mm程度の厚みを有している。セグメント砥石14は、台金12の回転に伴って研削面16を、SiCウエハ、サファイヤウエハなどの高硬質脆性材と摺接させ、その高硬質脆性材を平面状に研削する。
 セグメント砥石14は、図2のSEM(走査型電子顕微鏡)写真に示すように、本発明の高硬質脆性材用メタルボンド砥石に対応し、ダイヤモンド砥粒18と、そのダイヤモンド砥粒18を結合するメタルボンド20と、メタルボンド20に形成された気孔22とを含み、直径が50μmφ以上200μmφ以下の気孔径と、50体積%以上65体積%以下の気孔率と、700個/cm以上6500個/cm以下の研削面16上の砥粒数と、40MPa以上95MPa以下の砥石強度とを、備えるメタルボンド砥石である。なお、セグメント砥石14は、その表層の研削層だけが上記メタルボンド砥石であってもよい。このセグメント砥石14は、図3に例示する製造工程によって製造される。上記砥石強度は、砥粒と共に砥石を構成するメタルボンドの強度に実質的に対応している。
 図3において、混合工程P1では、たとえば中位径が4から20μm、好適には中位径が5から10μm程度の粒度を有するダイヤモンド砥粒18と、焼結によりメタルボンド(金属結合剤)20を構成するための焼結金属粉体材料と、メタルボンド20中に気孔22を形成するための気孔形成剤とが、上記の50μmφ以上200μmφ以下の気孔径と、50体積%以上65体積%以下の気孔率と、700個/cm以上6500個/cm以下の研削面16上の砥粒数と、40MPa以上95MPa以下の砥石強度を有するための所定の割合で調合された後、均一に混合される。ダイヤモンド砥粒は、セグメント砥石14の研削面16上の砥粒数を700から6500個/cmとする集中度となる割合で混合される。上記焼結金属粉体材料は、焼結後においてダイヤモンド砥粒を結合するためのものであり、主要となる金属材料と添加材料との混合材である。主要となる金属がコバルトであればコバルトボンド、スチールであればスチールボンド、タングステンであればタングステンボンド、ニッケルであればニッケルボンド、銅であれば銅ボンドと称される。ニッケルボンドには、たとえばP(燐)が添加され、銅ボンドには、たとえばSn(錫)が添加される。そして、気孔形成剤は、ナフタリン、ポリスチレンや架橋アクリルなどの平均径が50から200μmφの粒径を有するメタルボンド20内から焼失や溶失によって消失可能な粒子であり、50から65体積%の気孔率が得られる割合で、混合される。ここで、ダイヤモンド砥粒18の粒度を示す上記の中位径(メジアン径)は、日本工業規格(JIS Z 8825:2013)に規定された粒径であり、(株)堀場製作所製のレーザ回折/散乱式粒子径分布測定装置(LA-960V2)を用いて測定された体積基準のD50の値である。
 成形工程P2では、混合工程P1で混合された材料を所定の成形金型内に充填し、プレスによりセグメント砥石14と同様の所定厚みの円弧状に成形する。続く焼結工程P3では、焼結金属粉体材料を焼結させるためにたとえば400から900℃に予め設定された焼結温度の焼成炉中で熱処理が施され、メタルボンド砥石であるセグメント砥石14が製造される。続いて、接着工程P4において、複数個のセグメント砥石14が図1に示すように台金12に接着される。そして、仕上げ工程P5において、台金12に接着されたセグメント砥石14の仕上げがドレッサを用いて行なわれる。
 図4は、セグメント砥石14の構造および研削作用を説明する模式図であって、(a)はセグメント砥石14の構造を示す模式図、(b)はセグメント砥石14の研削状態であってメタルボンド20の面当たり抑制作用を説明する模式図、(c)はセグメント砥石14の研削状態であって気孔22のチップポケット作用を説明する模式図である。(a)に示されるように、セグメント砥石14のメタルボンド20には、ダイヤモンド砥粒18と気孔22とが含まれており、気孔22は直径が50から200μmφの気孔径と、50から65体積%の気孔率とを備えている。そして、セグメント砥石14の気孔22を除く研削面16には、気孔22の一部が開口してチップポケットとして寄与しているとともに、700から6500個/cmの面密度でダイヤモンド砥粒18が突き出している。これにより、(b)および(c)に示されるように、SiCウエハ、サファイヤウエハなどの高硬質脆性材である被削材30に対するメタルボンド20の接触面積が低減されるとともに、被削材30に対する砥粒18の接触面圧が高められる。研削面16に開口した気孔22はチップポケットとして機能し、研削時の切り屑32が一時的に収容されて研削面16から排出されるとともに、研削面16への研削液の供給を容易とされ、研削面16の冷却が促進される。
 図5は、特許文献1に示されるような従来のビトリファイド砥石80の構造および研削作用を説明する図であって、(a)はビトリファイド砥石80の研削状態であって砥粒の破砕を説明する模式図、(b)はビトリファイド砥石80の研削状態であって砥粒の脱落を説明する模式図である。ビトリファイド砥石80は、砥粒82がビトリファイドボンド84によって結合された有気孔の砥石である。このようなビトリファイド砥石80は、高硬質脆性材である被削材30を研削する場合には、集中度が100以上で砥粒保持力が弱いことから、図5(a)に示すように砥粒82に負荷がかかると、図5(b)に示すように砥粒82の脱落が多く、砥石寿命が得られなかった。
 図6は、特許文献2に示されるような、従来のメタルボンド砥石90の構造および研削作用を説明する図であって、(a)はメタルボンド砥石90の銅、錫、コバルト、ニッケル等の金属粉末を混合した高強度且つ高硬度のメタルボンド94により結合された砥粒92が磨滅しても脱落せず、砥粒92が切れ込まない状態を示す模式図、(b)はメタルボンド砥石90の研削状態であって砥粒92の磨滅の進行およびメタルボンド94の面当たりが進行した状態を説明する模式図である。このようなメタルボンド砥石90は、高硬質脆性材である被削材30を研削する場合には、集中度が50から100であり、組織が密となっていて砥粒保持力は強いので、砥石寿命が得られる。しかし、図6(a)に示すように高硬度材の研削時に砥粒92に負荷がかかって破砕しても脱落せず、図6(b)に示すように目つぶれ傾向となり、メタルボンド94が被削材30に面擦れ状態となるので、ビトリファイド砥石80と比較して切れ味が鈍いという欠点があった。なお、図6(a)および(b)において、フィラー96が示されているが、必ずしも設けられなくてもよい。
 以下に、本発明者が行なった研削加工試験を説明する。図7から図10は、図3に示す工程で製造された、中位径が5から10μmのダイヤモンド砥粒を含む複数種類の砥石試料を用いて表1に示す研削加工試験条件で研削したときの研削試験の評価結果(研削抵抗および砥石摩耗率)をそれぞれ示している。図7は、メタルボンドの気孔径差による研削性能を評価した「研削試験1」の結果と、それに用いた複数種類の砥石試料の特性値を示している。図8は、メタルボンドの気孔率差による研削性能を評価した「研削試験2」の結果と、それに用いた複数種類の砥石試料の特性値を示している。図9は、研削面上の砥粒数差による研削性能を評価した「研削試験3」の結果と、それに用いた複数種類の砥石試料の特性値を示している。図10は、砥石強度差による研削性能を評価した「研削試験4」の結果と、それに用いた複数種類の砥石試料の特性値を示している。
(表1)
  研削加工試験条件                  
研削機械     平面研削盤(インフィード方式)
研削方法     湿式平面研削
加工物      4インチ単結晶SiCウエハ
加工条件     砥石回転数    2400rpm
         ウエハ回転数   400rpm
         切込み速度    0.5μm/sec.
         加工取り代    200μm
試験砥石     カップ砥石    直径250mm
         セグメント砥石  幅3mm
研削液      市水
 次に、上記の試験に用いられた砥石試料の気孔径(μmφ)、気孔率(%)、研削面上の砥粒数(個/cm)、砥石強度(MPa)、研削抵抗(A)、および砥石摩耗率(%)の測定方法を、以下に説明する。上記気孔径は、砥石試料の研削面の500倍の拡大画像10枚において、気孔について長径および短径の平均径をそれぞれ測定して全50個の気孔の平均値を算出した値である。上記気孔率は、砥石試料の体積および重量から密度を算出し、予め求められた密度と気孔率(体積%)との関係を示す検量線から、チップ状試験片の気孔率を算出した値である。砥粒数は、砥石試料の気孔を除く研削面の500倍の拡大画像において2値化処理を行なった後に、単位面積(cm)当たりの砥粒数を計数した値である。上記砥石強度は、長さ40mm×幅7mm×厚み4mmの砥石試験片を複数個用いて3点曲げ試験をおこなったときの破壊に至る平均強度値である。上記研削抵抗は、表1の研削加工試験条件を用いた研削において、カップ砥石を回転駆動する電動機の駆動電流値である。砥石摩耗率は、前記表1の研削加工試験条件を用いた1回の研削における砥石試料の摩耗量を割合で示したものである。
(研削試験1)
 図7に示すように、気孔率が50(体積%)、気孔を除く研削面上の砥粒数が2300(個/cm)を共に有しているが、30(μmφ)、50(μmφ)、80(μmφ)、100(μmφ)、120(μmφ)、200(μmφ)、250(μmφ)という気孔径を有する7種類の砥石試料No.1-7をそれぞれ複数個(各5個)作成した。このようにして得られた砥石試料No.1-7の砥石強度を測定すると、砥石強度は37-68(MPa)であった。なお、図7の気孔径、気孔率、砥粒数は、設計上のねらい値であって、調合によって決まる平均値である。次いで、砥石試料No.1-7を用いて表1に示す研削加工試験条件でそれぞれ研削することにより、各砥石試料No.1-7の評価を行なった。図7に示すように、気孔径が30(μmφ)である砥石試料No.1は、気孔22が小さすぎて気孔22によるチップポケット作用が充分に得られず、単結晶SiCウエハに対する研削加工の評価が不可であった。また、気孔径が250(μmφ)である砥石試料No.7は、気孔22が大きすぎて砥石のエッジ部が欠けやすくなるので、図7では製造不可と示している。この砥石試料No.7は、エッジ部以外の箇所で測定は可能であったが、研削加工は不可であった。これに対して、気孔径が50(μmφ)、80(μmφ)、100(μmφ)、120(μmφ)、および200(μmφ)である砥石試料No.2、3、4、5、6は、研削抵抗が12.1Aから13.3Aであり、砥石摩耗率が4.2%から8.7%であって、単結晶SiCウエハに対する良好な研削が得られた。
(研削試験2)
 図8に示すように、気孔径が80(μmφ)、研削面上の気孔を除く砥粒数が2300(個/cm)を共に有しているが、30(体積%)、40(体積%)、50(体積%)、60(体積%)、65(体積%)、70(体積%)という気孔率を有する6種類の砥石試料No.11-16をそれぞれ複数個(各5個)作成した。このようにして得られた砥石試料No.11-16の砥石強度を測定すると、砥石強度は28-73(MPa)であった。なお、研削試験1と同様に、図8の気孔径、気孔率、砥粒数は、設計上のねらい値であって、調合によって決まる平均値である。次いで、砥石試料No.11-16を用いて表1に示す研削加工試験条件でそれぞれ研削することにより、各砥石試料No.11-16の評価を行なった。図8に示すように、気孔率が30(体積%)および40(体積%)である砥石試料No.11および12は、気孔22が少なすぎて気孔22によるチップポケット作用が充分に得られず、単結晶SiCウエハに対する研削加工の評価が不可であった。また、気孔率が70(体積%)である砥石試料No.16は、気孔22の体積が大きすぎて安定に製造することができず、研削加工の評価が不可であった。これに対して、気孔率が50(体積%)、60(体積%)、および65(体積%)である砥石試料No.13、14、および15は、研削抵抗が12.0Aから12.7Aであり、砥石摩耗率が6.2%から8.5%であって、単結晶SiCウエハに対する良好な研削が得られた。
(研削試験3)
 図9に示すように、気孔径が80(μmφ)、気孔率が60(体積%)を共に有しているが、500(個/cm)、700(個/cm)、1650(個/cm)、2300(個/cm)、3650(個/cm)、5800(個/cm)、6500(個/cm)、7600(個/cm)という単位面積当たりの砥粒数を研削面に有する8種類の砥石試料No.21-28をそれぞれ複数個(各5個)作成した。このようにして得られた砥石試料No.21-28の砥石強度を測定すると、砥石強度は44-115(MPa)であった。なお、研削試験1と同様に、図9の気孔径、気孔率、砥粒数は、設計上のねらい値であって、調合によって決まる平均値である。次いで、砥石試料No.21-28を用いて表1に示す研削加工試験条件でそれぞれ研削することにより、各砥石試料No.21-28の評価を行なった。図9に示すように、単位面積当たりの砥粒数が500(個/cm)である砥石試料No.21は、砥粒数が少なく研削能力が充分に得られず、単結晶SiCウエハに対する研削加工の評価が不可であった。また、砥粒数が7600、気孔率が70(個/cm)である砥石試料No.28は、単位面積当たりの砥粒数が多すぎて、単結晶SiCウエハに対する研削加工の評価が不可であった。これに対して、砥粒数が700(個/cm)、1650(個/cm)、2300(個/cm)、3650(個/cm)、5800(個/cm)、および6500(個/cm)である砥石試料No.22、23、24、25、26、および27は、研削抵抗が10.9Aから14.9Aであり、砥石摩耗率が3.8%から10.7%であって、単結晶SiCウエハに対する良好な研削が得られた。
(研削試験4)
 図10に示すように、気孔径が80(μmφ)、気孔率が60(体積%)、研削面上の砥粒数が2300(個/cm)を共に有しているが、砥石強度の狙い値が30(MPa)、40(MPa)、70(MPa)、95(MPa)、105(MPa)である5種類の砥石試料No.31-35をそれぞれ複数個(各5個)作成した。このようにして得られた砥石試料No.21-28の砥石強度を測定すると、砥石強度は図10に示すように20-37(MPa)、40-49(MPa)、65-77(MPa)、80-95(MPa)、97-106(MPa)であった。なお、研削試験1と同様に、図10の気孔径、気孔率、砥粒数は、設計上のねらい値であって、調合によって決まる平均値である。次いで、砥石試料No.31-35を用いて表1に示す研削加工試験条件でそれぞれ研削することにより、各砥石試料No.31-35の評価を行なった。図10に示すように、砥石強度が30(MPa)である砥石試料No.31は、砥石強度が低いので、メタルボンドの強度が低く砥粒の脱落が多いので、単結晶SiCウエハに対する研削加工の評価が不可であった。また、砥石強度が105(MPa)である砥石試料No.35は、砥石強度が高いので、メタルボンドの強度が高く砥粒の脱落が少なすぎるので、単結晶SiCウエハに対する研削加工の評価が不可であった。これに対して、砥石強度が40(MPa)、70(MPa)、および95(MPa)である砥石試料No.32、33、および34は、研削抵抗が11.0Aから12.8Aであり、砥石摩耗率が6.7%から9.7%であって、単結晶SiCウエハに対する良好な研削が得られた。
 研削試験1-4から明らかなように、単結晶SiCウエハに対する良好な研削が得られると評価される研削抵抗が15A以下且つ砥石摩耗率が11%以下という評価は、直径が50μm以上200μm以下の気孔径と、50体積%以上65体積%以下の気孔率と、700個/cm以上6500個/cm以下の研削面16上の砥粒数と、40MPa以上95MPa以下の砥石強度とを、備えることで、実現される。
 上述のように、本実施例のカップ砥石10のセグメント砥石(高硬質脆性材用メタルボンド砥石)14は、直径が50から200μmの気孔径と、セグメント砥石14全体に対し50から65体積%の気孔率と、700から6500個/cmの研削面16上の砥粒数と、40から95MPaの砥石強度とを、備えている。このように、直径が50から200μmの気孔径と50から65体積%の気孔率とを備えているため、脱落した砥粒18および切り屑32が気孔22内に捕捉されて目詰まりが抑制される。
 ここで、本実施例のセグメント砥石(高硬質脆性材用メタルボンド砥石)14によれば、気孔22を除いた研削面上において700から6500個/cmの砥粒数を備えている。このように、気孔22を除いた研削面上の砥粒数が700から6500個/cmとされることにより、砥粒18の被削材30に対する切り込み深さが確保され、高速送りでも低負荷で研削が可能となる。高硬質脆性材用メタルボンド砥石が上記のような有気孔構造であるとき、気孔22を除く研削面16の砥粒数が6500個/cmを超える場合は、砥粒一粒当たりの荷重が小さくなって、被削材30すなわちSiCのような高硬質脆性材に対する砥粒18の切り込みすなわち食い込みが浅くなり、被削材30に食いつかなくなる。反対に、気孔22を除く研削面16の砥粒数が700個/cmを下回る場合は、砥粒一粒当たりのメタルボンド量が多く、磨滅した砥粒16の目替わりが阻害されるという問題が生じる。本実施例では、研削面上の砥粒数が700から6500個/cmとされることにより、砥粒18の被削材30に対する切り込み深さが確保され、高速送りでも低負荷で研削が可能となる。
 また、本実施例では、砥粒18は、ダイヤモンド砥粒であって、粒度は、中位径で4から20μm、好適には、中位径で5から16μmである。このようにすれば、SiCのような高硬質脆性材である被削材30を、安定した研磨性能で、高能率且つ高寿命に研磨することができるセグメント砥石(高硬質脆性材用メタルボンド砥石)14が得られる。砥粒18がたとえば中位径で20μmを上まわる粗さとなると、砥粒18が深く食い込んで加工後の被削材30へのダメージが大きくなり、次工程での負荷(加工時間)の増大を招く。砥粒18がたとえば中位径で4μmを下まわる細かさとなると、メタルボンドからの突出し量が小さくなって被削材30へ食い込めず、粗加工に求められる研削能率と寿命の達成が困難となる。
 また、本実施例のセグメント砥石(高硬質脆性材用メタルボンド砥石)14によれば、40から95MPaの砥石強度を備えている。このように、前記高硬質脆性材用メタルボンド砥石と同様の用途のビトリファイド砥石よりも約2倍から4倍の砥石強度が確保できるため、不必要な砥粒の脱落を防止でき、安定した負荷および切れ味で連続研削することが可能となる。砥石強度が95MPaを超えるとセグメント砥石の砥粒18の保持力が大きくなり過ぎ磨滅した砥粒が目替わりできず、結果としてボンド擦れを発生させる。反対に、砥石強度が40Mpaを下回ると、セグメント砥石14の砥粒18の保持力が低下し過ぎ砥粒18の脱落を誘発し、ボンド擦れを発生させる。
 以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。
 たとえば、前述の実施例では、台金12に固定された円弧状のセグメント砥石14が高硬質脆性材用メタルボンド砥石であったが、円盤状に形成された高硬質脆性材用メタルボンド砥石であってもよい。
 また、セグメント砥石14において、砥石のうちの研削に関与する一部たとえば研削面16側の一部に形成された砥石層が、高硬質脆性材用メタルボンド砥石であってもよい。
 なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。
10:カップ砥石
12:台金
14:セグメント砥石(高硬質脆性材用メタルボンド砥石)
16:研削面
18:ダイヤモンド砥粒
20:メタルボンド
22:気孔
30:被削材(高硬質脆性材)
32:切り屑

Claims (4)

  1.  砥粒がメタルボンドにより結合された、高硬質脆性材を研削するための高硬質脆性材用メタルボンド砥石であって、
     前記高硬質脆性材用メタルボンド砥石全体に対し気孔径が50から200μmの気孔が、50から65体積%の気孔率で備えられている
     ことを特徴とする高硬質脆性材用メタルボンド砥石。
  2.  前記気孔を除いた研削面上において700から6500個/cmの砥粒数を備えている
     ことを特徴とする請求項1の高硬質脆性材用メタルボンド砥石。
  3.  前記砥粒は、ダイヤモンド砥粒であって、中位径が4から20μmの粒度である
     ことを特徴とする請求項1又は2の高硬質脆性材用メタルボンド砥石。
  4.  40から95MPaの砥石強度を備えている
     ことを特徴とする請求項1から3のいずれか1の高硬質脆性材用メタルボンド砥石。
PCT/JP2020/002631 2019-02-01 2020-01-24 高硬質脆性材用メタルボンド砥石 WO2020158631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/425,889 US20220048161A1 (en) 2019-02-01 2020-01-24 Metal bond grindstone for hard and brittle material
CN202080010045.0A CN113329846B (zh) 2019-02-01 2020-01-24 高硬质脆性材料用金属结合剂磨石
KR1020217023142A KR20210121024A (ko) 2019-02-01 2020-01-24 고경질 취성재용 메탈 본드 지석
JP2020569595A JP7261246B2 (ja) 2019-02-01 2020-01-24 高硬質脆性材用メタルボンド砥石

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019017499 2019-02-01
JP2019-017499 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020158631A1 true WO2020158631A1 (ja) 2020-08-06

Family

ID=71841557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002631 WO2020158631A1 (ja) 2019-02-01 2020-01-24 高硬質脆性材用メタルボンド砥石

Country Status (6)

Country Link
US (1) US20220048161A1 (ja)
JP (1) JP7261246B2 (ja)
KR (1) KR20210121024A (ja)
CN (1) CN113329846B (ja)
TW (1) TW202039773A (ja)
WO (1) WO2020158631A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100634A1 (ja) * 2021-11-30 2023-06-08 旭ダイヤモンド工業株式会社 メタルボンド砥石

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540261A (ja) * 2007-10-01 2010-12-24 サンーゴバン アブレイシブズ,インコーポレイティド 硬質かつ/または脆性の材料の研磨加工
JP2012178617A (ja) * 2006-12-28 2012-09-13 Saint-Gobain Ceramics & Plastics Inc サファイア基板の研削方法
JP2014205225A (ja) * 2013-04-15 2014-10-30 株式会社ノリタケカンパニーリミテド 高硬度脆性材料の研削用砥石

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671708B2 (ja) * 1986-12-15 1994-09-14 鐘紡株式会社 半導体ウエハ−研磨用砥石
JP4173573B2 (ja) * 1997-12-03 2008-10-29 株式会社ナノテム 多孔質砥粒砥石の製造方法
DE19805889C2 (de) * 1998-02-13 2001-07-12 Fraunhofer Ges Forschung Sinterkörper auf der Basis von Korund mit einer geschlossenen Zellstruktur, dessen Herstellung und Verwendung
JP2002001668A (ja) 2000-06-19 2002-01-08 Mitsubishi Materials Corp メタルボンド砥石
JP5036110B2 (ja) * 2001-07-25 2012-09-26 株式会社ニッカトー 軽量セラミック焼結体
US6685755B2 (en) * 2001-11-21 2004-02-03 Saint-Gobain Abrasives Technology Company Porous abrasive tool and method for making the same
EP1598147B1 (en) * 2004-05-20 2008-03-26 Disco Corporation Vitrified bond grindstone and manufacturing process thereof
US8377159B2 (en) * 2007-03-26 2013-02-19 Tokyo Diamond Tools Mfg. Co., Ltd. Synthetic grinding stone
WO2010075091A2 (en) * 2008-12-15 2010-07-01 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of use
CN102470512B (zh) * 2009-07-21 2015-08-26 本田技研工业株式会社 金属结合剂磨石及其制造方法
CN102001053B (zh) * 2010-10-27 2012-07-18 南京航空航天大学 陶瓷空心球复合结合剂立方氮化硼砂轮工作层及其制造方法
CN102092010B (zh) * 2010-12-09 2012-04-25 郭兵健 单晶硅棒抛光用高孔隙率陶瓷结合剂砂轮制备方法
JP5373171B1 (ja) * 2012-10-20 2013-12-18 株式会社ナノテム 砥石およびそれを用いた研削・研磨装置
TWI602658B (zh) * 2013-12-31 2017-10-21 聖高拜磨料有限公司 研磨物件以及形成方法
JP6564686B2 (ja) 2015-10-28 2019-08-21 株式会社アライドマテリアル ビトリファイドボンド超砥粒ホイールおよびそれを用いたウエハの製造方法
CN105352874B (zh) * 2015-12-14 2017-12-15 山西省交通科学研究院 一种室内测量土体孔隙率的试验方法与装置
JP2017185575A (ja) * 2016-04-04 2017-10-12 クレトイシ株式会社 ビトリファイド超砥粒ホイール
CN107884324A (zh) * 2017-10-11 2018-04-06 西安航天动力研究所 一种液体火箭发动机用石墨材料气孔率测试方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178617A (ja) * 2006-12-28 2012-09-13 Saint-Gobain Ceramics & Plastics Inc サファイア基板の研削方法
JP2010540261A (ja) * 2007-10-01 2010-12-24 サンーゴバン アブレイシブズ,インコーポレイティド 硬質かつ/または脆性の材料の研磨加工
JP2014205225A (ja) * 2013-04-15 2014-10-30 株式会社ノリタケカンパニーリミテド 高硬度脆性材料の研削用砥石

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100634A1 (ja) * 2021-11-30 2023-06-08 旭ダイヤモンド工業株式会社 メタルボンド砥石

Also Published As

Publication number Publication date
CN113329846A (zh) 2021-08-31
TW202039773A (zh) 2020-11-01
JPWO2020158631A1 (ja) 2021-12-09
KR20210121024A (ko) 2021-10-07
US20220048161A1 (en) 2022-02-17
JP7261246B2 (ja) 2023-04-19
CN113329846B (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
CN102066283B (zh) 具有极低堆积密度的陶瓷磨料及其制造方法和用途
US8894731B2 (en) Abrasive processing of hard and /or brittle materials
NL1021962C2 (nl) Poreus slijpgereedschap en werkwijze voor het maken daarvan.
JP2001246566A (ja) 研削用砥石およびその製造方法並びにそれを用いた研削方法
TW201223699A (en) Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
WO2002022310A1 (fr) Meule a grains tres abrasifs pour poli miroir
WO2020158631A1 (ja) 高硬質脆性材用メタルボンド砥石
JP2017170554A (ja) ラップ盤用低圧加工ビトリファイド砥石とそれを用いた研磨加工方法
JP3086667B2 (ja) 超砥粒砥石
TW201208819A (en) Abrasive article for use in grinding of superabrasive workpieces
JP2000198075A (ja) 複合ボンド砥石及び樹脂結合相を有する砥石
JP2014205225A (ja) 高硬度脆性材料の研削用砥石
JP2004268200A (ja) 複合型レジノイド砥石
JP2002274944A (ja) 砥石用原料、レジンホイール及びその製造方法
JP2010076094A (ja) メタルボンドダイヤモンド砥石及びその製造方法
JP3406163B2 (ja) 超砥粒砥石とその製造方法
JP2022136788A (ja) メタルボンド砥石およびその製造方法
JPH10113876A (ja) ダイヤモンド砥石とその製造方法および工具
WO2022102335A1 (ja) 多孔質メタルボンド砥石の製造方法および多孔質メタルボンドホイールの製造方法
JP2020185654A (ja) 超砥粒メタルボンド砥石
JPH11300623A (ja) レジンボンド砥石
JPH10202533A (ja) ダイヤモンド切断砥石
JP3998648B2 (ja) カップ型回転砥石
JP2806481B2 (ja) 板状立方晶窒化ほう素の配向成形体
JP2002187071A (ja) 電鋳薄刃砥石

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748296

Country of ref document: EP

Kind code of ref document: A1