WO2008111682A1 - 硫黄酸化物含有液中のセレン処理方法 - Google Patents

硫黄酸化物含有液中のセレン処理方法 Download PDF

Info

Publication number
WO2008111682A1
WO2008111682A1 PCT/JP2008/054839 JP2008054839W WO2008111682A1 WO 2008111682 A1 WO2008111682 A1 WO 2008111682A1 JP 2008054839 W JP2008054839 W JP 2008054839W WO 2008111682 A1 WO2008111682 A1 WO 2008111682A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
sulfur oxide
containing liquid
tetravalent
rare earth
Prior art date
Application number
PCT/JP2008/054839
Other languages
English (en)
French (fr)
Inventor
Akihiro Hishinuma
Koji Takahashi
Koki Maeda
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2008111682A1 publication Critical patent/WO2008111682A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds

Definitions

  • the present invention relates to a selenium treatment method in a sulfur oxide-containing liquid, and more particularly to a selenium treatment method in a sulfur oxide-containing liquid using cerium having a special selenium adsorption ability as an adsorbent.
  • Smoke emitted from glass manufacturing facilities where selenium (S e) is applied as a colorant contains trace amounts of selenium, for example, several tens of ppm, in addition to sulfur oxides. Also, in addition to sulfur oxides, a small amount of selenium contained in coal is mixed into the flue gas emitted from power, steel, and cement industry facilities that use coal as fuel. Selenium is a toxic substance, and its environmental standard is 0.1 mg / litre and drainage standard is 0.1 Olmg / litre. Therefore, selenium treatment as well as desulfurization treatment is indispensable for the flue gas treatment at the above facilities.
  • JP 09-0 6 6 2 8 7 discloses that sulfurous acid gas is blown into desulfurization effluent obtained by desulfurizing combustion exhaust gas.
  • a selenium separation method is disclosed in which hexavalent selenium contained in desulfurization effluent is reduced to tetravalent and then calcium hydroxide (C a (OH) 2 ) is added to precipitate selenium as a calcium salt.
  • Japanese Patent Publication No. Sho 4 8-0 3 0 5 5 8 discloses a conventional technique for treating selenium in wastewater when ferrous salt and copper salt are added to selenium wastewater.
  • a method for treating selenium wastewater in which selenium is co-precipitated in ferric hydroxide is disclosed.
  • Japanese Patent Application Laid-Open No. 5 5-0 9 9 3 7 8 discloses, for example, a chelating ion in which waste water containing selenite ion is adsorbed in advance with an aluminum ion or a heavy metal ion having an element number of 21 or more.
  • a wastewater treatment method is disclosed in which it is brought into contact with an exchange resin to adsorb and separate selenite ions.
  • liquid tetravalent selenium
  • S e 4 + tetravalent selenium
  • S e 6 + hexavalent
  • Hexavalent selenium has a higher solubility than tetravalent selenium and is difficult to separate. Therefore, after reducing the tetravalent selenium to tetravalent and reducing it, for example, it is co-reacted with alkaline earth metal hydroxide. A treatment system for sinking has been proposed.
  • Japanese Patent Laid-Open No. 10-0 9 9 8 74 and Japanese Patent Laid-Open No. 0-8- 2 7 6 1 1 3 is mentioned.
  • Japanese Laid-Open Patent Publication No. 10-0 9 9 8 7 4 discloses a method for reducing selenium by adding ferrous chloride to an acidic aqueous solution containing hexavalent selenium to produce tetravalent selenium.
  • Japanese Patent Laid-Open No. 10-0 9 9 8 7 4 discloses a method for reducing selenium by adding ferrous chloride to an acidic aqueous solution containing hexavalent selenium to produce tetravalent selenium.
  • the dust collected from the exhaust gas is heated to the selenium gasification temperature or more to gasify the selenium contained in the dust, and this is desulfurized together with the exhaust gas.
  • the flue gas treatment system is introduced into the equipment, reduces hexavalent selenium to tetravalent by electrochemical treatment means, and insolubilizes the resulting tetravalent selenium as hydroxide of alkaline earth metal. It is disclosed.
  • selenium processing method in desulfurization waste water unlike the selenium treatment method common selenium in the wastewater are separated and recovered, the number percent Bok of sulfate ions (SO 2 one, Hereinafter referred to as “so 3 ” for convenience) and / or selenium present in several ppm to several tens of ppm in an aqueous solution containing sulfite ion (so 3 2 ; hereinafter referred to as “S 0 2 ” for convenience), and Selenium (S e) and sulfur (S) are adjacent to each other in the periodic table, and their possible valences change in the same way, making it difficult to selectively separate only selenium. For this reason, a selenium treatment method in a sulfur oxide-containing liquid that is practically reliable has not been established.
  • An object of the present invention is to provide a method for treating selenium in a sulfur oxide-containing liquid capable of efficiently separating and recovering selenium contained in wastewater or solution in which sulfur oxides coexist. Disclosure of the invention
  • a selenium treatment method for separating selenium (S e) contained in a sulfur oxide-containing liquid, the rare earth compound being contained in the sulfur oxide-containing liquid An adsorption step of adsorbing the selenium to the rare earth compound, and a separation step of separating the rare earth compound adsorbed the selenium from the sulfur oxide-containing liquid.
  • the sulfur oxide includes so 2 and so 3 , a reduction step of reducing hexavalent selenium contained in the sulfur oxide-containing liquid to tetravalent, and oxidizing SO 2 to SO 3
  • An oxidation step wherein the hexavalent selenium is reduced to tetravalent and the so 2 is oxidized to so 3 , and then the rare earth compound is added to the sulfur oxide-containing liquid, It is preferable to adsorb the tetravalent selenium.
  • the oxidation step of oxidizing SO 2 to SO 3 is preferably performed after reducing the hexavalent selenium to tetravalent.
  • the reducing step of reducing the hexavalent selenium to tetravalent is preferably a step of adding ferrous ions to the sulfur oxide-containing liquid.
  • the step of reducing the hexavalent selenium to tetravalent is preferably performed after oxidizing the SO 2 to SO 3 .
  • the reduction step of reducing the hexavalent selenium to tetravalent is preferably a step of adding hydrochloric acid to the sulfur oxide-containing liquid.
  • the oxidation step of oxidizing so 2 to so 3 is preferably a step of introducing an oxidizing gas into the sulfur oxide-containing liquid and publishing.
  • the rare earth compound hydroxide Seri um (C e (OH) 4 ⁇ ⁇ ⁇ 2 0, C e (OH) 3 - n H 2 O) and hydrated Seri um (C e O 2 ⁇ It is preferable to include at least one of nH, 0, CeO, -nH, O).
  • FIG. 1 is a flowchart showing the operation procedure of the selenium treatment method in the sulfur oxide-containing liquid according to the embodiment of the present invention.
  • FIG. 2 is a flowchart showing an operation procedure of a selenium treatment method in a sulfur oxide-containing liquid according to another embodiment of the present invention.
  • the present inventor determined the relationship between the valence of selenium in the liquid to be treated and its adsorbent, and the selenium adsorbing ability of the selenium adsorbent in, for example, desulfurization effluent as a sulfur oxide-containing liquid.
  • a selenium adsorbent rare earth elements or their hydroxides, especially hydrated cerium hydroxide or cerium hydroxide are suitable.
  • Adcera slurry manufactured by Nippon Sheet Glass Co., Ltd. was used as an adsorbent containing cerium hydroxide.
  • Hexavalent selenium in place of the 4-valent selenium (S e 0 4 2, was prepared from selenate isocyanatomethyl Li um hexavalent selenium solution) except for using the row Les similar adsorption treatment as in Experimental Example 1 , Similarly, when the selenium removal rate was determined, the selenium removal rate was 90% or more.
  • the same adsorption treatment was performed in the same manner as in Experimental Example 1 above, and the selenium removal rate was determined in the same manner.
  • the lens removal rate was 99% or more.
  • Table 1 shows that selenium hydroxide is suitable as a selenium adsorbent and is practical.
  • tetravalent selenium is more easily adsorbed by cerium hydroxide than hexavalent selenium, so hexavalent selenium is reduced to tetravalent before adsorption treatment with selenium. that it is effective, and S ⁇ in the liquid 2 is an interfering substance selenium adsorption treatment by auction ⁇ beam, since sO 3 is not a disturbing substance tetravalent selenium adsorption treatment, adsorption treatment of selenium Before doing so, so 2 in the solution
  • test solution in which tetravalent selenium was added to the 5% aqueous sodium sulfite solution used in Experiment 5 was placed in a gas adsorption bottle (impinger), and air publishing while aspirating it. Then, S 0 2 was oxidized to S 0 3 , and then the selenium adsorption treatment was performed in the same manner as in Experimental Example 5. When the selenium removal rate was similarly determined, the selenium removal rate was 99% or more.
  • a 5% aqueous sodium sulfite solution containing lOOppm of tetravalent selenium was used as the test solution, and a commercially available aqueous hydrogen peroxide solution (30% — H 2 0 2 Solution) was added at a rate of 5 ml to 100 ml of the test solution, heated at 90 ° to: 100 ° C. for 1 hour, and then subjected to selenium adsorption treatment in the same manner. When the removal rate was calculated, selenium was not removed at all.
  • Table 2 shows that selenium (tetravalent) in the liquid containing S 0 2 can be adsorbed and separated with high probability by oxidizing only so 2 to so 3 without oxidizing the selenium to hexavalent. .
  • air bubbling can oxidize only the interfering substance SO 2 to SO 3 without oxidizing selenium tetravalent to hexavalent (Experiment 7).
  • the present inventor has intensively studied a method for treating selenium in a sulfur oxide-containing liquid.
  • selenium in a sulfur oxide-containing liquid is a rare earth compound, particularly selenium.
  • the present inventors have found that a rare earth compound that adsorbs selenium, particularly cerium, can be separated from a sulfur oxide-containing liquid by solid-liquid separation. That is, the present invention relates to a selenium treatment method for separating selenium (S e) contained in a sulfur oxide-containing liquid, wherein a rare earth compound is added to the sulfur oxide-containing liquid and selenium is adsorbed on the rare earth compound.
  • the sulfur oxide in the sulfur oxide-containing liquid contains so 2 and so 3 .
  • sulfur oxide-containing liquids for example, typical sulfur oxides contained in desulfurization effluent are SO 2 and SO 3 . However, it may contain other sulfur oxides.
  • the method for treating selenium in a sulfur oxide-containing liquid according to the present invention includes a reduction step of reducing hexavalent selenium in the liquid to tetravalent.
  • the solubility of hexavalent selenium is larger than the solubility of tetravalent selenium, making it difficult to perform adsorption separation, so that the solubility is low and the adsorption is easily separated by an adsorbent.
  • the selenium treatment method in the sulfur oxide-containing liquid according to the present invention includes an oxidation step for oxidizing so 2 to so 3 . This is because SO 2 is an interfering substance for the selenium adsorption action by the adsorbent, but so 3 is not an interfering substance.
  • the selenium treatment method in the sulfur oxide-containing liquid according to the present invention hexavalent After the selenium is reduced to tetravalent and SO 2 is oxidized to SO 3 , a rare earth compound is added as a selenium adsorbent, and the tetravalent selenium is adsorbed and separated by the rare earth compound.
  • the oxidation step of oxidizing S 2 to SO 3 can be performed after hexavalent selenium is reduced to tetravalent. That is, in this case, the step of reducing the hexavalent selenium to 4-valent is done One's earlier oxidation step of oxidizing SO 2 to S ⁇ 3. Therefore, the reduction step may be one that reduces SO 3 in the liquid to S 2 , and a strong reduction step using a so-called strong reducing agent is suitably applied.
  • An example of a strong reducing agent is ferrous chloride.
  • a step of adding ferrous chloride to the liquid corresponds to this.
  • the oxidation-reduction reaction for reducing hexavalent selenium to tetravalent selenium can be expressed as follows.
  • Ferrous iron added to the liquid to be treated releases electrons and the body is oxidized to become ferric iron, which is reduced to tetravalent when hexavalent selenium takes in the released electrons.
  • a strong reducing agent all hexavalent selenium in the sulfur oxide-containing liquid is reduced to tetravalent.
  • a part of selenium may be reduced to solid selenium.
  • Solid selenium can be separated by solid-liquid separation.
  • strong reducing agents include ferrous chloride described above, for example, oxalic acid (C 2 H 2 0 4 ), hydrogen sulfide (H 2 S), and the like.
  • the amount of reducing agent such as ferrous chloride added to the liquid to be treated is twice the equivalent of selenium contained in the liquid or 1.2 to 1.5 times the amount thereof. Addition amount of ferrous chloride If the amount is too small, the reduction treatment of selenium will be insufficient. If the amount is too large, the efficiency will decrease and the cost will increase.
  • the temperature of the liquid to be treated in the reduction step is, for example, 50 to 100 ° C. If the temperature is too high, the operation becomes complicated, and if it is too low, the reduction reaction rate decreases. Heating is not particularly required, but it may be heated to promote the reaction.
  • the reaction time in the reduction step varies depending on the reaction temperature and stirring state, but is, for example, 1 minute to 24 hours. If the reaction time is too short, the reduction will be insufficient, but if it is longer than necessary, the efficiency will not improve.
  • the oxidation step for oxidizing S 0 2 to S 0 3 can be performed prior to the reduction step for reducing hexavalent selenium to tetravalent. That, after oxidation of SO 2 to S ⁇ 3, it is also possible to perform the reduction step of reducing the hexavalent selenium tetravalent.
  • the reduction step of reducing hexavalent selenium to tetravalent is, for example, a step of adding hydrochloric acid to the liquid to be treated.
  • the reduction step with hydrochloric acid is a so-called weak reduction step, and does not reduce the So 3 produced in the oxidation step to So 2 and reduces only hexavalent selenium in the liquid to tetravalent or lower.
  • Examples of such a reduction step include a method of heating using iron powder in addition to the reduction step using hydrochloric acid.
  • the amount of the reducing agent added to the liquid to be treated is twice the equivalent of hexavalent selenium or 1.2 to 1.5 times its equivalent.
  • the temperature of the liquid to be treated is, for example, 50 to 100 ° C. Temperature too high If this is too low, the reduction reaction rate will be low.
  • heating is not particularly required, but heating may be performed to promote the reaction.
  • the reaction time in the weak reduction step varies depending on the reaction temperature, stirring state, etc., but is, for example, 1 minute to 24 hours. If the reaction time is too short, the reduction is insufficient. On the other hand, efficiency is not improved even if it is longer than necessary.
  • the oxidation step of oxidizing so 2 in the liquid to be processed to so 3 is a step of bubbling by blowing an oxidizing gas such as o 2 , o 3 , co 2 , or air into the liquid to be processed.
  • Air publishing is a step that exerts a so-called weak oxidizing action. It oxidizes only SO 2 to SO 3 without oxidizing tetravalent selenium present in the liquid to hexavalent.
  • the interfering substance (so 2 ) against the selenium adsorption action by selenium can be extinguished while maintaining the selenium in the tetravalent state.
  • the air bubbling conditions in the oxidation step are not particularly limited, but the amount of air introduced is, for example, 5 liters / minute for 1 liter of the liquid to be treated. If the amount of the bubbling air for the liquid to be treated is too small, the oxidation of SO 2 to SO 3 is not sufficient, and if it is too large, the efficiency decreases. At this time, the finer the bubble, the better the efficiency, but for example, the average particle size is about 5 mm.
  • the temperature of the liquid to be treated in the oxidation step is not particularly limited, but is room temperature to 60 ° C. If the temperature is too high, the cost increases, while if the temperature is too low, the oxidation of SO 2 to SO 3 is suppressed.
  • Air publishing is a so-called weak oxidation method. Examples of weak oxidizing agents or oxidizing methods other than air publishing include, for example, an aqueous solution of hydrogen peroxide of 10% or less, and the same effect can be obtained.
  • the rare earth compound as the selenium adsorbent is preferably cerium hydroxide or hydrous cerium oxide. This is because cerium hydroxide and the like have a particularly large number of adsorption points (active sites) involved in adsorption, and have a large selenium adsorption ability.
  • the cerium hydroxide is, for example, in the form of powder or granules, and for example, a slurry dispersed in water is suitably applied.
  • the lenth adsorbent is not limited to cerium hydroxide (hydrous cerium hydroxide) alone, and may contain other rare earth hydroxides such as lanthanum hydroxide. It is also possible to apply rare earths or rare earth hydroxides that do not contain tantalum or cerium.
  • selenium adsorbs selenium (tetravalent) is not necessarily clear, but selenium has a special adsorption capacity for selenium that other adsorbents do not have.
  • FIG. 1 is a flowchart showing an operation procedure of a selenium treatment method in a sulfur oxide-containing liquid according to an embodiment of the present invention.
  • step S 1 pH is adjusted by adding hydrochloric acid, for example, to the desulfurization effluent as a sulfur oxide-containing liquid (step S 1).
  • hydrochloric acid for example
  • ferrous chloride is added as a reducing agent, and the mixture is gently stirred to reduce hexavalent selenium to tetravalent (step S 2) (Reduction step).
  • step S 3 After reducing selenium tetravalent oxidation by blowing air into the liquid to be treated, the SO 2 to SO 3 by the step S 2 is present SO 2 and from the beginning have been conducted under the generated Rukoto reduced to SO 3 Do (Step S3) (Oxidation step).
  • step S 4 selenium hydroxide (Adela slurry, manufactured by Nippon Sheet Glass Co., Ltd.) is added as a selenium adsorbent, and gently stirred to adsorb tetravalent selenium (step S 4) (adsorption step).
  • step S 5 the liquid to be treated containing selenium hydroxide adsorbed with selenium is filtered, separated into solid and liquid to separate selenium adsorbed selenium hydroxide, and the treatment liquid is recovered (step S5) (separation). Step), this process ends.
  • SO 2 is oxidized to SO 3 with a weak oxidizing agent to eliminate interfering substances, and then selenium hydroxide is removed. Since selenium is adsorbed and separated by addition, selenium in the liquid to be treated can be efficiently adsorbed and separated.
  • selenium is adsorbed and separated by the adsorbent without coprecipitation with the metal hydroxide, post-treatment is easy without generating a large amount of sludge.
  • selenium in the liquid to be treated is once reduced with a strong reducing agent and then adsorbed and separated by selenium hydroxide, so that accurate selenium valence control and complicated equipment are not required.
  • the separated and collected selenium-adsorbed selenium is disposed of in a simple treatment facility as industrial waste, for example.
  • the selenium treatment method according to this embodiment can be applied to selenium treatment in selenium in flue gas desulfurization wastewater, for example, soil, gypsum, bow show, metal hydroxide, industrial waste, etc. .
  • selenium is once eluted into the solution to form a selenium-containing liquid, and the selenium in the liquid is adsorbed and separated by selenium.
  • FIG. 2 is a flowchart showing the operation procedure of the selenium treatment method in the sulfur oxide-containing liquid according to another embodiment of the present invention.
  • selenium in the liquid to be treated can be efficiently separated and recovered while suppressing interference with so 2 as in the above embodiment.
  • a solution containing selenium hydroxide adsorbing selenium was filtered through a filter cloth and subjected to solid-liquid separation to obtain a treatment liquid from which selenium was separated.
  • the selenium concentration in the treatment liquid was quantified, the selenium removal rate was 99% or more.
  • Tetravalent selenium and hexavalent selenium are added to the desulfurization effluent discharged from the glass manufacturing process so that each of them has lOOppm, and this is treated liquid.
  • the air was blown at a rate of 5 liters / minute against the water to oxidize SO 2 in the liquid to SO 3 , and then 35 ml of 10% hydrochloric acid was added to 100 ml of the liquid to be treated.
  • the special selenium adsorption ability possessed by the rare earth compound is skillfully utilized.
  • Selenium in the sulfur oxide-containing liquid can be adsorbed and separated efficiently.
  • hexavalent selenium is reduced to tetravalent and SO 2 is oxidized to SO 3 , and then a rare earth compound is added to adsorb selenium.
  • SO 2 is oxidized to SO 3
  • a rare earth compound is added to adsorb selenium.
  • it effectively adsorbs tetravalent selenium that has been adjusted to a valence that is easy to absorb without the presence of SO 2 as an interfering substance during selenium adsorption. Can be separated.
  • the selenium treatment method in the sulfur oxide-containing liquid of the present invention after reducing hexavalent selenium to tetravalent, performing a step of oxidizing SO 2 to SO 3 , for example, once strong reduction after forcibly reduced selenium and sulfur oxides by agents, the so 2 present in the liquid-from so 2 and started produced by reduction of this the so 3 Oxidation, which can eliminate adsorption interference caused by interfering substances, can simplify processing operations in addition to the above effects.
  • the reduction step of reducing hexavalent selenium to tetravalence is a step of adding ferrous ions, in addition to the above effects. It is possible to reliably reduce hexavalent selenium to tetravalent or lower selenium that is easy to adsorb.
  • the selenium treatment method in the sulfur oxide-containing liquid of the present invention after oxidizing SO 2 to SO 3 , the step of reducing hexavalent selenium to tetravalence is performed, thereby In addition, the oxidation of so 2 and the reduction of selenium can be performed efficiently in separate steps.
  • the step of reducing hexavalent selenium to tetravalent is the step of adding hydrochloric acid to the sulfur oxide-containing liquid.
  • the reduction step only hexavalent selenium can be selectively reduced to tetravalent or lower without reducing SO 3 to SO 2 , which is an interfering substance. Becomes easy.
  • the step of oxidizing SO 2 to so 3 is a step of publishing with an oxidizing gas, so that Without oxidizing selenium to hexavalent, S 0 2 can be selectively oxidized to so 3 to eliminate the influence of interfering substances in the selenium adsorption step.
  • At least one kind of cerium hydroxide and hydrous cerium oxide having particularly excellent selenium adsorption ability among rare earth compounds is used as the rare earth compound.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

硫黄酸化物が共存する排水又は溶液中に含まれるセレンを効率よく分離、回収することができる硫黄酸化物含有液中のセレン処理方法を提供する。硫黄酸化物含有排水に、塩酸を添加してpH調整した後(ステップS1)、塩化第一鉄を添加して6価のセレンを4価に還元する(ステップS2)。その後、空気を吹き込んでSO2をSO3に酸化する(ステップS3)。次いで、希土類化合物を添加してセレン(4価)を吸着する(ステップS4)。次に、セレンを吸着した希士類化合物を分離して処理液を回収する。

Description

明 細 書 硫黄酸化物含有液中のセレン処理方法 技術分野
本発明は、硫黄酸化物含有液中のセレン処理方法に関し、特に、特殊なセレン 吸着能を有するセリウムを吸着剤として使用する硫黄酸化物含有液中のセレン処理 方法に関する。 背景技術
セレン ( S e ) を着色剤と して適用するガラス製造施設から排出される排煙 には硫黄酸化物の外、 微量、 例えば数十 p p mのセレンが含まれる。 また、 燃 料と して石炭を使用する電力、 鉄鋼、 セメント業の施設等から排出される排煙 にも硫黄酸化物に加えて石炭に含まれる微量のセレンが混入する。 セレンは有 害物質であり、 その環境基準は 0 . 1 m g リ ッ トル、 排水基準は 0 . O l m g /リ ッ トルである。 従って、 上記各施設における排煙処理においては、 脱硫 処理だけでなくセレン処理が不可欠となる。
排煙中の硫黄酸化物処理及びセレン処理に関する従来技術と して、 例えば特 開平 0 9— 0 6 6 2 8 7号公報には、 燃焼排ガスを脱硫処理した脱硫排水中に 亜硫酸ガスを吹き込んで脱硫排水に含まれる 6価のセレンを 4価に還元した後、 水酸化カルシウム (C a ( O H ) 2 ) を加えてセレンをカルシウム塩として析出 させるセレン分離方法が開示されている。
一方、 廃水中のセレン処理方法に関する従来技術と して、 例えば特公昭 4 8 - 0 3 0 5 5 8号公報には、 セレン廃水に第一鉄塩と銅塩とを加えた場合に生 成する水酸化第二鉄にセレンを共沈させるセレン廃水の処理方法が開示されて いる。 また、 特開昭 5 5 - 0 9 9 3 7 8号公報には、 例えば亜セレン酸イオン を含有する廃水を、 あらかじめアルミニウムイオン又は元素番号 2 1以上の重 金属イオンを吸着させたキレート性イオン交換樹脂に接触させ、 亜セレン酸ィ オンを吸着、 分離する廃水処理方法が開示されている。
ところで排水、 廃水をはじめとする水溶液等 (以下、 単に 「液」 という) に 含まれるセレンの分離処理方法と して、 4価のセレン (S e 4 +) を吸着剤等に よって吸着、 分離する方法が知られているが、 液中のセレンは 4価だけでなく 6価 (S e 6 +) の場合もあり得る。
6価のセレンは、 4価のセレンに比べて溶解度が大きく、 分離が困難である ことから、 これを 4価に還元する方法及び還元した後、 例えばアルカリ土類金 属の水酸化物と共沈させる処理システムが提案されている。
このようなセレンの価数を調整する技術又は価数を調整したのち分離、 回収 する従来技術と しては、 例えば特開平 1 0— 0 9 9 8 7 4号公報及ぴ特開平 0 8 - 2 7 6 1 1 3号公報が挙げられる。 特開平 1 0— 0 9 9 8 7 4号公報には、 6価のセレンを含む酸性水溶液に塩化第一鉄を添加して 4価のセレンを生成さ せるセレンの還元方法が開示されており、 特開平 0 8— 2 7 6 1 1 3号公報に は、 排ガス中から捕集した粉塵をセレンのガス化温度以上に加熱して粉塵に含 まれるセレンをガス化し、 これを排ガスと共に脱硫装置に導入し、 電気化学的 処理手段によって 6価のセレンを 4価に還元し、 得られた 4価のセレンをアル 力リ土類金属の水酸化物と して不溶化させる排煙処理システムが開示されてい る。
しかしながら、 脱硫排水中のセレン処理方法は、 一般的な排水中のセレンを 分離回収するセレン処理方法と異なり、数パーセン卜の硫酸イオン( S O 2一、 以下便宜上 「s o 3」 という) 及び/又は亜硫酸イオン (s o 3 2 、 以下便宜上 「 S 0 2」 という) を含む水溶液中に数 p p m〜数十 p p m存在するセレンが処 理対象となること、 及びセレン ( S e ) と硫黄 ( S ) とは、 周期律表における 配列位置が隣接しており、 と り得る価数が同じよ うに変化するために、 セレン のみを選択的に分離することが困難であることから、 実用上信頼できる硫黄酸 化物含有液中のセレン処理方法は確立されていないのが現状である。
本発明の目的は、 硫黄酸化物が共存する排水又は溶液中に含まれるセレンを 効率よく分離、 回収することができる硫黄酸化物含有液中のセレン処理方法を 提供することにある。 発明の開示
上記目的を達成するために、 本発明の態様によれば、 硫黄酸化物含有液に含 まれるセレン ( S e ) を分離するセレン処理方法であって、 前記硫黄酸化物含 有液に希土類化合物を添加して該希土類化合物に前記セレンを吸着させる吸着 ステップと、 前記セレンを吸着した希土類化合物を前記硫黄酸化物含有液から 分離する分離ステップと、 を有する硫黄酸化物含有液中のセレン処理方法が提 供される。
本発明の態様において、 前記硫黄酸化物は s o 2及び s o 3を含み、 前記硫黄 酸化物含有液に含まれる 6価のセレンを 4価に還元する還元ステップと、 S O 2 を S O 3に酸化する酸化ステップと、を有し、前記 6価のセレンを 4価に還元し、 且つ前記 s o 2を s o 3に酸化した後、 前記硫黄酸化物含有液に前記希土類化合 物を添加し、 該希土類化合物に前記 4価のセレンを吸着させることが好ましレ、。 本発明の態様において、 前記 S O 2を S O 3に酸化する酸化ステップは、 前記 6価のセレンを 4価に還元した後、 実行されることが好ましい。 本発明の態様において、 前記 6価のセレンを 4価に還元する還元ステツプは、 前記硫黄酸化物含有液に第一鉄イオンを添加するステップであることが好まし レ、。
本発明の態様において、 前記 6価のセレンを 4価に還元するステップは、 前 記 S O 2を S O 3に酸化した後、 実行されることが好ましい。
本発明の態様において、 前記 6価のセレンを 4価に還元する還元ステップは、 前記硫黄酸化物含有液に塩酸を加えるステツプであることが好ましい。
本発明の態様において、 前記 so2を s o3に酸化する酸化ステップは、 前記 硫黄酸化物含有液に酸化性ガスを導入してパブリングするステップであること が好ましい。
本発明の態様において、 前記希土類化合物は、 水酸化セリ ウム (C e (OH) 4 · η Η20、 C e (OH) 3 - n H 2 O) 及び含水酸化セリ ウム (C e O 2 · n H,0、 C e O , - n H , O) のうち少なく とも 1種を含むことが好ましレ、。 図面の簡単な説明
第 1図は、 本発明の実施の形態に係る硫黄酸化物含有液中のセレン処理方 法の操作手順を示すフローチヤ一トである。
第 2図は、 本発明の別の実施の形態に係る硫黄酸化物含有液中のセレン処 理方法の操作手順を示すフローチャートである。 発明を実施するための最良の形態
以下、 本発明の実施の形態について詳細に説明する。
本発明者は、 被処理液中のセレンの価数とその吸着剤との関係、 及び硫黄酸 化物含有液と しての例えば脱硫排水中におけるセレン吸着剤のセレン吸着能と 硫黄酸化物の形態との関係等について種々検討した結果、 セレン吸着剤と して は、 希土類元素又はその水酸化物、 特に、 含水酸化セリ ウム又は水酸化セリ ウ ムが適していること、 4価のセレンは 6価のセレンより もセリ ゥムに吸着され やすいこと、及び液中の S O 2はセリ ゥムによるセレンの吸着作用に対して妨害 物質となるが、 S 03は 4価のセレン吸着作用に対して妨害物質とはならないと いう知見を得た。
以下に、 かかる知見を得るに至った経緯 (実験例) について詳細に説明する。 なお、 以下の実験において、 水酸化セリ ウムを含む吸着剤と してア ドセラスラ リ (日本板硝子株式会社製) を使用した。
実験例 1
金属セレンを硝酸に溶解した 4価セレン (S e 03 ) 硝酸溶液を純水に添 加して 4価セレン 1 0 O p p m水溶液を調製して被検液と した。 この被検液 2 5 m l 当たり l gのア ドセラスラリ (日本板硝子社製) を加え、 3 0分間穏ゃ かに撹拌してセレンを水酸化セリ ウムで吸着、 分離した。 処理後の被検液につ いて、 結合誘導プラズマ発光分光法 ( I C P— AE S ) によってセレン濃度を 定量し、 セレン除去率を求めたところ、 セレン除去率は 9 9 %以上であった。 実験例 2
4価のセレンに代えて 6価のセレン (S e 04 2 、 セレン酸ナト リ ウムから 調製した 6価セレン水溶液) を用いた以外は、 実験例 1 と同様の吸着処理を行 レ、、 同様にしてセレン除去率を求めたところ、 セレン除去率は 9 0 %以上であ つた。
実験例 3
純水に代えて 5 %硫酸ナ ト リ ゥム水溶液を用いた以外は、 上記実験例 1 と同 様にして同様の吸着処理を行い、 同様にしてセレン除去率を求めたところ、 セ レン除去率は 9 9 %以上であった。
実験例 4
純水に代えて 5 %硫酸ナトリ ゥム水溶液を用いた以外は、 上記実験例 2 と同 様にして同様の吸着処理を行い、 同様にしてセ レン除去率を求めたところ、 セ レン除去率は 7 %であった。
実験例 5
純水に代えて 5。/。亜硫酸ナ ト リ ゥム水溶液を用いた以外は、 上記実験例 1 と 同様にして同様の吸着処理を行い、 同様にしてセ レン除去率を求めたところ、 セ レン除去率は 2. 5 3 °/0であった。
実験例 6
純水に代えて 5 %亜硫酸ナト リ ゥム水溶液を用いた以外は、 上記実験例 2と 同様にして同様の吸着処理を行い、 同様にしてセ レン除去率を求めたところ、 セレン除去率は 0 %であった。
実験例 1〜 6の結果を表 1に示した。
【表 1】 実験例 灘 Seの形態 剤 Se除去率
1 水 Se4+ 水酸^セリウム ©
2 水 Se6+ 同上 〇
3 5%赚ナトリウム Se4+ 同上 ◎
4 5%麵ナトリウム Se6+ 同上 7%
5 5 %亜硫酸ナトリウ Se4+ 同上 2. 53% ム
6 5 %亜硫酸ナ卜リウ Se6+ 同上 0%
ム 註 : 表 1 中、 「〇」 はセレン除去率が 9 0 %以上であること、 「◎」 はセレ ン除去率が 9 9 %以上であることを示す。 なお、 4価セレン ( S e O 3 2") 溶 液と して、 亜セレン酸ナ ト リ ゥムを出発原料と したセレン水溶液を用いても同 様の結果が得られる。
表 1において、 水酸化セリ ウムはセレン吸着剤と して適しており、 実用可能 であることが分かる。 また、 4価のセレンは 6価のセレンと比較して水酸化セ リ ゥムに吸着されやすいことから、 セリ ゥムによる吸着処理を行う前に 6価の セレンを 4価に還元しておく ことが有効であること、及び液中の S◦ 2はセリ ゥ ムによるセレン吸着処理に妨害物質となるが、 S O 3は 4価のセレン吸着処理に 妨害物質とはならないので、 セレンの吸着処理を行う前に、 液中の so2を so
3に酸化しておく ことが有効であることが分かる。
実験例 7
実験例 5で用いた 5 %亜硫酸ナ トリ ゥム水溶液に 4価のセレンを Ι Ο Ο ρ ρ m添加した被検液をガス吸着ビン (インピンジャー) に入れ、 ァスピレータで 吸引しつつ空気パブリ ングして S 02を S 03に酸化し、 その後、 実験例 5と同 様のセレン吸着処理を行い、 同様にセレン除去率を求めたところ、 セレン除去 率は 9 9 %以上であった。
実験例 8
実験例 7 と同様、 4価のセレンを l O O p p m添加した 5 %亜硫酸ナト リ ウ ム水溶液を被検液と して用い、 これに市販の過酸化水素水溶液 ( 3 0 %— H20 2水溶液)を、被検液 1 0 0 m l に対して 5 m l の割合で添加し、 9 0〜: I 0 0 °C で 1時間加熱した後、 同様にセレンの吸着処理を行い、 同様にセレン除去率を 求めたところ、 セレンは全く除去されていなかった。 実験例 7で用いた亜硫酸ナ ト リ ウム 5 %水溶液 (セレン含まず) に、 実験例 8で用いた市販の過酸化水素水溶液 (3 0%— H 202水溶液) を、 溶液 1 0 0 m 1 に対して 5 m 1 の割合で添加して S◦ 2を S O 3に酸化したのち、 実験例 7 と同様 4価のセレンを 1 0 0 p p mとなるよ うに添加し、 その後、 実験例 7 と 同様にセレンの吸着処理を行い、 同様にしてセレン除去率を求めたところ、 セ レン除去率は 9 9 %以上であった。
実験例 7〜 9の結果を表 2に示す。
【表 2】
Figure imgf000010_0001
表 2から、 S 02含有液中のセレン (4価) は、 該セレンを 6価に酸化するこ となく s o 2のみを s o3に酸化することによって高い確率で吸着分離できるこ とが分かる。 また、 この場合、 空気バブリ ングは、 セレン 4価を 6価に酸化す ることなく、 妨害物質である S O 2のみを S O 3に酸化できることが分かる (実 験例 7 ) 。
また、 亜硫酸ナ トリ ゥム水溶液に過酸化水素を添加して硫酸ナト リ ウム水溶 液と したのち、 セレン (4価) を添加し、 その後、 水酸化セリ ウムで吸着分離 した場合もセレンを効率良く吸着、 分離できたことから (実験例 9 ) 、 4価の セレン含有液に、 直接過酸化水素を添加した実験例 8では、 502が 503に酸 化されるだけでなく、 4価のセレンが 6価に酸化されてしまったために、 セリ ゥムによるセレン吸着能が発揮されず、 セレンが分離されなかったものと考え られる。
本発明者は、 このような知見に基づいて、 硫黄酸化物含有液中のセレンの処 理方法について、 鋭意研究したところ、 硫黄酸化物含有液中のセレンは、 希土 類化合物、 特にセリ ゥムを吸着剤と して吸着分離することが最も有効であり、 セレンを吸着した希土類化合物、 特にセリ ウムは、 固液分離によって硫黄酸化 物含有液から分離できることを見出し、 本発明に到達した。 即ち、 本発明は、 硫黄酸化物含有液に含まれるセレン ( S e ) を分離するセレン処理方法であつ て、 硫黄酸化物含有液に希土類化合物を添加して該希土類化合物にセレンを吸 着させる吸着ステップと、 セレンを吸着した希土類化合物を硫黄酸化物含有液 から分離する分離ステップと、 を有することを特徴とする。
この場合、 硫黄酸化物含有液中の硫黄酸化物は s o 2及び s o 3を含むもので ある。 硫黄酸化物含有液と しての、 例えば脱硫排水に含まれる代表的な硫黄酸 化物は S O 2及び S O 3である。 但し、 これ以外の硫黄酸化物を含むものであつ てもよい。
本発明に係る硫黄酸化物含有液中のセレン処理方法は、 液中の 6価のセレン を 4価に還元する還元ステップを有する。 6価のセレンの溶解度は、 4価のセ レンの溶解度より も大きく吸着分離処理が困難であることから、 溶解度が小さ く吸着剤による吸着分離が容易な 4価にするためである。
また、 本発明に係る硫黄酸化物含有液中のセレン処理方法は、 s o 2を s o 3 に酸化する酸化ステップを有する。 S O 2は、 吸着剤によるセレン吸着作用に対 して妨害物質となるが、 s o 3は、 妨害物質とならないからである。
即ち、 本発明に係る硫黄酸化物含有液中のセレン処理方法においては、 6価 のセレンを 4価に還元し、 且つ S O 2を S O 3に酸化した後、 セレン吸着剤と し ての希土類化合物を添加し、 該希土類化合物に 4価のセレンを吸着させて分離 する。
本発明において、 S◦ 2を S O 3に酸化する酸化ステップは、 6価のセレンを 4価に還元した後、 実行することができる。 すなわち、 この場合、 6価のセレ ンを 4価に還元するステップは、 S O 2を S◦ 3に酸化する酸化ステップに先だ つて行われる。 従って、 還元ステップは、 液中の S O 3を S◦ 2に還元するもの であってもよく、 いわゆる強い還元剤を用いた強い還元ステップが好適に適用 される。 強い還元剤と しては、 例えば、 塩化第一鉄が挙げられ、 例えば液中に 塩化第一鉄を添加するステップがこれに相当する。
ここで、 6価のセレンを 4価のセレンに還元する酸化還元反応は以下のよう に表すことができる。
【化 1】
F e 2 + → F e 3 + + e - S e 6 + + 2 e - → S e 4 +
被処理液に添加された第一鉄は、 電子を放出してき身が酸化されて第二鉄と なり、 放出した電子を 6価のセレンが取り込むことによって 4価に還元される。 このよ うな強い還元剤による還元ステップにおいては、 硫黄酸化物含有液中 の 6価のセレンは全て 4価に還元される。 このとき、 セレンの一部は、 固体セ レンまで還元されることがある。 固体セレンは、 固液分離によって分離可能で ある。 強い還元剤としては、 上述した塩化第一鉄の外、 例えば、 シユウ酸 (C 2 H 2 0 4 ) 、 硫化水素 (H 2 S ) 等があげられる。
被処理液に対する還元剤、 例えば塩化第一鉄の添加量は、 液中に含まれるセ レンの当量の 2倍量又はその 1 . 2〜 1 . 5倍量である。 塩化第一鉄の添加量 が少なすぎると、セレンの還元処理が不十分となり、多すぎると効率が低下レ、 コス 卜が嵩む。
還元ステップにおける被処理液の温度は、 例えば 5 0〜 1 0 0 °Cである。 温 度が高すぎると、 操作が煩雑となり、 低すぎると還元反応速度が低くなる。 加 熱を特に必要と しないが、 反応促進のために加熱してもよい。
還元ステップにおける反応時間は、反応温度、撹拌状態によっても異なるが、 例えば 1分〜 2 4時間である。 反応時間が短すぎると還元が不十分となる一方、 必要以上に長く しても効率が向上するものでなない。
6価のセレンを 4価に還元する還元ステップにおいて、 液中の S O 3が S O 2 に還元されてしまい、 セリ ウムによるセレン吸着作用に対する妨害物質となる。 従って、 6価のセレンを 4価に還元する還元ステップの後、 S〇 2を S 0 3に酸 化する酸化ステップを実施する。
一方、 本発明において、 S 0 2を S 0 3に酸化する酸化ステップは、 6価のセ レンを 4価に還元する還元ステップに先立って行うこともできる。 すなわち、 S O 2を S◦ 3に酸化したのち、 6価のセレンを 4価に還元する還元ステップを 行うこともできる。 この場合、 6価のセレンを 4価に還元する還元ステップは、 例えば被処理液に塩酸を加えるステップである。 塩酸による還元ステップは、 いわゆる弱い還元ステップであり、 酸化ステップで生成した S o 3を S o 2に還 元させることがなく、 液中の 6価のセレンのみを 4価又はそれ以下に還元する。 このような還元ステップと しては、 塩酸による還元ステップ以外に、 例えば鉄 粉を用いて加熱する方法が挙げられる。
この場合、 被処理液に添加する還元剤の添加量は、 6価のセレンの当量の 2 倍量又はその 1 . 2〜 1 . 5倍量である。
このとき被処理液の温度は、 例えば 5 0〜 1 0 0 °Cである。 温度が高すぎる と、 操作が煩雑となり、 低すぎると還元反応速度が低くなる。 ここで、 加熱を 特に必要と しないが、 反応促進のために加熱してもよい。
弱い還元ステップにおける反応時間は、 反応温度、 撹拌状態等によって異な るが、 例えば 1分〜 2 4時間である。 反応時間が短すぎると還元が不十分であ る。 一方、 必要以上に長く しても効率が向上するものではない。
本発明において、 被処理液中の s o 2を s o 3に酸化する酸化ステップは、 例 えば被処理液に o 2、 o 3、 c o 2、 空気などの酸化性ガスを吹き込んでバブリ ングするステップである。 空気パブリングは、 いわゆる弱い酸化作用を発揮す るステップであり、 液中に存在する 4価のセレンを 6価に酸化させることなく、 S O 2のみを S O 3に酸化する。 これによつて、 セレンを 4価に保持したまま、 セリ ゥムによるセレン吸着作用に対する妨害物質 ( s o 2 ) を消滅させることが できる。
空気によるバブリングは、 第 1ステップと して被処理液中の s o 2を s o 3に 酸化するステップ、 及び 6価のセレンを 4価に還元する還元ステップ後、 液中 に含まれる S O 2及び還元によつ 'て生成した S O 2を S O 3に酸化する場合の双 方に適用される。
酸化ステップにおける空気のバブリ ング条件は特に限定されないが、 空気導 入量は、 例えば被処理液 1 リ ッ トルに対して 5 リ ツ トル/分である。 被処理液 に対するバブリ ング空気量が少なすぎると S O 2の S O 3への酸化が十分ではな く、 多すぎると効率が低下する。 このとき気泡の大きさは、 微細であるほど効 率が良くなるが、 例えば平均粒径 5 m m程度である。
酸化ステップにおける被処理液の温度は特に限定されないが、 室温〜 6 0 °C である。 温度が高すぎると、 コス トが嵩み、 一方温度が低すぎると S O 2の S O 3への酸化が抑制される。 空気によるパブリングは、 いわゆる弱い酸化方法である。 空気パブリング以 外の弱い酸化剤又は酸化方法と しては、 例えば 1 0 %以下の過酸化水素水溶液 等が挙げられ、 これによつても同様の効果が得られる。
本発明において、 セレン吸着剤と しての希土類化合物は、 水酸化セリ ウム又 は含水酸化セリ ウムであることが好ましい。 水酸化セリ ウム等は吸着に関与す る吸着点 (活性点) の数が特に多く、 セレン吸着能が大きいからである。
水酸化セリ ゥムは、 例えば粉体状や粒状を呈しており、 例えば水中に分散さ れたスラリが好適に適用される。
レン吸着剤は、 水酸化セリ ウム (含水酸化セリ ウム) 単独だけでなく、 こ れに他の希土類水酸化物、 例えば水酸化ランタンなどを含むものであってもよ く、 また水酸化セリ ゥム若しくはセリ ゥムを含まない希土類若しく は希土類水 酸化物を適用することもできる。
セリ ウムがセレン (4価) を吸着するメカニズムは必ずしも明らかではない が、セリ ウムは、セレンに対して他の吸着剤にない特殊な吸着能を有している。 次に、 本発明の実施の形態に係る硫黄酸化物含有液中のセレン処理方法を添 付の図面を用いて詳細に説明する。
第 1図は、 本発明の実施の形態に係る硫黄酸化物含有液中のセレン処理方法 の操作手順を示すフローチャートである。
第 1図において、 先ず、 硫黄酸化物含有液と しての脱硫排水に、 例えば塩酸 を添加して p H調整する (ステップ S 1 ) 。 得られた塩酸酸性の被,処理液を加 熱した後、 還元剤と して塩化第一鉄を添加し、 穏やかに撹袢して 6価のセレン を 4価に還元する (ステップ S 2 ) (還元ステップ) 。 セレンを 4価に還元し た後、 被処理液中に空気を吹き込んで、 ステップ S 2によって S O 3が還元され ることによつて生成した S O 2及び当初から存在する S O 2を S O 3に酸化する (ステップ S 3 ) (酸化ステップ) 。 次いで、 セレン吸着剤どして水酸化セリ ゥム (ア ドセラスラリ、 日本板硝子社製) を添加し、 穏やかに撹袢して 4価の セレンを吸着する (ステップ S 4 ) (吸着ステップ) 。 次に、 セレンが吸着さ れた水酸化セリ ゥムを含む被処理液を濾過し、 固液分離してセレン吸着水酸化 セリ ウムを分離して処理液を回収し (ステップ S 5 ) (分離ステップ) 、 本処 理を終了する。
本実施の形態によれば、 強い還元剤によって 6価のセレンを 4価に還元した のち、弱い酸化剤によって S O 2を S O 3に酸化して妨害物質をなく し、次いで、 水酸化セリ ウムを添加してセレンを吸着、 分離するようにしたので、 被処理液 中のセレンを効率よく吸着分離することができる。
また、本実施の形態によれば、セレンを金属水酸化物と共沈させることなく、 吸着剤によって吸着分離するので大量のスラッジを発 することなく、 後処理 も容易である。 また、 被処理液中のセレンを一旦強い還元剤で還元した後、 水 酸化セリ ゥムに吸着させて分離するので、 セレンの正確な価数制御及び複雑な 装置が不要となる。
本実施の形態において、 分離、 回収したセレン吸着セリ ウムは、 例えば産業 廃棄物と して簡易処理施設で処分される。
本実施の形態に係るセレン処理方法は、 排煙脱硫排水中のセレンをはじめ、 例えば土壌、 石膏、 ボウショ ウ、 金属水酸化物、 産業廃棄物等に含まれるセレ ン処理に適用することもできる。 この場合、 一旦セレンを溶液中に溶出させて セレン含有液と し、 液中のセレンをセリ ウムよって吸着、 分離する。
第 2図は、 本発明の別の実施の形態に係る硫黄酸化物含有液中のセレン処理 方法の操作手順を示すフロ一チヤ一トである。
この方法が、 第.1図の方法と異なるところは、 先ず、 被処理液に空気を吹き 込んで so2を S 03に酸化し (ステップ S I 1 ) (酸化ステップ) 、 次いで、 濃塩酸を添加して 6価のセレンを 4価に還元する (ステップ S 1 2) (還元ス テツプ) ようにした点であり、 その後、 カセイソ一ダ (N a OH) で中和し (ス テツプ 1 3 ) 、 水を加えて希釈したのち、 水酸化セリ ゥムでセレンを吸着し (ス テツプ S 1 4) 、 分離する (ステップ S 1 5) ものである。
本実施の形態によっても、 上記実施の形態と同様、 so2の妨害を抑えつつ、 被処理液中のセレンを効率良く分離、 回収することができる。
次に本発明の具体的実施例を説明する。
実施例 1
1 0 0 p p mのセレンを含む排煙脱硫溶液 1 リ ッ トルに、 3 5 %—塩酸 1 0 0 m 1 を添加して p Hを 0〜 3に調整した後、 加熱して 8 0〜 9 0°Cと し、 塩 化第一鉄をセレンの 2当量分又はその 1. 2倍量添加し、 撹拌翼で緩やかに撹 拌しつつ 2時間保持して溶液中の 6価のセレンを 4価に還元した。 次いで、 被 処理液 1 リ ツ トルに対し、 5 リ ツ トルノ分の空気を吹き込んでバブリ ングし、 液中の S O 2を S O 3に酸化した。
S O 2が S O 3に酸化された溶液 2 5 m 1 に対し、 ア ドセラスラリ (日本板硝 子社製) 1 gを添加し、 撹拌翼によって穏やかに撹拌しつつ、 1時間保持し、 4価のセレンを水酸化セリ ゥムに吸着させた。
セレンを吸着した水酸化セリ ゥムを含む溶液を濾布で濾過して固液分離し、 セレンが分離された処理液を得た。 処理液中のセレン濃度を定量したところ、 セレン除去率は、 9 9 %以上であった。
実施例 2
ガラス製造工程から排出された脱硫排水に 4価のセレンと 6価のセレンをそ れぞれ l O O p p mとなるように添加して被処理液と し、 この被処理液 1 リ ッ トルに対して 5 リ ッ トル/分の割合で空気を吹き込んで液中の S O 2を S O 3に 酸化し、次いで、被処理液 1 0 0 m l に対して 3 5 %—塩酸 1 0 m l を添加し、
9 0〜 9 5。じで 1時間加熱して 6価のセレンを 4価に還元した。 得られた還元 液に対し、 中和相当量のカセイソーダ (N a OH) を加えて p H 6〜 7に調整 し、 水を加えて 4倍に希釈し、 希釈液 2 5 m l に対してア ドセラスラ リ (日本 板硝子社製) l gを加え、 1時間穏やかに撹拌してセレンを吸着した。 セレン を吸着した水酸化セリ ゥ Λを含む溶液を濾布で濾過して固液分離し、 処理液を 得、 処理液中のセレン濃度を求めたところ、 セレン除去率は 9 9 %以上であつ た。 産業上の利用可能性
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 希土類化合物を吸 着剤とする吸着ステップを有することによ り、 希土類化合物が有する特殊なセ レン吸着能を巧みに利用して硫黄酸化物含有液中のセレンを効率よく吸着、 分 離することができる。
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 6価のセレンを 4 価に還元し、 且つ S O 2を S O 3に酸化した後、 希土類化合物を添加してセレン を吸着するようにしたことにより、 上記効果に加えて、 セレン吸着時の妨害物 質と しての S O 2の存在をなく した状態で、 吸着処理し易い価数に調整された 4 価のセレンを効率よく吸着、 分離することができる。
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 6価のセレンを 4 価に還元した後、 S O 2を S O 3に酸化するステップを実行することにより、 例 えば、 一旦強還元剤によってセレン及び硫黄酸化物を強制的に還元した後、 こ の還元によって生成した so2及びはじめから液中に存在する so2を so3に 酸化し、 これによつて妨害物質による吸着妨害を解消することができるので、 上記効果に加えて、 処理操作を単純化することができる。
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 6価のセレンを 4 価に還元する還元ステップを、 第一鉄イオンを添加するステップと したことに より、 上記効果に加えて、 6価のセレンを吸着処理し易い 4価又はそれ以下の 価数のセレンに確実に還元することができる。
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 S O 2を S O 3に酸 化した後、 6価のセレンを 4価に還元するステップを実行することにより、 上 記発明の効果に加え、 s o 2の酸化と、 セレンの還元を別々の工程で効率良く行 うことができる。
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 6価のセレンを 4 価に還元するステップを、 硫黄酸化物含有液に塩酸を加えるステップと したこ とにより、 上記発明の効果に加え、 還元ステツプにおいては S O 3を妨害物質で ある S O 2に還元させることなく、 6価のセレンのみを選択的に 4価又はそれ以 下に還元することができるので、 その後のセレン吸着ステップが容易となる。 本発明の硫黄酸化物含有液中のセレン処理方法によれば、 S O 2を s o 3に酸 化するステップを、 酸化性ガスによってパブリングするステップと したことに より、 液中に存在する 4価のセレンを 6価に酸化することなく、 S 0 2を選択的 に s o 3に酸化してセレン吸着ステップにおける妨害物質の影響を排除するこ とができる。
本発明の硫黄酸化物含有液中のセレン処理方法によれば、 希土類化合物と し て希土類化合物の中でも特にセレン吸着能に優れた水酸化セリ ゥム及び含水酸 化セリ ウムの少なく とも 1種を用いることにより、 上記発明の効果に加え、 さ らにセレン吸着効率を高めることができる。

Claims

請 求 の 範 囲
1. 硫黄酸化物含有液に含まれるセレン (S e ) を分離するセレン処理方法 であって、 前記硫黄酸化物含有液に希土類化合物を添加して該希土類化合物に 前記セレンを吸着させる吸着ステップと、 前記セレンを吸着した希土類化合物 を前記硫黄酸化物含有液から分離する分離ステップと、 を有する硫黄酸化物含 有液中のセレン処理方法。
2. 前記硫黄酸化物は S O 2及び S O 3を含み、 前記硫黄酸化物含有液に含ま れる 6価のセレンを 4価に還元する還元ステップと、 S 02を S O 3に酸化する 酸化ステップと、 を有し、 前記 6価のセレンを 4価に還元し、 且つ前記 S 02を so3に酸化した後、 前記硫黄酸化物含有液に前記希土類化合物を添加し、 該希 土類化合物に前記 4価のセレンを吸着させる請求の範囲第 1項記載の硫黄酸化 物含有液中のセレン処理方法。
3. 前記 S◦ 2を S◦ 3に酸化する酸化ステップは、 前記 6価のセレンを 4価 に還元した後、 実行される請求の範囲第 2項記載の硫黄酸化物含有液中のセレ ン処理方法。
4. 前記 6価のセレンを 4価に還元する還元ステップは、 前記硫黄酸化物含 有液に第一鉄イオンを添加するステップである請求の範囲第 3項記載の硫黄酸 化物含有液中のセレン処理方法。
5. 前記 6価のセレンを 4価に還元するステップは、 前記 S 02を S 03に酸 化した後、 実行される請求の範囲第 2項記載の硫黄酸化物含有液中のセレン処 理方法。
6. 前記 6価のセレンを 4価に還元する還元ステップは、 前記硫黄酸化物含 有液に塩酸を加えるステップである請求の範囲第 5項記載の硫黄酸化物含有液 中のセレン処理方法。
7. 前記 S O 2を S O 3に酸化する酸化ステップは、 前記硫黄酸化物含有液に 酸化性ガスを導入してパブリ ングするステツプである請求の範囲第 2項記載の 硫黄酸化物含有液中のセレン処理方法。
8. 前記希土類化合物は、 水酸化セリ ウム (C e (OH) 4 · η Η20、 C e (OH) a · n H 2 O) 及び含水酸化セリ ウム (C e 02 ' n H20、 C e 203 - n H20) のうち少なく とも 1種を含む請求の範囲第 1項記載の硫黄酸化物含有 液中のセレン処理方法。
PCT/JP2008/054839 2007-03-12 2008-03-11 硫黄酸化物含有液中のセレン処理方法 WO2008111682A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-062323 2007-03-12
JP2007062323A JP2008221119A (ja) 2007-03-12 2007-03-12 硫黄酸化物含有液中のセレン処理方法

Publications (1)

Publication Number Publication Date
WO2008111682A1 true WO2008111682A1 (ja) 2008-09-18

Family

ID=39759610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054839 WO2008111682A1 (ja) 2007-03-12 2008-03-11 硫黄酸化物含有液中のセレン処理方法

Country Status (2)

Country Link
JP (1) JP2008221119A (ja)
WO (1) WO2008111682A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186396B2 (ja) * 2009-01-19 2013-04-17 株式会社Ihi 海水脱硫装置
JP2013184120A (ja) * 2012-03-08 2013-09-19 Dowa Eco-System Co Ltd セレン吸着剤、及びその製造方法、並びにセレン含有液の処理方法
JP6000651B2 (ja) * 2012-05-25 2016-10-05 太平洋セメント株式会社 硫黄分及びセレンを含有する排水の処理方法
JP6165898B1 (ja) * 2016-01-21 2017-07-19 日鉄住金環境株式会社 還元性硫黄成分含有水の処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187931A (ja) * 1985-02-18 1986-08-21 Asahi Chem Ind Co Ltd 水溶液中の砒素の吸着剤
JPH09299964A (ja) * 1996-05-13 1997-11-25 Asahi Glass Co Ltd Se含有液からのSe除去方法
JPH1099874A (ja) * 1996-09-27 1998-04-21 Agency Of Ind Science & Technol 6価セレンの還元方法
JPH10118668A (ja) * 1996-10-24 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd セレン還元装置
JP2001340756A (ja) * 2000-03-27 2001-12-11 Natl Inst Of Advanced Industrial Science & Technology Meti 有害陰イオン吸着粒子およびその製造方法
JP2007283168A (ja) * 2006-04-13 2007-11-01 Nippon Sheet Glass Co Ltd 吸着剤及びその製造方法
JP2007326077A (ja) * 2006-06-09 2007-12-20 Nippon Sheet Glass Co Ltd セレン含有水の処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187931A (ja) * 1985-02-18 1986-08-21 Asahi Chem Ind Co Ltd 水溶液中の砒素の吸着剤
JPH09299964A (ja) * 1996-05-13 1997-11-25 Asahi Glass Co Ltd Se含有液からのSe除去方法
JPH1099874A (ja) * 1996-09-27 1998-04-21 Agency Of Ind Science & Technol 6価セレンの還元方法
JPH10118668A (ja) * 1996-10-24 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd セレン還元装置
JP2001340756A (ja) * 2000-03-27 2001-12-11 Natl Inst Of Advanced Industrial Science & Technology Meti 有害陰イオン吸着粒子およびその製造方法
JP2007283168A (ja) * 2006-04-13 2007-11-01 Nippon Sheet Glass Co Ltd 吸着剤及びその製造方法
JP2007326077A (ja) * 2006-06-09 2007-12-20 Nippon Sheet Glass Co Ltd セレン含有水の処理方法

Also Published As

Publication number Publication date
JP2008221119A (ja) 2008-09-25

Similar Documents

Publication Publication Date Title
US7727307B2 (en) Method for removing mercury from flue gas after combustion
JP5717883B2 (ja) 難溶性カルシウム−ヒ素化合物の生産方法
CN101367590B (zh) 含高浓度悬浮物的重金属废水处理方法
JP7372691B2 (ja) ヒ素含有量が多いスコロダイトを硫酸含有量が多い酸性溶液から得る方法
WO2008111682A1 (ja) 硫黄酸化物含有液中のセレン処理方法
JP3572233B2 (ja) 排煙脱硫方法および排煙脱硫システム
WO2016111739A1 (en) Process for removal of selenium from water by dithionite ions
JP4670004B2 (ja) セレン含有水の処理方法
JPWO2005100253A1 (ja) 有害物質を含有する強酸性廃水の処理方法
JP4936559B2 (ja) ヒ素除去剤
JPH0130555B2 (ja)
JP5848119B2 (ja) フッ素含有排水の処理方法
JP4288828B2 (ja) 含ヒ素排水の処理方法
JP2007268338A (ja) 水中に含まれるリン除去方法
JP2923757B2 (ja) 6価セレンの還元方法
WO2016113946A1 (ja) クロム含有水の処理方法
AU2019321688B2 (en) Control of aqueous arsenic, selenium, mercury or other metals from flue gas
JP5467586B2 (ja) セレン含有液の処理システム、湿式脱硫装置及びセレン含有液の処理方法
JP6790561B2 (ja) 重金属の回収方法
JP5062690B2 (ja) セレン含有液の処理方法
KR0149933B1 (ko) 불소함유 폐수처리제
KR19990029232A (ko) 배연 탈황 배수의 처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722235

Country of ref document: EP

Kind code of ref document: A1