WO2008101416A1 - Application du matériau composite d'époxy-aln dans la préparation du bpc à haute densité - Google Patents

Application du matériau composite d'époxy-aln dans la préparation du bpc à haute densité Download PDF

Info

Publication number
WO2008101416A1
WO2008101416A1 PCT/CN2008/000360 CN2008000360W WO2008101416A1 WO 2008101416 A1 WO2008101416 A1 WO 2008101416A1 CN 2008000360 W CN2008000360 W CN 2008000360W WO 2008101416 A1 WO2008101416 A1 WO 2008101416A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
epoxy
composite material
composite
epoxy resin
Prior art date
Application number
PCT/CN2008/000360
Other languages
English (en)
French (fr)
Inventor
Winco Kam-Chuen Yung
Jun Wu
Tai Man Yue
Original Assignee
The Hong Kong Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong Polytechnic University filed Critical The Hong Kong Polytechnic University
Publication of WO2008101416A1 publication Critical patent/WO2008101416A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment

Definitions

  • the invention relates to an epoxy resin-aluminum nitride composite material prepared by adding aluminum nitride nano or micro particles in an epoxy resin for use in preparing a high density printed wiring board.
  • the object of the present invention is to obtain a substrate material which is particularly suitable for high-reliability high-density printed wiring boards, which has low thermal expansion coefficient and high thermo-mechanical properties, and has a small taper angle and a flat bottom surface. Can meet the requirements of high reliability and high density printed circuit boards.
  • the present invention provides an epoxy-aluminum nitride composite in which aluminum nitride in the composite is nano or micro particles.
  • the present invention also provides a method of preparing the above epoxy-aluminum nitride composite.
  • the aluminum nitride particles in the epoxy resin-aluminum nitride composite material provided by the present invention have a particle diameter of 10 ⁇ - 50 ⁇ m, and the aluminum nitride particles have a weight of 5-70 wt% of the total weight of the composite material.
  • the epoxy resin-aluminum nitride composite of the present invention is produced by the following preparation method, and the method mainly comprises the following steps:
  • the solvent is added to the aluminum nitride particles and then stirred with an ultrasonic stirrer;
  • the aluminum nitride solution and the epoxy resin system are thoroughly mixed to form a uniform dispersion; and the dispersion is injected into a mold, then vacuum degassed, and finally solidified.
  • the present invention employs two methods, a chemical method and a mechanical method.
  • the chemical process of the present invention employs a coupling agent to assist in the separation of the agglomerated aluminum nitride and then stabilize the separated aluminum nitride.
  • the method uses a coupling agent to pretreat the surface of the aluminum nitride particles, and the coupling agent is added in an amount of 0.5 to 5% by weight based on the mass of the aluminum nitride powder.
  • the mechanical method of the present invention employs a method of ultrasonic vibration which assists in separating agglomerated aluminum nitride and then further dispersing the dispersed aluminum nitride, for example, by using an ultrasonic stirrer to agitate the aluminum nitride solution. Ultrasonic vibration treatment.
  • the resulting aluminum nitride solution is then mixed with an epoxy resin system which may include an epoxy resin matrix, a curing agent, and a curing accelerator. The mixture was thoroughly stirred to obtain a uniform aluminum nitride/epoxy varnish, followed by subsequent injection and lamination.
  • An epoxy resin impregnated with an aluminum nitride-epoxy composite is required to dry the solvent in a vacuum to prevent the generation of bubbles during the lamination process.
  • the kind of the epoxy resin in the composite material of the present invention is not particularly limited.
  • the epoxy resin in the composite material may be one type or more.
  • the types of the curing agent and the accelerator are not particularly limited. Conventional curing agents and accelerators suitable for use in the art can be used in the composite of the present invention.
  • the coupling agent to be used in the present invention is not particularly limited, and is preferably a coupling agent which plays an important role in improving the interfacial properties between the aluminum nitride and the epoxy resin in addition to the agglomeration phenomenon, thereby improving the structure.
  • the properties of the resulting epoxy-aluminum nitride composite are not particularly limited, and is preferably a coupling agent which plays an important role in improving the interfacial properties between the aluminum nitride and the epoxy resin in addition to the agglomeration phenomenon, thereby improving the structure.
  • thermomechanical properties of epoxy resins have also been greatly improved by the addition of nano or micron aluminum nitride.
  • PCB laminates made from epoxy-aluminum nitride composites have a lower CTE than conventional FR4 PCBs. This allows the epoxy-aluminum nitride PCB of the present invention to be used in applications where CTE and thermal reliability are critical, especially for the manufacture of multilayer boards and back sheets.
  • PCBs printed circuit boards
  • the thermo-mechanical properties of PCB insulation are a key factor in product quality because the material needs to be used during use. Resistant to thermal stress.
  • PCBs made from epoxy-aluminum nitride composites also exhibit outstanding resistance to thermal stress, such as the ability to withstand thermal stress in lead-free soldering. Therefore, the printed wiring board prepared by the epoxy resin-aluminum nitride composite of the present invention has high reliability.
  • the composite of the present invention has a better Young Module than an epoxy without the addition of aluminum nitride.
  • Helium Density Interconnect is a leading technology for printed circuit boards (PCBs) that reduces line width and line spacing and reduces aperture. This technology significantly reduces the size and weight of the PCB, allowing the most advanced and dense boards to be fabricated on the substrate. Therefore, HDI is an important technology applied in the pursuit of the development trend of portable electronic products.
  • taper is a common phenomenon of laser perforated blind holes, that is, the diameter of the top surface of the hole is larger than the diameter of the bottom surface. As the wall thickness increases, the minimum diameter of the top surface also increases to maintain the bottom surface diameter constant.
  • the taper angle of the hole produced by the conventional PCB substrate material such as epoxy resin is larger than the taper angle of the blind hole generated by the epoxy-aluminum nitride PCB substrate material of the present invention.
  • Blind holes made on conventional PCB materials have a large taper and a rough wall, as shown in Figure 2.
  • the blind hole obtained by the present invention has a small taper and a flat bottom surface, as shown in FIG. Due to the small taper of the blind holes, smaller or ultra-fine blind holes can be obtained while maintaining the same bottom diameter. This is an important condition to ensure the implementation of HDI technology. Since the blind hole holes are formed in a good shape, that is, the taper is small and the bottom surface is flat, it is not necessary to use a pad for preventing laser light, thereby avoiding a phenomenon in which the punching is too deep when the laser beam and the laser-blocking pad are not matched. Therefore, the epoxy-aluminum nitride composite of the present invention is particularly suitable for use in high density circuit designs such as high density interconnects.
  • the use of the aluminum nitride PCB material of the present invention can save the surface area of the circuit board substrate by reducing the diameter of the top surface of the blind via, thereby achieving a dense design, such as preparing a high-density printed wiring board, such as for communication and high-speed applications such as mobile High-density multilayer printed circuit boards in telephones, computer motherboards, PDAs, digital cameras.
  • Figure 1 shows the aggregation phenomenon of aluminum nitride mixed with epoxy resin in the conventional method.
  • Figure 2 shows the blind holes obtained on a conventional PCB material.
  • Figure 3 is a blind hole obtained on the epoxy-aluminum nitride composite of the present invention.
  • Fig. 4 is a flow chart showing the preparation of the epoxy-aluminum nitride composite laminate of the present invention, and the hatched frame is a step other than the conventional method.
  • Aluminum Nitride and Coupling Agent - Four different sizes of aluminum nitride particles are used, which are: (1) purchased from PlasmaChem GmbH (commodity First name: PL-PJ-A1N).
  • the particle shape is hexagonal, polyhedral or fragment, and the particle size ranges from 5 to 200 nm, and the average particle diameter is .50 nm.
  • the specific surface area is >181112, the bulk density is 0.16-0.28 g/cm3, and the purity is >98.6 wt%.
  • Both (3) and (4) were purchased from Hefei Kaier nanometer Technology Development Co. Ltd.
  • the average particle diameters were about 2.3 ⁇ m and 5.6 ⁇ m, respectively.
  • the coupling agent was 3-(2,3-epoxypropoxy)propyltrimethoxysilane (trade name KBM-403, available from Shin-Etsu Handotai (SEH) Ltd.), and the amount added was 0.5 of A1N particles. -5wt%.
  • Epoxy resin, curing agent and accelerator are Epoxy resin, curing agent and accelerator:
  • Epoxy resins such as Epon 8008 and Epon 1031 were purchased from Huntsman Co.
  • Epon 8008 has an epoxy equivalent weight of 410-460 g/Eq and a bromine content of 19.0-21.0% w/w.
  • Epon 1031 is a solid polyfunctional epichlorohydrin/tetraphenyl alcohol acetoxime epoxy resin. The content of the epoxy group is 4,350 to 5,130 mmol/kg.
  • the curing agent was dicyandiamide (DICY, purity >99.5%) and the promoter was 2-methylimidazole (2-MI, purity >99.0%), which was purchased from Neuto Products and Tokyo Kasei kogyo, respectively.
  • the average particle size of DICY particles is ⁇ 1 mm.
  • the aluminum nitride particles are pretreated with KBM-403, that is, KBM-403 is mixed with aluminum nitride particles, and then mixed, and then the composite is prepared as follows:
  • the blind hole shown in Fig. 3 is formed by perforating one of the composite materials obtained in this example, wherein the composite material contains 50% aluminum nitride and 50% by weight resin, and the aluminum nitride has a particle diameter of 2.3 ⁇ m. .
  • the CTE pre-Tg and post-Tg of the composite were about 27 ppm/°C and 124 ppmTC, respectively, with a pre-Tg value very close to the copper pre-Tg (about 17 ppm/°C).
  • An epoxy resin-aluminum nitride composite was prepared in accordance with the method of Example 1 using the formulation shown in Table 2.
  • the particle size of A1N is 10 nm.
  • An epoxy-aluminum nitride composite was prepared in accordance with the method of Example 1 using the formulation shown in Table 3.
  • A1N has a particle size of 50 ⁇ m.
  • An epoxy-aluminum nitride composite was prepared in accordance with the method of Example 1 using the formulation shown in Table 4.
  • AIN 5 Tetra-Silane 0.05 has a diameter of 0.5 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Description

环氧树脂-氮化铝复合材料在制备高密度印刷线路板中的应用 技术领域
本发明涉及环氧树脂中添加了氮化铝纳米或微米颗粒而制得的环氧树脂-氮化铝复 合材料在制备高密度印刷线路板中的应用。 背景技术
随着 PCB复杂化的发展, 传统 PCB材料如玻璃布绝缘材料和树脂覆铜箔由于缺少 超前的性能而被淘汰。因此,人们致力于寻找新的易于加工成印刷线路板的高性能材料。 在多种添加剂中, 由于氮化铝 (A1N)具有卓越的性能和潜在的多领域用途, 已引起研究人 员的注意。 例如, 氮化铝热传导性强, 热膨胀系数小, 机械性能好, 这些性能使其适合 用作电子基板。 添加了氮化铝的 PCB材料因此综合了多种优越性能。
随着高密线路设计和设备小型化的发展, 线路中的铜线变得越来越细。 环氧树脂基 板和印刷线路板中铜线的热膨胀系数的匹配性也就变得越来越重要, 尤其是对于多层压 板而言, 更需如此要求。 发明内容
本发明的目的在于获得一种尤其适用于高可靠性的高密度印刷线路板的基板材料, 该材料的热膨胀系数低, 热机械性能高, 打孔得到的盲孔的锥度角小、 底面平坦, 能满' 足高可靠性和高密度印刷线路板的要求。
为了实现上述目的,本发明提供了一种环氧树脂 -氮化铝复合材料,其中该复合材料 中的氮化铝为纳米或微米颗粒。
本发明还提供了一种制备上述环氧树脂 -氮化铝复合材料的方法。
本发明所提供的环氧树脂-氮化铝复合材料中的氮化铝颗粒的粒径为 10ηηι-50 μ m, 所述氮化铝颗粒的重量为复合材料总重的 5-70wt%。
本发明的环氧树脂 -氮化铝复合材料是通过如下制备方法而制得,该方法主要包括如 下步骤:
用偶联剂预处理氮化铝纳米或微米颗粒表面;
将溶剂加入到氮化铝颗粒中, 然后用超声搅拌器搅拌;
将上述氮化铝溶液与环氧树脂体系充分混合均匀, 成为均一的分散液; 以及 将上述分散液注入模具中, 然后真空除气, 最后固化。
现有研究表明在将氮化铝与环氧树脂混合时会发生严重的团聚现象, 这样的团聚会 负面影响材料的性能, 而且还导致聚合物基体中存在气孔。
为了防止在制造氮化铝-环氧树脂复合材料的过程中发生团聚现象,本发明采用了两 种方法, 即化学方法和机械方法。 本发明的化学方法是采用偶联剂来帮助分离团聚的氮 化铝, 然后使分离后的氮化铝稳定。 本法采用了偶联剂预处理氮化铝颗粒表面, 偶联剂 的加入量为氮化铝粉末质量的 0.5-5wt%。 本发明的机械方法是采用了超声振动的方法, 其有助于分离团聚的氮化铝, 然后使分散后的氮化铝进一步分散开, 例如采用超声搅拌 器搅拌的方法对氮化铝溶液进行超声振动处理。 然后将得到的氮化铝溶液与环氧树脂体 系混合, 所述环氧树脂体系可包括环氧树脂基体、 固化剂和固化促进剂。 充分搅拌上述 混合物, 得到髙度均一的氮化铝 /环氧树脂清漆, 然后进行后续的注入与层压。注入了氮 化铝-环氧树脂复合材料的环氧树脂需在真空中使溶剂挥干,以防止在层压过程中产生气 泡。
本发明的复合材料中的环氧树脂的种类无需特别限定。 复合材料中的环氧树脂可以 是一种或一种以上。 固化剂和促进剂的种类都无需特别限定。 本领域适用的常规固化剂 和促进剂都可用于本发明的复合材料中。
本发明采用的偶联剂无需特别限定, 优选为除了能消除团聚现象之外, 还对改善氮 化铝和环氧树脂之间的界面性能也发挥着重要作用的偶联剂, 从而能改进所制得的环氧 树脂 -氮化铝复合材料的性能。
环氧树脂的热机械性能由于添加了纳米或微米氮化铝也得到巨大改进。由环氧树脂- 氮化铝复合材料制得的 PCB层压板与常规 FR4 PCB板相比, CTE降低了。 这使得本发 明的环氧树脂-氮化铝 PCB可用于对 CTE和热可靠性要求严格的用途中, 尤其用于制造 多层板和背板。 随着对高可靠性印刷线路板(PCB)需求的增加, 尤其是多层板和采用 无铅焊接, PCB的绝缘材料的热机械性能就成为产品质量的关键因素, 因为在使用期间 该材料需要耐受热应力。 受到热冲击而引起的分层、 焊盘翘起、 电镀铜出现裂缝或形成 电连接等现象对于常规 PCB材料而言是常见的, 而本发明的环氧树脂-氮化铝复合材料 具有较低的热膨胀系数, 从而能缓解由于基板材料和铜的热膨胀系数的失配而产生的应 力, 因而釆用本发明的复合材料制备的印刷线路板能够克服这些缺陷。环氧树脂-氮化铝 复合材料制备的 PCB还表现出杰出的耐受热应力的能力,如耐受无铅焊接中的热应力的 能力。 因此, 本发明的环氧树脂-氮化铝复合材料制备的印刷线路板的可靠性高。 此外, 本发明的复合材料与没有添加氮化铝的环氧树脂相比具有更好的杨氏模量 (young modules ) o 髙密度互连 (HDI)是印刷线路板 (PCB)的引领技术, 利用该技术能使线宽和线间距减 小, 并能减小孔径。该技术能显著减小 PCB的尺寸和重量, 因而可在基板上制作最先进 和最密集的线路板。 因此, HDI是追求便携电子产品发展趋势所应用的重要技术。
锥度的产生是激光打孔盲孔的普遍现象, 即孔的顶表面直径大于底表面直径。 当孔 壁厚度增加时, 顶表面的最小直径也随之增加, 以保持底表面直径不变。 以 PCB为例, 传统 PCB基板材料如环氧树脂产生的孔的锥角大于本发明的环氧树脂-氮化铝 PCB基板 材料产生的盲孔的锥角。 在传统的 PCB材料上制得的盲孔的锥度大、 孔壁粗糙, 如图 2 所示。 由于顶面直径越小意味着底面直径也越小, 而这会影响孔的可靠性, 因此难以通 过打孔来获得可靠性高的最小盲孔。 且, 在利用激光打孔时, 为了获得较好的孔形, 还 须使用阻止激光的衬垫。
本发明得到的盲孔的锥度小、 底面平坦, 如图 3所示。 由于盲孔的锥度小, 因而在 保持相同底面直径的同时可以获得更小的或超微盲孔。这是保证 HDI技术实施的重要条 件。 由于产生的盲孔孔形好, 即锥度小, 底面平坦, 因而无需使用阻止激光的衬垫, 从 而避免了当激光束和阻止激光的衬垫的不匹配而导致打孔过深的现象发生。 因此, 本发 明的环氧树脂-氮化铝复合材料尤其适用于高密电路设计,如高密互连中。采用本发明的 氮化铝 PCB材料可通过减小盲孔的顶表面直径而节省线路板基板的表面积,从而实现髙 密设计, 如制备高密度印刷线路板, 如用于通讯和高速应用如移动电话、 电脑主机板、 PDA, 数码相机中的高密度多层印刷线路板。
附图说明
图 1为传统方法中氮化铝与环氧树脂混合时所发生的聚集现象。
图 2为传统的 PCB材料上得到的盲孔。
图 3为本发明的环氧树脂 -氮化铝复合材料上得到的盲孔。
图 4示出了本发明的环氧树脂 -氮化铝复合材料层压板的制备流程图, 阴影图框是 传统方法之外的步骤。
具体实施方式
以下通过具体实施例说明本发明的环氧树脂 -氮化铝复合材料及其制备方法, 这些 实施例仅用于对本发明进行举例说明, 而非用于限定本发明。
实施例 1
氮化铝和偶联剂- 采用了四种不同粒径的氮化铝颗粒,其分别为: (1 )购自 PlasmaChem GmbH (商品 名: PL-PJ-A1N)。 颗粒形状为六边形、 多面体或是碎片, 粒径范围为 5-200nm, 平均粒 径为.50nm。 比表面积>181112 , 容积密度为 0.16-0.28g/cm3, 纯度 >98.6wt%。 (2)购自 Hefei Kaier nanometer Technology Development Co.Ltd., 晶体结构为六边形,平均粒径约 为 500nm。 纯度 >99.1wt%。 (3 ) 和 (4 ) 都购自 Hefei Kaier nanometer Technology Development Co.Ltd.平均粒径分别为约 2.3 μ m和 5.6 μ m。
偶联剂为 3- (2,3-环氧丙氧基)丙基三甲氧基硅烷(商品名 KBM-403,购自 Shin-Etsu Handotai(SEH)Ltd.), 添加量为 A1N颗粒的 0.5-5wt%。
环氧树脂、 固化剂和促进剂:
环氧树脂为 Epon 8008和 Epon 1031均购自 Huntsman Co.。 Epon 8008的环氧当量重 量为 410-460g/Eq, 溴的'含量为 19.0-21.0%w/w。 Epon 1031是一种固态多官能的表氯醇 / 四苯基醇乙垸环氧树脂。 环氧基的含量为 4350-5130mmol/kg。
固化剂为双氰胺(DICY,纯度 >99.5%),促进剂为 2-甲基咪唑(2-MI,纯度 >99.0%), 分别购自 Neuto Products和 Tokyo Kasei kogyo。 DICY颗粒的平均粒 <lmm。
上述物质的配比见表 1所列。
环氧树脂 -氮化铝复合材料的制备:
先用 KBM-403对氮化铝颗粒进行预处理,即将 KBM-403与氮化铝颗粒混合、搅匀, 然后按如下步骤制备复合物:
( 1 )将适量的无水乙醇加至氮化铝颗粒中, 使氮化铝颗粒完全浸入乙醇中; (2)分 别在超声搅拌器和磁力搅拌器中搅拌上述溶液 15分钟和 1个小时; (3 )将 Epon 8008、 Epon 1031、 DICY和 2-MI加至上述溶液中, 然后通过磁力搅拌器搅拌 10个小时; (4) 将步骤 (3 )所得的混合物加到模具中, 在烤箱中加热至 100Ό, 保持 15分钟, 并用泵 减压 15分钟; (5)最后, 加热至 175Ό达 4个小时, 从而完成聚合。
表 1 环氧树脂-氮化铝复合物的配方
组分 重量份
Epon 8008 100
Epon 1031 0-7
DICY 2-5
2-MI 0-0.1
A1N 2.5-100 图 3 所示的盲孔是由本例制得的复合材料中的一种打孔而成, 其中该复合材料含 50^%氮化铝和 50wt%树脂, 氮化铝的粒径为 2.3 μ m。 该复合材料的 CTE pre-Tg和 post-Tg分别为约 27 ppm/°C和 124 ppmTC,其中的 pre-Tg值与铜的 pre-Tg (约 17 ppm/°C ) 非常接近。
实施例 2
按照实施例 1的方法, 采用表 2所示的配方制备环氧树脂 -氮化铝复合材料。
表 2
组分 重量(份)
Εροη 8008 100
DICY 3.7
2-MI 0.039
崖 30
异丙基-三异硬脂醇-钛酸盐 (商品名 R-TTS 1.5
J110, 购自 Petrochemicals公司)
A1N的粒径为 10nm。
实施例 3
按照实施例 1的方法, 采用表 3所示的配方制备环氧树脂 -氮化铝复合材料。
表 3
组分 重量(份)
Εροη 8008 100
Εροη 1031 0
DICY 3
2-MI 0.07
A1N 70 硬脂酸 0.35
A1N的粒径为 50 μ πι。
实施例 4
按照实施例 1的方法, 采用表 4所示的配方制备环氧树脂 -氮化铝复合材料。
表 4
Figure imgf000006_0001
Epon 8008 100
Epon 1031 6.43
DICY 3.19
2-MI 0.04
AIN 5 四硅烷(Tetra-Silane) 0.05 径为 0.5 μ m。

Claims

权利要求
1. 环氧树脂-氮化铝复合材料在制备高密度印刷线路板中的应用。
2.根据权利要求 1 所述的应用, 其中所述环氧树脂-氮化铝复合材料是通过下述方 法制得:
用偶联剂预处理氮化铝纳米或微米颗粒表面;
将溶剂加入到氮化铝颗粒中, 然后釆用超声搅拌器搅拌所得溶液;
将上述氮化铝溶液与环氧树脂体系充分混合均匀, 成为均一的分散液; 以及 将上述分散液注入模具中, 然后干燥;
其中, 所述氮化铝颗粒的粒径为 10ωη-50 μ πι, 氮化铝颗粒的重量为复合材料总重 的 5-70wt%。
3. 根据权利要求 2 所述的应用, 其中所述偶联剂的加入量为氮化铝质量的 0.5-5 wt%。
4.根据权利要求 1-3任意一项所述的应用, 其中所述高密度印刷线路板为髙密度多 层印刷线路板。
PCT/CN2008/000360 2007-02-16 2008-02-18 Application du matériau composite d'époxy-aln dans la préparation du bpc à haute densité WO2008101416A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007100841308A CN101056500A (zh) 2007-02-16 2007-02-16 环氧树脂-氮化铝复合材料在制备高密度印刷线路板中的应用
CN200710084130.8 2007-02-16

Publications (1)

Publication Number Publication Date
WO2008101416A1 true WO2008101416A1 (fr) 2008-08-28

Family

ID=38796049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000360 WO2008101416A1 (fr) 2007-02-16 2008-02-18 Application du matériau composite d'époxy-aln dans la préparation du bpc à haute densité

Country Status (2)

Country Link
CN (1) CN101056500A (zh)
WO (1) WO2008101416A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056500A (zh) * 2007-02-16 2007-10-17 香港理工大学 环氧树脂-氮化铝复合材料在制备高密度印刷线路板中的应用
TWI410189B (zh) * 2010-09-16 2013-09-21 Zhen Ding Technology Co Ltd 電路板基板及其製作方法
CN102006722A (zh) * 2010-11-15 2011-04-06 中山市格普斯纳米电热科技有限公司 快速散热线路板
CN103030925A (zh) * 2011-09-30 2013-04-10 深圳光启高等理工研究院 一种介质基板的制备方法
CN107286581A (zh) * 2017-06-15 2017-10-24 铜陵安博电路板有限公司 一种pcb基板用金刚石粉填充的导热绝缘型复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761388A (en) * 1985-09-03 1988-08-02 Mitsubishi Chemical Industries Limited In organic fibers containing fine crystals of AlN and Al2 O3 and process for their production
US20030118501A1 (en) * 2001-07-12 2003-06-26 National Cheng Kung University Surface treatment method for preparing water-resistant aluminum nitride powder
US6666392B2 (en) * 1999-02-18 2003-12-23 Matsushita Electric Industrial Co., Ltd. Composition for substrate materials and process for the same as well as a heat conductive substrate and process for the same
CN101056500A (zh) * 2007-02-16 2007-10-17 香港理工大学 环氧树脂-氮化铝复合材料在制备高密度印刷线路板中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761388A (en) * 1985-09-03 1988-08-02 Mitsubishi Chemical Industries Limited In organic fibers containing fine crystals of AlN and Al2 O3 and process for their production
US6666392B2 (en) * 1999-02-18 2003-12-23 Matsushita Electric Industrial Co., Ltd. Composition for substrate materials and process for the same as well as a heat conductive substrate and process for the same
US20030118501A1 (en) * 2001-07-12 2003-06-26 National Cheng Kung University Surface treatment method for preparing water-resistant aluminum nitride powder
CN101056500A (zh) * 2007-02-16 2007-10-17 香港理工大学 环氧树脂-氮化铝复合材料在制备高密度印刷线路板中的应用

Also Published As

Publication number Publication date
CN101056500A (zh) 2007-10-17

Similar Documents

Publication Publication Date Title
KR101575944B1 (ko) 복합재료, 이를 이용하여 제조된 고주파 회로기판 및 그 제조 방법
JP6023474B2 (ja) 熱伝導性絶縁シート、金属ベース基板及び回路基板、及びその製造方法
JP2010047743A (ja) 高熱伝導性および高ガラス転位温度(Tg)を有しプリント基板に使用する樹脂組成物ならびにそれを用いたプリプレグおよびコーティング
US7700185B2 (en) Insulation material, film, circuit board and method of producing them
WO2008101416A1 (fr) Application du matériau composite d&#39;époxy-aln dans la préparation du bpc à haute densité
JP2012072405A (ja) 高分子樹脂組成物及びこれを用いて製造された絶縁フィルム並びにその製造方法
US4578308A (en) Laminated board lined with thermally and electrically conductive material
JPWO2018030124A1 (ja) 表面粗化六方晶窒化ホウ素粒子及びその製造方法、並びに、組成物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板
US6312621B1 (en) Via fill formulations which are electrically and/or thermally conductive, or non-conductive
JP2011029204A (ja) 導電性ペースト、並びにこれを用いたプリプレグ、金属箔張積層板、及びプリント配線板
WO2016088540A1 (ja) 導電性組成物並びに配線基板及びその製造方法
JP2019104157A (ja) 樹脂シート及び樹脂積層基板
JP2002265797A (ja) 樹脂組成物とその利用
JP4093216B2 (ja) プリプレグ、及びプリプレグの製造方法
JP3972433B2 (ja) 絶縁ワニス及びこれを用いた多層プリント配線板
JP2007305576A (ja) 導電性ペースト、並びにこれを用いたプリプレグ、金属箔張積層板、及びプリント配線板
CN112752394A (zh) 一种具有散热层的金属印刷电路板
JPH1140950A (ja) 多層配線板
TWI688603B (zh) 樹脂組成物及使用該樹脂組成物的絕緣膜和產品
JP2007165814A (ja) 基板内蔵コンデンサ用部材、およびこれを用いたコンデンサ内蔵基板とその製造方法
JP2003026932A (ja) 超微粒子複合樹脂粒子、誘電体形成用組成物および電子部品
TW462922B (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
CN114829467B (zh) 树脂片材及其制造方法
JP4366785B2 (ja) 接着剤シートとその製造法とその接着剤シートを用いた多層プリント配線板並びにその製造方法
JP2006019621A (ja) キャパシタ用ポリマーセラミックコンポジット材料、多層配線板及びモジュール基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706532

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706532

Country of ref document: EP

Kind code of ref document: A1