WO2008075712A1 - 永久磁石及び永久磁石の製造方法 - Google Patents

永久磁石及び永久磁石の製造方法 Download PDF

Info

Publication number
WO2008075712A1
WO2008075712A1 PCT/JP2007/074407 JP2007074407W WO2008075712A1 WO 2008075712 A1 WO2008075712 A1 WO 2008075712A1 JP 2007074407 W JP2007074407 W JP 2007074407W WO 2008075712 A1 WO2008075712 A1 WO 2008075712A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
permanent magnet
processing chamber
magnet
sintered
Prior art date
Application number
PCT/JP2007/074407
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nagata
Yoshinori Shingaki
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to JP2008550167A priority Critical patent/JP5328369B2/ja
Priority to DE112007003091T priority patent/DE112007003091T5/de
Priority to CN2007800473817A priority patent/CN101563738B/zh
Priority to KR1020097013015A priority patent/KR101390443B1/ko
Priority to US12/519,891 priority patent/US8157926B2/en
Publication of WO2008075712A1 publication Critical patent/WO2008075712A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a permanent magnet and a method for producing the permanent magnet, and in particular, a permanent magnet having a high magnetic property obtained by diffusing Dy and Tb in a crystal grain boundary phase of an Nd—Fe—B sintered magnet.
  • the present invention relates to a method for manufacturing the permanent magnet.
  • Nd-Fe-B sintered magnets are inexpensive because they are made of a combination of iron and Nd and B elements that are inexpensive, abundant in resources, and can be stably supplied.
  • the maximum energy product is about 10 times that of ferrite magnets
  • it is used in various products such as electronic equipment.
  • motors and generators for hybrid cars have been used. Adoption is also progressing.
  • the Curie temperature of the sintered magnet is as low as about 300 ° C, the temperature may rise above a predetermined temperature depending on the usage condition of the product to be used. There is a problem of demagnetization.
  • the sintered magnet when used in a desired product, the sintered magnet may be processed into a predetermined shape, and this processing may cause defects (cracks, etc.) or distortions in the crystal grains of the sintered magnet. This causes a problem that the magnetic properties are significantly deteriorated.
  • a powder metallurgy method is known as an example of a method for producing an Nd-Fe-B-based sintered magnet.
  • Nd, Fe, and B are blended at a predetermined composition ratio.
  • An alloy raw material is prepared by melting and forging, and once coarsely pulverized by, for example, a hydrogen pulverization step, then finely pulverized by, for example, a jet mill pulverization step to obtain an alloy raw material powder.
  • the obtained alloy raw material powder is oriented in a magnetic field (magnetic field orientation), and compression molded in a state where a magnetic field is applied to obtain a shaped body.
  • the compact is then sintered under predetermined conditions to produce a sintered magnet.
  • a uniaxial pressurization compression molding machine As a compression molding method in a magnetic field, a uniaxial pressurization compression molding machine is generally used. This compression molding machine fills a cavity formed in a through-hole of a die with alloy raw material powder, and forms a pair of upper and lower sides. The force that presses (presses) the alloy material powder from above and below with a punch to form the alloy material powder. During compression molding with a pair of punches, the friction between the alloy material powders filled in the cavity and the alloy material powder and the punch There is a problem that high orientation cannot be obtained due to friction with the set mold wall surface, and magnetic characteristics cannot be improved.
  • a lubricant such as zinc stearate is added to the obtained alloy raw material powder to ensure the fluidity of the alloy raw material powder during compression molding in a magnetic field. It is known that the mold can be easily released from the mold (see Patent Document 2). (Improvement of magnetic force) / Park Ki, Tohoku University Doctoral thesis March 23, 2000)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-6761 (see, for example, the description in the column of conventional technology) Disclosure of the Invention Problems to be solved by the invention
  • the first object of the present invention is to efficiently diffuse Dy and Tb attached to the surface of a sintered magnet containing a lubricant into the grain boundary phase, and achieve high productivity and high productivity. It is an object of the present invention to provide a method for producing a permanent magnet capable of producing a permanent magnet having magnetic characteristics.
  • a second object of the present invention is to provide a permanent magnet having high magnetic properties by efficiently diffusing Dy and Tb only in the grain boundary phase of an Nd Fe B-based sintered magnet containing a lubricant. It is in.
  • the method of manufacturing a permanent magnet according to claim 1 includes at least a surface of a sintered magnet formed by sintering iron-boron rare-earth alloy raw material powder containing a lubricant.
  • the first step of attaching at least one of Dy and Tb to a part, and at least one of Dy and Tb adhering to the surface of the sintered magnet after heat treatment at a predetermined temperature is applied to the grain boundaries of the sintered magnet.
  • the sintered magnet is one having an average crystal grain size of 4 to 8 m. .
  • the average crystal grain size of the sintered magnet in the range of 4111 to 8111, it is affected by carbon remaining in the sintered magnet (the lubricant ash).
  • Dy and Tb adhering to the surface of the sintered magnet can be efficiently diffused into the grain boundary phase, and high productivity can be achieved.
  • the average crystal grain size is less than 4 ⁇ , Dy and Tb diffuse into the grain boundary phase, and a permanent magnet with high coercive force can be obtained.
  • the effect of adding a lubricant to the alloy raw material powder to improve the orientation by securing the alloy is diminished and the degree of orientation of the sintered magnet deteriorates.
  • the residual magnetic flux density and the maximum energy product exhibiting magnetic properties are reduced.
  • the coercive force is reduced because the crystal is large, and the surface area of the crystal grain boundary is reduced.
  • the coercive force is further reduced by increasing the concentration ratio of the agent ash). Residual carbon reacts with Dy and Tb, which prevents Dy from diffusing into the grain boundary phase, and the diffusion time is long, resulting in poor productivity.
  • the sintered magnet is arranged and heated in the processing chamber, and the evaporation material containing at least one of Dy and Tb arranged in the same or another processing chamber is heated and evaporated, and the evaporated evaporation material
  • the adhering evaporation material Dy and Tb are attached to the sintered magnet surface before the thin film made of the evaporation material is formed on the sintered magnet surface. It is preferable to perform the first step and the second step by diffusing into the phase! /.
  • the evaporated evaporation material is supplied to and adhered to the surface of the sintered magnet heated to a predetermined temperature.
  • the sintered magnet was heated to a temperature at which an optimum diffusion rate was obtained, and the supply amount of the evaporation material on the surface of the sintered magnet was adjusted, so that the metal atoms of the evaporation material adhering to the surface were thin films.
  • the metal atoms of the evaporation material adhering to the surface were thin films.
  • are diffused sequentially into the grain boundary phase of the sintered magnet i.e., supply of metal atoms such as Dy and Tb to the surface of the sintered magnet and diffusion of the sintered magnet into the grain boundary phase). (Vacuum steam treatment)).
  • the surface state of the permanent magnet is substantially the same as the state before the above treatment, and the manufactured permanent magnet surface is prevented from being deteriorated (surface roughness is deteriorated). Excessive diffusion of Dy and Tb in the grain boundary near the magnet surface is suppressed, eliminating the need for a separate post-process and achieving high V and productivity.
  • Dy and Tb are diffused and uniformly distributed in the grain boundary phase of the sintered magnet, so that the Dy and Tb rich phase (Dy and Tb ranges from 5 to 80%) in the grain boundary phase.
  • Dy and Tb diffuse only near the surface of the crystal grains.
  • a permanent magnet with high coercive force and high magnetic properties can be obtained.
  • defects occur in the crystal grains near the surface of the sintered magnet during processing of the sintered magnet, a Dy and Tb rich phase is formed inside the crack, resulting in magnetization and coercive force. Can be recovered.
  • the specific surface area of the evaporating material arranged in the processing chamber is changed to increase or decrease the evaporation amount at a constant temperature, for example, a separate amount to increase or decrease the supply amount of the sintered magnet surface of Dy Tb.
  • the amount of supply to the sintered magnet surface can be easily adjusted without changing the configuration of the equipment, such as by installing parts in the processing chamber.
  • the inside of the processing chamber Prior to heating the processing chamber containing the sintered magnet in order to remove dirt, gas and water adsorbed on the surface of the sintered magnet before diffusing Dy and Tb into the grain boundary phase, It is preferable that the inside of the processing chamber is held at a predetermined pressure.
  • the processing chamber is depressurized to a predetermined pressure and then heated and held at a predetermined temperature.
  • the oxide film on the surface of the sintered magnet is removed before Dy and Tb are diffused into the grain boundary phase.
  • the sintering by plasma is performed prior to heating the processing chamber containing the sintered magnet. It is preferable to clean the magnet surface.
  • the permanent magnet according to claim 9 is obtained by sintering iron-boron rare earth alloy raw material powder containing a lubricant and having an average crystal grain size of 411 m 8 11 m.
  • Dy Tb adhered to the surface of the sintered magnet by attaching at least one of Dy Tb to at least a part of the surface of the sintered magnet and applying heat treatment at a predetermined temperature. It is characterized in that at least one of these is diffused into the grain boundary phase of the sintered magnet.
  • the method for producing a permanent magnet of the present invention can efficiently diffuse Dy Tb adhering to the surface of a sintered magnet containing a lubricant into the grain boundary phase, and can achieve high productivity and high magnetism.
  • the effect is that a permanent magnet having the characteristics can be produced.
  • the permanent magnet of the present invention has an effect that it has a particularly high coercive force and a high magnetic property.
  • the permanent magnet M of the present invention evaporates the evaporation material V containing at least one of Dy and Tb, and converts the evaporated evaporation material V into a predetermined shape.
  • the processed Nd-Fe-B sintered magnet S adheres to the surface of the S magnet, and the Dy and Tb metal atoms of the deposited evaporation material V are diffused into the grain boundary phase of the sintered magnet and spread uniformly. It is made by performing a series of treatments (vacuum steam treatment) at the same time.
  • the Nd-Fe-B-based sintered magnet S which is a starting material, is produced by a known method as follows. That is, Fe, B, and Nd are blended at a predetermined composition ratio, and an alloy raw material of 0.05 mm to 0.5 mm is first manufactured by a known strip casting method. On the other hand, an alloy raw material having a thickness of about 5 mm may be produced by a known centrifugal forging method. In addition, a small amount of Cu, Zr, Dy, A1 or Ga may be added during blending. Next, the produced alloy raw material is once coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized by a jet mill pulverization step to obtain an alloy raw material powder.
  • the alloy raw material powder is improved in orientation by ensuring the fluidity of the alloy raw material powder and can be easily released from the mold. For this reason, a lubricant is added at a predetermined mixing ratio, and the surface of the alloy raw material powder is coated with this lubricant.
  • a lubricant a fixed lubricant or a liquid lubricant having a low viscosity is used so as not to damage the mold.
  • fixed lubricants layered compounds (MoS, WS, MoSe, graphite, BN, CFx, etc.), soft metals (Zn, Pb, etc.), hard substances (
  • DIA powder, TiN powder, etc. organic polymers (PTEE, nylon aliphatic, higher aliphatic, fatty acid amide, fatty acid ester, metal stalagmite, etc.), especially zinc stearate It is preferable to use ethyleneamide or fluoroether grease.
  • liquid lubricants include natural oils and fats (plant oils such as castor oil, coconut oil and palm oil, mineral oils, petroleum oils and the like), organic low molecular weight materials (lower aliphatic, lower Fatty acid amides and lower fatty acid esters). Liquid fatty acids, liquid fatty acid esters, and liquid fluorine-based lubricants are particularly preferred. Liquid lubricants can be used with surfactants or diluted with a solvent, and the residual carbon component of the lubricant remaining after sintering can be Since the coercive force is lowered, a low molecular weight material is desirable so that it can be easily removed in the sintering process.
  • a solid lubricant When a solid lubricant is added to the alloy raw material powder P, it may be added at a mixing ratio of 0.02 to 0.1 wt%. If it is less than 0.02 wt%, the fluidity of the alloy raw material powder P will not be improved, and eventually the orientation will not be improved. On the other hand, if it exceeds 0.1 lwt%, when a sintered magnet is obtained, the coercive force decreases due to the influence of carbon remaining in the sintered magnet. Further, when a liquid lubricant is added to the alloy raw material powder P, it may be added at a rate in the range of 0.05 wt /% to 5 wt /%.
  • the fluidity of the alloy raw material powder will not be improved, and eventually the orientation may not be improved.
  • the sintered magnet is obtained when a sintered magnet is obtained.
  • the coercive force decreases under the influence of carbon remaining in the magnet. If both a solid lubricant and a liquid lubricant are added to the lubricant, the lubricant spreads to every corner of the alloy raw material powder P, and higher orientation can be obtained due to a higher lubricating effect.
  • an alloy raw material powder containing a lubricant is formed into a predetermined shape in a magnetic field using a uniaxial pressure-type compression molding machine (not shown) having a known structure, and then placed in a known sintering furnace.
  • the sintered magnet is produced by storing and sintering under predetermined conditions.
  • a vacuum vapor processing apparatus 1 for carrying out the process, a turbo molecular pump, cryopump, a predetermined pressure via the evacuating means 11 such as a diffusion pump (e.g. 1 X 10_ 5 Pa) It has a vacuum chamber 12 that can be kept under reduced pressure.
  • a box 2 comprising a rectangular parallelepiped box 21 having an upper surface opened and a detachable lid 22 on the upper surface of the opened box 21 is installed.
  • a flange 22a bent downward is formed on the outer peripheral edge of the lid 22 over the entire circumference.
  • the flange 22a A processing chamber 20 is defined which is fitted to the outer wall (in this case, no vacuum seal such as a metal seal is provided) and is isolated from the vacuum chamber 11.
  • a predetermined pressure of the vacuum chamber 12 through the vacuum exhaust means 11 e.g., 1 X 10- 5 Pa
  • the processing chamber 20 is substantially half orders of magnitude higher pressure than the vacuum chamber 12 (e.g., 5 X 10- 4 The pressure is reduced to Pa).
  • the volume of the processing chamber 20 is supplied to the sintered magnet S from a plurality of directions by direct or repeated collisions of Dy, Tb metal atoms, etc. in the vapor atmosphere in consideration of the mean free path of the evaporation material V.
  • the wall thicknesses of the box portion 21 and the lid portion 22 are set so as not to be thermally deformed when heated by a heating means described later, and are made of a material that does not react with the evaporation material V.
  • A1 atoms may enter the Dy and Tb vapor atmosphere. Therefore, whether the box 2 is made of, for example, Mo, W, V, Ta, or an alloy thereof (including rare earth-added Mo alloys, Ti-added Mo alloys), CaO, YO, or rare earth oxides. ,
  • these materials are formed as a lining film on the surface of another heat insulating material.
  • a plurality of Mo-made pieces are placed at a predetermined height position from the bottom in the processing chamber 20.
  • a placement part 21a is formed by arranging wire rods (for example, ⁇ 0 ⁇ ;! to 10 mm) in a lattice shape, and a plurality of sintered magnets S can be placed side by side on the placement part 21a.
  • the evaporation material V is appropriately disposed on the bottom surface, side surface, or top surface of the processing chamber 20.
  • the evaporation material V As the evaporation material V, Dy or Tb which greatly improves the magnetocrystalline anisotropy of the main phase is used, and a fluoride containing at least one of Dy and Tb can be used. Further, Dy, Tb, or a fluoride thereof containing at least one of Nd and Pr may be used. In this case, the evaporation material V is blended at a predetermined mixing ratio, and for example, an arc melting alloy is obtained using an arc melting furnace, and is disposed in the processing chamber 20.
  • the evaporation material V is Al, Ag, B, Ba, Be, C, Ca, Ce, Co, Cr, Cs, Cu, Er, Eu, Fe, Ga, Gd, Ge, Hf, and Ho.
  • In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Ni, P, Pd, Ru, S, Sb, Si, Sm, Sn, Sr, Ta, Ti, Tm, V, W , Y, Yb, Zn, and Zr may further include at least one selected.
  • the vacuum chamber 12 is also provided with heating means 3.
  • the heating means 3 is made of a material that does not react with the evaporation material V such as Dy and Tb, like the box 2, and is provided so as to surround the box 2, for example, and has a reflective surface on the inside. It is composed of a heat insulating material made of Mo and an electric heater disposed inside thereof and having a filament made of Mo. Then, the inside of the processing chamber 20 can be heated substantially uniformly by heating the box 2 with the heating means 3 under reduced pressure and indirectly heating the inside of the processing chamber 20 via the box 2.
  • the production of the permanent magnet M using the vacuum vapor processing apparatus 1 will be described.
  • the sintered magnet S produced by the above method is placed on the placement portion 21a of the box portion 21 and Dy, which is the evaporation material V, is placed on the bottom surface of the box portion 21 (thereby, the inside of the processing chamber 20).
  • the sintered magnet S and the evaporation material are spaced apart).
  • the box body 2 is installed in a predetermined position surrounded by the heating means 3 in the vacuum chamber 12 (see FIG. 2).
  • a predetermined pressure e.g., l X 10_ 4 Pa
  • vacuum chamber 12 via the evacuation means 11 is evacuated to vacuum to reach, (the processing chamber 20 is evacuated to approximately half orders of magnitude higher pressure)
  • the heating means 3 is activated to heat the processing chamber 20.
  • the processing chamber 20 When the temperature in the processing chamber 20 reaches a predetermined temperature under reduced pressure, the processing chamber 20 is installed on the bottom surface of the processing chamber 20. Dy is heated to substantially the same temperature as the processing chamber 20 to start evaporation, and a Dy vapor atmosphere is formed in the processing chamber 20. When Dy starts to evaporate, the sintered magnets S and Dy are arranged apart from each other, so the melted Dy does not directly adhere to the sintered magnet S in which the surface Nd-rich phase is melted. Then, Dy atoms in the Dy vapor atmosphere are supplied to and adhered to the surface of the sintered magnet S heated to approximately the same temperature as Dy from a plurality of directions by direct or repeated collisions. Dy is diffused into the grain boundary phase of the sintered magnet S, and the permanent magnet M is obtained.
  • the average composition of the sintered magnet surface S adjacent to the thin film becomes a Dy rich composition.
  • the surface of the sintered magnet S melts (that is, the main phase melts and the amount of liquid phase increases).
  • the vicinity of the surface of the sintered magnet S melts and collapses, and the unevenness increases.
  • Dy penetrates excessively into the crystal grains with a large amount of liquid phase, and the maximum energy product and residual magnetic flux density, which show magnetic properties, are further reduced.
  • the surface area (specific surface area) per unit volume is small at a ratio of !! to 10% by weight of the sintered magnet. It was placed on the bottom to reduce the amount of evaporation at a constant temperature.
  • the heating means 3 is controlled so that the temperature in the processing chamber 20 is in the range of 800 ° C to 1050 ° C, preferably 900 ° C to 1000 ° C. (For example, when the temperature in the processing chamber is 900 ° C. to 100 ° C., the saturated vapor pressure of Dy is about 1 ⁇ 10 — 2 to 1 ⁇ 10 — &).
  • the total surface area of the sintered magnet S installed on the mounting portion 21a of the processing chamber 20 is used to diffuse Dy into the grain boundary phase.
  • the surface of the permanent magnet M is prevented from being deteriorated, and Dy is prevented from excessively diffusing into the grain boundary near the sintered magnet surface.
  • the phase has a Dy-rich phase (a phase containing Dy in the range of 5 to 80%), and only near the surface of the grain The diffusion of Dy effectively improves the magnetization and coercivity, and in addition, yields a permanent magnet M with excellent productivity that does not require finishing.
  • the operation of the heating means 3 is stopped, and 10 KPa is introduced into the processing chamber 20 via a gas introduction means (not shown).
  • Ar gas is introduced, evaporation of the evaporation material V is stopped, and the temperature in the processing chamber 20 is temporarily lowered to 500 ° C., for example.
  • the heating means 3 is operated again, the temperature in the processing chamber 20 is set in the range of 450 ° C. to 650 ° C., and heat treatment is performed to remove the distortion of the permanent magnet in order to further improve or recover the coercive force. Apply.
  • the heating temperature range of the sintered magnet S that can increase the force diffusion rate described using Dy as the evaporation material as an example range from 900 ° C to 1000 ° C
  • Tb having a low vapor pressure can be used, or an alloy of Dy and Tb may be used.
  • the force of using the balta-like evaporation material V with a small specific surface area to reduce the evaporation amount at a constant temperature is not limited to this.
  • a receiving tray having a concave section in the box portion 21 is used.
  • an evaporation chamber (another processing chamber: not shown) is provided in the vacuum chamber 12 separately from the processing chamber 20, and other heating means for heating the evaporation chamber is provided, and the evaporation material is evaporated in the evaporation chamber. Then, the evaporating material V in the vapor atmosphere may be supplied to the sintered magnet in the processing chamber 20 via a communication path that connects the processing chamber 20 and the evaporation chamber.
  • the evaporation material V is Tb
  • the evaporation chamber may be heated in the range of 900 ° C to 1150 ° C.
  • the force S described in the case of vacuum vapor treatment, Dy or Tb is applied to the surface of the sintered magnet using a known vapor deposition apparatus or sputtering apparatus. Adhering (first step), then, using a heat treatment furnace, Dy and Tb adhering to the surface are diffused into the grain boundary phase of the sintered magnet (second step) to obtain a permanent magnet
  • the present invention can also be applied to a permanent magnet M having high magnetic properties.
  • the vacuum chamber 12 is set in a predetermined manner via the vacuum exhaust means 11.
  • pressure e.g., 1 X 10- 5 Pa
  • the processing chamber 20 was reduced from the vacuum chamber 12 to approximately half orders of magnitude higher pressure (e.g., 5 X 10_ 4 Pa)
  • the heating means 3 may be operated to heat the inside of the processing chamber 20 to, for example, 100 ° C. and hold it for a predetermined time.
  • a plasma generator (not shown) having a known structure for generating Ar or He plasma is provided in the vacuum chamber 12, and the surface of the sintered magnet S by plasma prior to processing in the vacuum chamber 12 is provided. The cleaning pre-processing may be performed.
  • a known transfer robot is installed in the vacuum chamber 12, and the lid 22 is installed in the vacuum chamber 12 after the tailing is completed. You just have to do it.
  • the lid portion 22 is mounted on the upper surface of the box portion 21 to form the box body 2 !, but is isolated from the vacuum chamber 12 and is vacuum chamber.
  • the processing chamber 20 can be decompressed as the pressure in the chamber 12 is reduced.
  • the upper surface opening thereof is opened, for example, in Mo. It may be covered with a metal foil.
  • the processing chamber 20 may be sealed in the vacuum chamber 12 and may be configured to be maintained at a predetermined pressure independently of the vacuum chamber 12.
  • the sintered magnet S has a low oxygen content! /, And the extent to the grain boundary phase of Dy and Tb is increased. Since the diffusion rate is increased, the oxygen content of the sintered magnet S itself may be 3000 ppm or less, preferably 2000 ppm or less, more preferably lOOOppm or less.
  • the well-known uniaxial pressurization type After filling the cavity of the compression molding machine and forming it into a predetermined shape in a magnetic field (molding process), the compact is placed in a known sintering furnace and sintered under a predetermined condition (firing). Tie process).
  • the molding process and the sintering process were optimized, and a sintered magnet S was obtained so that the average crystal grain size was 2 ⁇ m-lO ⁇ m and the oxygen content was ⁇ OOppm.
  • the average crystal grain size of the sintered magnet was determined by the line segment method after etching a surface perpendicular to the magnetic field orientation direction of the sintered magnet and drawing 10 random lines on the microscope composition photograph.
  • the permanent magnet M was obtained by the vacuum vapor treatment using the vacuum vapor treatment apparatus 1.
  • 100 sintered magnets S are arranged at equal intervals on the mounting portion 21a in the Mo box 2.
  • Balta-like Dy having a purity of 99.9% was used as the evaporation material, and the total amount of 10 g was arranged on the bottom surface of the processing chamber 20.
  • the vacuum evacuation means is activated and the vacuum chamber is once depressurized to 1 X 10_ 4 Pa (the pressure in the processing chamber is 5 X 10_ 3 Pa), and the heating temperature of the processing chamber 20 by the calo heat means 3 is 950 ° Set to C. Then, after reaching the temperature force S950 ° C.
  • the above-described vacuum vapor treatment was performed in this state;! -72 hours, and then a heat treatment for removing the distortion of the permanent magnet was performed.
  • the heat treatment temperature was set to 400 ° C and the treatment time was set to 90 minutes.
  • the optimum vacuum steam treatment time (that is, the optimum diffusion time of Dy) for obtaining the highest magnetic properties was obtained.
  • FIG. 5 is a table showing the magnetic characteristics as average values when permanent magnets are obtained under the above conditions. This According to the above, when the average crystal grain size is 3 m or less, or 9 m or more, the optimum vacuum steam processing time for obtaining the highest magnetic characteristics is 8 hours or more, and the productivity is poor. It can be seen that the coercive force cannot be effectively improved when the average crystal grain size is 9 m or more.
  • the optimum vacuum steam treatment time is 4 to 6 hours
  • the maximum energy product is 51MG0e or more
  • the residual magnetic flux density is 14 It can be seen that a permanent magnet with a high magnetic property of 5 kG or more and a coercive force of about 30 k0e was obtained.
  • FIG. 1 is a diagram schematically illustrating a cross section of a permanent magnet manufactured according to the present invention.
  • FIG. 2 is a diagram schematically showing a vacuum processing apparatus for performing the processing of the present invention.
  • FIG. 3 is a diagram schematically illustrating a cross section of a permanent magnet manufactured by a conventional technique.
  • FIG. 4 (a) is a diagram for explaining processing deterioration of a sintered magnet surface. (B) is a figure explaining the surface state of the permanent magnet produced by implementation of this invention.
  • FIG. 5 is a table showing the magnetic properties and optimum vacuum vapor treatment time of the permanent magnet produced in Example 1. Explanation of symbols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 潤滑剤を含む焼結磁石表面に付着したDy、Tbを効率よく結晶粒界相に拡散でき、高い生産性で高磁気特性の永久磁石が作製できる永久磁石の製造方法を提供する。  潤滑剤を含む鉄-ホウ素-希土類系の合金原料粉末を焼結してなる焼結磁石の表面の少なくとも一部に、Dy、Tbの少なくとも一方を付着させる第一工程と、所定温度下で熱処理を施して焼結磁石の表面に付着したDy、Tbの少なくとも一方を焼結磁石の結晶粒界相に拡散させる第二工程とを実施して永久磁石の製造する。その際、焼結磁石として、その平均結晶粒径が4μm~8μmの範囲に作製したものを用いる。      

Description

明 細 書
永久磁石及び永久磁石の製造方法
技術分野
[0001] 本発明は、永久磁石及び永久磁石の製造方法に関し、特に、 Nd— Fe— B系の焼 結磁石の結晶粒界相に Dyや Tbを拡散させてなる高磁気特性の永久磁石及びこの 永久磁石の製造方法に関する。
背景技術
[0002] Nd— Fe— B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に 豊富で安定供給が可能な Nd、 Bの元素の組み合わせからなることで安価に製造でき ると共に、高磁気特性 (最大エネルギー積はフェライト系磁石の 10倍程度)を有する ことから、電子機器など種々の製品に利用され、近年では、ハイブリッドカー用のモ 一ターや発電機への採用も進んでレ、る。
[0003] 他方、上記焼結磁石のキュリー温度は、約 300°Cと低いことから、採用する製品の 使用状況によっては所定温度を超えて昇温する場合があり、所定温度を超えると、熱 により減磁するという問題がある。また、上記焼結磁石を所望の製品に利用するに際 しては、焼結磁石を所定形状に加工する場合があり、この加工によって焼結磁石の 結晶粒に欠陥(クラック等)や歪などが生じて磁気特性が著しく劣化するという問題が ある。
[0004] このため、 Nd— Fe— B系の焼結磁石を得る際に、 Ndより大きい 4f電子の磁気異 方性を有し、 Ndと同じく負のステイーブンス因子を持つことで、主相の結晶磁気異方 性を大きく向上させる Dyや Tbを添加することが考えられるものの、 Dy、 Tbは主相結 晶格子中で Ndと逆向きのスピン配列をするフェリ磁性構造を取ることから磁界強度、 、ては、磁気特性を示す最大エネルギー積が大きく低下する。
[0005] このこと力、ら、 Nd— Fe— B系の焼結磁石の表面全体に亘つて、 Dyや Tbを所定膜 厚 (磁石の体積に依存して 311 m以上の膜厚で形成される)で成膜し、次!/、で、所定 温度下で熱処理を施して、表面に成膜された Dyや Tbを磁石の結晶粒界相に拡散さ せて均一に行き渡らせることが提案されている(非特許文献 1参照)。 [0006] 上記方法で作製した永久磁石は、結晶粒界相に拡散した Dyや Tbが各結晶粒表 面の結晶磁気異方性を高めることで、ニュークリエーション型の保磁力発生機構を強 化し、その結果、保磁力を飛躍的に向上させると共に、最大エネルギー積がほとんど 損なわれないという利点がある(例えば残留磁束密度: 14. 5kG (l . 45T)、最大工 ネルギ一積: 50MG0e (400kj/m3)で、保磁力: 23k0e (3MA/m)の性能の磁石 ができることが非特許文献 1に報告されて!/、る)。
[0007] ところで、 Nd— Fe— B系の焼結磁石の製造方法の一例として粉末冶金法が知られ ており、この方法では、先ず、 Nd、 Fe、 Bを所定の組成比で配合し、溶解、铸造して 合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェ ットミル微粉砕工程により微粉砕して、合金原料粉末を得る。次いで、得られた合金 原料粉末を磁界中で配向(磁界配向)させ、磁界を印加した状態で圧縮成形して成 形体を得る。そして、この成形体を所定の条件下で焼結させて焼結磁石が作製され
[0008] 磁界中の圧縮成形法として、一般に一軸加圧式の圧縮成形機が用いられ、この圧 縮成形機は、ダイの貫通孔に形成したキヤビティに合金原料粉末を充填し、上下一 対のパンチによって上下方向から加圧(プレス)して合金原料粉末を成形するもので ある力 一対のパンチによる圧縮成形の際、キヤビティに充填された合金原料粉末相 互の摩擦や合金原料粉末とパンチにセットした金型の壁面との摩擦によって高い配 向性が得られず、磁気特性の向上が図れないという問題がある。
[0009] このこと力、ら、得られた合金原料粉末に、ステアリン酸亜鉛などの潤滑剤を添加し、 磁界中の圧縮成形時に合金原料粉末の流動性を確保することによって配向性を向 上させると共に、金型からの離型を容易にすることが知られている(特許文献 2参照) 非特千文献丄 improvement or coercivity on thin Nd2Fe丄 4B sinterea permanent mag nets (薄型 Nd2Fel4B系焼結磁石における保磁力の向上) /朴起兌、東北大学 博 士論文 平成 12年 3月 23日)
特許文献 2:特開 2004— 6761号公報 (例えば、従来の技術の欄の記載参照) 発明の開示 発明が解決しょうとする課題
[0010] 潤滑剤を含む合金粉末材料を焼結してなる焼結磁石では、結晶粒界に炭素 (潤滑 剤の灰分)が多く残留している。このことから、このように作製した焼結磁石に対し、焼 結磁石表面に付着した Dyや Tbをその結晶粒界相に拡散させる上記処理を施す場 合、 Dyや Tbが残留炭素 (潤滑剤の灰分)と反応することで、 Dyや Tbの結晶粒界相 への拡散が妨げられる場合がある。 Dyや Tbの結晶粒界相への拡散が妨げられると 、短時間で拡散処理ができず、生産性が悪くなる。
[0011] そこで、上記点に鑑み、本発明の第一の目的は、潤滑剤を含む焼結磁石表面に付 着した Dy、 Tbを効率よく結晶粒界相に拡散でき、高い生産性で高磁気特性の永久 磁石が作製できる永久磁石の製造方法を提供することにある。また、本発明の第二 の目的は、潤滑剤を含む Nd Fe B系の焼結磁石の結晶粒界相のみに Dy、 Tbが 効率よく拡散し、高い磁気特性を有する永久磁石を提供することにある。
課題を解決するための手段
[0012] 上記課題を解決するために、請求項 1記載の永久磁石の製造方法は、潤滑剤を含 む鉄 ホウ素 希土類系の合金原料粉末を焼結してなる焼結磁石の表面の少なく とも一部に、 Dy、 Tbの少なくとも一方を付着させる第一工程と、所定温度下で熱処 理を施して焼結磁石の表面に付着した Dy、 Tbの少なくとも一方を焼結磁石の結晶 粒界相に拡散させる第二工程とを含む永久磁石の製造方法において、前記焼結磁 石として、その平均結晶粒径が 4〃 m〜8 mの範囲に作製したものを用いたことを 特徴とする。
[0013] 本発明によれば、焼結磁石の平均結晶粒径を4 111〜8 111の範囲に設定するこ とで、焼結磁石内部に残留する炭素 (潤滑剤の灰分)の影響を受けずに、焼結磁石 表面に付着した Dyや Tbを結晶粒界相に効率よく拡散でき、高い生産性が達成され る。この場合、平均結晶粒径が 4 πιより小さいと、 Dyや Tbが結晶粒界相に拡散し たことで、高い保磁力を有する永久磁石が得られる力 磁界中での圧縮成形時に流 動性を確保して配向性を向上させるという合金原料粉末への潤滑剤添加の効果が 薄れ、焼結磁石の配向度が悪くなり、その結果、磁気特性を示す残留磁束密度及び 最大エネルギー積が低下する。 [0014] 他方で、平均結晶粒径が 8 a mより大きいと、結晶が大きいため保磁力が低下し、 その上、結晶粒界の表面積が少なくなることで、結晶粒界付近の残留炭素 (潤滑剤 の灰分)の濃度比が高くなることで、保磁力がさらに大きく低下する。また、残留炭素 が Dyや Tbと反応し、 Dyの結晶粒界相への拡散が妨げられ、拡散時間が長くなつて 生産性が悪い。
[0015] 前記焼結磁石を処理室に配置して加熱すると共に、同一または他の処理室に配置 した Dy、 Tbの少なくとも一方を含有する蒸発材料を加熱して蒸発させ、この蒸発した 蒸発材料を、焼結磁石表面 の供給量を調節して付着させ、この付着した蒸発材料 の Dy、 Tbを、焼結磁石表面に蒸発材料からなる薄膜が形成される前に焼結磁石の 結晶粒界相に拡散させ、前記第一工程及び第二工程を行うことが好まし!/、。
[0016] これによれば、蒸発した蒸発材料が、所定温度まで加熱された焼結磁石表面に供 給されて付着する。その際、焼結磁石を最適な拡散速度が得られる温度に加熱する と共に、焼結磁石表面 の蒸発材料の供給量を調節したため、表面に付着した蒸発 材料の Dy、 Tbの金属原子は、薄膜を形成する前に焼結磁石の結晶粒界相に順次 拡散されて行く(即ち、焼結磁石表面への Dyや Tb等の金属原子の供給と焼結磁石 の結晶粒界相への拡散とがー度の処理で行われる(真空蒸気処理))。このため、永 久磁石の表面状態は、上記処理を実施する前の状態と略同一であり、作製した永久 磁石表面が劣化する(表面粗さが悪くなる)ことが防止され、また、特に焼結磁石表面 に近い粒界内に Dyや Tbが過剰に拡散することが抑制され、別段の後工程が不要と なって高 V、生産性を達成できる。
[0017] また、 Dyや Tbを焼結磁石の結晶粒界相に拡散させて均一に行き渡らせることで、 結晶粒界相に Dy、 Tbのリッチ相(Dy、 Tbを 5〜80%の範囲で含む相)を有し、さら には結晶粒の表面付近にのみ Dyや Tbが拡散し、その結果、高い保磁力を有し、高 磁気特性の永久磁石が得られる。さらに、焼結磁石の加工時に焼結磁石表面付近 の結晶粒に欠陥(クラック)が生じている場合には、そのクラックの内側に Dy、 Tbのリ ツチ相が形成されて、磁化および保磁力を回復できる。
[0018] 上記処理に際しては、前記焼結磁石と蒸発材料とを離間して配置しておけば、蒸 発材料を蒸発させるとき、溶けた蒸発材料が直接焼結磁石に付着することが防止で きてよい。
[0019] また、前記処理室内に配置される前記蒸発材料の比表面積を変化させて一定温 度下における蒸発量を増減すれば、例えば Dy Tbの焼結磁石表面 の供給量を 増減する別個の部品を処理室内に設ける等、装置の構成を変えることなぐ簡単に 焼結磁石表面への供給量の調節ができてょレ、。
[0020] Dyや Tbを結晶粒界相に拡散させる前に焼結磁石表面に吸着した汚れ、ガスや水 分を除去するために、前記焼結磁石を収納した処理室の加熱に先立って、処理室 内を所定圧力に減圧して保持することが好ましい。
[0021] この場合、表面に吸着した汚れ、ガスや水分の除去を促進するために、前記処理 室を所定圧力に減圧した後、処理室内を所定温度に加熱して保持することが好まし い。
[0022] 他方、 Dyや Tbを結晶粒界相に拡散させる前に焼結磁石表面の酸化膜を除去す ベぐ前記焼結磁石を収納した処理室の加熱に先立って、プラズマによる前記焼結 磁石表面のクリーニングを行うことが好ましい。
[0023] また、前記焼結磁石の結晶粒界相に Dyや Tbを拡散させた後、上記温度より低!/、 所定温度下で永久磁石の歪を除去する熱処理を施すようにすれば、磁化および保 磁力がさらに向上または回復した高磁気特性の永久磁石が得られる。
[0024] また、上記課題を解決するために、請求項 9記載の永久磁石は、潤滑剤を含む鉄 ホウ素 希土類系の合金原料粉末を焼結し、その平均結晶粒径が 411 m 8 11 m の範囲に作製した焼結磁石を用い、この焼結磁石の表面の少なくとも一部に、 Dy Tbの少なくとも一方を付着し、所定温度下で熱処理を施して焼結磁石の表面に付着 した Dy Tbの少なくとも一方を焼結磁石の結晶粒界相に拡散させてなることを特徴 とする。
発明の効果
[0025] 以上説明したように、本発明の永久磁石の製造方法は、潤滑剤を含む焼結磁石表 面に付着した Dy Tbを効率よく結晶粒界相に拡散でき、高い生産性で高磁気特性 の永久磁石を作製できるという効果を奏する。また、本発明の永久磁石は、特に高い 保磁力を有する高磁気特性のものであるという効果を奏する。 発明を実施するための最良の形態
[0026] 図 1及び図 2を参照して説明すれば、本発明の永久磁石 Mは、 Dy、 Tbの少なくとも 一方を含有する蒸発材料 Vを蒸発させ、蒸発した蒸発材料 Vを、所定形状に加工さ れた Nd— Fe— B系の焼結磁石 Sの表面に付着させ、この付着した蒸発材料 Vの Dy や Tbの金属原子を焼結磁石の結晶粒界相に拡散させて均一に行き渡らせる一連の 処理 (真空蒸気処理)を同時に行って作製される。
[0027] 出発材料である Nd— Fe— B系の焼結磁石 Sは、公知の方法で次のように作製され ている。即ち、 Fe、 B、 Ndを所定の組成比で配合して、公知のストリップキャスト法に より 0. 05mm〜0. 5mmの合金原料を先ず作製する。他方で、公知の遠心铸造法 で 5mm程度の厚さの合金原料を作製するようにしてもよい。また、配合の際、 Cu、 Zr 、 Dy、 A1や Gaを少量添加してもよい。次いで、作製した合金原料を、公知の水素粉 砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕して合金 原料粉末を得る。
[0028] 合金原料粉末には、後述のように磁界中で成形工程を行う際に、合金原料粉末の 流動性を確保することで配向性を向上させると共に、金型からの離型を容易にする 等の理由から、所定の混合割合で潤滑剤が添加され、この潤滑剤によって合金原料 粉末の表面が被覆される。潤滑剤としては、金型に傷をつけたりすることがないように 粘性が低い固定潤滑剤や液体潤滑剤が用いられる。固定潤滑剤として、層状化合 物(MoS 、 WS 、 MoSe、黒鉛、 BN、 CFx等)、軟質金属(Zn、 Pb等)、 硬質物質(
2 2
ダイァ粉末、 TiN粉末等)、有機高分子 (PTEE系、ナイロン系脂肪族系、高級脂肪 族系、脂肪酸アマイド系、脂肪酸エステル系、金属石鹼系等)が挙げられ、特に、ス テアリン酸亜鉛、エチレンアマイド、フルォロエーテル系グリースを用いることが好まし い。
[0029] 他方で、液体潤滑剤としては、天然油脂材料 (ヒマシ油、椰子油、パーム油等の植 物油、鉱物油、石油系油脂等)、有機低分子材料 (低級脂肪族系、低級脂肪酸アマ イド系、低級脂肪酸エステル系)が挙げられ、特に、液状脂肪酸、液状脂肪酸エステ ル、液状フッ素系潤滑剤を用いることが好ましい。液体潤滑剤は、界面活性剤と共に 使用したり、溶媒で薄めて用いられ、焼結後に残る潤滑剤の残留炭素成分が磁石の 保磁力の低下させることから、焼結工程で取り除きやすいように低分子量の物が望ま しい。
[0030] 合金原料粉末 Pに固体潤滑剤を添加する場合、 0. 02〜0. lwt%混合割合で添 加すればよい。 0. 02wt%より小さいと、合金原料粉末 Pの流動性が向上せず、結局 、配向性を向上しない。他方で、 0. lwt%を超えると、焼結磁石を得たとき、この焼 結磁石中に残留する炭素の影響を受けて保磁力が低下する。また、合金原料粉末 P に液体潤滑剤を添加する場合、 0. 05wt/%〜5wt/%の範囲の割合で添加すれ ばよい。 0. 05wt%より小さいと、合金原料粉末の流動性が向上せず、結局、配向性 を向上できない虞があり、他方で、 5wt%を超えると、焼結磁石を得たとき、この焼結 磁石中に残留する炭素の影響を受けて保磁力が低下する。尚、潤滑剤は、固体潤 滑剤と液体潤滑剤との両方を添加すれば、合金原料粉末 Pの隅々まで潤滑剤が行 き渡り、より高い潤滑効果によって、より高い配向性が得られる。次いで、例えば、公 知の構造を有する一軸加圧式の圧縮成形機(図示せず)を用い、潤滑剤を含む合金 原料粉末を磁界中で所定形状に成形した後、公知の焼結炉内に収納し、所定の条 件下で焼結させて上記焼結磁石が作製される。
[0031] ところで、潤滑剤を含む合金粉末材料を焼結してなる焼結磁石では、潤滑剤の添 加割合を上記のように設定しても、その結晶粒界には炭素 (潤滑剤の灰分)が残留し ている。このため、真空蒸気処理を施す場合に Dyや Tbが残留炭素と反応したので は、 Dyや Tbの結晶粒界相への拡散が妨げられ、短時間での拡散処理(ひいては、 真空蒸気処理)の実施ができない。本実施の形態では、焼結磁石 Sの作製の各工程 において条件をそれぞれ最適化し、焼結磁石 Sの平均結晶粒径が 4 H m〜8 11 mの 範囲にすることとした。これにより、焼結磁石内部に残留する炭素の影響を受けずに 、焼結磁石表面に付着した Dyや Tbが結晶粒界相に効率よく拡散でき、高い生産性 が達成される。
[0032] この場合、平均結晶粒径が 4 mより小さいと、 Dyや Tbが結晶粒界相に拡散した ことで、高い保磁力を有する永久磁石となる力 磁界中での圧縮成形時に流動性を 確保し配向性を向上させるという合金原料粉末への潤滑剤添加の効果が薄れ、焼結 磁石の配向度が悪くなり、その結果、磁気特性を示す残留磁束密度及び最大エネ ルギ一積が低下する。他方で、平均結晶粒径が 8 mより大きいと、結晶が大きいた め保磁力が低下し、その上、結晶粒界の表面積が少なくなることで、結晶粒界付近 の残留炭素の濃度比が高くなることで、保磁力がさらに大きく低下する。また、残留炭 素が Dyや Tbと反応し、 Dyの結晶粒界相への拡散が妨げられ、拡散時間が長くなつ て生産性が悪い。
[0033] 図 2に示すように、上記処理を実施する真空蒸気処理装置 1は、ターボ分子ポンプ 、クライオポンプ、拡散ポンプなどの真空排気手段 11を介して所定圧力(例えば 1 X 10_5Pa)まで減圧して保持できる真空チャンバ 12を有する。真空チャンバ内 12には 、上面を開口した直方体形状の箱部 21と、開口した箱部 21の上面に着脱自在な蓋 部 22とからなる箱体 2が設置される。
[0034] 蓋部 22の外周縁部には下方に屈曲させたフランジ 22aがその全周に亘つて形成さ れ、箱部 21の上面に蓋部 22を装着すると、フランジ 22aが箱部 21の外壁に嵌合して (この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ 11と隔 絶された処理室 20が画成される。そして、真空排気手段 11を介して真空チャンバ 12 を所定圧力(例えば、 1 X 10— 5Pa)まで減圧すると、処理室 20が真空チャンバ 12より 略半桁高い圧力(例えば、 5 X 10— 4Pa)まで減圧されるようになっている。
[0035] 処理室 20の容積は、蒸発材料 Vの平均自由行程を考慮して蒸気雰囲気中の Dy、 Tb金属原子等が直接または衝突を繰返して複数の方向から焼結磁石 Sに供給され るように設定されている。また、箱部 21及び蓋部 22の壁面の肉厚は、後述する加熱 手段によって加熱されたとき、熱変形しないように設定され、蒸発材料 Vと反応しない 材料から構成されている。
[0036] 即ち、蒸発材料 Vが Dy、 Tbであるとき、一般の真空装置でよく用いられる Al Oを
2 3 用いると、蒸気雰囲気中の Dy、 Tbと Al Oが反応してその表面に反応生成物を形
2 3
成すると共に、 A1原子が Dyや Tbの蒸気雰囲気中に侵入する虞がある。このため、 箱体 2を、例えば、 Mo、 W、 V、 Taまたはこれらの合金(希土類添加型 Mo合金、 Ti 添加型 Mo合金などを含む)や CaO、 Y O、或いは希土類酸化物から作製するか、
2 3
またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成して いる。また、処理室 20内で底面から所定の高さ位置には、例えば Mo製の複数本の 線材 (例えば Φ 0· ;!〜 10mm)を格子状に配置することで載置部 21aが形成され、こ の載置部 21aに複数個の焼結磁石 Sを並べて載置できるようになつている。他方、蒸 発材料 Vは、処理室 20の底面、側面または上面等に適宜配置される。
[0037] 蒸発材料 Vとしては、主相の結晶磁気異方性を大きく向上させる Dyや Tbが用いら れ、また、 Dy及び Tbの少なくとも一方を含有するフッ化物を用いることができる。また 、 Dyや Tbまたはこれらのフッ化物に、 Nd及び Prの少なくとも一方を含むものを用い てもよい。この場合、蒸発材料 Vは、所定の混合割合で配合し、例えばアーク溶解炉 を用いてバルタ状の合金を得て、処理室 20内に配置される。
[0038] さらに、蒸発材料 Vは、 Al、 Ag、 B、 Ba、 Be、 C、 Ca、 Ce、 Co、 Cr、 Cs、 Cu、 Er、 E u、 Fe、 Ga、 Gd、 Ge、 Hf、 Ho, In, K、 La, Li、 Lu、 Mg、 Mn、 Mo、 Na, Nb、 Ni、 P、 Pd、 Ru、 S、 Sb、 Si、 Sm、 Sn、 Sr、 Ta、 Ti、 Tm、 V、 W、 Y、 Yb、 Zn及び Zrの中 力、ら選択された少なくとも 1種をさらに含むものであってもよい。
[0039] 真空チャンバ 12にはまた、加熱手段 3が設けられている。加熱手段 3は、箱体 2と同 様に Dy、 Tb等の蒸発材料 Vと反応しない材料製であり、例えば、箱体 2の周囲を囲 うように設けられ、内側に反射面を備えた Mo製の断熱材と、その内側に配置され、 Mo製のフィラメントを有する電気加熱ヒータとから構成される。そして、減圧下で箱体 2を加熱手段 3で加熱し、箱体 2を介して間接的に処理室 20内を加熱することで、処 理室 20内を略均等に加熱できる。
[0040] 次に、上記真空蒸気処理装置 1を用いた永久磁石 Mの製造について説明する。先 ず、箱部 21の載置部 21aに上記方法で作製した焼結磁石 Sを載置すると共に、箱部 21の底面に蒸発材料 Vである Dyを設置する(これにより、処理室 20内で焼結磁石 S と蒸発材料が離間して配置される)。そして、箱部 21の開口した上面に蓋部 22を装 着した後、真空チャンバ 12内で加熱手段 3によって周囲を囲まれる所定位置に箱体 2を設置する(図 2参照)。そして、真空排気手段 11を介して真空チャンバ 12を所定 圧力(例えば、 l X 10_4Pa)に達するまで真空排気して減圧し、(処理室 20は略半桁 高い圧力まで真空排気される)、真空チャンバ 12が所定圧力に達すると、加熱手段 3 を作動させて処理室 20を加熱する。
[0041] 減圧下で処理室 20内の温度が所定温度に達すると、処理室 20の底面に設置した Dyが、処理室 20と略同温まで加熱されて蒸発を開始し、処理室 20内に Dy蒸気雰 囲気が形成される。 Dyが蒸発を開始した場合、焼結磁石 Sと Dyとを離間して配置し たため、溶けた Dyは、表面 Ndリッチ相が溶けた焼結磁石 Sに直接付着することはな い。そして、 Dy蒸気雰囲気中の Dy原子が、直接または衝突を繰返して複数の方向 から、 Dyと略同温まで加熱された焼結磁石 S表面に向力 て供給されて付着し、こ の付着した Dyが焼結磁石 Sの結晶粒界相に拡散されて永久磁石 Mが得られる。
[0042] ところで、図 3に示すように、 Dy層(薄膜) L1が形成されるように、 Dy蒸気雰囲気中 の Dy原子が焼結磁石 Sの表面に供給されると、焼結磁石 S表面で付着して堆積した Dyが再結晶したとき、永久磁石 M表面を著しく劣化させ (表面粗さが悪くなる)、また 、処理中に略同温まで加熱されている焼結磁石 S表面に付着して堆積した Dyが溶 解して焼結磁石 S表面に近い領域 R1における粒界内に過剰に拡散し、磁気特性を 効果的に向上または回復させることができない。
[0043] つまり、焼結磁石 S表面に Dyの薄膜が一度形成されると、薄膜に隣接した焼結磁 石表面 Sの平均組成は Dyリッチ組成となり、 Dyリッチ組成になると、液相温度が下が り、焼結磁石 S表面が溶けるようになる(即ち、主相が溶けて液相の量が増加する)。 その結果、焼結磁石 S表面付近が溶けて崩れ、凹凸が増加することとなる。その上、 Dyが多量の液相と共に結晶粒内に過剰に侵入し、磁気特性を示す最大エネルギー 積及び残留磁束密度がさらに低下する。
[0044] 本実施の形態では、焼結磁石の;!〜 10重量%の割合で、単位体積当たりの表面 積(比表面積)が小さ V、バルタ状(略球状)の Dyを処理室 20の底面に配置し、一定 温度下における蒸発量を減少させるようにした。それに加えて、蒸発材料 Vが Dyで あるとき、加熱手段 3を制御して処理室 20内の温度を 800°C〜; 1050°C、好ましくは 9 00°C〜; 1000°Cの範囲に設定することとした(例えば、処理室内温度が 900°C〜; 10 00°Cのとき、 Dyの飽和蒸気圧は約 1 X 10_2〜1 X 10_ &となる)。
[0045] 処理室 20内の温度(ひいては、焼結磁石 Sの加熱温度)が 800°Cより低いと、焼結 磁石 S表面に付着した Dy原子の結晶粒界層 の拡散速度が遅くなり、焼結磁石 S 表面に薄膜が形成される前に焼結磁石の結晶粒界相に拡散させて均一に行き渡ら せることができない。他方、 1050°Cを超えた温度では、 Dyの蒸気圧が高くなつて蒸 気雰囲気中の Dy原子が焼結磁石 S表面に過剰に供給される。また、 Dyが結晶粒内 に拡散する虞があり、 Dyが結晶粒内に拡散すると、結晶粒内の磁化を大きく下げる ため、最大エネルギー積及び残留磁束密度がさらに低下することになる。
[0046] 焼結磁石 S表面に Dyの薄膜が形成される前に Dyをその結晶粒界相に拡散させる ために、処理室 20の載置部 21aに設置した焼結磁石 Sの表面積の総和に対する処 理室 20の底面に設置したバルタ状の Dyの表面積の総和の比率が、 1 X 10_4〜2 X 103の範囲になるように設定する。 1 X 1CT4〜2 X 103の範囲以外の比率では、焼結 磁石 S表面に Dyや Tbの薄膜が形成される場合があり、また、高い磁気特性の永久 磁石が得られない。この場合、上記比率が 1 X 10_3から 1 X 103の範囲が好ましぐま た、上記比率が 1 X 10— 2から 1 X 102の範囲がより好ましい。
[0047] これにより、蒸気圧を低くすると共に Dyの蒸発量を減少させることで、焼結磁石 Sへ の Dy原子の供給量が抑制されることと、焼結磁石 Sの平均結晶粒径を所定範囲に 揃えつつ焼結磁石 Sを所定温度範囲で加熱することによって、焼結磁石内部に残る 残留炭素(の影響を受けずに拡散速度が早くなることとが相俟って、焼結磁石 S表面 に付着した Dy原子を、焼結磁石 S表面で堆積して Dy層(薄膜)を形成する前に焼結 磁石 Sの結晶粒界相に効率よく拡散させて均一に行き渡らせることができる(図 1参 照)。その結果、永久磁石 M表面が劣化することが防止され、また、焼結磁石表面に 近い領域の粒界内に Dyが過剰に拡散することが抑制され、結晶粒界相に Dyリッチ 相(Dyを 5〜80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみ Dyが 拡散することで、磁化および保磁力が効果的に向上し、その上、仕上げ加工が不要 な生産性に優れた永久磁石 Mが得られる。
[0048] ところで、図 4に示すように、上記焼結磁石を作製した後、ワイヤーカット等により所 望形状に加工すると、焼結磁石表面の主相である結晶粒にクラックが生じて磁気特 性が著しく劣化する場合があるが(図 4 (a)参照)、上記真空蒸気処理を施すと、表面 付近の結晶粒のクラックの内側に Dyリッチ相が形成されて(図 4 (b)参照)、磁化およ び保磁力が回復する。
[0049] また、従来のネオジム磁石では防鯖対策が必要になることから Coを添加していた 、 Ndと比較して極めて高い耐食性、耐候性を有する Dyのリッチ相が表面付近の 結晶粒のクラックの内側や結晶粒界相に存することで、 Coを用いることなぐ極めて 強い耐食性、耐候性を有する永久磁石となる。尚、焼結磁石の表面に付着した Dyを 拡散させる場合、焼結磁石 Sの結晶粒界に Coを含む金属間化合物がないため、焼 結磁石 S表面に付着した Dy、 Tbの金属原子はさらに効率よく拡散される。
[0050] 最後に、上記処理を所定時間(例えば、;!〜 72時間)だけ実施した後、加熱手段 3 の作動を停止させると共に、図示しないガス導入手段を介して処理室 20内に 10KP aの Arガスを導入し、蒸発材料 Vの蒸発を停止させ、処理室 20内の温度を例えば 50 0°Cまで一旦下げる。引き続き、加熱手段 3を再度作動させ、処理室 20内の温度を 4 50°C〜650°Cの範囲に設定し、一層保磁力を向上または回復させるために、永久 磁石の歪を除去する熱処理を施す。最後に、略室温まで急冷し、箱体 2を取り出す。
[0051] 尚、本実施の形態では、蒸発材料として Dyを用いるものを例として説明した力 拡 散速度を早くできる焼結磁石 Sの加熱温度範囲(900°C〜; 1000°Cの範囲)で、蒸気 圧が低い Tbを用いることができ、または Dy、 Tbの合金を用いてもよい。また、一定温 度下における蒸発量を減少させるために比表面積が小さいバルタ状の蒸発材料 Vを 用いることとした力 これに限定されるものではなぐ例えば、箱部 21内に断面凹状の 受皿を設置し、受皿内に顆粒状またはバルタ状の蒸発材料 Vを収納することで比表 面積を減少させるようにしてもよく、さらに、受皿に蒸発材料 Vを収納した後、複数の 開口を設けた蓋(図示せず)を装着するようにしてもょレ、。
[0052] また、本実施の形態では、処理室 20内に焼結磁石 Sと蒸発材料 Vとを配置したもの について説明した力 焼結磁石 Sと蒸発材料 Vとを異なる温度で加熱できるように、 例えば、真空チャンバ 12内に、処理室 20とは別個に蒸発室(他の処理室:図示せず )を設けると共に蒸発室を加熱する他の加熱手段を設け、蒸発室で蒸発材料を蒸発 させた後、処理室 20と蒸発室とを連通する連通路を介して、処理室 20内の焼結磁 石に、蒸気雰囲気中の蒸発材料 Vが供給されるようにしてもよい。
[0053] この場合、蒸発材料 Vが Dyである場合、蒸発室を 700°C〜; 1050°C (700°C〜; 105 0°Cのとき、 Dyの飽和蒸気圧は約 1 X 10_4〜1 X 10_ &になる)の範囲で加熱すれ ばよい。 700°Cより低い温度では、結晶粒界相に Dyが拡散されて均一に行き渡るよ うに、焼結磁石 S表面に Dyを供給できる蒸気圧に達しない。他方、蒸発材料 Vが Tb である場合、蒸発室を 900°C〜; 1150°Cの範囲で加熱すればよい。 900°Cより低い 温度では、焼結磁石 S表面に Tb原子を供給できる蒸気圧に達しない。他方、 1150 °Cを超えた温度では、 Tbが結晶粒内に拡散してしまい、最大エネルギー積及び残 留磁束密度を低下させる。
[0054] また、本実施の形態では、高い生産性を達成するため、真空蒸気処理する場合に ついて説明した力 S、公知の蒸着装置やスパッタリング装置を用いて焼結磁石表面に Dyや Tbを付着させ(第一工程)、次いで、熱処理炉を用いて表面に付着した Dyや T bを焼結磁石の結晶粒界相に拡散させる拡散処理を施して(第二工程)、永久磁石を 得るものについても、本発明を適用でき、高磁気特性の永久磁石 Mが得られる。
[0055] また、 Dyや Tbを結晶粒界相に拡散させる前に焼結磁石 S表面に吸着した汚れ、ガ スゃ水分を除去するために、真空排気手段 11を介して真空チャンバ 12を所定圧力( 例えば、 1 X 10— 5Pa)まで減圧し、処理室 20が真空チャンバ 12より略半桁高い圧力 (例えば、 5 X 10_4Pa)まで減圧した後、所定時間保持するようにしてもよい。その際 、加熱手段 3を作動させて処理室 20内を例えば 100°Cに加熱し、所定時間保持する ようにしてもよい。
[0056] 他方、真空チャンバ 12内で、 Arまたは Heプラズマを発生させる公知構造のプラズ マ発生装置(図示せず)を設け、真空チャンバ 12内での処理に先だってプラズマに よる焼結磁石 S表面のクリーニングの前処理が行われるようにしてもよい。同一の処 理室 20内に焼結磁石 Sと蒸発材料 Vとを配置する場合、公知の搬送ロボットを真空 チャンバ 12内に設置し、真空チャンバ 12内で蓋部 22をタリ一ユング終了後に装着 するようにすればよい。
[0057] さらに、本実施の形態では、箱部 21の上面に蓋部 22を装着して箱体 2を構成する ものにつ!/、て説明したが、真空チャンバ 12と隔絶されかつ真空チャンバ 12を減圧す るのに伴って処理室 20が減圧されるものであれば、これに限定されるものではなぐ 例えば、箱部 21に焼結磁石 Sを収納した後、その上面開口を例えば Mo製の箔で覆 うようにしてもよい。他方、例えば、真空チャンバ 12内で処理室 20を密閉できるように し、真空チャンバ 12とは独立して所定圧力に保持できるように構成してもよい。
[0058] 尚、焼結磁石 Sとしては、酸素含有量が少な!/、程、 Dyや Tbの結晶粒界相への拡 散速度が早くなるため、焼結磁石 S自体の酸素含有量が 3000ppm以下、好ましくは 2000ppm以下、より好ましくは lOOOppm以下であればよい。
実施例 1
[0059] Nd— Fe— B系の焼結磁石として、組成が 20Nd— 5Pr— 2Dy— IB— ICo— 0· 2 Al-0. 05Cu-0. lNb-0. IMo-bal. Feのものを用い、 5 X 40 X 40mmの直 方体形状に加工した。この場合、 Fe、 Nd、 Pr、 Dy、 B、 Co、 Al、 Cu、 Nb及び Moを 上記組成比で配合して、公知の遠心铸造法により 30mmの合金を作製し、公知の水 素粉砕工程により一旦粗粉砕し、弓 Iき続き、ジェットミル微粉砕工程により微粉砕して 合金原料粉末を得た。
[0060] 次!/、で、この合金原料粉末に、脂肪酸系化合物潤滑剤及び脂肪酸金属塩潤滑剤 の混合物を 0. 05wt%の混合割合で添加して攪拌した後、公知の一軸加圧式の圧 縮成形機のキヤビティに充填し、磁界中で所定形状に成形した後(成形工程)、この 成形体を公知の焼結炉内に収納し、所定の条件過下で焼結させた(焼結工程)。こ の場合、成形工程及び焼結工程を最適化し、平均結晶粒径が 2 ^ m-lO ^ mの範 囲で、酸素含有量力 ^OOppmとなるように焼結磁石 Sを得た。尚、焼結磁石の平均結 晶粒径は、焼結磁石の磁場配向方向に対し垂直な面をエッチングした後、顕微鏡組 成写真にランダムな線を 10本引き、線分法で求めた。
[0061] 次に、上記真空蒸気処理装置 1を用い、上記真空蒸気処理によって永久磁石 Mを 得た。この場合、 Mo製の箱体 2内で載置部 21a上に 100個の焼結磁石 Sを等間隔 で配置することとした。また、蒸発材料として純度 99. 9%のバルタ状 Dyを用い、 10g の総量で処理室 20の底面に配置した。次いで、真空排気手段を作動させて真空チ ヤンバを 1 X 10_4Paまで一旦減圧する(処理室内の圧力は 5 X 10_3Pa)と共に、カロ 熱手段 3による処理室 20の加熱温度を 950°Cに設定した。そして、処理室 20の温度 力 S950°Cに達した後、この状態で;!〜 72時間、上記真空蒸気処理を行い、次いで、 永久磁石の歪を除去する熱処理を行った。この場合、熱処理温度を 400°C、処理時 間を 90分に設定した。そして、最も高い磁気特性が得られる最適真空蒸気処理時間 (つまり、 Dyの最適拡散時間)を求めた。
[0062] 図 5は、上記条件で永久磁石を得たときの磁気特性を平均値で示す表である。これ によれば、平均結晶粒径が 3 m以下か、または、 9 m以上であると、最も高い磁 気特性が得られる最適真空蒸気処理時間は、 8時間以上となり、生産性が悪ぐまた 、平均結晶粒径が 9 m以上であると、保磁力を効果的に向上できないことが判る。 それに対して、焼結磁石の平均結晶粒径が 4〜8 111であるとき、最適真空蒸気処 理時間が 4〜6時間であり、また、最大エネルギー積が 51MG0e以上、残留磁束密 度が 14. 5kG以上、かつ保磁力が約 30k0eである高磁気特性の永久磁石が得られ たことが判る。
図面の簡単な説明
[0063] [図 1]本発明で作製した永久磁石の断面を模式的に説明する図。
[図 2]本発明の処理を実施する真空処理装置を概略的に示す図。
[図 3]従来技術により作製した永久磁石の断面を模式的に説明する図。
[図 4] (a)は、焼結磁石表面の加工劣化を説明する図。 (b)は、本発明の実施により 作製した永久磁石の表面状態を説明する図。
[図 5]実施例 1で作製した永久磁石の磁気特性と最適真空蒸気処理時間を示す表。 符号の説明
[0064] 1 真空蒸気処理装置
12 真空チャンバ
20 処理室
21 箱体
22 蓋体
3 加熱手段
S 焼結磁石
M 永久磁石
V 蒸発材料

Claims

請求の範囲
[1] 潤滑剤を含む鉄 ホウ素 希土類系の合金原料粉末を焼結してなる焼結磁石の表 面の少なくとも一部に、 Dy、 Tbの少なくとも一方を付着させる第一工程と、所定温度 下で熱処理を施して焼結磁石の表面に付着した Dy、 Tbの少なくとも一方を焼結磁 石の結晶粒界相に拡散させる第二工程とを含む永久磁石の製造方法において、前 記焼結磁石として、その平均結晶粒径が 4 m〜8 a mの範囲に作製したものを用い たことを特徴とする永久磁石の製造方法。
[2] 前記焼結磁石を処理室に配置して加熱すると共に、同一または他の処理室に配置 した Dy、 Tbの少なくとも一方を含有する蒸発材料を加熱して蒸発させ、この蒸発した 蒸発材料を、焼結磁石表面 の供給量を調節して付着させ、この付着した蒸発材料 の Dy、 Tbを、焼結磁石表面に蒸発材料からなる薄膜が形成される前に焼結磁石の 結晶粒界相に拡散させ、前記第一工程及び第二工程を行うことを特徴とする請求項 1記載の永久磁石の製造方法。
[3] 前記焼結磁石と蒸発材料とを離間して配置したことを特徴とする請求項 2記載の永 久磁石の製造方法。
[4] 前記処理室内に配置される前記蒸発材料の比表面積を変化させて一定温度下にお ける蒸発量を増減し、前記供給量を調節することを特徴とする請求項 2または請求項
3記載の永久磁石の製造方法。
[5] 前記焼結磁石を収納した処理室の加熱に先立って、処理室内を所定圧力に減圧し て保持することを特徴とする請求項 2乃至請求項 4のいずれかに記載の永久磁石の 製造方法。
[6] 前記処理室を所定圧力に減圧した後、処理室内を所定温度に加熱して保持すること を特徴とする請求項 5記載の永久磁石の製造方法。
[7] 前記焼結磁石を収納した処理室の加熱に先立って、プラズマによる前記焼結磁石表 面のクリーニングを行うことを特徴とする請求項 2乃至請求項 6のいずれかに記載の 永久磁石の製造方法。
[8] 前記焼結磁石の結晶粒界相に前記金属原子を拡散させた後、前記温度より低い所 定温度で永久磁石の歪を除去する熱処理を施すことを特徴とする請求項 2乃至請求 項 7の 、ずれかに記載の永久磁石の製造方法。
潤滑剤を含む鉄 ホウ素 希土類系の合金原料粉末を焼結し、その平均結晶粒径 が 4 H m〜8 11 mの範囲に作製した焼結磁石を用い、この焼結磁石の表面の少なくと も一部に、 Dy、 Tbの少なくとも一方を付着させ、所定温度下で熱処理を施して焼結 磁石の表面に付着した Dy、 Tbの少なくとも一方を焼結磁石の結晶粒界相に拡散さ せてなることを特徴とする永久磁石。
PCT/JP2007/074407 2006-12-21 2007-12-19 永久磁石及び永久磁石の製造方法 WO2008075712A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008550167A JP5328369B2 (ja) 2006-12-21 2007-12-19 永久磁石及び永久磁石の製造方法
DE112007003091T DE112007003091T5 (de) 2006-12-21 2007-12-19 Permanetmagnet und Verfahren zu dessen Herstellung
CN2007800473817A CN101563738B (zh) 2006-12-21 2007-12-19 永磁铁及永磁铁的制造方法
KR1020097013015A KR101390443B1 (ko) 2006-12-21 2007-12-19 영구자석 및 영구자석의 제조방법
US12/519,891 US8157926B2 (en) 2006-12-21 2007-12-19 Permanent magnet and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006344782 2006-12-21
JP2006-344782 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008075712A1 true WO2008075712A1 (ja) 2008-06-26

Family

ID=39536339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074407 WO2008075712A1 (ja) 2006-12-21 2007-12-19 永久磁石及び永久磁石の製造方法

Country Status (9)

Country Link
US (1) US8157926B2 (ja)
JP (1) JP5328369B2 (ja)
KR (1) KR101390443B1 (ja)
CN (1) CN101563738B (ja)
DE (1) DE112007003091T5 (ja)
RU (1) RU2454298C2 (ja)
SG (1) SG177916A1 (ja)
TW (1) TWI431648B (ja)
WO (1) WO2008075712A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508370A (ja) * 2018-12-29 2022-01-19 三環瓦克華(北京)磁性器件有限公司 メッキ装置とメッキ方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082538B2 (en) * 2008-12-01 2015-07-14 Zhejiang University Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications
WO2017077830A1 (ja) * 2015-11-02 2017-05-11 日産自動車株式会社 Nd-Fe-B系磁石の粒界改質方法、および当該方法により処理された粒界改質体
CN110444386B (zh) * 2019-08-16 2021-09-03 包头天和磁材科技股份有限公司 烧结体、烧结永磁体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175138A (ja) * 2003-12-10 2005-06-30 Japan Science & Technology Agency 耐熱性希土類磁石及びその製造方法
WO2006100968A1 (ja) * 2005-03-18 2006-09-28 Ulvac, Inc. 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
JP2006303433A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279406A (ja) * 1995-04-06 1996-10-22 Hitachi Metals Ltd R−tm−b系永久磁石およびその製造方法
JP2001192705A (ja) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd 希土類合金粉末の成形体製造方法、成形装置および希土類磁石
RU2180142C2 (ru) * 2000-01-12 2002-02-27 ОАО Научно-производственное объединение "Магнетон" Способ изготовления постоянных магнитов с высокой антикоррозионной стойкостью
JP3422490B1 (ja) * 2001-06-29 2003-06-30 ティーディーケイ株式会社 希土類永久磁石
JP4353402B2 (ja) 2002-03-27 2009-10-28 Tdk株式会社 希土類永久磁石の製造方法
CN1217348C (zh) * 2002-04-19 2005-08-31 昭和电工株式会社 在r-t-b系烧结磁铁的制造中使用的合金和r-t-b系烧结磁铁的制造方法
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
US7618497B2 (en) * 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
US8211327B2 (en) * 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
MY142088A (en) 2005-03-23 2010-09-15 Shinetsu Chemical Co Rare earth permanent magnet
US20070089806A1 (en) * 2005-10-21 2007-04-26 Rolf Blank Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
JP4811143B2 (ja) * 2006-06-08 2011-11-09 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
WO2008023731A1 (en) * 2006-08-23 2008-02-28 Ulvac, Inc. Permanent magnet and process for producing the same
JP4840606B2 (ja) * 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175138A (ja) * 2003-12-10 2005-06-30 Japan Science & Technology Agency 耐熱性希土類磁石及びその製造方法
WO2006100968A1 (ja) * 2005-03-18 2006-09-28 Ulvac, Inc. 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
JP2006303433A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508370A (ja) * 2018-12-29 2022-01-19 三環瓦克華(北京)磁性器件有限公司 メッキ装置とメッキ方法
JP7054761B2 (ja) 2018-12-29 2022-04-14 三環瓦克華(北京)磁性器件有限公司 メッキ装置とメッキ方法
US11920236B2 (en) 2018-12-29 2024-03-05 Sanvac (Beijing) Magnetics Co., Ltd. Coating machine and coating method

Also Published As

Publication number Publication date
CN101563738B (zh) 2012-05-09
RU2009128022A (ru) 2011-01-27
JPWO2008075712A1 (ja) 2010-04-15
JP5328369B2 (ja) 2013-10-30
US20100051139A1 (en) 2010-03-04
DE112007003091T5 (de) 2009-11-05
US8157926B2 (en) 2012-04-17
KR20090091310A (ko) 2009-08-27
CN101563738A (zh) 2009-10-21
RU2454298C2 (ru) 2012-06-27
TW200849296A (en) 2008-12-16
TWI431648B (zh) 2014-03-21
SG177916A1 (en) 2012-02-28
KR101390443B1 (ko) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5205277B2 (ja) 永久磁石及び永久磁石の製造方法
JP5247717B2 (ja) 永久磁石の製造方法及び永久磁石
TWI433172B (zh) Method for manufacturing permanent magnets and permanent magnets
JP5277179B2 (ja) 永久磁石の製造方法及び永久磁石
WO2007102391A1 (ja) R-Fe-B系希土類焼結磁石およびその製造方法
JP5275043B2 (ja) 永久磁石及び永久磁石の製造方法
JPWO2009104632A1 (ja) スクラップ磁石の再生方法
JP2011035001A (ja) 永久磁石の製造方法
JP5205278B2 (ja) 永久磁石及び永久磁石の製造方法
JP5064930B2 (ja) 永久磁石及び永久磁石の製造方法
JP5328369B2 (ja) 永久磁石及び永久磁石の製造方法
JP4999661B2 (ja) 永久磁石の製造方法
JP4860491B2 (ja) 永久磁石及び永久磁石の製造方法
JP2010245392A (ja) ネオジウム鉄ボロン系の焼結磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780047381.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550167

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12009501223

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1020097013015

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120070030917

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12519891

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009128022

Country of ref document: RU

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112007003091

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07850877

Country of ref document: EP

Kind code of ref document: A1