WO2008074909A1 - Método de identificación de especies de la superfamilia penaeoidea mediante análisis de adn - Google Patents

Método de identificación de especies de la superfamilia penaeoidea mediante análisis de adn Download PDF

Info

Publication number
WO2008074909A1
WO2008074909A1 PCT/ES2007/070212 ES2007070212W WO2008074909A1 WO 2008074909 A1 WO2008074909 A1 WO 2008074909A1 ES 2007070212 W ES2007070212 W ES 2007070212W WO 2008074909 A1 WO2008074909 A1 WO 2008074909A1
Authority
WO
WIPO (PCT)
Prior art keywords
species
identification
seq
dna
faríantepenaeus
Prior art date
Application number
PCT/ES2007/070212
Other languages
English (en)
French (fr)
Inventor
Pilar Calo Mata
Ananías PASCOAL CUMBANE
Marta PRADO RODRÍGUEZ
Alberto CEPEDA SAÉZ
Jorge BARROS VELÁZQUEZ
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2008074909A1 publication Critical patent/WO2008074909A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]

Definitions

  • the present invention relates to a method of identifying species of the Penaeoidea superfamily by DNA analysis.
  • This method describes the process of obtaining new specific primers by amplifying the regions of the DNA corresponding to the COI-COII and 16S rRNA genes by PCR using universal primers and the subsequent alignment of the sequences obtained, in order to find sequences preserved in the different species of peptides that could serve as primers.
  • the amplified products were digested separately with the restriction enzymes Alu ⁇ , Ssp ⁇ and Vsp ⁇ and subsequently electrophoresis. Band patterns were obtained for the identification of the P. monodon, P. semisulcatus, L vannamei, F.
  • the authors provide a method of identifying shrimp capable of identifying at least 24 species belonging to the Penaeoid superfamily by previously isolated DNA analysis.
  • the correct identification of commercial species is achieved by means of a reliable method, which meets a series of requirements, among which the following are noteworthy: which allows Ia Identification of a large number of species within the same family is reliable, minimizes the margin of confusion, being both simple and reproducible.
  • this method uses markers that can be followed throughout the product's useful life, in order to guarantee its traceability.
  • nucleotide sequences that are going to be used in the identification tests of species belonging to the Penaeoid superfamily are identified and the primers that are necessary for the implementation of traceability systems are developed.
  • the present invention is about a method of identifying species belonging to the Penaeoidea superfamily whose fundamental aspects are:
  • the sequence amplified in the present invention is comprised between SEQ ID N 0 1 and SEQ ID N 0 2.
  • nucleotide sequences that can be amplified by the use of primers and that are included between SEQ ID N 0 1 and SEQ ID N 0 2 or between sequences with an identity degree of at least 90% with SEQ ID No. 1 and SEQ ID No. 0 , and its complementary sequences, as nucleotide sequences of the invention.
  • the primers used for the amplification of the nucleotide sequences of the invention are a direct primer comprising the SEQ ID N 0 3 (16S CRUC3), and a reverse primer comprising the SEQ ID N 0 4 (16S CRUC4 ).
  • primers of the invention allow the amplification of all the species that can usually be found in the market and from now on we will refer to them as primers of the invention.
  • amplified nucleotide sequences are selected from any of the sequences SEQ ID N 0 7 to SEQ ID N 0 33
  • Another preferred embodiment of the invention is the amplification of the nucleotide sequences of the invention by PCR.
  • the banding temperature varies between 51 0 C and 55 0 C, due to the interspecific variability presented by the sequences managed for the different prawns.
  • the detection and identification of the fragments is carried out by electrophoresis.
  • the identification of the species is carried out by comparison of the size patterns of restriction fragments obtained, with those reflected in Table 1.
  • the present method makes it possible to identify at least any of the species in the following list: Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus, Litopenaeus vannamei, Litopenaeus stylirostr ⁇ s, Far ⁇ antepenaeus brevirostr ⁇ s, Far ⁇ antepenaeus brasiliensis, Far ⁇ antepenteentepenteentepenteenteapepenteenteenteapepenteenteantepenteeus, Fariantepenteenteapepeusus, Fariantepenteenteapepeusus, Fariantepenteenteapepeusus, Fariantepenteentepenteeus, Fariantepenteenteapepeusus Fariantepenaeus californiensis, Fenneropenaeus indicus, Fenneropenaeus merguiensis, Fenneropenaeus sp.
  • Penaeoidea superfamily capable of being identified by the method of the present invention would be within the embodiments of the present invention.
  • the restriction enzyme Alu ⁇ by means of the digestion of the nucleotide sequences of the invention, generates band patterns that allow differentiating at least any of the species mentioned below: Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus, Litopenaeus stylirostr ⁇ s, Far ⁇ antepenaeus brasiliensis, Fariantepenaeus notialis, Fenneropenaeus indicus, Marsupenaeus japonicus, Melicer ⁇ us latisulcatus, Melicer ⁇ us sp. 30, Metapenaeus sp. 21, Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus mueller ⁇ and Ar ⁇ steomorpha foliácea.
  • Hintt restriction enzyme in the method of the present invention allows the identification of at least any of the following species: Farfantepenaeus brevirostr ⁇ s, Farfantepenaeus aztecus and Farfantepenaeus californiensis.
  • Hinf ⁇ restriction enzyme in the method of the present invention allows the identification of at least any of the following species: Metapenaeus sp. 9 and Parapenaeus longirostris.
  • restriction enzymes used in the present invention avoid cutting areas that have intraspecific variability, which contributes to minimizing the margin of confusion between different species.
  • the nucleotide sequences of the invention are characterized by having variable sizes in very close species.
  • the size that these amplified sequences have, on the one hand facilitates their amplification and on the other hand allows the analysis and identification in processed products where the DNA is partially degraded.
  • this size is between 515 and 535 bp approximately.
  • nucleotide sequence means any nucleotide polymer composed of two or more subunits that are deoxyribonucleotides or ribonucleotides, linked together by phosphodiester bridges.
  • the "nucleotide sequences” include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), oligonucleotides, and fragments generated by polymerase chain reaction (PCR), or by other methods that include but are not limited to ligation, excision, action of endonucleases and exonuclease action.
  • nucleotide is meant a monomeric unit of DNA or RNA that contains a sugar moiety (pentose), a phosphate and a nitrogenous heterocyclic base.
  • the four DNA bases are adenine ("A”), guanine (“G”), cytosine ("C”) and thymine (“T”).
  • the four bases of RNA are A, G, C and uracil ("U”).
  • isolated nucleotide sequence is meant a nucleic acid molecule that is not integrated into the genomic DNA of an organism.
  • Said nucleic acid molecule can be separated from the genomic DNA of a cell, it can be produced using recombinant DNA technology (eg, PCR amplification, cloning, etc.), or it can be chemically synthesized.
  • the isolated nucleic acid molecule can be obtained from its natural source as a complete gene or a part thereof capable of forming a stable hybrid with that gene.
  • the nucleic acid molecule can be single stranded or double stranded.
  • restriction enzymes endonuclease enzymes that cut the phosphodiester bonds of the genetic material from a sequence they recognize (restriction target).
  • the restriction targets they have between 4 and 12 base pairs and are palindromic. These enzymes allow cutting double stranded DNA by breaking 2 phosphodiester bonds in the double strand and giving rise to two ends of the DNA, which can be Romos or Cohesive / staggered.
  • PCR Polymerase Chain Reaction
  • PCR Polymerase Chain Reaction
  • electrophoretic is understood as a technique for the separation of molecules (proteins or nucleic acids) on the basis of their molecular size, conformation, the size of the pores of the gel or the magnitude of the net charge of the molecule and electric charge
  • an agarose or polyacrylamide gel is used.
  • the charged molecules are forced to go through a matrix due to an electric current flow.
  • they When exposing the mixture of molecules to an electric field, they will move and must pass through the gel, so that the small ones will move better, faster. Thus, the smallest will advance further and the largest will be close to the place of departure.
  • Fragments generated from a DNA molecule by cutting with restriction enzymes can be separated based on their size using an electrophoresis gel.
  • the DNA fragments will migrate in an inversely proportional way to the logarithm of their molecular size or weight.
  • the movement of the DNA fragments generates a "band pattern", where each band corresponds to a fragment of a particular size.
  • the size of each fragment can be determined using a DNA marker whose fragments have known molecular weights. This marker serves as a control and will migrate parallel to the DNA bands we wish to analyze.
  • A) Cell lysis phase The muscle was cut into small pieces so that the lysis was more efficient. 250 mg were weighed. of sample in a 1.5 ml microcentrifuge tube and 180 ⁇ l of ATL buffer and 20 ⁇ l of proteinase K were added. The microcentrifuge tube (Mixtub Raypa) was vigorously shaken and incubated in the thermomixer
  • the samples that had completed the lysis were transferred to a membrane (DNasy Mini Spin column) in a 2 ml collecting tube.
  • the sample was centrifuged in a microcentrifuge (model 5415 D,
  • the DNeasy Mini Spin Column was transferred to a 1.5-2 ml collecting tube, and 100-200 ⁇ l of AE buffer was added directly onto the DNeasy membrane. It was incubated at temperature ambient for 1 minute and then centrifuged at 8,000 rpm for 1 minute. The DNeasy Mini Spin column was discarded and the extract of the purified DNA obtained was recovered.
  • the extracted DNA was quantified by fluorimetry using the method of Downs and Wilfinger (Downs and Wilfinger, 1983) and a fluorometer LS 50 (Perkin Elmer-fluorometer, Applied Biosystems, Foster City, CA) by determining the fluorescence obtained by mixing a known volume of the DNA extract with the Hoechst 33258 reagent (The Sigma Chemical Co., St. Louis, MO), composed of 1 bis-benzimide, which is sandwiched between the DNA molecules.
  • the excitation wavelength of this molecule is in the near ultraviolet (350 nm) while the emission wavelength is in the blue region (450 nm).
  • the sensitivity of the assay with Hoechst 33258 (Sigma) is approximately 5 ng / ml.
  • the measurements were carried out on an LS 50 fluorometer (Perkin Elmer).
  • composition of the TNE 10X is the following: • 12.11 g of Tris; (hydroxymethyl) aminomethane (Merck)
  • the DNA concentration of each sample 4 ⁇ l of each sample of DNA extracted was taken, the TNE Hoechst 33258 buffer (0.2 M NaCI, 10 mM Tris-HCI, 1 mM EDTA, pH 7.4) was added for a total volume of 2000 ⁇ l in the cuvette. The Hoechst-TNE solution and the DNA were mixed in order to measure the intensity of each sample.
  • Example 2 Design of specific primers and amplification of the regions of interest
  • the mitochondrial DNA area of interest was amplified.
  • oligonucleotides were searched in the 16S rRNA, tRNA Val and 12S rRNA regions.
  • the primers were designed based on published complete sequence alignments of the order Decapoda, looking for conserved areas of the 16S rRNA gene.
  • the 16S CRUF oligonucleotides (SEQ ID N 0 5) and 16S CRUR (SEQ ID N 0 6) were selected as primers, which fell in the 16S rRNA and tRNA Val regions, respectively.
  • the primers were designed based on these oligonucleotides using the PrimerExpress program of Applied Biosystems.
  • the selected conditions were: • the reaction mixture with MgCb was supplemented at a final concentration of 2.0 mM
  • the banding temperature varied between 51 0 C and 55 0 C, due to the interspecific variability exhibited by the sequences managed for the different shrimp.
  • the products obtained in the PCR were processed, with a view to detecting the presence of DNA, by means of 2.5% horizontal agarose gel electrophoresis in TAE 1X buffer (Tr ⁇ s-acetate-EDTA) with 0.5 ⁇ g / ml of ethidium bromide (Merck, Darmstadt, Germany). 5 ⁇ L of each sample mixed with 3-4 ⁇ l of loading buffer was loaded on the gel. The electrophoresis conditions were: 1 hour at 100 V. The visualization of the amplified fragments, or amplicons, was performed in an ultraviolet light transilluminator (254 nm).
  • the determination of the size of the amplification products produced by the PCR was carried out in the same gel, by means of the comparison with the weight marker EZ Load 100 bp Molecular Ruler (Sigma), analyzed in parallel with the samples.
  • This weight pattern has 10 DNA fragments with the following sizes: 1000, 900, 800, 700, 600, 500, 400, 300, 200 and 100 bp.
  • the amplified PCR products were purified by means of the ExoSAP-IT kit (GE Healthcare - Amersham Biosciences) in order to eliminate components of the reaction (primers, dNTPs, salts, etc.) that could interfere with the sequencing reaction.
  • Direct sequencing of the purified amplicons was performed using the commercial method BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). To carry out the sequencing reactions, the same PCR primers were used, sequencing in both directions of the DNA strands being performed in order to be able to compare both strands and thus be able to have more information about the sample sequences of prawns.
  • sequences obtained were analyzed by chromatography.
  • the chromatograms of the sequenced samples were visualized using the CHROMAS Version 1.45 bioinformatic program (Technelysium Pty, Tewantin, Australia), which allows editing the nucleotide sequences and copying them in FASTA format.
  • the sequences in FASTA format were aligned with the ClustalX 1.83 program (Thompson et al., 1997). Subsequently, the phylogenetic analysis of the aligned sequences was performed. The phylogenetic trees were obtained using the Neighbor-Joining algorithm applying the Kimura two-parameter model in the MEGA 3.1 program (Kumar and col., 2004). To assess the statistical support of the topology obtained, a Bootstrap resampling test was performed with 1,000 replications.
  • genotypes were based on the phylogenetic relationship with respect to samples used as a reference, whose phenotypes were previously determined by morphological analysis of the external characters.
  • the design of new primers was carried out in order to obtain primers in a conserved area, and that amplify a fragment of shorter DNA. This shorter fragment is very useful for the identification of processed products, since when subjected to high temperatures, the DNA is partially degraded.
  • 16S CRUC3 (SEQ ID N 0 3) and 16S CRUC4 (SEQ ID N 0 4) it was possible to amplify the DNA extracted from all the samples used for this study. With these amplifications the subsequent digestion with the restriction enzymes used in this invention was carried out.
  • the new primers specific for prawns of the Penaeoidea superfamily amplify a fragment of approximately 515 bp and 535 bp of the 16S rRNA gene and part of the Val tRNA, both belonging to mitochondrial DNA.
  • Example 3 Obtaining characteristic band patterns Once the DNA was purified as set forth in example 1, the 16S CRUC3 and 16S CRUC4 specific primers, the mitochondrial DNA area of interest, were amplified with the new specific primers.
  • reaction mixture with MgCl to a final concentration of 2.0 mM, denatured at 94 0 C for 90 seconds, and subjected to 35 cycles (94 0 C for 20 seconds, 51-55 0 C for 20 s, 72 0 C for 30 seconds), with a final extension at 72 0 C for 15 minutes.
  • the banding temperature varied between 51 0 C and 55 0 C, due to the interspecific variability exhibited by the sequences managed for the landed prawns.
  • restriction enzymes were carried out by searching for restriction sites in the DNA sequences that had been aligned and edited in FASTA format. Using the bioinformatic program Restrictionmapper version 3, enzymes were selected that allowed the differentiation of commercial shrimp species.
  • the restriction enzymes selected were Alu ⁇ , Taq ⁇ and Hinfl.
  • the amplified fragments were digested separately with each of the restriction enzymes Al u ⁇ , Taq ⁇ and Hinf ⁇ .
  • the reaction conditions were: 1. 2 ⁇ l of the restriction enzyme
  • the samples were shaken and centrifuged for a few seconds and incubated for 1-2 hours at 37 ° C.
  • the visualization of the restriction fragments was carried out by 2.5% agarose gel electrophoresis or by electrophoresis in polyacrylamide analytical gels (15% ExcelGel Homogeneous SDS-PAGE, Amersham Biosciences, Uppsala, Sweden), following the protocol that Indicates the method.
  • the gels were processed at 15 0 C in a Multiphor Il electrophoresis cuvette equipped with a MultiTemp III cryostat, using commercial anodes and cathodes (ExcelGel Buffer Strips, Amersham Biosciences).
  • the conditions under which the electrophoresis was carried out were 600V / 30 mA / 30 W for 140 min.
  • the fragments were visualized according to the silver staining protocol (Amersham Biosciences).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere a un método de identificación de especies de Ia superfamilia Penaeoidea mediante análisis de ADN que comprende: A. Extracción y aislamiento del ADN a partir de una muestra biológica o alimentaria. B. La posterior amplificación mediante el uso de cebadores de cualquier secuencia nucleotídica aislada y su complementaria, del ADN aislado en el paso anterior, caracterizada por estar comprendida entre secuencias nucleotídicas con al menos un 90 % de identidad con SEQ ID N° 1 y SEQ ID N° 2 C. Digestión de Ia secuencia nucleotídica amplificada mediante los enzimas de restricción AIuI, Taql o Hinfl D. Detección de los fragmentos obtenidos en el paso anterior E. Identificación de las especies por comparación de los fragmentos detectados en el paso anterior con el patrón de fragmentos característico de cada especie

Description

Método de identificación de especies de Ia superfamilia Penaeoidea mediante análisis de ADN.
Campo de Ia Técnica
La presente invención se refiere a un método de identificación de especies de Ia superfamilia Penaeoidea mediante análisis de ADN.
Estado de Ia Técnica
Diversos países, entre ellos los países integrantes de Ia Unión Europea, destacan entre sus objetivos prioritarios lograr Ia transparencia en los mercados pesqueros y ofrecer al consumidor información fiable sobre los productos que va a consumir. Este hecho resulta fundamental en un mercado cada vez más globalizado donde se pueden encontrar varias especies distintas bajo una misma denominación. Este es el caso concreto de las especies pertenecientes a Ia superfamilia Penaeoidea. La incorrecta catalogación, debida a que, entre otras cosas, especies de origen y características muy diversas no son adecuadamente identificadas, puede ocasionar problemas de sustituciones que afectarían tanto al etiquetado como a Ia actividad comercial del sector y al propio consumidor.
En el mercado existe una notable heterogeneidad de las especies y géneros que constituyen los principales "nombres comerciales" de langostinos peneidos. Cabe destacar que bajo los términos "langostino banana", "langostino blanco" o "langostino tigre" se encuadran distintas especies de peneidos e incluso distintos géneros. Otro ejemplo es Ia cada vez más frecuente comercialización de gamba pelada donde se engloban diversas especies de langostinos cuya diferenciación en base a criterios morfológicos es complicada. Estos ejemplos ilustran Ia importancia de Ia correcta identificación de estas especies marinas tanto de origen pesquero como procedentes de Ia acuicultura.
Sin embargo, Ia situación actual es de carencia de métodos fiables de identificación de especies de crustáceos pertenecientes al Orden Decapoda, que engloba a las principales especies de langostinos y gambones.
Se han realizado con anterioridad estudios filogenéticos con el objetivo de relacionar distintas especies dentro de Ia superfamilia Penaeoidea, en los que se ha trabajado con Ia clonación, secuenciación y comparación de secuencias nucleotídicas del ADN. En concreto, en el artículo de nombre "Sequence and Conservation of a RNA and tRNAVal Mitocondríal Gene Fragment from Penaeus californiensis and Comparison with Penaus vannamei and Penaeus stylirostris" de Luis Enrique Gutiérrez-Millán et al (Marine Biotechnology 4, 392-398, 2002) se realizó un estudio donde se utilizaba una secuencia nucleotídica de 1.38 Kb que abarcaba un fragmento de los genes mitocondriales 16S rRNA y 12S rRNA y Ia secuencia completa del gen mitocondrial tRNAVal, para el estudio de las relaciones filogenéticas entre las especies Penaeus californiensis, Penaeus vannamei y Penaeus stylirostris. Sin embargo, este estudio no aporta un método para Ia identificación de las citadas especies.
En el artículo "Species identification of Five Penaeid Shrimps using PCR- RFLP and SSCP analyses of 16S Ribosomal DNA" de Bavornlak Khamnamtong et al, (Journal of Biochemistry and Molecular Biology VoI 38 No. 4 JuIy 2005, pp 491-499) se cita un método para Ia identificación de especies de peneideos en base al polimorfismo del gen 16S rRNA en el cual abarcaban únicamente las especies P. monodon, P. semisulcatus, Litopenaeus vannamei, Fenneropenaeus merguiensis y Marsupenaeus japonicus. En dicho método se describe el proceso de obtención de nuevos cebadores específicos por amplificación de las regiones del ADN correspondientes a los genes COI - COII y 16S rRNA mediante PCR utilizando cebadores universales y el posterior alineamiento de las secuencias obtenidas, con el fin de encontrar secuencias conservadas en las distintas especies de peneidos que pudieran servir como cebadores. Con los nuevos cebadores obtenidos, 16S 312 Forward y 16S 312 Reverse, amplificaron una secuencia de 312 pb del 16S rDNA. Los productos amplificados fueron sometidos a digestión por separado con los enzimas de restricción Alu\, Ssp\ y Vsp\ y posteriormente a electroforesis. Se obtuvieron patrones de bandas para Ia identificación de las especies P. monodon, P. semisulcatus, L vannamei, F. merguiensis y M. japonicus. Sin embargo, en el caso de algunas de estas especies (P. semisulcatus, M. japonicus y L. vannamei), no lograron dilucidar de qué especie se trataba ya que presentaban los mismos patrones de corte.
A Ia vista de los intentos anteriormente realizados, podemos observar cómo aún persiste Ia necesidad de encontrar un sistema que proporcione soluciones a los problemas planteados a Ia hora de realizar una correcta identificación de especies pertenecientes a Ia superfamilia Peneaoidea.
Descripción de Ia invención
De acuerdo con Ia presente invención, los autores proporcionan un método de identificación de langostinos capaz de identificar al menos 24 especies pertenecientes a Ia superfamilia Penaeoidea mediante análisis de ADN previamente aislado.
En Ia presente invención se logra Ia correcta identificación de especies comerciales por medio de un método fiable, que cumple con una serie de requisitos entre los que cabe destacar los siguientes: que permite Ia identificación de un gran número de especies dentro de Ia misma familia, resulta fiable, se minimiza el margen de confusión, siendo a Ia vez sencillo y reproducible. Por otro lado, este método utiliza marcadores susceptibles de ser seguidos durante toda Ia vida útil del producto, con el fin de garantizar su trazabilidad.
En Ia presente invención se identifican las secuencias nucleotídicas que van a ser utilizadas en los ensayos de identificación de especies pertenecientes a Ia superfamilia Penaeoidea y se desarrollan los cebadores que resultan necesarios para Ia implantación de sistemas de trazabilidad.
La presente invención versa sobre un método de identificación de especies pertenecientes a Ia superfamilia Penaeoidea cuyos aspectos fundamentales son:
• La extracción y aislamiento del ADN a partir de una muestra biológica o alimentaria,
• La posterior amplificación mediante el uso de cebadores de cualquier secuencia nucleotídica aislada y su complementaria, del ADN aislado en el paso anterior, caracterizada por estar comprendida entre secuencias nucleotídicas con al menos un 90 % de identidad con SEQ ID N0 1 y SEQ ID N0 2
• La digestión de Ia secuencia nucleotídica amplificada mediante los enzimas de restricción Alu\, Taq\ o Hinf\
• La detección de los fragmentos de restricción obtenidos en el paso anterior
• La identificación de las especies por comparación de los fragmentos detectados en el paso anterior con el patrón de fragmentos de restricción característico de cada especie. En una realización preferida Ia secuencia amplificada en Ia presente invención está comprendida entre SEQ ID N0 1 y SEQ ID N0 2.
De aquí en adelante nos referiremos a las secuencias nucleotídicas aisladas susceptibles de ser amplificadas mediante el uso de cebadores y que se encuentran comprendidas entre las SEQ ID N0 1 y SEQ ID N0 2 o entre secuencias con un grado de identidad de al menos el 90% con SEQ ID n° 1 y SEQ ID N0 2, y a sus secuencias complementarias, como secuencias nucleotídicas de Ia invención.
En una realización preferida, los cebadores utilizados para Ia amplificación de las secuencias nucleotídicas de Ia invención son un cebador directo que comprende Ia SEQ ID N0 3 (16S CRUC3), y un cebador reverso que comprende Ia SEQ ID N0 4 (16S CRUC4).
Estos cebadores permiten Ia amplificación de todas las especies que habitualmente se pueden encontrar en el mercado y de aquí en adelante nos referiremos a ellos como cebadores de Ia invención.
En otra realización preferida las secuencias nucleotídicas amplificadas se seleccionan de cualquiera de las secuencias SEQ ID N0 7 a SEQ ID N0 33
Otra realización preferida de Ia invención es Ia amplificación de las secuencias nucleotídicas de Ia invención mediante PCR. En Ia PCR, Ia temperatura de anillamiento varía entre 510C y 550C, debido a Ia variabilidad interespecífica que presentan las secuencias manejadas para los distintos langostinos.
En otra realización preferida Ia detección e identificación de los fragmentos se realiza mediante electroforesis. En otra realización preferida de Ia invención Ia identificación de las especies se realiza por comparación de los patrones de tamaño de fragmentos de restricción obtenidos, con los reflejados en Ia tabla 1.
En una realización preferida de Ia invención el presente método permite identificar al menos cualquiera de las especies de Ia siguiente lista: Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus, Litopenaeus vannamei, Litopenaeus stylirostrís, Faríantepenaeus brevirostrís, Faríantepenaeus brasiliensis, Faríantepenaeus notialis, Faríantepenaeus aztecus, Faríantepenaeus californiensis, Fenneropenaeus indicus, Fenneropenaeus merguiensis, Fenneropenaeus sp. 29, Marsupenaeus japonicus, Meliceríus latisulcatus, Meliceríus sp. 30, Parapenaeus longirostris, Metapenaeus sp. 21 , Metapenaeus sp. 9, Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus muellerí y Arísteomorpha foliácea.
Otras especies pertenecientes a Ia superfamilia Penaeoidea susceptibles de ser identificadas mediante el método de Ia presente invención quedarían dentro de las realizaciones de Ia presente invención.
La enzima de restricción Alu\, mediante Ia digestión de las secuencias nucleotídicas de Ia invención, genera patrones de bandas que permiten diferenciar al menos cualquiera de las especies citadas a continuación: Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus, Litopenaeus stylirostrís, Faríantepenaeus brasiliensis, Faríantepenaeus notialis, Fenneropenaeus indicus, Marsupenaeus japonicus, Meliceríus latisulcatus, Meliceríus sp. 30, Metapenaeus sp. 21 , Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus muellerí y Arísteomorpha foliácea.
Por otro lado, para los casos en los que, mediante los ensayos realizados según el método de Ia presente invención utilizando como enzima de restricción Alu\, persistan dudas sobre Ia correcta identificación, existen ensayos complementarios mediante Ia utilización de los enzimas de restricción Taq\ o de Hinf\, que permiten confirmar Ia especie a Ia que pertenece Ia muestra biológica o alimentaria a evaluar.
En concreto,
• Ia utilización de Ia enzima de restricción Hintt en el método de Ia presente invención, permite Ia identificación de al menos cualquiera de las siguientes especies: Farfantepenaeus brevirostrís, Farfantepenaeus aztecus y Farfantepenaeus californiensis.
• Ia utilización de las enzimas de restricción Taq\ y Hinf\ mediante ensayos independientes realizados según el método de Ia presente invención, permite Ia identificación de al menos cualquiera de las siguientes especies: Litopenaus vannamei, Fenneropenaeus merguiensis y Fenneropenaeus sp. 29, las cuales son claramente diferenciables.
• Ia utilización de Ia enzima de restricción Hinf\ en el método de Ia presente invención, permite Ia identificación de al menos cualquiera de las siguientes especies: Metapenaeus sp. 9 y Parapenaeus longirostris.
Los enzimas de restricción utilizados en Ia presente invención evitan zonas de corte que presentan variabilidad intraespecífica, Io cual contribuye a minimizar el margen de confusión entre distintas especies.
Las secuencias nucleotídicas de Ia invención están caracterizadas por presentar tamaños variables en especies muy próximas. El tamaño que dichas secuencias amplificadas presentan, por un lado facilita su amplificación y por otro lado permite el análisis e identificación en productos procesados donde el ADN se encuentra parcialmente degradado. Preferiblemente este tamaño se encuentra entre 515 y 535 pb aproximadamente.
En este documento se entiende por "secuencia nucleotídica" cualquier polímero de nucleótidos compuesto por dos o más subunidades que son desoxirribonucleótidos o ribonucleótidos, unidos entre sí por puentes fosfodiéster. Las "secuencias nucleotídicas" incluyen ácido desoxirribonucleico (ADN), ácido ribonucleico (ARN), oligonucleótidos, y fragmentos generados por reacción en cadena de Ia polimerasa (PCR), o por otros métodos que incluyen pero no se limita a ligamiento, escisión, acción de endonucleasas y acción de exonucleasas.
Por "nucleótido" se entiende una unidad monomérica de ADN o ARN que contiene un resto de azúcar (pentosa), un fosfato y una base heterocíclica nitrogenada. Las cuatro bases del ADN son adenina ("A"), guanina ("G"), citosina ("C") y timina ("T"). Las cuatro bases del ARN son A, G, C y uracilo ("U").
Por "secuencia nucleotídica aislada" se entiende una molécula de ácido nucleico que no está integrada en el ADN genómico de un organismo.
Dicha molécula de ácido nucleico puede separarse del ADN genómico de una célula, puede producirse usando tecnología de ADN recombinante (por ejemplo, amplificación por PCR, clonación, etc.), o puede sintetizarse químicamente. La molécula de ácido nucleico aislada puede obtenerse de su fuente natural como gen completo o una parte del mismo capaz de formar un híbrido estable con ese gen. La molécula de ácido nucleico puede ser monocatenaria o bicatenaria.
Por "enzimas de restricción" se entiende enzimas endonucleasas que cortan los enlaces fosfodiéster del material genético a partir de una secuencia que reconocen (diana de restricción). Las dianas de restricción cuentan con entre 4 y 12 pares de bases y son palindrómicas. Estas enzimas permiten cortar ADN bicatenario rompiendo 2 enlaces fosfodiéster en Ia doble cadena y dando lugar a dos extremos del ADN, que pueden ser Romos o Cohesivos / escalonados.
Por "PCR", Reacción en Cadena de Ia Polimerasa, se entiende una técnica de biología molecular que permite amplificar un fragmento de ADN, gracias a Ia acción de las ADN polimerasas para replicar hebras de ADN, para Io cual emplea ciclos de altas y bajas temperaturas alternados, para separar las hebras de ADN recién formadas entre sí tras cada fase de replicación y, a continuación, dejar que vuelvan a unirse a polimerasas para que vuelvan a duplicarlas.
En este documento se entiende por "electroforesis" una técnica para Ia separación de moléculas (proteínas o ácidos nucleicos) sobre Ia base de su tamaño molecular, conformación, el tamaño de los poros del gel o Ia magnitud de Ia carga neta de Ia molécula y carga eléctrica. Para Ia separación se usa un gel de agarosa o poliacrilamida. Las moléculas cargadas son forzadas a ir a través de una matriz debido a un flujo de corriente eléctrica. Al exponer Ia mezcla de moléculas a un campo eléctrico, éstas se moverán y deberán ir pasando a través del gel, por Io que las pequeñas se moverán mejor, más rápidamente. Así, las más pequeñas avanzarán más y las más grandes quedarán cerca del lugar de partida.
Los fragmentos generados a partir de una molécula de ADN por corte con enzimas de restricción pueden ser separados en base a su tamaño utilizando un gel de electroforesis. Los fragmentos de ADN migrarán de un modo inversamente proporcional al logaritmo de su tamaño o peso molecular. El movimiento de los fragmentos de ADN genera un "patrón de bandas", donde cada banda corresponde a un fragmento de un tamaño particular. El tamaño de cada fragmento puede ser determinado utilizando un marcador de ADN cuyos fragmentos tienen pesos moleculares conocidos. Este marcador sirve de control y migrará paralelo a las bandas de ADN que deseamos analizar.
A Io largo de Ia descripción y las reivindicaciones, Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓN
A continuación se ilustrará Ia invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto Ia efectividad del método de detección anteriormente descrito.
Ejemplo 1 : Extracción, Purificación y Cuantificación de DNA de langostinos
El ADN de los langostinos fue extraído a partir de porciones de 250 mg de músculo esquelético de cada una de las muestras investigadas, mediante el método comercial (DNeasy Tissue Isolation kit, QIAGEN, Darmstadt, Germany), que consta de dos fases:
A) Fase de lisis celular Se cortó el músculo en pequeños pedazos para que Ia lisis fuera más eficiente. Se pesaron 250 mg. de muestra en un tubo microcentrífuga de 1 ,5 mi y se Ie añadieron 180 μl de buffer ATL y 20 μl de proteinasa K. Se agitó vigorosamente el tubo de microcentrifuga (Mixtub Raypa) y se incubó en el termomezclador
(Thermomixer Comfort, Eppendorf) a 550C durante 1-3 horas o bien toda Ia noche para que Ia lisis fuera eficiente. En algunos casos se añadieron 4 μl de RNasa (100 mg/ml) y se agitó vigorosamente.
Después se mantuvieron las muestras durante 2 minutos a temperatura ambiente (18-2O0C), se agitaron durante 15 segundos y se les añadió 200 μl de buffer AL a cada muestra. Se agitó cuidadosamente y se incubó a 7O0C durante 10 minutos. A continuación se añadieron 200 μl de etanol (96-100%) en Ia muestra y se agitó suavemente.
B) Fase de purificación del ADN.
Se transfirieron las muestras que habían completado Ia lisis a una membrana (DNasy Mini Spin column) en un tubo colector de 2 mi.
La muestra se centrifugó en microcentrífuga (modelo 5415 D,
Eppendorf) a 8.000 rpm durante 1 minuto. Se transfirió el DNasy
Mini Spin column a otro tubo de colector de 2 mi, y se añadieron 500 μl de buffer AW1. Se sometió a centrifugación a 8.000 rpm durante 1 minuto y se descartaron el tubo colector y su contenido. Se repitió el paso anterior añadiendo 500 μl de buffer AW2 y se centrifugó a
13.000 rpm durante 3 minutos.
Finalmente, el DNeasy Mini Spin Column fue transferido a un tubo colector de 1 ,5-2 mi, y se añadieron 100-200 μl de buffer AE directamente sobre Ia membrana DNeasy. Se incubó a temperatura ambiente durante 1 minuto y después se centrifugó a 8.000 rpm durante 1 minuto. Se descartó el DNeasy Mini Spin column y se recuperó el extracto del ADN purificado obtenido.
El ADN extraído fue cuantificado mediante fluorimetría utilizando el método de Downs y Wilfinger (Downs y Wilfinger, 1983) y un fluorímetro LS 50 (Perkin Elmer- fluorometer, Applied Biosystems, Foster City, CA) mediante Ia determinación de Ia fluorescencia obtenida al mezclar un volumen conocido del extracto del ADN con el reactivo Hoechst 33258 (The Sigma Chemical Co., St. Louis, MO), compuesto por 1 bis-benzimida, Ia cual se intercala entre las moléculas de ADN. La longitud de onda de excitación de esta molécula está en el ultravioleta próximo (350 nm) mientras que Ia longitud de onda de emisión se encuentra en Ia región azul (450 nm). La sensibilidad del ensayo con el Hoechst 33258 (Sigma) es de 5 ng/ml aproximadamente. Las medidas se llevaron a cabo en un fluorímetro LS 50 (Perkin Elmer).
Para llevar a cabo Ia medida de Ia fluorescencia se preparó cada vez 100 mi de disolución fresca de Hoechst de Ia siguiente manera: • 10 mi de TNE 10X
• 10 μl de Hoechst (1 mg/ml)
• 90 mi de agua MiIIi-Q
La composición del TNE 10X es Ia siguiente: • 12.11 g de Tris; (hidroximetil) aminometano (Merck)
• 3.72 g de EDTA (Calbiochem)
• 1 16.89 g de cloruro sódico (Merck)
• Hasta 800 mi de agua MiIIi-Q
• pH=7.4 ; ajustar con HCI (Merck) concentrado Se prepararon soluciones control y estándar. Como solución control, dependiendo de Ia concentración final que estimamos obtener en las muestras, se prepararon dos tipos de soluciones de ADN de calf-thymus (Sigma), una de bajo rango, con rangos de concentración entre 10 y 150 ng/ml y otra de rango más elevado, con unas concentraciones entre 100 y 1000 ng/ml.
Para calcular Ia concentración de ADN de cada muestra, se tomaron 4 μl de cada muestra de ADN extraído, se añadió el tampón TNE Hoechst 33258 (NaCI 0.2 M, Tris-HCI 10 mM, EDTA 1 mM, pH 7.4) para un volumen total de 2000 μl en Ia cubeta. Se mezclaron Ia disolución de Hoechst-TNE y el ADN a fin de medir Ia intensidad de cada muestra.
Ejemplo 2: Diseño de cebadores específicos y amplificación de las regiones de interés
En el presente ejemplo se describe cómo se procedió al diseño de cebadores en una zona conservada del gen 16S rRNA.
Se estudiaron 70 secuencias de ADN del gen 16S rRNA y tRNAVal del ADN mitocondrial, que comprenden 20 especies de Ia superfamilia Penaeoidea de interés comercial en el sector alimentario, dentro de las cuales se encuentran las siguientes especies: Penaeus monodon, Penaeus semisulcatus, Litopenaeus vannamei, Farfantepenaeus brevirostris, Farfantepenaeus brasiliensis, Farfantepenaeus notialis, Fenneropenaeus indicus, Fenneropenaeus merguiensis, Fenneropenaeus sp. 29, Marsupenaeus japonicus, Melicertus latisulcatus, Melicertus sp. 30, Parapenaeus longirostris, Metapenaeus sp. 21 , Metapenaeus sp. 9, Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus muellerí y Aristeomoφha foliácea. Todas estas especies pertenecen a Ia superfamilia Penaeoidea, que a su vez pertenece al Orden Decapoda.
Una vez purificado el ADN según se expone en el ejemplo 1 , se procedió a amplificar Ia zona del ADN mitocondrial de interés. Para ello se buscaron oligonucleotidos en las regiones 16S rRNA, tRNAVal y 12S rRNA.
Los cebadores fueron diseñados en base a los alineamientos de secuencias completas publicadas del orden Decapoda, buscando zonas conservadas del gen 16S rRNA.
Las secuencias que se alinearon para el diseño de los cebadores se mencionan a continuación, y están depositadas en Ia base de datos del GenBank: Penaeus monodon (ΗC_002184), Penaeus monodon (AF217843), Marsupenaeus japonicus (AP006346), Marsupenaeus japonicus mitochondrion (NC_007010), Callinectes sapidus (NC_006281 ), Callinectes sapidus (AY363392), Panulirus japonicus (NC_004251 ), Panulirus japonicus (AB071201 ), Portunus trituberculatus (NC_005037) Portunus trituberculatus (AB093006), Pagurus longicarpus (ΗC_003058), Pagurus longicarpus (AF150756).
Se seleccionaron los oligonucleotidos 16S CRUF (SEQ ID N0 5) y 16S CRUR (SEQ ID N0 6) como cebadores, que caían en las regiones 16S rRNA y tRNAVal, respectivamente. Los cebadores fueron diseñados en base a estos oligonucleotidos mediante el programa PrimerExpress de Applied Biosystems.
Para Ia amplificación mediante PCR (reacción en cadena de Ia polimerasa) de las secuencias de ADN reconocidas por los cebadores 16S CRUF y 16S CRUR, que amplifican un fragmento de 966 bp, las condiciones seleccionadas fueron: • se suplemento Ia mezcla de reacción con MgCb a una concentración final de 2.0 mM
• Ia desnaturalización inicial se realizó a 940C durante 90 segundos
• se sometió a 35 ciclos (940C durante 20 segundos, 51-550C durante 20 s, 720C durante 30 segundos)
• Ia extensión final se realizó a 720C durante 15 minutos.
La temperatura de anillamiento varió entre 510C y 550C, debido a Ia variabilidad interespecífica que exhiben las secuencias manejadas para los distintos langostinos.
Los productos obtenidos en Ia PCR se procesaron, con vista a detectar Ia presencia de ADN, mediante electroforesis horizontal en gel de agarosa al 2,5% en tampón TAE 1X (Trís-acetate-EDTA) con 0.5 μg/ml del bromuro de etidio (Merck, Darmstadt, Germany). Se cargaron en el gel 5 μL de cada muestra mezclados con 3-4 μl de tampón de carga. Las condiciones de electroforesis fueron: 1 hora a 100 V. La visualización de los fragmentos amplificados, o amplicones, se realizó en un transiluminador de luz ultravioleta (254 nm).
La determinación del tamaño de los productos de amplificación producidos mediante Ia PCR se llevó a cabo en el mismo gel, mediante Ia comparación con el marcador de peso EZ Load 100 bp Molecular Ruler (Sigma), analizado en paralelo con las muestras. Este patrón de peso presenta 10 fragmentos de ADN con los siguientes tamaños: 1000, 900, 800, 700, 600, 500, 400, 300, 200 y 100 pb.
Por otro lado, los productos de PCR amplificados fueron purificados mediante el kit ExoSAP-IT (GE Healthcare - Amersham Biosciences) con el fin de eliminar componentes de Ia reacción (primers, dNTPs, sales, etc) que pudieran interferir en Ia reacción de secuenciación. La secuenciación directa de los amplicones purificados se realizó mediante el método comercial BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Para llevar a cabo las reacciones de secuenciación, se emplearon los mismos cebadores de Ia PCR, realizándose Ia secuenciación en ambos sentidos de las hebras de ADN con el fin de poder comparar ambas hebras y poder así tener mayor información acerca de las secuencias de las muestras de langostinos. Una vez finalizada Ia secuenciación se añadieron 4 μl_ de formamida/EDTA-dextran blue (5/1 ) y las muestras se desnaturalizaron 2 min a 9O0C. Las reacciones de secuenciación se analizaron en un secuenciador capilar ABI 3730XL DNA Analyzer (Applied Biosystems).
Las secuencias obtenidas fueron analizadas por medio de cromatografía. Los cromatogramas de las muestras secuenciadas se visualizaron mediante el programa bioinformático CHROMAS Versión 1.45 (Technelysium Pty, Tewantin, Australia), que permite editar las secuencias nucleotídicas y copiarlas en formato FASTA. En el estudio filogenético se incluyeron las siguientes secuencias del gen 16S rRNA depositadas en las bases de datos publicas (Genbank): Penaeus monodon (AF217843), Marsupenaeus japonicus (NC_007010), Marsupenaeus japonicus (AP006346), Litopenaeus stylirostris (AY046913), Penaeus stylirostris (AJ297970), Penaeus vannamei (AJ 132780), Litopenaeus vannamei (AY046914), Penaeus setiferus (AJ297971 ), Faríantepenaeus californiensis (AY046912) y Penaeus notialis (X84350).
Las secuencias en formato FASTA se alinearon con el programa ClustalX 1.83 (Thompson y col., 1997). Posteriormente se realizó el análisis filogenético de las secuencias alineadas. Los árboles filogenéticos se obtuvieron empleando el algoritmo de Neighbor-Joining aplicando el modelo de dos parámetros de Kimura en el programa MEGA 3.1 (Kumar y col., 2004). Para evaluar el soporte estadístico de Ia topología obtenida se realizó un Bootstrap resampling test con 1.000 replicaciones.
La asignación de genotipos se basó en Ia relación filogenética con respecto a muestras utilizadas como referencia, cuyos fenotipos fueron previamente determinados mediante análisis morfológico de los caracteres externos.
Basándose en el alineamiento de todas las secuencias obtenidas mediante Ia amplificación con los cebadores que amplifican un fragmento de 966 bp, se llevó a cabo el diseño de unos nuevos cebadores con el fin de obtener unos cebadores en una zona conservada, y que amplificasen un fragmento de ADN más corto. Este fragmento más corto es de gran utilidad para Ia identificación de los productos procesados, ya que al estar sometidos a altas temperaturas, el ADN está parcialmente degradado.
Con los nuevos cebadores diseñados, 16S CRUC3 (SEQ ID N0 3) y 16S CRUC4 (SEQ ID N0 4) se consiguió amplificar el ADN extraído de Ia totalidad de las muestras utilizadas para este estudio. Con estas amplificaciones se llevó a cabo Ia posterior digestión con las enzimas de restricción utilizadas en esta invención.
Los nuevos cebadores específicos para langostinos de Ia superfamilia Penaeoidea (langostinos peneidos) amplifican un fragmento de aproximadamente entre 515 bp y 535 bp del gen 16S rRNA y parte del tRNAVal, ambos pertenecientes al ADN mitocondrial.
Ejemplo 3: Obtención de patrones de bandas característicos Una vez purificado el ADN según se expone en el ejemplo 1 , se procedió a amplificar con los nuevos cebadores específicos 16S CRUC3 y 16S CRUC4, Ia zona del ADN mitocondrial de interés.
Utilizando los cebadores específicos 16S CRUC3 y 16S CRUC4 se amplificó mediante PCR el ADN de Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus Litopenaeus vannamei, Litopenaeus stylirostrís, Faríantepenaeus brevirostrís, Faríantepenaeus brasiliensis, Faríantepenaeus notialis, Faríantepenaeus aztecus, Faríantepenaeus californiensis, Fenneropennaeus indicus, Fenneropenaeus merguiensis, Fenneropenaeus sp. 29, Marsupenaeus japonicus, Meliceríus latisulcatus, Meliceríus sp. 30, Parapenaeus longirostrís, Metapenaeus sp. 21 , Metapenaeus sp. 9, Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus muellerí y Arísteomorpha foliácea.
Para realizar Ia amplificación se suplemento Ia mezcla de reacción con MgCb a una concentración final de 2.0 mM, se desnaturalizó a 940C durante 90 segundos, y se sometió a 35 ciclos (940C durante 20 segundos, 51-550C durante 20 s, 720C durante 30 segundos), con una extensión final a 720C durante 15 minutos.
La temperatura de anillamiento varió entre 510C y 550C, debido a Ia variabilidad interespecífica que exhiben las secuencias manejadas para los langostinos peneidos.
La selección de los enzimas de restricción se llevó a cabo mediante Ia búsqueda de lugares de restricción en las secuencias de ADN que habían sido alineadas y editadas en formato FASTA. Mediante el programa bioinformático Restrictionmapper versión 3 se seleccionaron las enzimas que permitían Ia diferenciación de las especies comerciales de langostinos. Las enzimas de restricción seleccionadas fueron Alu\, Taq\ y Hinfl. Los fragmentos amplificados se sometieron a digestión por separado con cada uno de los enzimas de restricción Al u\, Taq\ y Hinf\. Las condiciones de las reacciones fueron: 1. 2 μl de Ia enzima de restricción
2. 2 μl de buffer especifico de Ia enzima
3. 8 μl de amplicón (producto de PCR) y
4. 8 μl de agua de PCR, para un volumen total de 20 μl.
Las muestras se agitaron y centrifugaron unos segundos y se incubaron durante 1-2 horas a 370C.
La visualización de los fragmentos de restricción se llevó a cabo mediante electroforesis en gel de agarosa al 2.5% o bien mediante electroforesis en geles analíticos de poliacrilamida (15% ExcelGel Homogeneous SDS- PAGE, Amersham Biosciences, Uppsala, Sweden), siguiendo el protocolo que indica el método. Los geles fueron procesados a 150C en una cubeta de electroforesis Multiphor Il equipado con un criostato MultiTemp III, utilizando los ánodos y cátodos comerciales (ExcelGel Buffer Strips, Amersham Biosciences). Las condiciones en que se llevó a cabo Ia electroforesis fueron de 600V/30 mA/30 W durante 140 min. Los fragmentos fueron visualizados según el protocolo de tinción de plata (Amersham Biosciences).
Los resultados obtenidos quedan reflejados en Ia tabla 1. Tabla 1. Fragmentos que resultan del corte con los enzimas de restricción del ADN amplificado con los cebadores 16SCRUF, 16SCRUR.
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001

Claims

REIVINDICACIONES
1. Método de identificación de especies pertenecientes a Ia superfamilia Penaeoidea que comprende:
A. Extracción y aislamiento del ADN a partir de una muestra biológica o alimentaria.
B. La posterior amplificación mediante el uso de cebadores de cualquier secuencia nucleotídica aislada y su complementaria, del ADN aislado en el paso anterior, caracterizada por estar comprendida entre secuencias nucleotídicas con al menos un 90 % de identidad con SEQ ID N° 1 y SEQ ID N0 2 C. Digestión de Ia secuencia nucleotídica amplificada mediante los enzimas de restricción Alu\, Taq\ o Hinf\
D. Detección de los fragmentos obtenidos en el paso anterior
E. Identificación de las especies por comparación de los fragmentos detectados en el paso anterior con el patrón de fragmentos característico de cada especie.
2. Método según Ia reivindicación anterior donde Ia secuencia amplificada en el paso B está comprendida entre SEQ ID N0 1 y SEQ ID N0 2.
3. Método de identificación según cualquiera de las reivindicaciones anteriores, donde Ia amplificación se realiza utilizando un cebador directo que comprende Ia SEQ ID N0 3 (16S CRUC3), y un cebador reverso que comprende Ia SEQ ID N0 4 (16S CRUC4).
4. Método según cualquiera de las reivindicaciones anteriores donde Ia secuencia amplificada se selecciona de cualquiera de las secuencias SEQ ID N0 7 a SEQ ID N0 33.
5. Método de identificación según cualquiera de las reivindicaciones anteriores donde Ia amplificación se realiza mediante PCR.
6. Método de identificación según cualquiera de las reivindicaciones anteriores, donde Ia detección e identificación de los fragmentos se realiza mediante electroforesis.
7. Método de identificación según cualquiera de las reivindicaciones anteriores, donde Ia identificación de las especies se realiza por comparación del patrón de fragmentos obtenidos con los reflejados en Ia tabla 1.
8. Método de identificación según cualquiera de las reivindicaciones anteriores donde las especies identificadas se seleccionan de Ia lista que comprende: Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus, Litopenaeus vannamei, Litopenaeus stylirostris,
Faríantepenaeus brevirostrís, Faríantepenaeus brasiliensis, Faríantepenaeus notialis, Faríantepenaeus aztecus,
Faríantepenaeus californiensis, Fenneropennaeus indicus,
Fenneropenaeus merguiensis, Fenneropenaeus sp. 29, Marsupenaeus japonicus, Melicertus latisulcatus, Melicertus sp. 30,
Parapenaeus longirostrís, Metapenaeus sp. 21 , Metapenaeus sp. 9, Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus muelleri y Aristeomorpha foliácea.
9. Método de identificación según cualquiera de las reivindicaciones 1 a 7 donde las especies identificadas utilizando Alu\ como enzima de restricción son seleccionadas de una lista que comprende Penaeus monodon, Penaeus semisulcatus, Penaeus setiferus, Litopenaeus stylirostris, Faríantepenaeus brasiliensis, Faríantepenaeus notialis, Fenneropenaeus indicus, Marsupenaeus japonicus, Meliceríus latisulcatus, Melicertus sp. 30, Metapenaeus sp. 21 , Solenocera agasizzi, Solenocera sp. 15, Solenocera sp. 18, Pleoticus muelleri y Arísteomorpha foliácea.
10. Método de identificación según cualquiera de las reivindicaciones 1 a 7 donde las especies identificadas utilizando Taq\ como enzima de restricción son seleccionadas de una lista que comprende
Faríantepenaeus brevirostris, Faríantepenaeus aztecus o
Faríantepenaeus californiensis.
1 1. Método de identificación según cualquiera de las reivindicaciones 1 a 7 donde las especies identificadas utilizando Hinf\ como enzima de restricción son seleccionadas de una lista que comprende Metapenaeus sp. 9 o Parapenaeus longirostrís.
12. Método de identificación según cualquiera de las reivindicaciones 1 a 7, donde las especies identificadas mediante ensayos independientes con Taq\ y Hintt son seleccionadas de una lista que comprende Litopenaus vannamei, Fenneropenaeus merguiensis o Fenneropenaeus sp. 29.
PCT/ES2007/070212 2006-12-18 2007-12-14 Método de identificación de especies de la superfamilia penaeoidea mediante análisis de adn WO2008074909A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200603211A ES2319009B2 (es) 2006-12-18 2006-12-18 Metodo de identificacion de especies de la superfamilia penaeoidea mediante analisis de adn.
ESP200603211 2006-12-18

Publications (1)

Publication Number Publication Date
WO2008074909A1 true WO2008074909A1 (es) 2008-06-26

Family

ID=39536023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070212 WO2008074909A1 (es) 2006-12-18 2007-12-14 Método de identificación de especies de la superfamilia penaeoidea mediante análisis de adn

Country Status (2)

Country Link
ES (1) ES2319009B2 (es)
WO (1) WO2008074909A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979663A (zh) * 2010-11-26 2011-02-23 厦门大学 日本囊对虾2种形态变异体的识别方法
CN108220455A (zh) * 2018-01-04 2018-06-29 厦门大学 基于dna条形码的长毛明对虾和凡纳滨对虾的鉴定方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GUTIERREZ-MILLAN L.E. ET AL.: "Sequence and conversation of a rRNA ad tRNAVAL mitochondrial gene fragment from Penaeus californiensis and comparison with Penaeus vannamei and Penaeus stylirostris", MARINE BIOTECHNOLOGY, vol. 4, no. 4, September 2002 (2002-09-01), pages 392 - 398 *
KHAMNAMTONG B., KLINBUNGA S., MENASVETA P.: "Species identification of five penaeid shrimps using PCR-RFLP and SSCP analyses of 16S ribosomal DNA", JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 38, no. 4, July 2005 (2005-07-01), pages 491 - 499 *
LAVERY S. ET AL.: "Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA", MOLECULAR PHYLOGENETICS AND EVOLUTION, vol. 31, no. 1, April 2004 (2004-04-01), pages 39 - 49 *
PASCOAL A. ET AL.: "A polymerase chain reaction-restriction fragment length polymorphism method based on the analysis of a 16S rRNA/tRNAVAL mitochondrial region for species identification of commercial penaeid shrimps (Crustacea: Decapoda:Penaeoidea) of food interest", ELECTROPHORESIS, vol. 29, no. 2, January 2008 (2008-01-01), pages 499 - 509 *
QUAN J. ET AL.: "Phylogenetic relationship of 12 Penaeoidea shrimp species deduced from mitochondrial DNA sequences", BIOCHEMICAL GENETICS, vol. 42, no. 9-10, October 2004 (2004-10-01), pages 331 - 345 *
VOLOCH C.M., FREIRE P.R., RUSSO C.A.M.: "Molecular phylogeny of penaeid shrimps inferred from two mitochondrial markers", GENETICS AND MOLECULAR RESEARCH, vol. 4, no. 4, 2005, pages 668 - 674 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979663A (zh) * 2010-11-26 2011-02-23 厦门大学 日本囊对虾2种形态变异体的识别方法
CN101979663B (zh) * 2010-11-26 2012-09-12 厦门大学 日本囊对虾2种形态变异体的识别方法
CN108220455A (zh) * 2018-01-04 2018-06-29 厦门大学 基于dna条形码的长毛明对虾和凡纳滨对虾的鉴定方法

Also Published As

Publication number Publication date
ES2319009A1 (es) 2009-05-01
ES2319009B2 (es) 2009-10-15

Similar Documents

Publication Publication Date Title
Deininger et al. Base sequence studies of 300 nucleotide renatured repeated human DNA clones
CN100532573C (zh) 太平洋牡蛎est微卫星标记的筛选方法
US20200216885A1 (en) Nucleic acid quantification products and processes
CN102140522A (zh) 一种仿刺参AjE101微卫星DNA标记的检测方法
CN110129456A (zh) 一种对虾抗弧菌分子标记组合及其在育种中的应用
KR101778877B1 (ko) 황금배와 미니배의 품종 구별을 위한 분자마커
CN100415884C (zh) 一种用于研究鱼类遗传关系的dna分子标记方法
CN114657277A (zh) 一种与小麦籽粒长度相关的kasp分子标记与应用
CN110564861A (zh) 人类Y染色体STR基因座和InDel位点的荧光标记复合扩增试剂盒及其应用
KR20170122599A (ko) 말전복 탐지용 마이크로새틀라이트 마커 및 이를 이용한 말전복 탐지 방법
ES2319009B2 (es) Metodo de identificacion de especies de la superfamilia penaeoidea mediante analisis de adn.
CN103436612A (zh) 一种常见鲟鱼类的pcr-rflp快速检测方法
CN110373454A (zh) 一种联合检测egfr基因突变的试剂盒及方法
CN111304339B (zh) 一种用于检测绵羊尾脂沉积能力的分子标记及其应用
KR101770966B1 (ko) 넙치 성 판별용 유전자 마커 및 방법
KR102224472B1 (ko) 배의 과형 예측용 분자 마커 및 이의 용도
CN112226532B (zh) 检测玉米基因组中snp的多态性的物质在鉴定玉米镉含量中的应用
CN103789436B (zh) 一种基于人工修饰引物的定量突变检测系统
CN112522422A (zh) 一种基于coi基因片段的飘鱼和寡鳞飘鱼的分子鉴别方法
KR20100079527A (ko) 팥에서 분리된 ssr 프라이머 및 이의 용도
KR20190054585A (ko) 돌연변이 검출용 조성물 및 돌연변이 검출방법
KR101736670B1 (ko) 호접란 품종 식별을 위한 프라이머 세트 및 이를 포함하는 마커용 조성물
WO2012070788A9 (en) Method and kit for the quantification of nucleic acids
CN103725775A (zh) 一种采用等位基因rna等温扩增法来快速检测braf基因突变的方法
CN110894544A (zh) 鲑鱼甲病毒(sav)的raa恒温荧光检测方法及试剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858296

Country of ref document: EP

Kind code of ref document: A1