WO2008072665A1 - ガラス成形用金型の製造方法 - Google Patents

ガラス成形用金型の製造方法 Download PDF

Info

Publication number
WO2008072665A1
WO2008072665A1 PCT/JP2007/073956 JP2007073956W WO2008072665A1 WO 2008072665 A1 WO2008072665 A1 WO 2008072665A1 JP 2007073956 W JP2007073956 W JP 2007073956W WO 2008072665 A1 WO2008072665 A1 WO 2008072665A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
surface coating
base material
heat treatment
producing
Prior art date
Application number
PCT/JP2007/073956
Other languages
English (en)
French (fr)
Inventor
Jun Masuda
Original Assignee
Toshiba Kikai Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kikai Kabushiki Kaisha filed Critical Toshiba Kikai Kabushiki Kaisha
Priority to DE112007003040T priority Critical patent/DE112007003040B4/de
Priority to KR1020097012029A priority patent/KR101053749B1/ko
Publication of WO2008072665A1 publication Critical patent/WO2008072665A1/ja
Priority to US12/482,497 priority patent/US20090252866A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1865Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals

Definitions

  • the present invention relates to a method for manufacturing a glass molding die that requires precise processing, and particularly relates to a method capable of maintaining the shape of the die with high accuracy.
  • the mold is manufactured by applying electroless Ni-P plating to the surface of a base material made of stainless steel, and then precisely processing the surface coating layer with a diamond bite.
  • the Ni-P surface coating layer has an amorphous (amorphous) structure in the plated state, and starts to crystallize when heated to about 270 ° C or higher. At that time, volume shrinkage occurs in the surface coating layer. The bow I tension stress acts to cause cracks in the surface coating layer.
  • an object of the present invention is to provide a method for producing a glass molding die capable of preventing the surface coating layer from cracking at the molding temperature.
  • the glass molding die manufacturing method of the present invention is configured as follows!
  • a steel base material is quenched to produce a base material having a martensite structure, and a surface coating layer made of an amorphous Ni—P alloy is formed on the surface of the base material. Heat treatment on the material As a result, the surface coating layer is changed to a eutectic structure of Ni and NiP.
  • a steel base material is quenched and then subjected to sub-zero treatment to produce a base material having a martensite structure, and the surface of the base material also has an amorphous Ni-P alloy force.
  • a layer is formed, and the base material is heated to change to a troostite structure or a calebite structure, and the surface coating layer is changed to a eutectic structure of Ni and NiP.
  • a steel substrate is quenched and then subjected to sub-zero treatment, and further tempered to produce a substrate having a structure in which ⁇ -carbides are dispersed in martensite.
  • a surface coating layer made of an amorphous Ni-P alloy is formed on the surface, and the base material is heat-treated to change to a troostite structure or a sorbite structure. Change to eutectic structure.
  • Fig. 1 is a block diagram showing an outline of a method for manufacturing a glass molding die according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing an outline of a manufacturing process of a glass molding die according to an embodiment of the present invention. Manufacture of a glass mold is performed by the following process.
  • a steel material having carbon of 0.3 wt% or more and 2.7 wt% or less and chromium of 13 wt% or less is used as a base material.
  • the dimensional change of the mold base is brought close to the dimensional change of the surface coating layer, so that the surface coating layer The tensile stress acting is kept small, and the generation of cracks is prevented.
  • Table 1 shows the temperature change, structure change, and dimensional change of the base material that occurs in the first to third processes.
  • the volume of the base material contracts in accordance with the tissue change in the first process.
  • the base material expands.
  • the volume change in the first and second processes is very small! /, So there is no crack in the surface coating layer.
  • the amorphous Ni-P alloy layer formed on the surface of the mold by electroless plating has a eutectic structure of Ni and Ni P when the mold is heated to the glass molding temperature.
  • volume shrinkage starts from about 270 ° C., so that no tensile stress is generated and cracks in the surface coating layer do not occur.
  • the heat treatment temperature is set to be equal to or higher than the mold use temperature. If the temperature is lower than the operating temperature, dimensional changes occur during use, and the dimensional accuracy of the molded product decreases.
  • the upper limit of the heat treatment temperature is desirably about 30 ° C higher than the mold use temperature. If the heat treatment temperature is increased more than necessary, adverse effects such as softening of the substrate will occur.
  • the C content be 0.3 wt% or more and 2.7 wt% or less. If the C content is less than 0.3 wt%, the volumetric shrinkage of the base material in the third stage of tempering (Table 1) becomes too small. On the other hand, when the C content exceeds 2.7 wt%, adverse effects such as a decrease in toughness that the volume shrinkage of the base material is sufficient will occur.
  • the Cr content is desirably 13 wt% or less.
  • the second step of residual austenite decomposition begins at 500 ° C or higher. It does not match the volume shrinkage history of the surface coating layer.
  • the base material structure before the heat treatment needs to be a martensite structure or a low carbon martensite + ⁇ -carbide). When this martensite decomposes into ferrite and cementite, large volume shrinkage occurs.
  • the substrate structure after the heat treatment is a troostite structure (structure in which ferrite and cementite are extremely finely mixed) or a sorbite structure (mixed structure of ferrite and cementite in which cementite is granularly grown).
  • Ni- ⁇ or Ni- ⁇ - ⁇ surface coating layer is amorphous or partially amorphous in the plated state, and is completely crystallized by heating at about 270 ° C or higher.
  • subzero treatment may be performed after quenching.
  • Sub-zero treatment can transform the residual austenite present in the base material after quenching into martensite.
  • the volumetric shrinkage of the third process due to the decomposition of martensite becomes more prominent.
  • tempering at 350 ° C. or lower can be performed after quenching and sub-zero treatment.
  • the tempering temperature is higher than 350 ° C, the volumetric shrinkage of the substrate in the third process is not sufficient, and the surface coating layer has a force S that causes cracks.
  • the present invention is not limited to the embodiment described above. For example, you may make it heat-process a base material and a surface coating layer after the finishing process of a base material, and the finishing process of a surface coating layer.
  • various modifications can be made without departing from the scope of the present invention.
  • the force S that prevents cracks from being generated in the surface coating layer at the molding temperature is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Heat Treatment Of Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 鋼製の基材に焼入れを施してマルテンサイト組織からなる基材を製作し、上記基材の表面に、非晶質のNi-P合金からなる表面被覆層を形成し、上記基材に加熱処理を施すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層をNiとNi3Pの共晶組織に変える。これにより成形温度において表面被覆層にクラックが発生することを防止するとともに、金型の塑性変形を防止することで、金型の形状を高い精度で維持する。

Description

明 細 書
ガラス成形用金型の製造方法
技術分野
[0001] 本発明は、精密な加工を必要とするガラス成形用金型の製造方法に関し、特に金 型の形状を高い精度で維持することができるものに関する。
背景技術
[0002] プラスチック成形の分野では、成形金型の精密加工技術が確立されており、回折 格子など、微細形状を有する光学素子の量産が実現している。この場合、金型の製 作は、ステンレス鋼からなる基材の表面に無電解 Ni— Pめっきを施し、次いで、この 表面被覆層をダイヤモンドバイトで精密加工することにより行われている。
発明の開示
[0003] しかし、これと同様の金型をガラス成形に適用すると、無電解 Ni— P表面被覆層に クラックが発生する問題が生ずる。この現象は、成形温度に起因している。即ち、 Ni —P表面被覆層は、めっき状態ではアモルファス(非晶質)構造をとっている力 約 27 0°C以上に加熱すると結晶化が始まり、そのとき、表面被覆層に体積収縮が起こり、 弓 I張応力が作用して表面被覆層にクラックが発生する。
[0004] この問題の対策として、熱膨張係数が ιοχ ιο_6〜; ΐδ χ ιο^ τ1)の基材を選定 し、めっき後、 400〜500°Cで熱処理を行っている。し力、し、基材の熱膨張係数を Ni P表面被覆層に合わせても、熱処理の際、結晶化に伴う体積収縮が表面被覆層 だけに生ずるので、表面被覆層に大きな引張応力が作用して、クラックが発生する場 合があった (例えば特開平 11 - 157852号公報参照)。
[0005] そこで本発明は、成形温度において表面被覆層にクラックが発生することを防止で きるガラス成形用金型の製造方法を提供することを目的として!/、る。
[0006] 前記課題を解決し目的を達成するために、本発明のガラス成形用金型の製造方法 は次のように構成されて!/、る。
[0007] 鋼製の基材に焼入れを施してマルテンサイト組織からなる基材を製作し、上記基材 の表面に、非晶質の Ni— P合金からなる表面被覆層を形成し、上記基材に加熱処 理を施すことでトルースタイト組織又はカレバイト組織に変えるとともに、前記表面被 覆層を Niと Ni Pの共晶組織に変える。
3
[0008] 鋼製の基材に焼入れを施した後にサブゼロ処理を施してマルテンサイト組織からな る基材を製作し、上記基材の表面に、非晶質の Ni— P合金力もなる表面被覆層を形 成し、上記基材に加熱処理を施すことでトルースタイト組織又はカレバイト組織に変 えるとともに、前記表面被覆層を Niと Ni Pの共晶組織に変える。
3
[0009] 鋼製の基材に焼入れを施した後にサブゼロ処理を施し、さらに焼戻しを施してマル テンサイト中に ε —炭化物が分散された組織からなる基材を製作し、上記基材の表 面に、非晶質の Ni— P合金からなる表面被覆層を形成し、上記基材に加熱処理を施 すことでトルースタイト組織又はソルバイト組織に変えるとともに、前記表面被覆層を Niと Ni Pの共晶組織に変える。
3
図面の簡単な説明
[0010] 園 1]図 1は、本発明の一実施の形態に係るガラス成形用金型の製造方法の概要を 示すブロック図である。
発明を実施するための最良の形態
[0011] 図 1は、本発明の一実施の形態に係るガラス成形用金型の製造工程の概要を示す ブロック図である。ガラス成形用金型の製造は次のような工程で行う。
[0012] なお、基材として、炭素が 0. 3wt%以上 2. 7wt%以下、クロムが 13wt%以下の鋼 製の素材を用いる。
[0013] このような基材に粗加工を行った後(ST1)、焼入れを行う(ST2)。次いで、めっき 前加工を行った後(ST3)、無電解めつきにより Ni— P合金からなる表面被覆層(めつ き層)を形成する(ST4)。次いで、基材及び表面被覆層に加熱処理を行い(ST5)、 表面被覆層を結晶化するとともに、基材を焼き戻し組織に変える。次いで、基材に仕 上げ加工(ST6)及び表面被覆層の仕上げ加工(ST7)を行った後、表面被覆層に、 離型膜をコーティングする(ST8)。
[0014] 本実施の形態では、表面被覆層を結晶化するための加熱処理の過程において、 金型の基材の寸法変化を、表面被覆層の寸法変化に近付けることによって、表面被 覆層に作用する引張り応力を小さく抑え、クラックの発生を防止している。 [0015] ここで、加熱処理の過程を 3つの過程 (第 1〜第 3過程)に分けて説明する。表 1は 第 1〜第 3過程で生じる基材の温度変化、組織変化、寸法変化を示したものである。
[表 1]
表 1 炭素銅の焼戻しによる組織及び長さの変化
Figure imgf000005_0001
[0016] すなわち、基材は、第 1過程において、組織の変化に伴い体積が収縮する。また、 第 2過程では、基材は膨張する。この第 1過程及び第 2過程の体積変化量は非常に 小さ!/、ため表面被覆層にクラックは生じなレ、。
[0017] 一方、第 3過程では、基材を約 270°Cから約 430°Cまで加熱する間に、低炭素マル テンサイトからセメンタイトが析出して、母材の組織がフェライトに代わり、それに伴い 体積が収縮する。このとき、無電解めつきにより金型の表面に形成される非晶質の Ni —P合金層は、金型をガラスの成形温度まで加熱する際に、 Niと Ni Pの共晶組織に
3
変わり、その際に体積が収縮する。このような体積収縮は、約 270°Cから始まることか ら、引張応力が発生せず、表面被覆層のクラックの発生が生じない。
[0018] なお、加熱処理温度は、金型使用温度以上に設定する。使用温度より低いと使用 中に寸法変化が起き、成形品の寸法精度が低下する。但し、加熱処理温度の上限 は金型使用温度よりも 30°C高い程度が望ましい。必要以上に加熱処理温度を高くす ると基材が軟化する等の悪影響が生じる。
[0019] 基材の組成としては、 C含有量は、 0. 3wt%以上、 2. 7wt%以下とすることが望ま しい。 C含有量が 0. 3wt%より低くなると、焼戻しの第 3過程 (表 1 )における基材の体 積収縮量が小さくなり過ぎてしまう。一方、 C含有量が 2. 7wt%を超えると、基材の体 積収縮量は十分ではある力 靭性低下などの弊害が出てくる。
[0020] また、 Cr含有量は、 13wt%以下とすることが望ましい。 Cr含有量が 13wt%を超え ると、第 2過程の残留オーステナイトの分解が 500°C以上で起こるようになり、 Ni— P 表面被覆層の体積収縮履歴と合わなくなる。なお、 Cr含有量の下限値については、 特に制約はない。
[0021] 加熱処理前の基材の組織は、マルテンサイト組織ほたは、低炭素マルテンサイト + ε—炭化物)である必要がある。このマルテンサイトがフェライトとセメンタイトに分 解するときに、大きな体積収縮が起こる。加熱処理後の基材の組織は、トルースタイト 組織(フェライトとセメンタイトが極めて微細に混合した組織)やソルバイト組織(セメン タイトが粒状析出成長したフェライトとセメンタイトの混合組織)となる。
[0022] Ni— Ρまたは Ni— Ρ— Β表面被覆層の組織は、めっき状態では非晶質もしくは部分 的に非晶質であり、約 270°C以上の加熱で、完全に結晶化した Niと Ni Pの混合組
3
織に変態する。表 2に、以上の金属組織学的な特徴がまとめられている。
[表 2]
加熱処理前後の基材及び表層の組織
Figure imgf000006_0001
[0023] 種々の組成の基材に、無電解 Ni— Pめっきを 100 a m被覆した金型を製作して、 加熱熱処理中及び成形中に発生したクラックの数を調べた。表 3に、基材の組成、サ ブゼロ温度、焼戻し温度及び加熱処理条件と、クラック発生率との関係を示す。ガラ スの成形温度は、全て 430°Cとした。
[表 3] 基材の成分及び燃戻し、 加熱処理条件とクラック発生率の関係
サブゼロ 焼戻し 加熱処理 クラック 基材 C含有量 Cr含有量
温度 温度 温度 発生率 供 体 1 0. 7 0. 9 なし なし 450°C 0/5 供試体 2 0. 7 0. 9 なし 370°C 450°C 3/5 供試体 3 1. 2 1. 0 -80°C なし 450。C 0/5 供試体 4 1. 2 1. 0 一 80。C 250°C 450°C 0/5 供試体 5 0. 1 13. 8 なし なし 450°C 5/5 供試体 6 0. 1 13. 8 - 80°C なし 450°C 4/5 [0024] 上述したように本実施の形態に係るガラス成形用金型の製造方法では、供試体 1 において加熱処理の際に表面被覆層にクラックが発生することを防止するとともに、 金型の塑性変形を防止し、金型の形状を高い精度で維持することが可能となる。
[0025] なお、供試体 3に示すように、焼入れ後にサブゼロ処理を行うようにしてもよい。サブ ゼロ処理により焼入れ後の基材に存在する残留オーステナイトをマルテンサイトに変 態させること力 Sできる。このことにより、マルテンサイト(低炭素マルテンサイト)の分解 による第 3過程の体積収縮がより顕著に起きるようになる。
[0026] さらに、供試体 4に示すように、焼入れ、サブゼロ処理後に 350°C以下の焼戻しを 行うことができる。焼戻し温度が 350°Cより高い場合、第 3過程での基材の体積収縮 が十分ではなく、表面被覆層にクラックが生じること力 Sある。
[0027] なお、本発明は前記実施の形態に限定されるものではない。例えば、基材及び表 面被覆層の加熱処理を、基材の仕上げ加工及び表面被覆層の仕上げ加工の後に 行うようにしてもよい。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能 であるのは勿論である。
産業上の利用可能性
[0028] 本発明によれば、成形温度において表面被覆層にクラックが発生することを防止す ること力 S可倉 となる。

Claims

請求の範囲
[1] 鋼製の基材に焼入れを施してマルテンサイト組織からなる基材を製作し、
上記基材の表面に、非晶質の Ni— P合金からなる表面被覆層を形成し、 上記基材に加熱処理を施すことでトルースタイト組織又はカレバイト組織に変えると ともに、前記表面被覆層を Niと Ni Pの共晶組織に変えることを特徴とするガラス成形
3
用金型の製造方法。
[2] 上記基材に含まれる炭素が 0. 3wt%以上 2. 7wt%以下、クロムが 13wt%以下で あることを特徴とする請求項 1に記載のガラス成形用金型の製造方法。
[3] 上記表面被覆層は、 Niと P、 Niと Pと B又は Niと Pと Wを含む無電解めつきにより形 成され、
上記加熱処理は、金型の使用温度よりも高い温度であることを特徴とする請求項 2 に記載のガラス成形用金型の製造方法。
[4] 上記加熱処理は、 270°C以上で行われることを特徴とする請求項 3に記載のガラス 成形用金型の製造方法。
[5] 鋼製の基材に焼入れを施した後にサブゼロ処理を施してマルテンサイト組織からな る基材を製作し、
上記基材の表面に、非晶質の Ni— P合金からなる表面被覆層を形成し、 上記基材に加熱処理を施すことでトルースタイト組織又はカレバイト組織に変えると ともに、前記表面被覆層を Niと Ni Pの共晶組織に変えることを特徴とするガラス成形
3
用金型の製造方法。
[6] 上記基材に含まれる炭素が 0. 3wt%以上 2. 7wt%以下、クロムが 13wt%以下で あることを特徴とする請求項 5に記載のガラス成形用金型の製造方法。
[7] 上記表面被覆層は、 Niと P、 Niと Pと B又は Niと Pと Wを含む無電解めつきにより形 成され、
上記加熱処理は、金型の使用温度よりも高い温度であることを特徴とする請求項 6 に記載のガラス成形用金型の製造方法。
[8] 上記加熱処理は、 270°C以上で行われることを特徴とする請求項 7に記載のガラス 成形用金型の製造方法。
[9] 鋼製の基材に焼入れを施した後にサブゼロ処理を施し、さらに焼戻しを施してマル テンサイト中に ε —炭化物が分散された組織からなる基材を製作し、
上記基材の表面に、非晶質の Ni— P合金からなる表面被覆層を形成し、 上記基材に加熱処理を施すことでトルースタイト組織又はカレバイト組織に変えると ともに、前記表面被覆層を Niと Ni Pの共晶組織に変えることを特徴とするガラス成形
3
用金型の製造方法。
[10] 上記基材に含まれる炭素が 0. 3wt%以上 2. 7wt%以下、クロムが 13wt%以下で あることを特徴とする請求項 9に記載のガラス成形用金型の製造方法。
[11] 上記基材の焼戻し温度が 350°C以下であることを特徴とする請求項 10に記載のガ ラス成形用金型の製造方法。
[12] 上記表面被覆層は、 Niと P、 Niと Pと B又は Niと Pと Wを含む無電解めつきにより形 成され、
上記加熱処理は、金型の使用温度よりも高い温度であることを特徴とする請求項 1 0に記載のガラス成形用金型の製造方法。
[13] 上記加熱処理は、 270°C以上で行われることを特徴とする請求項 12に記載のガラ ス成形用金型の製造方法。
PCT/JP2007/073956 2006-12-14 2007-12-12 ガラス成形用金型の製造方法 WO2008072665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007003040T DE112007003040B4 (de) 2006-12-14 2007-12-12 Verfahren zur Herstellung einer Glas-Giessform
KR1020097012029A KR101053749B1 (ko) 2006-12-14 2007-12-12 글래스 성형용 금형의 제조 방법
US12/482,497 US20090252866A1 (en) 2006-12-14 2009-06-11 Method of producing glass forming mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006337146A JP5019102B2 (ja) 2006-12-14 2006-12-14 ガラス成形用金型の製造方法
JP2006-337146 2006-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/482,497 Continuation US20090252866A1 (en) 2006-12-14 2009-06-11 Method of producing glass forming mold

Publications (1)

Publication Number Publication Date
WO2008072665A1 true WO2008072665A1 (ja) 2008-06-19

Family

ID=39511682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073956 WO2008072665A1 (ja) 2006-12-14 2007-12-12 ガラス成形用金型の製造方法

Country Status (6)

Country Link
US (1) US20090252866A1 (ja)
JP (1) JP5019102B2 (ja)
KR (1) KR101053749B1 (ja)
DE (1) DE112007003040B4 (ja)
TW (1) TW200848376A (ja)
WO (1) WO2008072665A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169107A (ja) * 2006-12-14 2008-07-24 Toshiba Mach Co Ltd ガラス成形用金型の製造方法
US20100229600A1 (en) * 2009-03-13 2010-09-16 Konica Minolta Opto, Inc. Method for manufacturing glass molding die and method for manufacturing molded glass article
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof
JP5520236B2 (ja) * 2009-01-16 2014-06-11 第一三共株式会社 プロリン環構造を有するイミダゾチアゾール誘導体
CN111154959A (zh) * 2020-01-13 2020-05-15 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 非晶涂层制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131433A1 (ja) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 金属膜、金属膜を備える電子部品、及び金属膜の製造方法
CN111618297B (zh) * 2020-04-21 2022-06-07 陕西斯瑞新材料股份有限公司 一种快速烧结成型银基触头制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951112A (ja) * 1972-09-20 1974-05-17
JPS60114516A (ja) * 1983-11-26 1985-06-21 Hoya Corp ガラスレンズ成形型の製造法
JPH05156350A (ja) * 1991-12-03 1993-06-22 Daido Steel Co Ltd 耐熱ガラス成形金型の製造方法
JPH08188441A (ja) * 1995-01-13 1996-07-23 Asahi Glass Co Ltd ガラス成形用金型及びブラウン管用ガラス製品の成形方法
JPH09295818A (ja) * 1996-04-30 1997-11-18 Asahi Glass Co Ltd ガラス成型用金型およびブラウン管用ガラス製品の成型方法
JPH11157852A (ja) * 1997-11-19 1999-06-15 Canon Inc ガラス光学素子成形用金型の製造方法及びガラス光学素子の成形方法
JPH11335783A (ja) * 1998-05-26 1999-12-07 Sumitomo Metal Ind Ltd ガラス成形金型用およびロール用鋼
WO2006137225A1 (ja) * 2005-06-24 2006-12-28 Toshiba Kikai Kabushiki Kaisha ガラス成形用金型及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291827B2 (ja) * 1993-03-18 2002-06-17 株式会社日立製作所 羽根車及びディフューザ、並びにその製作方法
US5628807A (en) * 1994-08-15 1997-05-13 Asahi Glass Company Ltd. Method for forming a glass product for a cathode ray tube
JP3197246B2 (ja) 1997-02-14 2001-08-13 株式会社オハラ リチウムイオン伝導性ガラスセラミックスおよびこれを用いた電池、ガスセンサー
JP4110506B2 (ja) * 2001-11-21 2008-07-02 コニカミノルタホールディングス株式会社 光学素子成形用金型
US7377477B2 (en) * 2004-02-11 2008-05-27 Diamond Innovations, Inc. Product forming molds and methods to manufacture same
TWI247728B (en) * 2004-04-09 2006-01-21 Asia Optical Co Inc Molding die for molding glass
US7513960B2 (en) * 2005-03-10 2009-04-07 Hitachi Metals, Ltd. Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same
US20060222423A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation Heat-pipe fuser roll with internal coating
WO2008072664A1 (ja) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha ガラス成形用金型の製造方法
DE112008000947B4 (de) * 2007-04-10 2012-01-19 Toshiba Kikai K.K. Glasformgebungsform

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951112A (ja) * 1972-09-20 1974-05-17
JPS60114516A (ja) * 1983-11-26 1985-06-21 Hoya Corp ガラスレンズ成形型の製造法
JPH05156350A (ja) * 1991-12-03 1993-06-22 Daido Steel Co Ltd 耐熱ガラス成形金型の製造方法
JPH08188441A (ja) * 1995-01-13 1996-07-23 Asahi Glass Co Ltd ガラス成形用金型及びブラウン管用ガラス製品の成形方法
JPH09295818A (ja) * 1996-04-30 1997-11-18 Asahi Glass Co Ltd ガラス成型用金型およびブラウン管用ガラス製品の成型方法
JPH11157852A (ja) * 1997-11-19 1999-06-15 Canon Inc ガラス光学素子成形用金型の製造方法及びガラス光学素子の成形方法
JPH11335783A (ja) * 1998-05-26 1999-12-07 Sumitomo Metal Ind Ltd ガラス成形金型用およびロール用鋼
WO2006137225A1 (ja) * 2005-06-24 2006-12-28 Toshiba Kikai Kabushiki Kaisha ガラス成形用金型及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof
JP2008169107A (ja) * 2006-12-14 2008-07-24 Toshiba Mach Co Ltd ガラス成形用金型の製造方法
JP5520236B2 (ja) * 2009-01-16 2014-06-11 第一三共株式会社 プロリン環構造を有するイミダゾチアゾール誘導体
US20100229600A1 (en) * 2009-03-13 2010-09-16 Konica Minolta Opto, Inc. Method for manufacturing glass molding die and method for manufacturing molded glass article
CN111154959A (zh) * 2020-01-13 2020-05-15 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 非晶涂层制备方法及其应用

Also Published As

Publication number Publication date
TW200848376A (en) 2008-12-16
KR101053749B1 (ko) 2011-08-02
TWI365174B (ja) 2012-06-01
KR20090082477A (ko) 2009-07-30
DE112007003040T5 (de) 2010-01-14
JP2008150226A (ja) 2008-07-03
JP5019102B2 (ja) 2012-09-05
US20090252866A1 (en) 2009-10-08
DE112007003040B4 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
JP4778735B2 (ja) ガラス成形用金型の製造方法
WO2008072665A1 (ja) ガラス成形用金型の製造方法
JP5073469B2 (ja) ガラス成形用金型の製造方法
CN104002112A (zh) 一种模具的加工方法
KR20090115179A (ko) 글래스 성형용 금형 및 그 제조 방법
JP2008291307A (ja) 金型の製造方法、金型用鋼材の製造方法、及び、金型用鋼材を用いた金型の製造方法
KR101989665B1 (ko) 금형 강 및 금형
JP2004292923A (ja) アモルファス合金の製造方法
CN103233186A (zh) 压塑模具用钢及其生产方法
JPH09302417A (ja) 刃物用材料及びその製造方法
JPS609712A (ja) 靭性ならびに耐摩耗性の良好な押出ピン
JP2008163431A (ja) 析出硬化型ステンレス鋼金型
Wang et al. Surface modification of nickel-phosphorus plating by Ti ion implantation for chalcogenide glass lens molding
JP3983502B2 (ja) 耐アルミ溶損性に優れた金型およびその加工方法
CN108048751A (zh) 一种耐高温模具及其制备方法
WO2008004311A1 (fr) Procédé de fabrication de moules et procédés de fabrication d'articles moulés et de produits en acier
KR20200023118A (ko) 우수한 내마모성,내부식성 및 가공성을 갖는 슈퍼메탈 제조방법
JP5322456B2 (ja) ガラス成形用金型の製造方法
JP4690058B2 (ja) 樹脂成形用金型
CN113293371A (zh) 一种基于阶梯回火的激光熔覆方法
JP2002274865A (ja) ガラス光学素子成型金型、その製造方法及びガラス光学素子の成型方法
JPH11267757A (ja) 鋼製部材の変形矯正方法
JPS62139859A (ja) 亜鉛圧延板製の携帯時計ケ−スの製造方法
JPH0744753U (ja) 金型等の表面硬化金属製品
JPH05148588A (ja) ガラス成形金型用鋼およびガラス成形金型の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097012029

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120070030402

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007003040

Country of ref document: DE

Date of ref document: 20100114

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07850507

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607