WO2008066014A1 - Heat accumulation system for vehicle - Google Patents

Heat accumulation system for vehicle Download PDF

Info

Publication number
WO2008066014A1
WO2008066014A1 PCT/JP2007/072806 JP2007072806W WO2008066014A1 WO 2008066014 A1 WO2008066014 A1 WO 2008066014A1 JP 2007072806 W JP2007072806 W JP 2007072806W WO 2008066014 A1 WO2008066014 A1 WO 2008066014A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
outlet
valve
inlet
heat storage
Prior art date
Application number
PCT/JP2007/072806
Other languages
English (en)
French (fr)
Inventor
Jinichi Hiyama
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Priority to US12/310,536 priority Critical patent/US8006655B2/en
Priority to CN2007800323256A priority patent/CN101512117B/zh
Priority to EP07832531.3A priority patent/EP2090762A4/en
Publication of WO2008066014A1 publication Critical patent/WO2008066014A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00314Arrangements permitting a rapid heating of the heating liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the present invention relates to a vehicle heat storage system for improving engine immediate warming and room immediate warming immediately after engine startup.
  • an engine coolant circulation circuit that connects an engine and a radiator is provided with a heat accumulator that stores and distributes engine coolant.
  • a heat accumulator that stores and distributes engine coolant.
  • the engine coolant that has become hot during vehicle travel is taken into the heat accumulator, and the hot engine coolant is stored in the heat accumulator while the vehicle is stopped.
  • the high-temperature engine coolant in the regenerator is sent to the engine and used for early engine warm-up. Disclosure of the invention
  • the present invention has been made paying attention to the above problems, and improves the engine immediate warming immediately after starting the engine and the room immediate warming by individually setting the engine immediate warming mode and the room immediate warming mode. It aims at providing the thermal storage system for vehicles which can be aimed at.
  • the engine coolant circulation circuit that connects the engine and the heater core of the air conditioning unit includes a heat accumulator that stores and distributes engine coolant.
  • the engine coolant circulation circuit is a circuit that connects the heat storage side inlet / outlet, the engine side inlet / outlet, and the heater core side inlet / outlet.
  • the heat storage mode in which the engine coolant circulates at least between the engine side inlet / outlet and the heat storage side inlet / outlet By switching the mode, the heat storage mode in which the engine coolant circulates at least between the engine side inlet / outlet and the heat storage side inlet / outlet, the heat storage maintenance mode in which the heat storage side inlet / outlet is shut off, and the hot water stored in the heat storage
  • An engine immediate warming mode that circulates only between the regenerator side entrance and the engine side entrance and an indoor immediate warming mode in which hot water stored in the heat accumulator circulates only between the regenerator side entrance and the heater core side entrance The circuit configuration is such that the four modes can be selected.
  • the heat storage mode when the heat storage mode is selected by switching the valve set in the engine coolant circulation circuit during traveling, at least the engine side inlet / outlet and the heat storage are stored.
  • the engine coolant that circulates between the inlet and outlet of the heater and reaches a high temperature flows through the regenerator.
  • the hot water stored in the heat accumulator (high temperature engine coolant) is stored. It circulates only between the container side entrance and the engine side entrance and exit, and the engine can be warmed up early after the engine starts.
  • the hot water stored in the heat accumulator is connected to the heat accumulator side inlet / outlet and the heater core side inlet / outlet. It can circulate only during the period and can heat the passenger compartment immediately after starting the engine.
  • the engine immediate warming and the room immediate warming immediately after the engine start can be improved by individually setting the engine immediate warming mode and the room immediate warming mode.
  • FIG. 1 is an engine coolant circulation circuit diagram showing a vehicle heat storage system (an example of a vehicle heat storage system) according to a first embodiment.
  • FIG. 2 is a perspective view showing a double-row tube employed in the vehicle heat storage system of Example 1.
  • FIG. 3 is a perspective view showing an engine coolant circulation circuit for connecting a heat accumulator and a heater core in the vehicle heat storage system of the first embodiment.
  • FIG. 4 is a cross-sectional view showing the positions of both valve bodies of the control valve when the heat storage mode is selected in the vehicle heat storage system of the first embodiment.
  • FIG. 6 is a cross-sectional view showing the positions of both valve bodies of the control valve when the engine immediate warming mode is selected in the vehicle heat storage system of the first embodiment.
  • FIG. 7 is a cross-sectional view showing the positions of both valve bodies of the control valve when the room immediate warming mode is selected in the vehicle heat storage system of the first embodiment.
  • FIG. 8 is a flowchart showing a flow of mode selection control processing executed by the heat storage controller 17 of the first embodiment.
  • FIG. 9A is a cycle diagram for explaining an immediate warming action when an engine immediately warms up in a vehicle heating system using a conventional heat accumulator.
  • FIG. 9B is a cycle diagram for explaining an immediate warming action immediately after engine startup in a vehicle heating system using a conventional heat accumulator.
  • FIG. 9C is a cycle diagram illustrating an immediate warming action during traveling in a vehicle heating system using a conventional heat accumulator.
  • FIG. 9D is a cycle diagram illustrating an immediate warming action when the engine is stopped in a vehicle heating system using a conventional heat accumulator.
  • FIG. 10A is an explanatory diagram showing each operation during heating use traveling in the vehicle heat storage system according to the first embodiment.
  • FIG. 10B is an explanatory diagram of each operation showing when the engine is stopped in the vehicle heat storage system of the first embodiment.
  • FIG. 10C Immediate engine warming immediately after engine start in the vehicle heat storage system of Example 1 It is each operation
  • FIG. 10 is an explanatory diagram showing each operation of the vehicle heat storage system according to the first embodiment when the room is immediately warmed up immediately after the engine is started.
  • An engine coolant circulation circuit diagram showing a vehicle heat storage system (an example of a vehicle heat storage system) according to a second embodiment.
  • FIG. 12 is an explanatory diagram showing each operation during heating use traveling in the vehicle heat storage system of the second embodiment.
  • FIG. 12 is an explanatory diagram showing each operation when the engine is stopped in the vehicle heat storage system of the second embodiment.
  • FIG. 12C is an operation explanatory diagram showing the engine immediately warming up immediately after engine startup in the vehicle heat storage system of the second embodiment.
  • FIG. 12D Each operation explanatory diagram showing the immediate warm-up of the room immediately after the engine start in the vehicle heat storage system of the second embodiment.
  • Example 1 Example 1
  • Example 2 shown in the drawings.
  • FIG. 1 is an engine coolant circulation circuit diagram showing a vehicle heat storage system (an example of a vehicle heat storage system) according to a first embodiment.
  • FIG. 2 is a perspective view showing a double-row pipe employed in the vehicle heat storage system of the first embodiment.
  • FIG. 3 is a perspective view showing an engine coolant circulation circuit that connects the heat accumulator and the heater core in the vehicle heat storage system of the first embodiment.
  • FIG. 4 is a cross-sectional view showing the positions of both valve bodies of the control valve when the heat storage mode is selected in the vehicle heat storage system of the first embodiment.
  • FIG. 5 is a cross-sectional view showing the positions of both valve bodies of the control valve when the heat storage maintenance mode is selected in the vehicle heat storage system of the first embodiment.
  • the vehicle heat storage system of Example 1 includes an engine 1, a heater core 2, a heat storage unit 3, a radiator 4, an electric water pump 5, a thermostat 6, and a control valve 7.
  • Heater core side engine outlet pipe 8 heater core side engine inlet pipe 9, heater core inlet pipe 10, heater core outlet pipe 11, regenerator side double row pipe 12, engine side double row pipe 13, and heater core side two
  • a row pipe 14 a radiator-side engine outlet pipe 15, a radiator-side engine inlet pipe 16, and a heat storage controller 17 are provided.
  • the vehicle heat storage system of the first embodiment includes an engine cooling water circulation circuit that connects an engine 1 and a heater core 2 of an air conditioning unit (not shown), and a heat storage device 3 that stores and distributes engine cooling water. is there.
  • the heat accumulator 3 has, for example, a structure in which the outer periphery of the hot water storage layer is surrounded by a vacuum heat insulating layer, and further, the outer periphery of the hot water storage layer is a latent heat storage material layer (eg, microcapsule) in order to increase heat storage efficiency.
  • a latent heat storage material layer eg, microcapsule
  • the container structure may be a multi-container type heat accumulator structure in which a plurality of cylindrical containers are coaxially combined, or a laminated heat accumulator structure in which a large number of heat accumulator components are laminated.
  • the engine coolant circulation circuit is a circuit in which the heat accumulator 3 side inlet / outlet, the engine 1 side inlet / outlet, and the heater core 2 side inlet / outlet are connected.
  • the “heat storage mode” is set.
  • the circuit configuration can be selected from four modes: “heat storage maintenance mode”, “engine immediate warming mode” and “room immediate warming mode”.
  • the engine coolant circulates between the engine 1 side inlet / outlet, the heat accumulator 3 side inlet / outlet, and the heater core 2 side inlet / outlet.
  • the inlet / outlet of the heat storage unit 3 is shut off.
  • the hot water stored in the regenerator 3 circulates only between the regenerator 3 side inlet / outlet and the engine 1 side inlet / outlet.
  • the hot water stored in the regenerator 3 circulates only between the regenerator 3 side entrance and the heater core 2 side entrance.
  • the engine coolant circulation circuit has a regenerator 3 side inlet / outlet, an engine 1 side inlet / outlet and a heater core 2 side inlet / outlet respectively having a forward path from the outlet and a return path to the inlet.
  • the regenerator side double-row tube 12, the engine-side double row tube 13, and the heater core-side double row tube 14 are connected to the body.
  • each of the double-row pipes 12, 13, and 14 is provided with partition walls 12a, 13a, and 14a at the diameter position of the cylindrical pipe, and one of the two semi-cylindrical spaces has an outlet force.
  • Outbound paths 12b, 13b, and 14b are used, and the other path is a return path 12c, 13c, and 14c to the entrance.
  • the engine-side double-row pipe 13 and the heater core-side double-row pipe 14 are disposed on the same pipe axis as shown in FIGS. 4 to 7, and the regenerator-side double-row pipe 12 is the pipe
  • the two double tubes 12, 13, 14 are connected to each other at the intersecting portion of the heat accumulator side double tube 12.
  • the heat storage side double-row pipe 12 has its partition wall 12a extended to extend the engine 1 side outlet (outward path 13b) and the heater core 2 side inlet (return path 14c). ) Is communicated with the engine 1 side inlet (return path 13c) and the heater core 2 side outlet (outward path 14b).
  • the engine side valve 71 and the heater side valve 72 include the heat accumulator side double row pipe 12, the engine side double row pipe 13, and the heater core side double row pipe.
  • This is the valve element of the control valve 7 in which the first connector 73 (connector member) connecting 14 is collectively set as a common valve body.
  • the engine side valve 71 and the heater side valve 72 are opened and closed by individual valve actuators.
  • the electric water pump 5 is connected to the heater core inlet pipe 10 among the second connectors 18 that connect the heater core side double-row pipe 14, the heater core inlet pipe 10, and the heater core outlet pipe 11. It is set at the connecting part.
  • the heat storage controller 17 receives information from the air conditioner switch 19, the ignition switch 20, the outside air temperature sensor 21, the engine coolant temperature sensor 22, and the like, and receives the engine side valve 71 According to the control command for the motor of pump 5, “heat storage mode”, “heat storage maintenance mode”, “engine immediate warming mode” and “room immediate warming mode” are selected and controlled.
  • both the engine side valve 71 and the heater side valve 72 are in the open position during travel using heating.
  • both the engine side valve 71 and the heater side valve 72 are closed when the engine is stopped.
  • the engine side valve 71 is set to the open position and the heater side valve 72 is set to the closed position.
  • the engine side valve 71 is set to the closed position, the heater side valve 72 is set to the open position, and the electric water pump
  • FIG. 8 is a flowchart showing the flow of the mode selection control process executed by the heat storage controller 17 of the first embodiment.
  • mode selection control means “thermal storage mode” selection control is called mode 1 control
  • thermal storage maintenance mode” selection control is mode 2 control
  • V, V, and “engine immediate warming mode” selection control is mode 3.
  • Step S1 is a step of executing mode 2 control in which the electric water pump 5 is turned off, the engine side valve 71 is closed, and the heater side valve 72 is closed following the engine stop determination in step S2 or step S11. It is.
  • Step S2 is a step of determining whether or not to start the engine following the mode 2 control in step S1. If YES is determined, the process proceeds to step S3. If NO is determined, the step is performed.
  • Step S3 is a step of determining whether the air conditioner switch 19 is OF F or ON, following the engine start determination in step S2. If the air conditioner switch 19 is OFF, the process proceeds to step S4. If the air conditioner switch 19 is ON, the process proceeds to step S7.
  • Step S4 is a step of determining whether or not both the outside air temperature and the engine coolant temperature are high following the determination that the air conditioner switch 19 is OFF in step S3. Outside temperature and If both engine cooling water temperatures are high, the process proceeds to step S5. If at least one of the outside air temperature and the engine cooling water temperature is low, the process proceeds to step S6.
  • Step S5 is a mode 1 in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is opened following the determination that both the outside air temperature and the engine cooling water temperature are high in Step S4.
  • This is a step of executing control.
  • mode 3 control at step S6, mode 4 control at step S8, and mode 3 control at step S10 ⁇ mode 4 control are executed for a predetermined time, and then the process proceeds to step S5.
  • 1 Control is executed. Further, the execution of the mode 1 control is continued while it is determined in step S11 that the engine is operating.
  • step S6 following the determination that at least one of the outside air temperature and the engine coolant temperature is low in step S4, the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is opened.
  • This is a step to execute mode 3 control in which is closed. This mode 3 control is executed for a preset time or a time corresponding to the heat storage amount of the heat accumulator 3 or the like.
  • Step S7 is a step of determining whether or not both the outside air temperature and the engine coolant temperature are high! / Following the determination that the air conditioner switch 19 is ON in step S3. If there is a cooling operation request where both the outside air temperature and engine cooling water temperature are high, the process proceeds to step S8, and if there is a heating operation request where at least one of the outside air temperature and engine cooling water temperature is low, step S9. Migrate to
  • Step S8 is a step of determining whether at least one of the outside air temperature and the engine coolant temperature in step S7 is low! /, And then determining whether the engine coolant temperature is high! / Or low. Is. If it is determined that the engine coolant temperature is high, the process proceeds to step S9, and if it is determined that the engine coolant temperature is low, the process proceeds to step S10.
  • step S9 following the determination that both the outside air temperature and the engine coolant temperature are high in step S7, or the engine coolant temperature is high in step S8, the electric water pump 5 is turned on.
  • mode 4 control is performed in which the engine side valve 71 is closed and the heater side valve 72 is opened. This mode 4 control is executed for a preset time or a time corresponding to the amount of heat stored in the heat accumulator 3 or the like.
  • step S10 following the determination in step S8 that the engine coolant temperature is low, The motor pump 5 is turned off, the engine-side valve 71 is closed, and the heater-side valve 72 is closed.Then, the engine-side valve 71 is opened and the mode 3 control is entered, and then the electric motor pump 5 is turned on. In this step, the engine-side valve 71 is closed and the heater-side valve 72 is opened.
  • the control for shifting from the mode 3 control to the mode 4 control is executed for each mode according to a preset time or a time corresponding to the amount of heat stored in the heat accumulator 3 or the like.
  • Step S11 is a step of determining whether or not the engine 1 is stopped following the mode 1 control in step S5. If engine 1 is operating, return to step S5 to continue mode 1 control. If engine 1 is stopped, proceed to step S1 to switch to mode 2 control.
  • FIGS. 9A to 9D as a vehicle heating system equipped with a heat accumulator for storing engine cooling water, the engine, a radiator, a heater core, and a heat accumulator are connected in parallel to each other, and the engine and the heat accumulator are communicated with each other.
  • a valve is provided at a position in the middle of the circuit that branches to the heater core, and a water is provided in the middle of the circuit that circulates between the regenerator and the heater core.
  • the vehicle interior heating cycle when there is a heating request immediately after the engine is started is not a circuit that includes a heat accumulator, so the high temperature engine coolant in the heat accumulator is used as a heater core immediately after the engine is started. It cannot be sent to the room, and it cannot meet the demand for immediate warming in the room, which requires immediate heating of the passenger compartment.
  • step S5 ⁇ step S11 are repeated in the flowchart of Fig. 8, and in step S5, the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve is opened. Mode 1 control with 72 open is executed.
  • step S11 When engine 1 is stopped from the running state with ⁇ heat storage mode '' selected, in the flow chart of FIG. 8, the process proceeds from step S11 to step S1 ⁇ step S2, and it is determined that the engine is ON in step S2. Up to step Sl ⁇ step S2 is repeated, and in step S1, mode 2 control is performed in which the electric water pump 5 is turned off, the engine side valve 71 is closed, and the heater side valve 72 is closed.
  • step S3 If the air conditioner switch 20 is OFF when the engine 1 is started after the engine 1 is stopped, and the outside air temperature and the engine coolant temperature are high, the steps in the flowchart of FIG. The process proceeds from S2 to step S3 ⁇ step S4 ⁇ step S5 ⁇ step Sl l, and until it is determined in step SI 1 that the engine is OFF, the flow from step S5 to step SI 1 is repeated. Then, mode 1 control is executed in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is opened.
  • step S6 When engine 1 is started after engine 1 is stopped, when air conditioner switch 20 is OFF and at least one of the outside air temperature and the engine coolant temperature is low, the flow chart of FIG. 8 starts from step S2. Proceeding from step S3 to step S4 to step S6, in step S6, mode 3 control is executed in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is closed.
  • step S6 After the set time in the mode 3 control has elapsed, the process proceeds from step S6 to step S5 to step Sll, and until it is determined in step S11 that the engine is OFF, the process proceeds to step S5 to step S11.
  • step S5 mode 1 control is performed in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is opened.
  • step S4 the engine immediate warming request can be met by executing the mode 3 control.
  • Step S9 the electric water pump 5 is turned on, the engine side valve 71 is closed, and the heater side valve 7 2 Mode 4 control is executed to open.
  • step S9 the process proceeds from step S9 to step S5 to step SI1, and until it is determined in step S11 that the engine is OFF, the process proceeds from step S5 to step S11.
  • step S5 mode 1 control is performed in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is opened.
  • step S7 or step S8 to step S9 the room immediate warming request can be met by executing the mode 4 control.
  • Step S10 the mode 3 control is executed, in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is closed.
  • mode 4 control is performed in which the electric water pump 5 is turned on, the engine side valve 71 is closed, and the heater side valve 72 is opened.
  • the hot water stored in the heat accumulator 3 is changed as shown in Fig. 10D. It circulates only between the regenerator 3 side doorway and the heater core 2 side doorway, and can heat the passenger compartment immediately after starting the engine.
  • step S10 After the set time of the mode transition control has elapsed, the process proceeds from step S10 to step S5 to step S11, and until it is determined in step S11 that the engine is OFF, the process proceeds from step S5 to step S11.
  • step S5 The forward flow is repeated, and in step S5, mode 1 control is executed in which the electric water pump 5 is turned off, the engine side valve 71 is opened, and the heater side valve 72 is opened.
  • step S8 when the engine 1 is started, and when the heating request is made with the air conditioner switch 20 turned ON, if the engine coolant temperature is low! /, It is estimated that both the engine immediate warming request and the room immediate warming request are present.
  • step S10 in order to proceed from step S8 to step S10, by executing the mode transition control for shifting from mode 3 control to mode 4 control, both the engine immediate warming request and the room immediate warming request are responded together. be able to.
  • a vehicle heat storage system that includes an engine coolant circulation circuit that connects the engine 1 and the heater core 2 of the air conditioning unit, and a heat accumulator 3 that stores and circulates engine coolant!
  • the engine coolant circulation circuit consists of a heat accumulator 3 side inlet / outlet, engine 1 side inlet / outlet and heater core.
  • the ⁇ heat storage maintenance mode '' that shuts off the 3-side inlet / outlet
  • the ⁇ engine immediate heating mode '' in which the hot water stored in the heat storage unit 3 circulates only between the heat storage unit 3 side inlet / outlet and the engine 1-side inlet / outlet
  • the ⁇ In-Room Immediate Warm Mode '' in which the hot water stored in the regenerator 3 circulates only between the regenerator 3 side inlet / outlet and the heater core 2 side inlet / outlet.
  • Immediate warming mode "and" Indoor warming mode can be set individually to improve the engine warming immediately after starting the engine and the room warming immediately.
  • the engine cooling water circulation circuit includes two regenerator side two inlets and outlets, an engine one side inlet / outlet and a heater core 2 side inlet / outlet, each having a forward path from the outlet and a return path to the inlet.
  • a row pipe 12, an engine side double row pipe 13 and a heater core side double row pipe 14 are connected, and the engine side double row pipe 13 and the heater core side double row pipe 14 are arranged on the same pipe axis, and the heat storage
  • the heater-side double-row pipe 12 is arranged so as to intersect perpendicularly to the pipe axis, and the double-row pipes 12, 13, 14 are connected to each other at the intersection of the heat storage-side double-row pipe 12, so that Each inlet / outlet of the compressor 3 side inlet / outlet, engine 1 side inlet / outlet, and heater core 2 side inlet / outlet can be made up of a single part that can save space and cost.
  • regenerator-side double-row pipe 12 extends its partition wall 12a, thereby shutting off the engine 1 side outlet and the heater core 2 side inlet and communicating the engine 1 side inlet and the heater core 2 side outlet.
  • An engine-side valve 71 for switching between the heater core 2 side inlet / outlet and the heat accumulator 3 side outlet is connected to the open position of the heater core 2 side inlet and the heat accumulator 3 side outlet, and the heater core 2 side inlet / outlet Since the heater side valve 72 is arranged to switch between the closed position that shuts off the 3-side outlet and the heat accumulator, an engine with four modes of change control provided in the position where each double-row pipe 12, 13, 1 4 is assembled Of side valve 71 and heater side valve 72 It can be obtained by a combination of opening and closing positions.
  • the engine side valve 71 and the heater side valve 72 are formed of the heat storage side double-row pipe 12 And the first connector 73 that connects the engine side double row pipe 13 and the heater core side double row pipe 14 together as a common valve body. , 14 and control valve 7 can be combined to simplify the control of parts and save space and cost.
  • both the engine side valve 71 and the heater side valve 72 are in the open position, and the engine coolant flows between the engine 1 side inlet / outlet, the regenerator 3 side inlet / outlet, and the heater core 2 inlet / outlet.
  • “Heat storage mode” that circulates
  • “Heat storage maintenance mode” that shuts both the engine side valve 71 and the heater side valve 72 and shuts off the inlet / outlet of the heat storage unit 3 when the engine is stopped.
  • the side valve 71 is in the open position
  • the heater side valve 72 is in the closed position, and the hot water stored in the regenerator 3 circulates only between the regenerator 3 side inlet / outlet and the engine 1 side inlet / outlet.
  • Mode selection control means that selectively controls the “room immediate warming mode” that circulates only through the electric water pump 5, so that the “heat storage mode”, “ Selection control of the four modes of "Heat storage maintenance mode”, “Engine immediate warming mode” and “Indoor immediate warming mode”, simple opening / closing control of engine side valve 71 and heater side valve 72, and operation of electric water pump 5 ⁇ Can be achieved by stop control.
  • the second embodiment is a vehicle heat storage system in which the same control as the first embodiment is performed using four valves.
  • FIG. 11 is an engine coolant circulation circuit diagram showing the vehicle heat storage system of the second embodiment (an example of a vehicle heat storage system).
  • the vehicle heat storage system of Example 2 includes an engine 1, a heater core 2, a heat storage unit 3, a radiator 4, an electric water pump 5, a thermostat 6, and a first valve. 31, No. 2 Noreb 32, No. 3 Noreb 33, No. 4 Noreb 34, Engine outlet self-pipe 35a, 35b, 35c, Regenerator outlet self-pipe 36a, 36b, 36c, Heater core outlet self-contained pipe 37a, 37b, 37c 37d, first bypass pipe 38, second bypass pipe 39, third bypass pipe 40, radiator side engine outlet pipe 15, radiator side engine inlet pipe 16, heat storage controller 17, It has.
  • the engine coolant circulation circuit communicates the engine outlet pipes 35a, 35b, and 35c that communicate the engine 1 outlet and the heat accumulator 3 inlet, and the heat accumulator 3 outlet and the heater core 2 inlet.
  • the heat accumulator outlet pipes 36a, 36b, 36c, and heater core outlet self-tubes 37a, 37b, 37c, 37d communicating the heater core 2 outlet and the engine 1 inlet are provided.
  • first bypass pipe 38 and the second bypass pipe 39 communicating the engine outlet pipes 35a, 35b, and 35c and the heater core outlet pipes 37b, 37c, and 37d, and the regenerator outlet pipe 36a.
  • 36b and a third bypass pipe 40 communicating with the heater core outlet pipes 37a, 37b.
  • the first valve 31 is set at a position where the engine outlet pipes 35a and 35b and the first bypass pipe 38 intersect.
  • the second valve 32 is set at a position where the engine outlet pipes 35b and 35c and the second bypass pipe 39 intersect.
  • the third valve 33 is set at a position where the regenerator outlet pipes 36a, 36b and the third bypass pipe 40 intersect.
  • the fourth valve 34 is set at a position where the heater core outlet pipes 37b and 37c and the second bypass pipe 39 intersect. Since other configurations are the same as those in the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the vehicle heat storage system obtains four modes of “heat storage mode”, “heat storage maintenance mode”, “engine immediate warming mode”, and “room immediate warming mode” as follows.
  • the main piping side of the first valve 31, the second vano lever 32, the third valve 33, and the fourth valve 34 is set to the open position during the heating operation and the bypass is performed.
  • the piping side is the closed position.
  • the engine coolant circulates between the engine side inlet / outlet, the regenerator side inlet / outlet, and the heater core inlet / outlet.
  • the main piping side of the second valve 32 and the third valve 33 is closed when the engine is stopped. As a result, as shown in FIG. 12B, the inlet / outlet of the heat accumulator 3 is shut off.
  • the “engine immediate warming mode” is selected, immediately after the engine is started, the main piping side of the first valve 31, the second valve 32, and the fourth valve 34 is opened, and the bypass piping of the third valve 33 is used. Set the side to the open position. Accordingly, as shown in FIG. 12C, the hot water stored in the heat accumulator 3 circulates only between the heat accumulator 3 side inlet / outlet and the engine 1 side inlet / outlet.
  • the engine coolant circulation circuit includes an engine outlet pipe 35a, 35b, 35c that communicates the engine 1 outlet and the regenerator 3 inlet, and a regenerator outlet pipe that communicates the regenerator 3 outlet and the heater core 2 inlet.
  • 36a, 36b, 36c, heater core outlet self-tube 37a, 37b, 37c, 37d communicating the heater core 2 outlet and engine 1 inlet
  • a first bypass pipe 38 and a second bypass pipe 39 that communicate with 37c and 37d
  • a third bypass pipe 40 that communicates with the regenerator outlet pipes 36a and 36b and the heater core outlet pipes 37a and 37b.
  • the first valve 31 is set at a position where the engine outlet piping 35a, 35b and the first bypass piping 38 intersect, and the second valve 32 is positioned at the position where the engine outlet piping 35b, 35c and the second bypass piping 39 intersect.
  • This change control can be obtained by a combination of the opening / closing positions of the first valve 3 1, the second valve 32, the third valve, and the fourth valve 34.
  • “In-Room Immediate Warm Mode” in which the pipe side is the open position and the hot water stored in the regenerator 3 circulates only between the regenerator 3 side inlet / outlet and the heater core 2 side inlet / outlet via the electric water pump 5; Since the mode selection control means for selecting and controlling is provided, selection control of the four modes of ⁇ heat storage mode '', ⁇ heat storage maintenance mode '', ⁇ engine immediate warming mode '', and ⁇ room immediate warming mode '' according to the vehicle state This can be achieved by simple opening / closing control of the first valve 31 to the fourth valve 34 and operation / stop control of the electric water pump 5.
  • Example 1 an example of a circuit configuration with three double-row pipes and one control valve was shown, and in Example 2, an example of a circuit configuration with a normal pipe and four valves was shown.
  • the specific circuit configuration is not limited to those in the first and second embodiments.
  • the vehicle heat storage system of the present invention can also be applied to a hybrid vehicle. In short, it is the force applied to a vehicle equipped with a heat accumulator in the engine coolant circulation circuit that connects the engine and the heater core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

明 細 書
車両用蓄熱システム 技術分野
[0001] 本発明は、エンジン始動直後におけるエンジン即暖性と室内即暖性を向上させる ための車両用蓄熱システムに関する。
背景技術
[0002] 従来、エンジン冷却水を保温貯蔵する車両用蓄熱システムとしては、エンジンとラ ジエータを連結するエンジン冷却水循環回路に、エンジン冷却水を貯液 ·流通する 蓄熱器を備えたものが知られている(例えば、特開平 11— 182307号公報)。
[0003] そして、従来の車両用蓄熱システムでは、車両走行時に高温となったエンジン冷却 水を蓄熱器に取り込み、車両が停止している間、高温のエンジン冷却水を蓄熱器内 に保温貯蔵する。そして、次回のエンジン始動時、蓄熱器内の高温のエンジン冷却 水をエンジンに送り込み、エンジンの早期暖機に使用する。 発明の開示
発明が解決しょうとする課題
[0004] しかしながら、従来の車両用蓄熱システムにあっては、エンジン始動時、蓄熱器内 の高温のエンジン冷却水をエンジンに送り込むことでエンジンの早期暖機のみを行う 構成であるため、エンジン始動直後における車室内暖房を早期に効かせたいという 要求に応えることができない、とレ、う問題があった。
[0005] 本発明は、上記問題に着目してなされたもので、エンジン即暖モードと室内即暖モ ードの個別設定により、エンジン始動直後におけるエンジン即暖性と室内即暖性の 向上を図ることができる車両用蓄熱システムを提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するため、本発明では、エンジンと空調ユニットのヒータコアを連結 するエンジン冷却水循環回路に、エンジン冷却水を貯液 '流通する蓄熱器を備えた 車両用蓄熱システムにおいて、前記エンジン冷却水循環回路は、蓄熱器側出入口と エンジン側出入口とヒータコア側出入口を連結した回路であり、回路に設定したバル ブを切り替えることにより、エンジン冷却水が少なくともエンジン側出入口と蓄熱器側 出入口との間を循環する蓄熱モードと、蓄熱器側出入口を遮断する蓄熱維持モード と、前記蓄熱器に貯められた温水が蓄熱器側出入口とエンジン側出入口との間のみ を循環するエンジン即暖モードと、前記蓄熱器に貯められた温水が蓄熱器側出入口 とヒータコア側出入口との間のみを循環する室内即暖モードと、の 4つのモードを選 択可能な回路構成としたことを特徴とする。
発明の効果
[0007] よって、本発明の車両用蓄熱システムにあっては、走行時、エンジン冷却水循環回 路に設定したバルブの切り替えにより蓄熱モードを選択すると、エンジン冷却水が少 なくともエンジン側出入口と蓄熱器側出入口との間を循環し、蓄熱器には高温となつ たエンジン冷却水が流通する。
[0008] そして、エンジン停止時、エンジン冷却水循環回路に設定したバルブの切り替えに より蓄熱維持モードを選択すると、蓄熱器側出入口が遮断され、高温のエンジン冷却 水が蓄熱器内に保温貯蔵される。
[0009] エンジン停止後、エンジン始動をする時、エンジン冷却水循環回路に設定したバル ブの切り替えによりエンジン即暖モードを選択すると、蓄熱器に貯められた温水(高 温のエンジン冷却水)が蓄熱器側出入口とエンジン側出入口との間のみを循環し、 エンジン始動後、早期にエンジン暖機を行うことができる。
[0010] エンジン停止後、エンジン始動をする時、エンジン冷却水循環回路に設定したバル ブの切り替えにより室内即暖モードを選択すると、蓄熱器に貯められた温水が蓄熱 器側出入口とヒータコア側出入口との間のみを循環し、エンジン始動直後から車室 内の暖房を行うことができる。
[0011] また、エンジン停止後、エンジン始動をする時、エンジン冷却水循環回路に設定し たバルブの切り替えにより、短時間のうちにエンジン即暖モードと室内即暖モードの 2 つのモード選択を行っても良い。
[0012] この結果、エンジン即暖モードと室内即暖モードの個別設定により、エンジン始動 直後におけるエンジン即暖性と室内即暖性の向上を図ることができる。
図面の簡単な説明 [図 1]実施例 1の車両用蓄熱システム(車両用蓄熱システムの一例)を示すエンジン 冷却水循環回路図である。
[図 2]実施例 1の車両用蓄熱システムに採用された二列管を示す斜視図である。
[図 3]実施例 1の車両用蓄熱システムにおける蓄熱器とヒータコアとを連結するェンジ ン冷却水循環回路を示す斜視図である。
[図 4]実施例 1の車両用蓄熱システムにおいて蓄熱モードを選択した時の制御バル ブの両弁体位置を示す断面図である。
[図 5]実施例 1の車両用蓄熱システムにおいて蓄熱維持モードを選択した時の制御 バルブの両弁体位置を示す断面図である。
[図 6]実施例 1の車両用蓄熱システムにおいてエンジン即暖モードを選択した時の制 御バルブの両弁体位置を示す断面図である。
[図 7]実施例 1の車両用蓄熱システムにおいて室内即暖モードを選択した時の制御 バルブの両弁体位置を示す断面図である。
[図 8]実施例 1の蓄熱コントローラ 17にて実行されるモード選択制御処理の流れを示 すフローチャートである。
[図 9A]従来の蓄熱器を用いた車両用暖房システムでのエンジン即暖時における即 暖作用を説明するサイクル図である。
[図 9B]従来の蓄熱器を用いた車両用暖房システムでのエンジン始動直後における 即暖作用を説明するサイクル図である。
[図 9C]従来の蓄熱器を用いた車両用暖房システムでの走行時における即暖作用を 説明するサイクル図である。
[図 9D]従来の蓄熱器を用いた車両用暖房システムでのエンジン停止時における即 暖作用を説明するサイクル図である。
[図 10A]実施例 1の車両用蓄熱システムにおける暖房使用走行時を示す各作用説明 図である。
[図 10B]実施例 1の車両用蓄熱システムにおけるエンジン停止時を示す各作用説明 図である。
[図 10C]実施例 1の車両用蓄熱システムにおけるエンジン始動直後のエンジン即暖 時を示す各作用説明図である。
園 10D]実施例 1の車両用蓄熱システムにおけるエンジン始動直後の室内即暖時を 示す各作用説明図である。
園 11]実施例 2の車両用蓄熱システム(車両用蓄熱システムの一例)を示すエンジン 冷却水循環回路図である。
園 12A]実施例 2の車両用蓄熱システムにおける暖房使用走行時を示す各作用説明 図である。
園 12B]実施例 2の車両用蓄熱システムにおけるエンジン停止時を示す各作用説明 図である。
[図 12C]実施例 2の車両用蓄熱システムにおけるエンジン始動直後のエンジン即暖 時を示す各作用説明図である。
園 12D]実施例 2の車両用蓄熱システムにおけるエンジン始動直後の室内即暖時を 示す各作用説明図である。
符号の説明
2 ヒータコア
3 蓄熱器
4 ラジェータ
5 電動ウォータポンプ
6 サーモスタット
7 制御バルブ
8 ヒータコア側エンジン出口配管
9 ヒータコア側エンジン入口配管
10 ヒータコア入口配管
11 ヒータコア出口配管
12 蓄熱器側二列管
13 エンジン側二列管
14 ヒータコア側二列管 15 ラジェータ側エンジン出口配管
16 ラジェータ側エンジン入口配管
17 蓄熱コントローラ
31 第 1バルブ
32 第 2バルブ
33 第 3バルブ
34 第 4バルブ
35a, 35b, 35c エンジン出 P酉己管
36a, 36b, 36c 蓄熱器出 P酉己管
37a, 37b, 37c, 37d ヒータコア出口酉己管
38 第 1バイパス配管
39 第 2バイパス配管
40 第 3バイパス配管
発明を実施するための最良の形態
[0015] 以下、本発明の車両用蓄熱システムを実現する最良の形態を、図面に示す実施例 1及び実施例 2に基づいて説明する。
実施例 1
[0016] まず、システム構成を説明する。
図 1は実施例 1の車両用蓄熱システム(車両用蓄熱システムの一例)を示すェンジ ン冷却水循環回路図である。図 2は実施例 1の車両用蓄熱システムに採用された二 列管を示す斜視図である。図 3は実施例 1の車両用蓄熱システムにおける蓄熱器とヒ ータコアとを連結するエンジン冷却水循環回路を示す斜視図である。図 4は実施例 1 の車両用蓄熱システムにおいて蓄熱モードを選択した時の制御バルブの両弁体位 置を示す断面図である。図 5は実施例 1の車両用蓄熱システムにおいて蓄熱維持モ ードを選択した時の制御バルブの両弁体位置を示す断面図である。図 6は実施例 1 の車両用蓄熱システムにおいてエンジン即暖モードを選択した時の制御バルブの両 弁体位置を示す断面図である。図 7は実施例 1の車両用蓄熱システムにおいて室内 即暖モードを選択した時の制御バルブの両弁体位置を示す断面図である。 [0017] 実施例 1の車両用蓄熱システムは、図 1に示すように、エンジン 1と、ヒータコア 2と、 蓄熱器 3と、ラジェータ 4と、電動ウォータポンプ 5と、サーモスタット 6と、制御バルブ 7 と、ヒータコア側エンジン出口配管 8と、ヒータコア側エンジン入口配管 9と、ヒータコア 入口配管 10と、ヒータコア出口配管 11と、蓄熱器側二列管 12と、エンジン側二列管 13と、ヒータコア側二列管 14と、ラジェータ側エンジン出口配管 15と、ラジェータ側 エンジン入口配管 16と、蓄熱コントローラ 17と、を備えている。
[0018] 実施例 1の車両用蓄熱システムは、エンジン 1と図外の空調ユニットのヒータコア 2を 連結するエンジン冷却水循環回路に、エンジン冷却水を貯液 '流通する蓄熱器 3を 備えたものである。
[0019] 前記蓄熱器 3は、例えば、温水貯液層の外周を真空断熱層で囲った構造、さらに、 蓄熱効率を上げるために温水貯液層の外周を潜熱蓄熱材層(例:マイクロカプセル 化したパラフィン封入カプセルの封入層)及び真空断熱層で囲った構造、あるいは、 温水貯液層の外周を熱媒体層(例:トランスミッションオイル層)及び真空断熱層で囲 つた構造、等とされる。さらに、容器構造としても、筒型容器を同軸に複数組み合わ せた多重容器型蓄熱器構造としても良いし、蓄熱器構成要素を多数積層した積層 型蓄熱器構造としても良い。
[0020] 前記エンジン冷却水循環回路は、蓄熱器 3側出入口とエンジン 1側出入口とヒータ コア 2側出入口を連結した回路であり、回路に設定した制御バルブ 7を切り替えること により、「蓄熱モード」と「蓄熱維持モード」と「エンジン即暖モード」と「室内即暖モード 」の 4つのモードを選択可能な回路構成として!/、る。
[0021] 前記「蓄熱モード」は、エンジン冷却水がエンジン 1側出入口と蓄熱器 3側出入口と ヒータコア 2側出入口の間を循環する。前記「蓄熱維持モード」は、蓄熱器 3側出入口 を遮断する。前記「エンジン即暖モード」は、前記蓄熱器 3に貯められた温水が蓄熱 器 3側出入口とエンジン 1側出入口との間のみを循環する。前記「室内即暖モード」 は、前記蓄熱器 3に貯められた温水が蓄熱器 3側出入口とヒータコア 2側出入口との 間のみを循環する。
[0022] 前記エンジン冷却水循環回路は、図 1に示すように、蓄熱器 3側出入口とエンジン 1側出入口とヒータコア 2側出入口に、それぞれ出口からの往路と入口への復路を一 体に有する蓄熱器側二列管 12とエンジン側二列管 13とヒータコア側二列管 14を連 結している。前記各二列管 12, 13, 14は、図 2に示すように、円筒パイプの直径位 置に仕切り壁 12a, 13a, 14aを設け、 2つの半円筒状空間のうち、一方を出口力もの 往路 12b, 13b, 14bとし、他方を入口への復路 12c, 13c, 14cとしている。
[0023] 前記エンジン側二列管 13と前記ヒータコア側二列管 14は、図 4〜図 7に示すように 、同じ管軸上に配置し、前記蓄熱器側二列管 12は、前記管軸に対し垂直方向に交 わらせて配置し、前記蓄熱器側二列管 12の交差部にて各二列管 12, 13, 14を互 いに連結している。
[0024] 前記蓄熱器側二列管 12は、図 4〜図 7に示すように、その仕切り壁 12aを延長させ ることで、エンジン 1側出口(往路 13b)とヒータコア 2側入口(復路 14c)を遮断すると 共にエンジン 1側入口(復路 13c)とヒータコア 2側出口(往路 14b)を連通している。 そして、前記エンジン 1側出入口(往路 13b,復路 13c)と蓄熱器 3側入口(復路 12c) の連通部分に、エンジン 1側出口と蓄熱器 3側入口を連通する開位置と、エンジン 1 側出入口と蓄熱器 3側入口を遮断する閉位置と、を切り替えるエンジン側バルブ 71 を配置している。また、前記ヒータコア 2側出入口(往路 14b,復路 14c)と蓄熱器 3側 出口(往路 12b)の連通部分に、ヒータコア 2側入口と蓄熱器 3側出口を連通する開 位置と、ヒータコア 2側出入口と蓄熱器 3側出口を遮断する閉位置と、を切り替えるヒ ータ側バルブ 72を配置して!/、る。
[0025] 前記エンジン側バルブ 71と前記ヒータ側バルブ 72は、図 4〜図 7に示すように、前 記蓄熱器側二列管 12と前記エンジン側二列管 13と前記ヒータコア側二列管 14を連 結する第 1コネクタ 73 (コネクタ部材)を共通のバルブボディとして集約設定した制御 バルブ 7の弁体要素である。なお、エンジン側バルブ 71とヒータ側バルブ 72は、個別 のバルブァクチユエータにより開閉動作を行う。
[0026] 前記電動ウォータポンプ 5は、図 3に示すように、ヒータコア側二列管 14とヒータコア 入口配管 10とヒータコア出口配管 11を連結する第 2コネクタ 18のうち、ヒータコア入 口配管 10との連結部に設定している。
[0027] 前記蓄熱コントローラ 17は、エアコンスィッチ 19,ィグニッシヨンスィッチ 20,外気温 センサ 21 ,エンジン冷却水温度センサ 22等から情報を入力し、エンジン側バルブ 71 ポンプ 5のモータに対する制御指令により、「蓄熱モード」と「蓄熱維持モード」と「ェン ジン即暖モード」と「室内即暖モード」を選択制御する。
[0028] 前記「蓄熱モード」では、図 4に示すように、暖房使用走行時、前記エンジン側バル ブ 71と前記ヒータ側バルブ 72を共に開位置とする。
[0029] 前記「蓄熱維持モード」では、図 5に示すように、エンジン停止時、前記エンジン側 バルブ 71と前記ヒータ側バルブ 72を共に閉位置とする。
[0030] 前記「エンジン即暖モード」では、図 6に示すように、エンジン始動直後、前記ェン ジン側バルブ 71を開位置とし前記ヒータ側バルブ 72を閉位置とする。
[0031] 前記「室内即暖モード」では、図 7に示すように、エンジン始動直後、前記エンジン 側バルブ 71を閉位置とし、前記ヒータ側バルブ 72を開位置とし、電動ウォータポンプ
5をポンプ作動側とする。
[0032] 図 8は実施例 1の蓄熱コントローラ 17にて実行されるモード選択制御処理の流れを 示すフローチャートで、以下、各ステップについて説明する(モード選択制御手段)。 尚、このフローチャートにおいて、「蓄熱モード」選択制御をモード 1制御といい、「蓄 熱維持モード」選択制御をモード 2制御と V、V、、 「エンジン即暖モード」選択制御をモ ード 3制御と V、V、、「室内即暖モード」選択制御をモード 4制御と!/、う。
[0033] ステップ S1は、ステップ S2あるいはステップ S11でのエンジン停止判断に続き、電 動ウォータポンプ 5を OFF、エンジン側バルブ 71を閉、ヒータ側バルブ 72を閉とする モード 2制御を実行するステップである。
[0034] ステップ S2は、ステップ S1でのモード 2制御に続き、エンジン始動か否かを判断す るステップである。 YESの判断時にはステップ S3へ移行し、 NOの判断時にはステップ
S 1へ戻る。
[0035] ステップ S3は、ステップ S2でのエンジン始動判断に続き、エアコンスィッチ 19が OF Fか ONかを判断するステップである。エアコンスィッチ 19が OFFの場合はステップ S4 へ移行し、エアコンスィッチ 19が ONの場合はステップ S 7へ移行する。
[0036] ステップ S4は、ステップ S3でのエアコンスィッチ 19が OFFであるとの判断に続き、 外気温とエンジン冷却水温が共に高レ、か否力、を判断するステップである。外気温と エンジン冷却水温が共に高 、場合はステップ S5へ移行し、外気温とエンジン冷却水 温のうち少なくとも一方が低い場合はステップ S6へ移行する。
[0037] ステップ S5は、ステップ S4での外気温とエンジン冷却水温が共に高いとの判断に 続き、電動ウォータポンプ 5を OFF、エンジン側バルブ 71を開、ヒータ側バルブ 72を 開とするモード 1制御を実行するステップである。なお、ステップ S6でのモード 3制御 、ステップ S8でのモード 4制御、ステップ S 10でのモード 3制御→モード 4制御、のそ れぞれを所定時間実行した後、ステップ S5へ移行し、モード 1制御を実行する。また 、ステップ S11において、エンジン作動であると判断されている間もモード 1制御の実 行が継続される。
[0038] ステップ S6は、ステップ S4での外気温とエンジン冷却水温のうち、少なくとも一方 が低いとの判断に続き、電動ウォータポンプ 5を OFF、エンジン側バルブ 71を開、ヒ ータ側バルブ 72を閉とするモード 3制御を実行するステップである。このモード 3制御 は、予め設定された時間、あるいは、蓄熱器 3の蓄熱量等に応じた時間実行される。
[0039] ステップ S7は、ステップ S3でのエアコンスィッチ 19が ONであるとの判断に続き、外 気温とエンジン冷却水温が共に高!/、か否かを判断するステップである。外気温とェン ジン冷却水温が共に高ぐ冷房の作動要求がある場合はステップ S8 移行し、外気 温とエンジン冷却水温のうち少なくとも一方が低ぐ暖房の作動要求がある場合はス テツプ S 9へ移行する。
[0040] ステップ S8は、ステップ S7での外気温とエンジン冷却水温のうち、少なくとも一方 が低!/、との判断に続き、エンジン冷却水温が高!/、か低レ、かを判断するステップである 。エンジン冷却水温が高いと判断された場合はステップ S9へ移行し、エンジン冷却 水温が低いと判断された場合はステップ S 10へ移行する。
[0041] ステップ S9は、ステップ S7での外気温とエンジン冷却水温が共に高いとの判断、あ るいは、ステップ S8でのエンジン冷却水温が高いとの判断に続き、電動ウォータポン プ 5を ON エンジン側バルブ 71を閉、ヒータ側バルブ 72を開とするモード 4制御を実 行するステップである。このモード 4制御は、予め設定された時間、あるいは、蓄熱器 3の蓄熱量等に応じた時間実行される。
[0042] ステップ S10は、ステップ S8でのエンジン冷却水温が低いとの判断に続き、電動ゥ ォータポンプ 5を OFF、エンジン側バルブ 71を閉、ヒータ側バルブ 72を閉とするモー ド 2制御から、エンジン側バルブ 71を開としてモード 3制御に移行し、その後、電動ゥ ォータポンプ 5を ONとし、エンジン側バルブ 71を閉、ヒータ側バルブ 72を開とするモ ード 4制御へと移行するステップである。このモード 3制御からモード 4制御へ遷移す る制御は、それぞれのモードについて、予め設定された時間、あるいは、蓄熱器 3の 蓄熱量等に応じた時間実行される。
[0043] ステップ S11は、ステップ S5でのモード 1制御に続き、エンジン 1が停止か否かを判 断するステップである。エンジン 1が作動している場合はステップ S5へ戻りモード 1制 御を継続し、エンジン 1が停止している場合は、ステップ S1へ進み、モード 2制御に 切り替えられる。
[0044] 次に、作用を説明する。
[0045] [従来システムでの即暖作用]
エンジン冷却水を保温貯蔵する蓄熱器を備えた車両用暖房システムとして、図 9A 乃至図 9Dに示すように、エンジンとラジェータとヒータコアと蓄熱器を互いに並列に 連結し、エンジンと蓄熱器とを連通する回路の途中位置であって、ヒータコアに分岐 する位置にバルブを設け、蓄熱器とヒータコアを循環する回路の途中位置にウォータ
Figure imgf000012_0001
[0046] この車両用暖房システムでは、図 9Cに示すように、走行時 (安定域)に高温となつ たエンジン冷却水を蓄熱器に取り込む。そして、図 9Dに示すように、エンジン停止時 、高温のエンジン冷却水を蓄熱器内に保温貯蔵する。そして、次のエンジン始動直 後であって、エンジン即暖時には、図 9Aに示すように、バルブをエンジンと蓄熱器と を連通する側に切り替え、ウォータポンプを作動させることで、蓄熱器の温水を、バル ブ→エンジン→ウォータポンプ→蓄熱器という閉回路で循環させ、蓄熱器内の高温 のエンジン冷却水をエンジンに送り込む(エンジン即暖サイクル)。
[0047] 一方、次のエンジン始動直後から暖房要求があるときには、図 9Bに示すように、バ ルブをエンジンとヒータコアとを連通する側に切り替えることで、エンジン冷却水を、バ ルブ→ヒータコア→エンジンという閉回路で循環させる(車室内暖房サイクル)。
[0048] 上記のように、エンジン始動直後、エンジン即暖サイクルのみが蓄熱器を含む閉回 路として構成されるだけで、エンジン始動直後から暖房要求があるときの車室内暖房 サイクルは、蓄熱器を含む回路とはならないため、エンジン始動直後、蓄熱器内の高 温のエンジン冷却水をヒータコアに送り込むことができず、車室内暖房を直ちに効か せたいという室内即暖要求に応えられない。以下、実施例 1の車両用蓄熱システムに おける、 [暖房使用走行時の蓄熱モード選択作用]、 [エンジン始動直後の蓄熱モー ド選択作用]、 [エンジン始動直後のエンジン即暖モード選択作用]、 [エンジン始動 直後の室内即暖モード選択作用]、 [エンジン始動直後のモード遷移作用]について 説明する。
[0049] [暖房使用走行時の蓄熱モード選択作用]
走行時(安定域)での暖房使用時には、図 8のフローチャートにおいて、ステップ S5 →ステップ S 11を繰り返され、ステップ S5において、電動ウォータポンプ 5を OFF、ェ ンジン側バルブ 71を開、ヒータ側バルブ 72を開とするモード 1制御が実行される。
[0050] 暖房使用による走行時、エンジン冷却水循環回路に設定した制御バルブ 7の切り 替えにより(図 4)、この「蓄熱モード」を選択すると、図 10Aに示すように、エンジン冷 却水が、エンジン 1側出入口と蓄熱器 3側出入口とヒータコア 2側出入口の間を循環 し、蓄熱器 3には高温となったエンジン冷却水が流通する。
[0051] [蓄熱維持モード選択作用]
「蓄熱モード」を選択しての走行状態からエンジン 1を停止すると、図 8のフローチヤ ートにおいて、ステップ S 11からステップ S l→ステップ S2へと進み、ステップ S2でェ ンジン ONと判断されるまでは、ステップ Sl→ステップ S2へと進む流れが繰り返され、 ステップ S 1において、電動ウォータポンプ 5を OFF、エンジン側バルブ 71を閉、ヒー タ側バルブ 72を閉とするモード 2制御が実行される。
[0052] エンジン停止時、エンジン冷却水循環回路に設定した制御バルブ 7の切り替えによ り(図 5)、「蓄熱維持モード」を選択すると、図 10Bに示すように、蓄熱器 3側出入口 が遮断され、高温のエンジン冷却水を蓄熱器内に保温貯蔵される。
[0053] [エンジン始動直後の蓄熱モード選択作用]
エンジン 1の停止後、エンジン 1を始動した時、エアコンスィッチ 20が OFFであり、か つ、外気温もエンジン冷却水温も高い場合、図 8のフローチャートにおいて、ステップ S2からステップ S3→ステップ S4→ステップ S5→ステップ Sl lへと進み、ステップ S I 1でエンジン OFFと判断されるまでは、ステップ S5→ステップ SI 1へと進む流れが繰 り返され、ステップ S5において、電動ウォータポンプ 5を OFF、エンジン側バルブ 71 を開、ヒータ側バルブ 72を開とするモード 1制御が実行される。
[0054] すなわち、エンジン 1を始動した時、エアコンスィッチ 20が OFFであり、かつ、外気 温もエンジン冷却水温も高!/、場合には、エンジン即暖要求も室内即暖要求もなレ、と 判断し、直ちに「蓄熱モード」が選択される。
[0055] [エンジン始動直後のエンジン即暖モード選択作用]
エンジン 1の停止後、エンジン 1を始動した時、エアコンスィッチ 20が OFFであり、か つ、外気温とエンジン冷却水温のうち、少なくとも一方が低い場合、図 8のフローチヤ ートにおいて、ステップ S2からステップ S3→ステップ S4→ステップ S6へと進み、ステ ップ S6において、電動ウォータポンプ 5を OFF、エンジン側バルブ 71を開、ヒータ側 バルブ 72を閉とするモード 3制御が実行される。
[0056] エンジン始動直後、エンジン冷却水循環回路に設定した制御バルブ 7の切り替え により(図 6)、 「エンジン即暖モード」を選択すると、図 10Cに示すように、蓄熱器 3に 貯められた温水(高温のエンジン冷却水)が蓄熱器 3側出入口とエンジン 1側出入口 との間のみを循環し、エンジン始動後、早期にエンジン暖機を行うことができる。
[0057] そして、モード 3制御での設定時間が経過した後は、ステップ S6からステップ S5→ ステップ S l lへ進み、ステップ S 11でエンジン OFFと判断されるまでは、ステップ S5 →ステップ S 11へと進む流れが繰り返えされ、ステップ S5において、電動ウォータポ ンプ 5を OFF、エンジン側バルブ 71を開、ヒータ側バルブ 72を開とするモード 1制御 が実行される。
[0058] すなわち、エンジン 1を始動した時、外気温とエンジン冷却水温のうち少なくとも一 方が低い状況とは、エアコンスィッチ 20が OFFであることで、外気温は高くも低くもな ぐエンジン冷却水温が低い状況と推定される。この場合、ステップ S4からステップ S 6へと進むため、モード 3制御の実行により、エンジン即暖要求に応えることができる。
[0059] [エンジン始動直後の室内即暖モード選択作用]
エンジン 1の停止後、エンジン 1を始動した時、エアコンスィッチ 20が ONであり、力、 つ、外気温とエンジン冷却水温が共に高い場合、あるいは、エアコンスィッチ 20が 0 Nであり、かつ、外気温は低いがエンジン冷却水温が高い場合、図 8のフローチャート において、ステップ S2からステップ S3→ステップ S7→ステップ S9、あるいは、ステツ プ S2からステップ S3→ステップ S7→ステップ S8→ステップ S9へと進み、ステップ S9 において、電動ウォータポンプ 5を ON、エンジン側バルブ 71を閉、ヒータ側バルブ 7 2を開とするモード 4制御が実行される。
[0060] エンジン始動直後、エンジン冷却水循環回路に設定した制御バルブ 7の切り替え により(図 7)、「室内即暖モード」を選択すると、図 10Dに示すように、蓄熱器 3に貯め られた温水が蓄熱器 3側出入口とヒータコア 2側出入口との間のみを循環し、ェンジ ン始動直後から車室内の暖房を行うことができる。
[0061] そして、モード 4制御での設定時間が経過した後は、ステップ S9からステップ S5→ ステップ S I 1 進み、ステップ S 11でエンジン OFFと判断されるまでは、ステップ S5 →ステップ S 11へと進む流れが繰り返えされ、ステップ S5において、電動ウォータポ ンプ 5を OFF、エンジン側バルブ 71を開、ヒータ側バルブ 72を開とするモード 1制御 が実行される。
[0062] すなわち、エンジン 1を始動した時、エアコンスィッチ 20を ONとしての暖房要求時、 少なくともエンジン冷却水温が高い場合には、エンジン即暖要求は無いものの、室内 即暖要求があると推定される。この場合、ステップ S7あるいはステップ S8からステツ プ S9へと進むため、モード 4制御の実行により、室内即暖要求に応えることができる
[0063] ここで、エンジン始動直後の室内即暖時には、エンジン 1側の回路内水量が少なく なり(ヒータコア 2側循環分の減少)、また、ヒータコア 2側での放熱による水温低下も 低く抑えられるため、エンジン 1側でのエンジン冷却水の温度上昇が促進され、ェン ジン 1の即暖効果も得られる。
[0064] [エンジン始動直後のモード遷移作用]
エンジン 1の停止後、エンジン 1を始動した時、エアコンスィッチ 20が ONであり、力、 つ、外気温とエンジン冷却水温が共に低い場合、あるいは、外気温は高いがェンジ ン冷却水温が低い場合、図 8のフローチャートにおいて、ステップ S2からステップ S3 →ステップ S7→ステップ S8→ステップ S 10へと進み、ステップ S 10において、電動ゥ ォータポンプ 5を OFF、エンジン側バルブ 71を開、ヒータ側バルブ 72を閉とするモー ド 3制御が実行され、続いて、電動ウォータポンプ 5を ON、エンジン側バルブ 71を閉 、ヒータ側バルブ 72を開とするモード 4制御が実行される。
[0065] エンジン始動直後、エンジン冷却水循環回路に設定した制御バルブ 7の切り替え により(図 6)、 「エンジン即暖モード」を選択すると、図 10Cに示すように、蓄熱器 3に 貯められた温水(高温のエンジン冷却水)が蓄熱器 3側出入口とエンジン 1側出入口 との間のみを循環し、エンジン始動後、早期にエンジン暖機を行うことができる。
[0066] 続いて、エンジン冷却水循環回路に設定した制御バルブ 7の切り替えにより(図 7) 、「室内即暖モード」を選択すると、図 10Dに示すように、蓄熱器 3に貯められた温水 が蓄熱器 3側出入口とヒータコア 2側出入口との間のみを循環し、エンジン始動直後 力、ら車室内の暖房を行うことができる。
[0067] そして、モード遷移制御の設定時間が経過した後は、ステップ S10からステップ S5 →ステップ S 11へ進み、ステップ S 11でエンジン OFFと判断されるまでは、ステップ S 5→ステップ S11へと進む流れが繰り返えされ、ステップ S5において、電動ウォータ ポンプ 5を OFF、エンジン側バルブ 71を開、ヒータ側バルブ 72を開とするモード 1制 御が実行される。
[0068] すなわち、エンジン 1を始動した時、エアコンスィッチ 20を ONとしての暖房要求時、 エンジン冷却水温が低!/、場合には、エンジン即暖要求と室内即暖要求が共にあると 推定される。この場合、ステップ S8からステップ S 10へと進むため、モード 3制御から モード 4制御へ移行するモード遷移制御の実行により、エンジン即暖要求と室内即 暖要求との双方の要求に対し併せて応えることができる。
[0069] 次に、効果を説明する。
実施例 1の車両用蓄熱システムにあっては、下記に列挙する効果を得ることができ
[0070] (1)エンジン 1と空調ユニットのヒータコア 2を連結するエンジン冷却水循環回路に、 エンジン冷却水を貯液 ·流通する蓄熱器 3を備えた車両用蓄熱システムにお!/、て、前 記エンジン冷却水循環回路は、蓄熱器 3側出入口とエンジン 1側出入口とヒータコア 2側出入口を連結した回路であり、回路に設定したバルブを切り替えることにより、ェ ンジン冷却水が少なくともエンジン 1側出入口と蓄熱器 3側出入口との間を循環する「 蓄熱モード」と、蓄熱器 3側出入口を遮断する「蓄熱維持モード」と、前記蓄熱器 3に 貯められた温水が蓄熱器 3側出入口とエンジン 1側出入口との間のみを循環する「ェ ンジン即暖モード」と、前記蓄熱器 3に貯められた温水が蓄熱器 3側出入口とヒータコ ァ 2側出入口との間のみを循環する「室内即暖モード」と、の 4つのモードを選択可能 な回路構成としたため、「エンジン即暖モード」と「室内即暖モード」の個別設定により 、エンジン始動直後におけるエンジン即暖性と室内即暖性の向上を図ることができる
[0071] (2)前記エンジン冷却水循環回路は、蓄熱器 3側出入口とエンジン 1側出入口とヒ ータコア 2側出入口に、それぞれ出口からの往路と入口への復路を一体に有する蓄 熱器側二列管 12とエンジン側二列管 13とヒータコア側二列管 14を連結し、前記ェン ジン側二列管 13と前記ヒータコア側二列管 14は、同じ管軸上に配置し、前記蓄熱器 側二列管 12は、前記管軸に対し垂直方向に交わらせて配置し、前記蓄熱器側二列 管 12の交差部にて各二列管 12, 13, 14を互いに連結したため、蓄熱器 3側出入口 とエンジン 1側出入口とヒータコア 2側出入口の各出入口を、省スペースと低コスト化 が可能な一部品により構成することができる。
[0072] (3)前記蓄熱器側二列管 12は、その仕切り壁 12aを延長させることで、エンジン 1側 出口とヒータコア 2側入口を遮断すると共にエンジン 1側入口とヒータコア 2側出口を 連通し、前記エンジン 1側出入口と蓄熱器 3側入口の連通部分に、エンジン 1側出口 と蓄熱器 3側入口を連通する開位置と、エンジン 1側出入口と蓄熱器 3側入口を遮断 する閉位置と、を切り替えるエンジン側バルブ 71を配置し、前記ヒータコア 2側出入 口と蓄熱器 3側出口の連通部分に、ヒータコア 2側入口と蓄熱器 3側出口を連通する 開位置と、ヒータコア 2側出入口と蓄熱器 3側出口を遮断する閉位置と、を切り替える ヒータ側バルブ 72を配置したため、 4つのモードの変更制御を、各二列管 12, 13, 1 4を集合させた位置に設けたエンジン側バルブ 71とヒータ側バルブ 72の開閉位置の 組み合わせにより得ることができる。
[0073] (4)前記エンジン側バルブ 71と前記ヒータ側バルブ 72は、前記蓄熱器側二列管 12 と前記エンジン側二列管 13と前記ヒータコア側二列管 14を連結する第 1コネクタ 73 を共通のバルブボディとして集約設定した制御バルブ 7の弁体要素であるため、各 二列管 12, 13, 14と制御バルブ 7との組み合わせにより、部品'制御の簡素化が可 能となり、省スペース ·低コストを図ることができる。
[0074] (5)暖房使用走行時、前記エンジン側バルブ 71と前記ヒータ側バルブ 72を共に開 位置とし、エンジン冷却水がエンジン 1側出入口と蓄熱器 3側出入口とヒータコア 2出 入口の間を循環する「蓄熱モード」と、エンジン停止時、前記エンジン側バルブ 71と 前記ヒータ側バルブ 72を共に閉位置とし、蓄熱器 3側出入口を遮断する「蓄熱維持 モード」と、エンジン始動直後、前記エンジン側バルブ 71を開位置とし前記ヒータ側 バルブ 72を閉位置とし、前記蓄熱器 3に貯められた温水が蓄熱器 3側出入口とェン ジン 1側出入口との間のみを循環する「エンジン即暖モード」と、エンジン始動直後、 前記エンジン側バルブ 71を閉位置とし前記ヒータ側バルブ 72を開位置とし、前記蓄 熱器 3に貯められた温水が蓄熱器 3側出入口とヒータコア 2側出入口との間のみを電 動ウォータポンプ 5を介して循環する「室内即暖モード」と、を選択制御するモード選 択制御手段(図 8)を設けたため、車両状態に応じた「蓄熱モード」、「蓄熱維持モード 」、 「エンジン即暖モード」、「室内即暖モード」の 4つのモードの選択制御を、簡単な エンジン側バルブ 71とヒータ側バルブ 72の開閉制御と、電動ウォータポンプ 5の作 動 ·停止制御により達成することができる。
実施例 2
[0075] 実施例 2は、 4つのバルブを用いて実施例 1と同じ制御を行うようにした車両用蓄熱 システムの である。
[0076] まず、システム構成を説明する。
[0077] 図 11は実施例 2の車両用蓄熱システム(車両用蓄熱システムの一例)を示すェンジ ン冷却水循環回路図である。
[0078] 実施例 2の車両用蓄熱システムは、図 11に示すように、エンジン 1と、ヒータコア 2と 、蓄熱器 3と、ラジェータ 4と、電動ウォータポンプ 5と、サーモスタット 6と、第 1バルブ 31と、第 2ノ ノレブ 32と、第 3ノ ノレブ 33と、第 4ノ ノレブ 34と、エンジン出口酉己管 35a, 3 5b, 35cと、蓄熱器出口酉己管 36a, 36b, 36cと、ヒータコア出口酉己管 37a, 37b, 37c , 37dと、第 1バイパス配管 38と、第 2バイパス配管 39と、第 3バイパス配管 40と、ラジ エータ側エンジン出口配管 15と、ラジェータ側エンジン入口配管 16と、蓄熱コント口 ーラ 17と、を備えている。
[0079] 前記エンジン冷却水循環回路は、図 11に示すように、エンジン 1出口と蓄熱器 3入 口を連通するエンジン出口配管 35a, 35b, 35cと、蓄熱器 3出口とヒータコア 2入口 を連通する蓄熱器出口配管 36a, 36b, 36cと、ヒータコア 2出口とエンジン 1入口を 連通するヒータコア出口酉己管 37a, 37b, 37c, 37dと、を備えている。
[0080] そして、前記エンジン出口配管 35a, 35b, 35cと前記ヒータコア出口配管 37b, 37 c, 37dを連通する第 1バイパス配管 38および第 2バイパス配管 39と、前記蓄熱器出 口酉己管 36a, 36bと前記ヒータコア出口配管 37a, 37bを連通する第 3バイパス配管 4 0と、を備えている。
[0081] 前記第 1バルブ 31は、前記エンジン出口配管 35a, 35bと前記第 1バイパス配管 3 8とが交わる位置に設定している。前記第 2バルブ 32は、前記エンジン出口配管 35b , 35cと前記第 2バイパス配管 39とが交わる位置に設定している。前記第 3バルブ 33 は、前記蓄熱器出口配管 36a, 36bと前記第 3バイパス配管 40とが交わる位置に設 定している。前記第 4バルブ 34は、前記ヒータコア出口配管 37b, 37cと前記第 2バイ パス配管 39とが交わる位置に設定している。なお、他の構成は、実施例 1と同様であ るので、対応する構成に同一符号を付して説明を省略する。
[0082] 次に、作用を説明する。
[0083] 実施例 2の車両用蓄熱システムは、「蓄熱モード」、「蓄熱維持モード」、 「エンジン 即暖モード」、「室内即暖モード」の 4つのモードを下記のように得る。
[0084] 「蓄熱モード」の選択時には、暖房使用走行時、前記第 1バルブ 31と前記第 2バノレ ブ 32と前記第 3バルブ 33と前記第 4バルブ 34の主配管側を開位置とし、バイパス配 管側を閉位置とする。これによつて、図 12Aに示すように、エンジン冷却水がェンジ ン側出入口と蓄熱器側出入口とヒータコア出入口の間を循環する。
[0085] 「蓄熱維持モード」の選択時には、エンジン停止時、前記第 2バルブ 32と前記第 3 バルブ 33の主配管側を閉位置とする。これによつて、図 12Bに示すように、蓄熱器 3 側出入口を遮断する。 [0086] 「エンジン即暖モード」の選択時には、エンジン始動直後、前記第 1バルブ 31と前 記第 2バルブ 32と第 4バルブ 34の主配管側を開位置とし、第 3バルブ 33のバイパス 配管側を開位置とする。これによつて、図 12Cに示すように、前記蓄熱器 3に貯めら れた温水が蓄熱器 3側出入口とエンジン 1側出入口との間のみを循環する。
[0087] 「室内即暖モード」の選択時には、エンジン始動直後、前記第 1バルブ 31のバイパ ス配管側を開位置とし、第 2バルブ 32と第 4バルブ 34のバイパス配管側を閉位置とし 、第 3バルブ 33の主配管側を開位置とする。これによつて、図 12Dに示すように、前 記蓄熱器 3に貯められた温水が蓄熱器 3側出入口とヒータコア 2側出入口との間のみ を電動ウォータポンプ 5を介して循環する。なお、他の作用は、実施例 1と同様である ので説明を省略する。
[0088] 次に、効果を説明する。
実施例 2の車両用蓄熱システムにあっては、実施例 1の (1)の効果に加え、下記に列 挙する効果を得ることができる。
[0089] (6)前記エンジン冷却水循環回路は、エンジン 1出口と蓄熱器 3入口を連通するェ ンジン出口配管 35a, 35b, 35cと、蓄熱器 3出口とヒータコア 2入口を連通する蓄熱 器出口配管 36a, 36b, 36cと、ヒータコア 2出口とエンジン 1入口を連通するヒータコ ァ出口酉己管 37a, 37b, 37c, 37dと、前記エンジン出口酉己管 35a, 35b, 35cと前記 ヒータコア出口配管 37b, 37c, 37dを連通する第 1バイパス配管 38および第 2バイ パス配管 39と、前記蓄熱器出口配管 36a, 36bと前記ヒータコア出口配管 37a, 37b を連通する第 3バイパス配管 40と、を備え、前記エンジン出口配管 35a, 35bと前記 第 1バイパス配管 38とが交わる位置に第 1バルブ 31を設定し、前記エンジン出口配 管 35b, 35cと前記第 2バイパス配管 39とが交わる位置に第 2バルブ 32を設定し、前 記蓄熱器出口配管 36a, 36bと前記第 3バイパス配管 40とが交わる位置に第 3バル ブ 33を設定し、前記ヒータコア出口配管 37b, 37cと前記第 2バイパス配管 39とが交 わる位置に第 4バルブ 34を設定したため、 4つのモードの変更制御を、第 1バルブ 3 1 ,第 2バルブ 32,第 3バルブ、第 4バルブ 34の開閉位置の組み合わせにより得るこ と力 Sできる。
[0090] (7)暖房使用走行時、前記第 1バルブ 31と前記第 2バルブ 32と前記第 3バルブ 33 と前記第 4バルブ 34の主配管側を開位置とし、バイパス配管側を閉位置とし、ェンジ ン冷却水がエンジン側出入口と蓄熱器側出入口とヒータコア出入口の間を循環する 「蓄熱モード」と、エンジン停止時、前記第 2バルブ 32と前記第 3バルブ 33の主配管 側を閉位置とし、蓄熱器 3側出入口を遮断する「蓄熱維持モード」と、エンジン始動直 後、前記第 1バルブ 31と前記第 2バルブ 32と第 4バルブ 34の主配管側を開位置とし 、第 3バルブ 33のバイパス配管側を開位置とし、前記蓄熱器 3に貯められた温水が 蓄熱器 3側出入口とエンジン 1側出入口との間のみを循環する「エンジン即暖モード 」と、エンジン始動直後、前記第 1バルブ 31のバイパス配管側を開位置とし、第 2バル ブ 32と第 4バルブ 34のバイパス配管側を閉位置とし、第 3バルブ 33の主配管側を開 位置とし、前記蓄熱器 3に貯められた温水が蓄熱器 3側出入口とヒータコア 2側出入 口との間のみを電動ウォータポンプ 5を介して循環する「室内即暖モード」と、を選択 制御するモード選択制御手段を設けたため、車両状態に応じた「蓄熱モード」、「蓄 熱維持モード」、 「エンジン即暖モード」、「室内即暖モード」の 4つのモードの選択制 御を、簡単な第 1バルブ 31〜第 4バルブ 34の開閉制御と、電動ウォータポンプ 5の作 動 ·停止制御により達成することができる。
[0091] 以上、本発明の車両用蓄熱システムを実施例 1及び実施例 2に基づき説明してき た力 具体的な構成については、これらの実施例に限られるものではなぐ特許請求 の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許 容される。
[0092] 実施例 1では、 3つの二列管と 1つの制御バルブによる回路構成の例を示し、実施 例 2では、通常のパイプと 4つのバルブによる回路構成の例を示した。しかし、具体的 な回路構成は、実施例 1 , 2に限られるものではなぐ要するに、「蓄熱モード」、「蓄 熱維持モード」、「エンジン即暖モード」、「室内即暖モード」の 4つのモードを選択可 能な回路構成であれば、本発明に含まれる。
本発明は、 2006年 11月 28日に出願された日本特許出願番号 2006— 319481 号に基づき優先権主張をするものであり、同出願の明細書、図面及び特許請求の範 囲を含む出願内容は、すべてを参照してここに含める。
産業上の利用可能性 実施例 1 , 2では、車両用蓄熱システムをエンジン車に適用した例を示した力 本発 明の車両用蓄熱システムは、ハイブリッド車両にも適用することができる。要するに、 エンジンとヒータコアを連結するエンジン冷却水循環回路に蓄熱器を備えた車両に 適用すること力でさる。

Claims

請求の範囲
[1] エンジンと空調ユニットのヒータコアを連結するエンジン冷却水循環回路に、ェンジ ン冷却水を貯液 ·流通する蓄熱器を備えた車両用蓄熱システムにお!/、て、
前記エンジン冷却水循環回路は、蓄熱器側出入口とエンジン側出入口とヒータコ ァ側出入口を連結した回路であり、回路に設定したバルブを切り替えることにより、ェ ンジン冷却水が少なくともエンジン側出入口と蓄熱器側出入口との間を循環する蓄 熱モードと、蓄熱器側出入口を遮断する蓄熱維持モードと、前記蓄熱器に貯められ た温水が蓄熱器側出入口とエンジン側出入口との間のみを循環するエンジン即暖モ ードと、前記蓄熱器に貯められた温水が蓄熱器側出入口とヒータコア側出入口との 間のみを循環する室内即暖モードと、の 4つのモードを選択可能な回路構成としたこ とを特徴とする車両用蓄熱システム。
[2] 請求項 1に記載された車両用蓄熱システムにおいて、
前記エンジン冷却水循環回路は、蓄熱器側出入口とエンジン側出入口とヒータコ ァ側出入口に、それぞれ出口からの往路と入口への復路を一体に有する蓄熱器側 二列管とエンジン側二列管とヒータコア側二列管を連結し、
前記エンジン側二列管と前記ヒータコア側二列管は、同じ管軸上に配置し、前記蓄 熱器側二列管は、前記管軸に対し垂直方向に交わらせて配置し、前記蓄熱器側二 列管の交差部にて各二列管を互いに連結したことを特徴とする車両用蓄熱システム
[3] 請求項 2に記載された車両用蓄熱システムにおいて、
前記蓄熱器側二列管は、その仕切り壁を延長させることで、エンジン側出口とヒー タコア側入口を遮断すると共にエンジン側入口とヒータコア側出口を連通し、 前記エンジン側出入口と蓄熱器側入口の連通部分に、エンジン側出口と蓄熱器側 入口を連通する開位置と、エンジン側出入口と蓄熱器側入口を遮断する閉位置と、 を切り替えるエンジン側バルブを配置し、
前記ヒータコア側出入口と蓄熱器側出口の連通部分に、ヒータコア側入口と蓄熱器 側出口を連通する開位置と、ヒータコア側出入口と蓄熱器側出口を遮断する閉位置 と、を切り替えるヒータ側バルブを配置したことを特徴とする車両用蓄熱システム。
[4] 請求項 3に記載された車両用蓄熱システムにおいて、
前記エンジン側バルブと前記ヒータ側バルブは、前記蓄熱器側二列管と前記ェン ジン側二列管と前記ヒータコア側二列管を連結するコネクタ部材を共通のバルブボ ディとして集約設定した制御バルブの弁体要素であることを特徴とする車両用蓄熱シ ステム。
[5] 請求項 3に記載された車両用蓄熱システムにおいて、
暖房使用走行時、前記エンジン側バルブと前記ヒータ側バルブを共に開位置とし、 エンジン冷却水がエンジン側出入口と蓄熱器側出入口とヒータコア出入口の間を循 環する蓄熱モードと、
エンジン停止時、前記エンジン側バルブと前記ヒータ側バルブを共に閉位置とし、 蓄熱器側出入口を遮断する蓄熱維持モードと、
エンジン始動直後、前記エンジン側バルブを開位置とし前記ヒータ側バルブを閉位 置とし、前記蓄熱器に貯められた温水が蓄熱器側出入口とエンジン側出入口との間 のみを循環するエンジン即暖モードと、
エンジン始動直後、前記エンジン側バルブを閉位置とし前記ヒータ側バルブを開位 置とし、前記蓄熱器に貯められた温水が蓄熱器側出入口とヒータコア側出入口との 間のみをウォータポンプを介して循環する室内即暖モードと、
を選択制御するモード選択制御手段を設けたことを特徴とする車両用蓄熱システム
[6] 請求項 4に記載された車両用蓄熱システムにおいて、
暖房使用走行時、前記エンジン側バルブと前記ヒータ側バルブを共に開位置とし、 エンジン冷却水がエンジン側出入口と蓄熱器側出入口とヒータコア出入口の間を循 環する蓄熱モードと、
エンジン停止時、前記エンジン側バルブと前記ヒータ側バルブを共に閉位置とし、 蓄熱器側出入口を遮断する蓄熱維持モードと、
エンジン始動直後、前記エンジン側バルブを開位置とし前記ヒータ側バルブを閉位 置とし、前記蓄熱器に貯められた温水が蓄熱器側出入口とエンジン側出入口との間 のみを循環するエンジン即暖モードと、 エンジン始動直後、前記エンジン側バルブを閉位置とし前記ヒータ側バルブを開位 置とし、前記蓄熱器に貯められた温水が蓄熱器側出入口とヒータコア側出入口との 間のみをウォータポンプを介して循環する室内即暖モードと、
を選択制御するモード選択制御手段を設けたことを特徴とする車両用蓄熱システム
[7] 請求項 1に記載された車両用蓄熱システムにおいて、
前記エンジン冷却水循環回路は、エンジン出口と蓄熱器入口を連通するエンジン 出口配管と、蓄熱器出口とヒータコア入口を連通する蓄熱器出口配管と、ヒータコア 出口とエンジン入口を連通するヒータコア出口配管と、前記エンジン出口配管と前記 ヒータコア出口配管を連通する第 1バイパス配管および第 2バイパス配管と、前記蓄 熱器出口配管と前記ヒータコア出口配管を連通する第 3バイパス配管と、を備え、 前記エンジン出口配管と前記第 1バイパス配管とが交わる位置に第 1バルブを設定 し、
前記エンジン出口配管と前記第 2バイパス配管とが交わる位置に第 2バルブを設定 し、
前記蓄熱器出口配管と前記第 3バイパス配管とが交わる位置に第 3バルブを設定 し、
前記ヒータコア出口配管と前記第 2バイパス配管とが交わる位置に第 4バルブを設 定したことを特徴とする車両用蓄熱システム。
[8] 請求項 7に記載された車両用蓄熱システムにおいて、
暖房使用走行時、前記第 1バルブと前記第 2バルブと前記第 3バルブと前記第 4バ ルブの主配管側を開位置とし、バイパス配管側を閉位置とし、エンジン冷却水がェン ジン側出入口と蓄熱器側出入口とヒータコア出入口の間を循環する蓄熱モードと、 エンジン停止時、前記第 2バルブと前記第 3バルブの主配管側を閉位置とし、蓄熱 器側出入口を遮断する蓄熱維持モードと、
エンジン始動直後、前記第 1バルブと前記第 2バルブと第 4バルブの主配管側を開 位置とし、第 3バルブのバイパス配管側を開位置とし、前記蓄熱器に貯められた温水 が蓄熱器側出入口とエンジン側出入口との間のみを循環するエンジン即暖モードと エンジン始動直後、前記第 1バルブのバイパス配管側を開位置とし、第 2バルブと 第 4バルブのバイパス配管側を閉位置とし、第 3バルブの主配管側を開位置とし、前 記蓄熱器に貯められた温水が蓄熱器側出入口とヒータコア側出入口との間のみをゥ ォータポンプを介して循環する室内即暖モードと、を選択制御するモード選択制御手 段を設けたことを特徴とする車両用蓄熱システム。
PCT/JP2007/072806 2006-11-28 2007-11-27 Heat accumulation system for vehicle WO2008066014A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/310,536 US8006655B2 (en) 2006-11-28 2007-11-27 Heat storage system for vehicle
CN2007800323256A CN101512117B (zh) 2006-11-28 2007-11-27 车辆用蓄热系统
EP07832531.3A EP2090762A4 (en) 2006-11-28 2007-11-27 HEAT ACCUMULATION SYSTEM FOR VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006319481A JP4755572B2 (ja) 2006-11-28 2006-11-28 車両用蓄熱システム
JP2006-319481 2006-11-28

Publications (1)

Publication Number Publication Date
WO2008066014A1 true WO2008066014A1 (en) 2008-06-05

Family

ID=39467802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072806 WO2008066014A1 (en) 2006-11-28 2007-11-27 Heat accumulation system for vehicle

Country Status (6)

Country Link
US (1) US8006655B2 (ja)
EP (1) EP2090762A4 (ja)
JP (1) JP4755572B2 (ja)
CN (1) CN101512117B (ja)
TW (1) TW200835845A (ja)
WO (1) WO2008066014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070027A (ja) * 2016-11-01 2018-05-10 トヨタ自動車株式会社 蓄熱装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417123B2 (ja) * 2009-10-29 2014-02-12 株式会社日立製作所 電動車両の冷却システム
JP5368944B2 (ja) * 2009-11-13 2013-12-18 カルソニックカンセイ株式会社 蓄熱システム及びその制御方法
KR101305199B1 (ko) * 2011-12-09 2013-09-12 한양대학교 에리카산학협력단 차량의 축열장치
US8794195B2 (en) * 2012-02-03 2014-08-05 Ford Global Technologies, Llc Heat storage system for an engine
DE102012006632A1 (de) * 2012-03-31 2013-10-02 Volkswagen Aktiengesellschaft Verfahren und System zur Wärmeübertragung für ein Fahrzeug
US9631547B2 (en) * 2012-10-19 2017-04-25 Ford Global Technologies, Llc PHEV heating modes to provide cabin comfort
US9260103B2 (en) 2012-10-19 2016-02-16 Ford Global Technologies, Llc System and method for controlling a vehicle having an electric heater
DE112014001383B4 (de) 2013-03-15 2018-10-04 Dana Canada Corporation Ventilsystemkonfigurationen zum Erwärmen und Abkühlen von Getriebefluid
JP2014178082A (ja) * 2013-03-15 2014-09-25 Toshiba Corp 冷却装置及び冷却方法
CN104420967A (zh) * 2013-08-30 2015-03-18 上海汽车集团股份有限公司 发动机快速暖机系统及汽车
EP2873826B1 (en) 2013-11-15 2019-03-27 Volvo Car Corporation Heat storage in engine cooling system
KR101551097B1 (ko) * 2014-06-11 2015-09-08 현대자동차주식회사 하이브리드 차량의 난방 시스템
DE102014211529B4 (de) * 2014-06-17 2016-02-18 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Betrieb eines Wärmespeichers in einem Kraftfahrzeug
JP6225949B2 (ja) 2015-06-23 2017-11-08 トヨタ自動車株式会社 内燃機関の冷却装置
FR3040148A1 (fr) * 2015-08-20 2017-02-24 Hutchinson Circuit et procede de refroidissement sur un vehicule
CN105201620A (zh) * 2015-10-21 2015-12-30 无锡惠山泵业有限公司 一种新型强制循环式冷水装置
DE102016012629A1 (de) * 2016-10-21 2018-04-26 Man Truck & Bus Ag Kühlkreislauf für ein Kraftfahrzeug
JP6954138B2 (ja) * 2018-01-15 2021-10-27 株式会社デンソー 蓄熱装置
JP6915584B2 (ja) * 2018-04-25 2021-08-04 トヨタ自動車株式会社 車両用暖機システム
KR102496811B1 (ko) * 2018-08-01 2023-02-06 현대자동차 주식회사 차량용 냉각 시스템의 제어방법
US10954845B2 (en) * 2018-10-30 2021-03-23 The Regents Of The University Of Michigan Actively controlled coolant tank to increase thermal storage capacity of hybrid electric vehicles
KR20200145052A (ko) * 2019-06-20 2020-12-30 현대자동차주식회사 냉각수 순환 시스템의 밸브 제어 장치 및 그 방법
JP2021110269A (ja) * 2020-01-08 2021-08-02 本田技研工業株式会社 車両における蓄熱器付近の冷媒用配管のレイアウト構造
CN112339526B (zh) * 2020-11-27 2022-08-05 同济大学 一种蓄热式卡车驻车空调系统
GB2604106A (en) * 2021-02-18 2022-08-31 Bombardier Transp Gmbh Operating a vehicle on an electrified route and without being supplied with electric energy from a route
CN115465089A (zh) * 2022-09-26 2022-12-13 潍柴动力股份有限公司 混合动力车辆的热管理系统控制方法及混合动力车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182307A (ja) 1997-12-18 1999-07-06 Denso Corp 内燃機関用熱制御システムの故障診断装置
JP2002021560A (ja) * 2000-07-10 2002-01-23 Toyota Motor Corp 蓄熱装置を有する内燃機関
JP2002087075A (ja) * 2000-09-20 2002-03-26 Aisin Seiki Co Ltd 車両用エンジンの冷却装置
JP2004316524A (ja) * 2003-04-15 2004-11-11 Toyota Motor Corp エンジンの冷却装置
JP2006319481A (ja) 2005-05-10 2006-11-24 Canon Inc 映像処理装置及び映像処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258526A (en) * 1940-06-07 1941-10-07 Walter Gustave Engine cooling system
US2359648A (en) * 1943-03-03 1944-10-03 Green S Fuel Inc Unitary coupling for plural conduits
JP4239368B2 (ja) * 2000-06-22 2009-03-18 トヨタ自動車株式会社 蓄熱装置を有する内燃機関
US6564757B2 (en) * 2000-06-22 2003-05-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine including heat accumulation system, and heat carrier supply control system
US6532911B2 (en) * 2000-07-26 2003-03-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having heat accumulator, control of heat supply system and control method of internal combustion engine
JP2002188442A (ja) * 2000-10-11 2002-07-05 Denso Corp 蓄熱タンク
JP4122731B2 (ja) * 2001-06-25 2008-07-23 トヨタ自動車株式会社 蓄熱装置を備えた内燃機関
JP4192522B2 (ja) * 2002-08-09 2008-12-10 トヨタ自動車株式会社 蓄熱システム
SE523669C2 (sv) * 2002-09-13 2004-05-11 Volvo Constr Equip Holding Se Kylsystem till ett fordon och fordon innefattande kylsystemet
JP2005016420A (ja) * 2003-06-26 2005-01-20 Toyota Motor Corp 蓄熱装置を備えた内燃機関
US7735461B2 (en) * 2008-02-19 2010-06-15 Aqwest Llc Engine cooling system with overload handling capability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182307A (ja) 1997-12-18 1999-07-06 Denso Corp 内燃機関用熱制御システムの故障診断装置
JP2002021560A (ja) * 2000-07-10 2002-01-23 Toyota Motor Corp 蓄熱装置を有する内燃機関
JP2002087075A (ja) * 2000-09-20 2002-03-26 Aisin Seiki Co Ltd 車両用エンジンの冷却装置
JP2004316524A (ja) * 2003-04-15 2004-11-11 Toyota Motor Corp エンジンの冷却装置
JP2006319481A (ja) 2005-05-10 2006-11-24 Canon Inc 映像処理装置及び映像処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2090762A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070027A (ja) * 2016-11-01 2018-05-10 トヨタ自動車株式会社 蓄熱装置

Also Published As

Publication number Publication date
JP4755572B2 (ja) 2011-08-24
EP2090762A1 (en) 2009-08-19
TW200835845A (en) 2008-09-01
JP2008133755A (ja) 2008-06-12
US20100186685A1 (en) 2010-07-29
CN101512117A (zh) 2009-08-19
EP2090762A4 (en) 2015-02-25
US8006655B2 (en) 2011-08-30
CN101512117B (zh) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2008066014A1 (en) Heat accumulation system for vehicle
JP6130893B2 (ja) 熱電素子を有する温度制御システム
US8463495B2 (en) Method for controlling exhaust gas heat recovery systems in vehicles
US10457111B2 (en) Climate control system for a vehicle
US9555686B2 (en) Temperature control systems with thermoelectric devices
US9447994B2 (en) Temperature control systems with thermoelectric devices
CN106837504B (zh) 发动机冷却装置
CN105270136B (zh) 最大化具有双蒸发器和双加热器芯体的气候控制系统的电气化车辆中的除霜模式
JP4733619B2 (ja) 車両用蓄熱システム
US20130192272A1 (en) Temperature control systems with thermoelectric devices
JP2006125274A (ja) 車両搭載パワーユニットの冷却装置
KR20240015685A (ko) 열관리 시스템, 차량 및 열관리 방법
JP6519283B2 (ja) 車両用空調装置
JP5465935B2 (ja) 車両の冷却システム
CN206690826U (zh) 电动汽车的空调供暖控制系统及车辆空调系统
JP4151445B2 (ja) エンジンの冷却装置
JP2020200864A (ja) 流路切替弁及び流体循環システム
JP2018122653A (ja) 電動車両用空調装置
JP2016210298A (ja) 内燃機関の冷却装置
WO2023162548A1 (ja) 熱マネジメントシステム
JP4029751B2 (ja) エンジンの冷却装置
WO2023162549A1 (ja) 熱マネジメントシステム
JP2018159328A (ja) 分配装置
JP2008157073A (ja) キャニスタ脱離機構
JP2018193960A (ja) 熱制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032325.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12310536

Country of ref document: US

Ref document number: 2007832531

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE