WO2008053711A1 - Silice amorphe et son procédé de fabrication - Google Patents

Silice amorphe et son procédé de fabrication Download PDF

Info

Publication number
WO2008053711A1
WO2008053711A1 PCT/JP2007/070281 JP2007070281W WO2008053711A1 WO 2008053711 A1 WO2008053711 A1 WO 2008053711A1 JP 2007070281 W JP2007070281 W JP 2007070281W WO 2008053711 A1 WO2008053711 A1 WO 2008053711A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
amorphous silica
organic waste
carboxylic acid
silica according
Prior art date
Application number
PCT/JP2007/070281
Other languages
English (en)
French (fr)
Inventor
Katsuyoshi Kondoh
Yoshisada Michiura
Junko Umeda
Original Assignee
Kurimoto, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto, Ltd. filed Critical Kurimoto, Ltd.
Priority to CN2007800394853A priority Critical patent/CN101528601B/zh
Priority to US12/312,075 priority patent/US7998448B2/en
Priority to JP2008542038A priority patent/JP5213120B2/ja
Publication of WO2008053711A1 publication Critical patent/WO2008053711A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless

Definitions

  • the present invention relates to high purity amorphous silica obtained from organic waste (biomass material) such as rice husk, rice straw, rice bran and wood, and a method for producing the same.
  • Non-food crops such as rice husk and rice straw contain about 20% of amorphous silicon oxide (silica / SiO 2) in addition to carbohydrates such as cellulose and hemicellulose. There is.
  • amorphous silicon oxide silicon / SiO 2
  • carbohydrates such as cellulose and hemicellulose.
  • Japanese Patent Publication No. 7-57684 discloses “a method of producing high purity silica from rice husk”.
  • rice husk is treated with a solution of hydrofluoric acid (HF) to extract a silica compound contained in rice husk to produce silica.
  • HF hydrofluoric acid
  • a fluorocarbonic acid (H 2 SiF 2) obtained by the treatment with hydrofluoric acid solution is used. Extracted as an extract, and ammonia added to it to give hexafone.
  • Japanese Patent Application Laid-Open No. 2006-187674 discloses "a method of producing a caic acid-containing powder and a caic acid-containing powder production system".
  • rice husk or straw is introduced into a processing vessel, water vapor is injected into the processing vessel to raise the internal pressure and temperature, and the input is pulverized without burning.
  • fertilizer can be produced directly from rice husk and straw.
  • Japanese Patent Application Laid-Open No. 5-194007 discloses "a method of producing an amorphous silica fine powder and a concrete product mixed with an amorphous silica fine powder".
  • amorphous husks soaked in a hydrochloric acid solution are fired and then pulverized to produce an amorphous silica fine powder.
  • rice husk washing with a 5% hydrochloric acid aqueous solution the purity of SiO is as low as 96%.
  • hydrochloric acid aqueous solution with a concentration of about 10% to 20%
  • Japanese Patent Publication No. 2004-527445 discloses "a method for producing high purity amorphous silica from a biogenic material".
  • lignin, cellulose and the like are prepared by immersing biogenic substances such as rice husk in a solution having an oxidized solute (selected from the group consisting of peroxide, nitrate and permanganate).
  • the long chain hydrocarbon compounds are further reduced to flammable (volatile) short chain hydrocarbon compounds, and the carbonaceous residue of silica produced by combustion in the next step is reduced.
  • the combustion temperature at that time is preferably 500 to 950 ° C. At high temperature combustion, crystallization of silica proceeds.
  • Japanese Patent Application Laid-Open No. 7-196312 discloses "a method for producing amorphous silica using rice husk as a raw material”. It shows.
  • rice husks are subjected to a short time of 4 seconds to 10 seconds of firing at 640 ° C. to 800 ° C. using a fluidized bed as the first combustion step, followed by the second combustion.
  • the firing is performed at 700 ° C. to 950 ° C. for 8 minutes to 15 minutes using an external heating rotary furnace. According to this method, it is possible to produce an amorphous silica having a low unburned carbon and high pozzolanic reactivity.
  • Japanese Patent Application Laid-Open No. 8-48515 discloses "a method of producing amorphous silica using rice husk as a raw material".
  • high purity amorphous is obtained by immersing rice husks in water and then firing the rice husks, or by supplying or spraying water or steam before or during firing of the rice husks.
  • High quality silica is obtained by immersing rice husks in water and then firing the rice husks, or by supplying or spraying water or steam before or during firing of the rice husks.
  • High quality silica The immersion effect in water or the water supply 'injection effect is to remove the impurities attached to the surface of the chaff, and thereafter the chaff is fired at 550 ° C to 600 ° C.
  • Rice husks are put into this aqueous solution while using two kinds of organic acid aqueous solutions of the following and the respective aqueous solutions are brought to a concentration of about 0.5% to 30%, stirred for 90 minutes, and then the rice husks are taken out.
  • the chaff is washed with water, dried at 110 ° C., and calcined for 2 hours at 700 ° C.
  • amorphous silica having a purity of 93% to 96.7% is obtained. It is done.
  • Japanese Patent Application Laid-Open No. 11 323752 discloses "a method for producing a material having a high content of silica, cellulose and lignin".
  • wood-based materials such as rice husk, rice straw, bagasse etc. are exploded or steamed (The wood-based material is immersed in a solution such as hydrochloric acid, sulfuric acid or nitric acid to heat and pressurize it. ) After burning at 550 to 900.degree. C. (more preferably 600 to 700.degree. C.).
  • the amorphous silicon oxide film has a SiO content of about 95%.
  • Japanese Patent Application Laid-Open No. 8-94056 discloses a method of incinerating organic waste.
  • organic wastes such as rice husk and wheat straw are dry-distilled or heat-treated at 150 ° C. to 1000 ° C., and the obtained carbide is treated with an acid solution, alkali solution or metal chelate. After desalting by washing with a washing solution containing an agent, the desalted carbide is incinerated.
  • the demineralized carbide obtained here can be used as a cement admixture.
  • As the acid a mineral acid such as sulfuric acid, hydrochloric acid or nitric acid, or an organic acid such as formic acid or acetic acid is used.
  • a salt having a metal complex forming ability such as ethylene diamine tetraacetic acid (EDTA), nitrilo triacetic acid (NTA), ethylene diamine tetrapropionic acid (EDTP) or the like is used.
  • EDTA ethylene diamine tetraacetic acid
  • NTA nitrilo triacetic acid
  • EDTP ethylene diamine tetrapropionic acid
  • An object of the present invention is to obtain high purity amorphous silica from organic wastes such as agricultural products, grass food and wood without using mineral acids such as sulfuric acid, hydrochloric acid and nitric acid.
  • the method for producing amorphous silica according to the present invention comprises the steps of: preparing an organic waste containing silica as a starting material; and treating the organic waste in an aqueous solution of carboxylic acid having a hydroxyl group.
  • the method includes the steps of immersing, subsequently washing the organic waste with water, and heating the organic waste in the atmosphere.
  • the carboxylic acid is preferably any acid selected from the group consisting of citric acid, isocyanic acid, tartaric acid, malic acid and lactic acid.
  • the temperature of the aqueous carboxylic acid solution is preferably 50 ° C. or more and 80 ° C. or less.
  • the concentration of the aqueous carboxylic acid solution is preferably 0.5% or more and 10% or less.
  • the heating temperature in the air atmosphere is preferably 300 ° C. or more and 1100 ° C. or less.
  • the step of heating the organic waste in the atmosphere includes a first heating step of heating at 300 ° C. or more and 500 ° C. or less followed by 600 ° C. or more and 1100 ° C. or less. And heating a second heating step.
  • the organic waste as the starting material is preferably rice husk, rice straw, rice bran, straw, wood Wood, thinnings, construction scraps, sawdust, bark, nogas, corn, sugar cane, sweet potato, soybean, peanuts, cassava, eucalyptus, fern, pineapple, bamboo, rubber, used paper.
  • the step of preparing the organic waste as a starting material includes grinding and refining the organic waste.
  • the weight loss after burning of the soaked organic waste in the aqueous carboxylic acid solution is 87% or more.
  • the volume of water used in the water washing treatment is at least 30 times the volume of the organic waste to be treated. In one embodiment, the water washing treatment is performed three or more times, and the volume of water used in each water washing treatment is at least 10 times the volume of the organic waste to be treated.
  • a step of immersing organic waste in different types of acids is provided. You may do so.
  • a different kind of acid for example oxalic acid can be used.
  • a combination of different types of acid washing for example, a method of washing with organic acid after being washed with citric acid and then washing with acid, or vice versa, after washing organic waste with acid, for example A method of washing with citric acid can be employed.
  • the organic waste may be dipped and washed in a solution in which citric acid and silicic acid are mixed.
  • the amorphous silica according to the present invention is obtained by the method described in any of the above, and is characterized in that the purity of silicon dioxide (SiO 2) is 98% or more.
  • the content of impurity carbon in the amorphous silica is less than 0.2% by weight, and the content of sulfur is less than 0.1% by weight. More preferably, the content of impurity carbon in the amorphous silica is 0.1% or less on a weight basis, and the content of sulfur is 0.5% or less on a weight basis.
  • FIG. 1 is a view showing an example of a method for producing high purity amorphous silica according to the present invention.
  • FIG. 2 shows the results of differential thermal analysis of rice husk samples after acid treatment.
  • FIG. 3 is a view showing weight change rates of various samples in a heating process from normal temperature to 1000 ° C.
  • FIG. 4 It is a figure showing the results of differential thermal analysis of raw material husks not subjected to carboxylic acid washing treatment.
  • agricultural wastes such as rice husk, rice straw, rice bran, wheat straw, wood, sawdust, bark and organic wastes such as wood are treated as objects to be treated.
  • An acid wash treatment such as immersion in a carboxylic acid aqueous solution and agitation is carried out, and the waste is washed with water and then calcined under an appropriate temperature condition to create an amorphous silica having a purity of 98% or more.
  • metal impurities such as lithium, calcium and aluminum contained in organic waste are discharged and removed from the waste out of the waste by a chelate reaction.
  • the reaction between carbohydrates such as cellulose and hemicellulose and the above-mentioned metal impurities can be suppressed in the baking process, and as a result, the amount of residual carbon can be reduced.
  • High purity silica can be obtained
  • the amorphous silica obtained as described above can be used as an additive for concrete, a reinforcing material for tire rubber, a soluble fertilizer, a raw material for cosmetics, a coating material, and the like.
  • FIG. 1 shows an example of the method for producing high purity amorphous silica according to the present invention.
  • the present inventors have found that high purity amorphous silica can be obtained by applying the following treatment to input materials consisting of organic wastes such as agricultural products, wood and grass food.
  • Organic wastes as input materials are preferably rice husk, rice straw, rice bran, wheat straw, wood, thinned wood, construction waste, sawdust, bark, nogas, corn, sugar cane, sweet potato, soybean, peanut , Caterpillar, eucalyptus, fern, pineapple, bamboo, rubber, or used paper.
  • the reason for using a carboxylic acid having a hydroxyl group is as follows.
  • any one of a citric acid, an isochenic acid, a tartaric acid, a malic acid and a lactic acid is desirable as a carboxylic acid having a hydroxyl group.
  • the amount of residual carbon is increased by the eutectic reaction between the silica and the metal component because the silica component is more than that of other agricultural products or wood and the above impurity metal elements are contained in large amounts. It is easy to Therefore, in order to make the purity of amorphous silica after calcination 98% or more, it is necessary to cause the chelate reaction and dehydration reaction more efficiently. From this point of view, more desirable carboxylic acids have hydroxyl groups, and the number of carboxyl groups is 3 or more. In particular, the use of citric acid or isocyanic acid is more desirable.
  • a 5% aqueous sulfuric acid solution and a 5% aqueous citric acid solution were prepared, and rice husk was acid-washed using each of them, and then subjected to water washing treatment. Differential thermal analysis of rice husk samples after treatment is shown in FIG.
  • the chlorine content in the combustion ash is less than the lower limit of measurement ( ⁇ 0.01%), as compared to the acid cleaning treatment using a strong mineral acid such as hydrochloric acid or sulfuric acid.
  • the sulfur content in the ash is less than 0.1%.
  • the sulfur content can be reduced to 0.010% to 0.05% or less by optimizing the water washing treatment conditions in the next step, and combustion ash subjected to a sulfuric acid washing treatment (0.2% to 0.6%) It is significantly reduced compared to.
  • the concentration of the aqueous carboxylic acid solution is preferably 0.5% or more and 10% or less.
  • the concentration is 0.
  • the carbon content of rice husk combustion ash obtained by subjecting the acid-treated rice husk treated with an aqueous solution of carboxylic acid having the above-mentioned preferable concentration to a water washing treatment and further calcining it is Less than 2%.
  • the carbon content can be reduced to 0.1% or less by combining with multiple washing processes.
  • the content of impurities such as potassium oxide, calcium oxide and phosphorus oxide in combustion ash is also reduced The amount also decreases significantly from 0.01% to less than 0.03%.
  • the content of impurities in combustion ash can be reduced by the reduction of impurity metal elements by the chelate reaction and dehydration reaction.
  • the temperature of the aqueous solution of carboxylic acid is preferably 50 ° C. to 80 ° C., more preferably normal temperature or higher.
  • the temperature of the carboxylic acid aqueous solution is preferably 50 ° C. to 80 ° C., more preferably normal temperature or higher.
  • organic wastes such as rice husk and wheat straw are dry-distilled or heat-treated at 150 ° C. to 1000 ° C., and then the carbides thereof are an acid solution, an alkali solution, or a metal chelating agent.
  • the desalted carbide is incinerated after being washed and desalted with a washing solution containing That is, the organic waste is heat-treated before the washing step with the aqueous solution containing the metal chelating agent, and this procedure is in a reverse relationship to the method proposed in the present invention.
  • there is no description or definition regarding the effectiveness of the carboxylic acid containing a hydroxyl group which is a feature of the present invention.
  • the acetic acid and the oxalic acid used here are // and have no hydroxyl group! // carboxylic acid, not the hydroxyl group-containing carboxylic acid which is the feature of the present invention.
  • impurity metal elements such as potassium and calcium by the chelate reaction and dehydration reaction, and the effect of the hydroxyl group on the purification of silica.
  • the impurity metal element remains in the chaff after the organic acid cleaning treatment without being sufficiently removed. Therefore, the contents of calcium oxide (CaO) and potassium oxide (K 2 O) contained in rice husk ash obtained by firing the rice husk are each 0.4.
  • magnesium oxide MgO
  • sodium oxide Na 0
  • iron oxide Fe 2 O 3
  • the silica purity in rice husk combustion ash is 93% to 96.7%, which is lower than the purity (98% or more) of the silica obtained by the process of the present invention.
  • the present inventors increase the area of the raw material in contact with the aqueous rubonic acid solution by using the crop raw material which has been ground and refined in advance, and as a result, the area where the chelate reaction occurs increases. It was confirmed that the reduction effect of the impurity metal elements was further improved, and the amount of residual carbon in the combustion ash was also reduced to achieve high purification of silica.
  • the silica purity of the combustion ash obtained by applying citric acid washing treatment, water washing treatment and combustion to raw material husks not subjected to grinding treatment in advance was 99.1%
  • rice husks were treated with a food mixer When pulverized under dry conditions and the average particle size of the raw material is refined to about 1/3, calcined ash obtained through quenching treatment, washing with water, and combustion under the same conditions
  • the silica purity was 99.6%.
  • the silica when preparing the organic waste as the starting material, if the organic waste is pulverized and refined, the silica can be highly purified.
  • rice husk or rice straw is a biomass fuel
  • the amount of carbohydrates such as cellulose or hemicellulose contained in rice husk or rice straw is remarkable even if acid washing treatment with any of the aqueous carboxylic acid solutions described above is performed. It is desirable not to reduce to
  • FIG. 3 shows weight change rates of various samples in the heating process from normal temperature to 1000 ° C.
  • samples a sample subjected to sulfuric acid washing once, a sample subjected to sulfuric acid washing twice, a sample subjected to citric acid washing, and a sample not subjected to acid washing were prepared.
  • the amount of carbohydrate contained in the sample before analysis is about 10 to 20% less than when using the raw rice husk, ie, when the rice husk is washed in aqueous sulfuric acid solution, the carbohydrate is melted by the sulfuric acid It means being disassembled. Therefore, when using rice husk treated with sulfuric acid as a biomass power generation fuel, the calorific value decreases and the energy efficiency to be recovered decreases, which causes some problems.
  • the weight loss rate when using a 5% aqueous solution of citric acid is about 88%, which is equivalent to that of the raw material rice husk.
  • high energy efficiency can be realized even when used as a biomass fuel that does not cause the melt decomposition of carbohydrates observed in the sulfuric acid cleaning process.
  • a sufficient removal effect can be obtained by using water at least 30 times, more preferably at least 50 times, the volume of the raw material.
  • water at least 30 times, more preferably at least 50 times, the volume of the raw material.
  • 50 cc of rice husk charged carboxylic acid washed rice husk under a predetermined condition is put into a bath of 500 cc of distilled water, stirred for 15 minutes, and then the distilled water is discarded. Then, add 500 cc of distilled water again to the bath where rice husk remains. By repeating this three times, the water washing process with distilled water 30 times the volume of the raw rice husk will be performed.
  • the amount of water used in one washing process may be set to 30 times or more of the raw material volume by setting the number of washing processes once, but as described above, the washing process is performed three or more times. If the volume of water used in each water washing process is at least 10 times the volume of the raw material, a more sufficient removal effect can be obtained.
  • Sulfuric acid, hydrochloric acid, nitric acid, etc. contain components that harm the environment, such as sulfur and chlorine!
  • carboxylic acid used in the acid washing step in the present invention Wastewater from the acid treatment after washing agricultural products etc. does not contain components that harm the environment. Therefore, when the waste water treatment becomes easy, the advantage is obtained.
  • the heating temperature it is desirable to set the heating temperature to 300 ° C. or more and 1100 ° C. or less in the air atmosphere as the condition for burning the raw material subjected to the carboxylic acid washing and the water washing treatment. If the temperature is lower than 300 ° C., residual carbon components are increased due to insufficient combustion of carbohydrates, and the purity of silica is reduced. On the other hand, if the combustion temperature exceeds 1100 ° C., the cristobalite (crystallization) of the crystal structure of silica may cause a light problem.
  • FIG. 4 The results of differential thermal analysis of the raw material husks not subjected to the carboxylic acid washing treatment are shown in FIG. In FIG. 4, two stages of exothermic peaks are confirmed at 300 ° C. to 400 ° C. and 400 ° C. to 480 ° C. This corresponds to the amount of heat generated when the carbohydrates contained in rice husk (two types of carbohydrates, a 5-carbon sugar component and a 6-carbon sugar component) burn.
  • the present inventors have found that if pyrolysis of carbohydrates completely in the above two exothermic processes can reduce the amount of residual carbon and improve the purity of silica, the following preferable method has been found. That is, in the step of heating organic wastes such as rice husks in the atmosphere, the first heating is performed by burning the raw material in a state where oxygen is sufficiently supplied at 300 ° C. to 500 ° C. at which two exothermic peaks appear. And a second heating step of heating at a temperature of 600 ° C. to 1100 ° C. in the atmosphere. Such two-step heating enables complete combustion of carbohydrates.
  • the purity of silica in the obtained combustion ash was 99.5%, and the carbon content was 0.04%.
  • impurities can be reduced, and further, high purification of silica can be achieved.
  • Amorphous silica produced from organic wastes such as agricultural products according to the above-mentioned production conditions of the present invention has a purity of 98% or more. Also preferably,
  • the carbon content in the crystalline silica is not more than 0.2% by weight.
  • the heat resistance of the produced crucible decreases when it is used as a crucible material which is one of the raw materials using high purity amorphous silica powder, Life is reduced.
  • amorphous calcium oxide powder is used as a raw material for cosmetics such as foundation, there is a concern about the influence on the skin.
  • amorphous carbon dioxide is used as a reinforcing material for high strength concrete, if the carbon content exceeds 0.2% by weight, it absorbs chemical admixtures such as water reducing agent and air entraining agent. If the content of silicon dioxide is less than 98% by weight, sufficient improvement in strength can not be obtained.
  • the preferred carbon content in the amorphous silica is 0.2 wt% or less, and the sulfur content is 0.1 wt% or less, more preferably, the carbon content is 0.1 wt% or less And sulfur content is less than 0.05% by weight.
  • amorphous silica having a purity of less than 98% Even when amorphous silica having a purity of less than 98% is used, the effect of improving the strength of concrete due to pozzolanic activity is observed as compared to crystalline silica.
  • the amorphous silica having a purity of 98% or more according to the present invention further strengthening of the concrete material can be realized.
  • the high purity amorphous silica powder of the present invention can also be used as a coating material.
  • an acid washing method may be employed.
  • the organic waste may be dipped and washed in a solution in which citric acid and silicic acid are mixed.
  • potassium oxide and calcium oxide are decreased by the chelate reaction by the carboxyl group and the dehydration reaction by the hydroxyl group, and as a result, the residual carbon content is also 0.1.
  • the target value was below 98%, and the target silica purity was over 98%.
  • samples No. 1 and 69 which are comparative examples, were as follows.
  • untreated rice husk (sample No. 1)
  • metal components were not removed, and as a result, the amount of residual carbon also increased to 0.6%, and as a result, the purity of silica became a value below 95%.
  • the sample ⁇ ⁇ 6 phosphoric acid the content of phosphorus oxide increased, and as a result, the silica purity decreased.
  • sample ⁇ 79 although it is a carboxylic acid, it does not have hydroxyl groups, so removal of impurity metal elements such as potassium and calcium is insufficient, resulting in an increase in the amount of residual carbon in combustion ash.
  • the silica purity was as low as 95 97%.
  • Example 2 rice husk was prepared as an input material, and citric acid and sulfuric acid were used as an acid wash water solution. After the acid washing treatment was conducted under the concentration conditions shown in Table 2 and the water washing treatment was conducted under the appropriate conditions of the present invention, the electric furnace was used and baked at 800 ° C. for 30 minutes in the air atmosphere. . Quantitative analysis of the obtained rice husk combustion ash was performed by a fluorescent X-ray analysis (XRF) device. The results are shown in Table 2.
  • XRF fluorescent X-ray analysis
  • Rice straw and rice husk were prepared as input materials, and the influence of the temperature of the aqueous solution of penic acid was examined. The concentration was all 5%, and the temperature of the aqueous citric acid solution was 50 ° C and 80 ° C at ordinary temperature. After each raw material crop is soaked in each aqueous solution for 15 minutes, it is washed with water (washed with normal temperature water 30 times by volume ratio), and it is carried out at 800 ° C. in an air atmosphere in an electric furnace. I baked for a minute. Quantitative analysis of the resulting combustion ash was performed using a fluorescent X-ray analysis (XRF) apparatus. The results for rice straw are shown in Table 3, and the results for rice husk are shown in Table 4. In any case, further purification of the silica can be realized by carrying out the acid washing treatment under warm water conditions of 50 to 80 ° C.
  • XRF fluorescent X-ray analysis
  • rice husk was prepared as an input material, and acid treatment washing was performed at room temperature using tartaric acid as an aqueous acid washing solution (concentration 5%). After that, the volume ratio of rice husk and water was set to 5, 30, and 50 times.
  • the washed rice husks were fired at 800 ° C. for 30 minutes in an air atmosphere in an electric furnace.
  • Sulfuric acid (Sample No. 32), hydrochloric acid (Sample No. 33), and phosphoric acid (Sample No. 35) melt and decompose the carbonated carbohydrates in rice husk compared with other acids. Weight loss is large. In other words, when rice husk is acid-treated with the acid of the present invention (Quen's acid) (sample No. 31), acid washing-washing with water does not melt or decompose carbohydrates such as cellulose and hemicellulose. There are enough remaining carbohydrates in the rice husks that will be used efficiently as biomass fuel.
  • Example 5 As in Example 5, 10 g of rice husk was immersed in 500 ml of an aqueous acid solution (all 5% concentration) shown in Table 7 The mixture is stirred at a water temperature of 60 ° C for 30 minutes, washed with water (washed with distilled water 30 times the volume ratio with rice husk), filtered, and dried at 105 ° C. for 60 minutes. Water was completely removed. The contents of calcium (Ca) and lithium (K) in the aqueous acid solution before and after acid treatment were quantitatively measured by ICP (Inductively Coupled Plasma) emission analyzer. From the weight change before and after acid cleaning, the removal effect of each impurity metal element was evaluated. The analysis results of the Ca content and the K content in the aqueous acid solution are shown in Table 7 and Table 8, respectively.
  • ICP Inductively Coupled Plasma
  • the weight change (7.2 ppm to 9.8 ppm) in the sample Nos. 37 to 41 of the present invention is the same as that of the sample Nos. 42 to 43 washed with oxalic acid as a comparative example.
  • the calcium removal effect was found to be high by using a carboxylic acid containing a hydroxyl group larger than the amount of weight change (5.5 ppn! To 6.2 ppm).
  • the weight change amount (35.3 ppm to 36. 1 ppm) in the sample Nos. 48 to 52 which is an example of the present invention is similar to that of the sample Nos.
  • the effect of removing potassium was found to be high by using a carboxylic acid containing a hydroxyl group, which is larger than the amount of weight loss (28.4 ppm to 29.1 ppm).
  • the high purity amorphous silica obtained by the method of the present invention can be advantageously used for cement additives, reinforcing materials for tire rubber, soluble fertilizers, raw materials for cosmetics, coating materials and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Description

明 細 書
非晶質シリカおよびその製造方法
技術分野
[0001] 本発明は、籾殻、稲わら、米ぬか、木材などの有機系廃棄物 (バイオマス原料)から 得られる高純度な非晶質シリカおよびその製造方法に関するものである。
背景技術
[0002] 籾殻や稲わらなどの非食部農作物には、セルロースやへミセルロースなどの炭水 化物の他に、約 20%程度の非晶質酸化ケィ素(シリカ/ SiO )が含まれている。そこ
2
で、従来から、非食部農作物の再資源化として、非晶質シリカを高純度で抽出して可 溶性シリカ肥料として利用することが試みられている。また、このような非晶質の酸化 ケィ素は大きなポゾラン活性を有するので、セメントと水和反応して安定なケィ酸カル シゥムを生成し、その結果、セメントが緻密化して強度が向上するという利点をもたら す。
[0003] 籾殻からシリカを抽出する方法として、従来、爆砕処理、蒸煮処理、超臨界水処理 、また濃硫酸や塩酸を用いた酸処理洗浄を行い、それらの処理を施した籾殻を加熱 •燃焼させる方法が知られている。これらの方法では、燃焼灰としての高純度シリカを 生成する。し力、しながら、ここに記載したいずれの製法においても、製造工程が複雑 であると同時に生産性が低ぐまた耐食性 ·耐環境性の点から設備容器には高価な 高級材質のものが使用されるという問題を指摘できる。言い換えれば、ここに記載し たいずれの製法も、籾殻や稲わらを用いて大量かつ安価に燃焼灰シリカを抽出する 製法としては、経済性の点で問題がある。
[0004] 籾殻からアモルファスシリカを製造する方法を記載した文献のいくつかをここに列 挙する。
[0005] 特公平 7— 57684号公報は、「モミガラから高純度シリカを製造する方法」を開示し ている。この公報に開示された方法では、籾殻をフッ化水素酸 (HF)溶液で処理し、 籾殻に含まれているケィ素化合物を抽出してシリカを製造している。具体的には、フ ッ化水素酸溶液処理により得られたケィ素化合物をへキサフルォロケィ酸 (H SiF ) として抽出し、これにアンモニアを加えてへキサフノレ才ロケィ酸アンモニゥム((NH )
4 2
SiF )を経て、フッ化アンモニゥム(NH F)とシリカ(SiO )に分解し、これを濾過分離
6 4 2
した後に水洗 ·乾燥工程を経て非晶質の酸化ケィ素粉末を製造している。この方法 では、高価なフッ化水素酸を利用することによる経済性の低下の問題が生じるし、腐 食攻撃性が強いフッ化水素酸を用いるため、使用する装置の材質が高価なものにな るといった問題が生じる。
[0006] 特開 2006— 187674号公報は、「ケィ酸含有粉末製造方法およびケィ酸含有粉 末製造システム」を開示している。この公報に開示された方法では、籾殻または藁を 処理容器内に投入し、この処理容器内に水蒸気を注入して内圧および温度を上昇 させ、投入物を燃焼させないで粉末化させている。それにより籾殻や藁から直接、単 肥を生成することができる。
[0007] 特開平 5— 194007号公報は、「非晶質シリカ微粉末の製造方法及び非晶質シリカ 微粉末混入のコンクリート製品」を開示している。この公報に開示された方法では、塩 酸溶液に浸漬した籾殻を焼成した後に粉砕することで、非晶質シリカ微粉末を製造 している。濃度 5%の塩酸水溶液での籾殻洗浄では SiOの純度が 96%程度と不十
2
分である。 SiO純度を 98%以上とするためには、濃度 10%〜20%程度の塩酸水溶
2
液が必要となる。その場合、 600〜700°C程度で焼成して得られたシリカ粉末中には 塩素(C1)が残留するために、このシリカ粉末をコンクリート用原料として利用する場 合には塩素による鉄筋への腐食の問題が懸念される。
[0008] 特表 2004— 527445号公報は、「バイオジェニック材料からの高純度アモルファス シリカの製造方法」を開示している。この公報に開示された方法では、酸化溶質 (過 酸化物、硝酸塩、過マンガン酸塩からなる群より選択される)を有する溶液に籾殻な どのバイオジェニック物質を浸漬することにより、リグニンおよびセルロース等の長鎖 炭化水素化合物を、更に可燃性 (揮発性)の短鎖炭化水素化合物へと減少させ、次 工程の燃焼によって生成するシリカの炭素質残留物を減少させて!/、る。その際の燃 焼温度は 500〜950°Cが好ましい。高い温度域の燃焼では、シリカの結晶化が進行 する。
[0009] 特開平 7— 196312号公報は、「籾殻を原料とする非晶質シリカの製造方法」を開 示している。この公報に開示された方法では、籾殻に対して、第 1燃焼工程として流 動床を用いて 640°C〜800°Cで 4秒〜 10秒の短時間焼成を行ない、続いて第 2燃 焼工程として外熱式回転炉を用いて 700°C〜950°Cで 8分〜 15分の焼成を行なつ ている。この方法によれば、未燃焼炭素が少なぐかつポゾラン反応性の高い非晶質 シリカを作製できる。
[0010] 特開平 8— 48515号公報は、「籾殻を原料とする非晶質シリカの製造方法」を開示 している。この公報に開示された方法では、籾殻を水に浸漬した後にこの籾殻を焼成 することにより、あるいは籾殻の焼成前又は焼成時に、水又は水蒸気を供給又は噴 射することにより、高純度の非晶質シリカを作製している。水中での浸漬効果あるい は水分の供給'噴射効果は、籾殻表面に付着した不純物を除去することであり、その 後に籾殻を 550°C〜600°Cで焼成する。
[0011] エス'チャンドラセクハーら(S.Chandrasekhar et. al.)は、ジャーナル'ォブ 'マテリア ノレズヽサイエンス 40 (2005) 6535— 6544 (JOURNAL OF MATERIALS SCIENCE) において、「籾殻から得られるシリカの特性に及ぼす有機酸処理の影響」(Effect of 0 rganic acid treatment on the properties of rice husk silica)と題" 5 O論文を^ S表した。 この論文に開示された方法では、酢酸とシユウ酸の 2種類の有機酸水溶液を用い、 濃度を約 0. 5%〜30%としたそれぞれの水溶液を沸騰させた状態でこの水溶液中 に籾殻を投入し、 90分間攪拌した後に籾殻を取り出し、この籾殻を水洗処理した後 に 110°Cで乾燥処理し、さらに 700°Cで 2時間の焼成処理を行なっている。この方法 により、純度が 93%〜96. 7%の非晶質シリカが得られている。
[0012] 特開平 11 323752号公報は、「シリカ、セルロースおよびリグニン高含有素材の 製造法」を開示している。この公報に開示された方法では、籾殻、稲わら、バガスなど の木質系素材を爆砕または蒸煮処理 (塩酸、硫酸、硝酸などの溶液中に木質系素 材を浸漬して加温 ·加圧処理)した後、 550〜900°C (より好ましくは 600〜700°C)で 燃焼させている。これにより SiO含有率が 95%程度の非晶質(アモルファス)酸化ケ
2
ィ素が得られる。言い換えると、例えば純度を 96%以上の高純度酸化ケィ素を製造 するには、更に高い温度での加熱 ·燃焼による不純物の熱分解 '除去が必要である 、このような高温加熱では、酸化ケィ素の結晶構造がクリストバライト化 (結晶化)す るといった問題が生じる。
[0013] 特開平 8— 94056号公報は、「有機系廃棄物の焼却処理方法」を開示している。こ の公報に開示された方法では、籾殻、麦わらなどの有機系廃棄物を 150°C〜; 1000 °Cで乾留又は加熱処理し、得られた炭化物を酸液、又はアルカリ液又は金属キレー ト剤を含む水洗液で洗浄して脱塩した後、脱塩炭化物を焼却している。ここで得られ た脱塩炭化物はセメント用混和材として利用できる。酸としては、硫酸、塩酸、硝酸な どの鉱酸、又はギ酸、酢酸等の有機酸を用いる。金属キレート剤として、エチレンジァ ミン四酢酸 (EDTA : ethylene diamine tetraacetic acid)、二トリ口三酢酸 (NTA : nitril 0 toriacetic acid)、 EDTP (ethylene diamine tetrapropionic)などの金属錯体形成倉 力を有する塩類を用いる。このように焼却前に脱塩処理を行なうことで、焼却後の燃 焼灰には塩分が含まれず、良好なセメント混和材となる。また焼却排ガス中に塩化水 素がほとんど含まれな!/、ので、ダイォキシンの発生を抑えることができる。
発明の開示
[0014] 本発明の目的は、硫酸、塩酸、硝酸などの鉱酸を使用せずに、農作物、草食物、 木材などの有機系廃棄物から高純度の非晶質シリカを得ることである。
[0015] この発明に従った非晶質シリカの製造方法は、酸化ケィ素を含む有機系廃棄物を 出発原料として準備する工程と、有機系廃棄物を、水酸基を有するカルボン酸水溶 液中に浸漬する工程と、続いて有機系廃棄物を水洗処理する工程と、さらに有機系 廃棄物を大気雰囲気中で加熱する工程とを備える。
[0016] カルボン酸は、好ましくは、クェン酸、イソクェン酸、酒石酸、リンゴ酸および乳酸か らなる群から選ばれたいずれかの酸である。カルボン酸水溶液の温度は、好ましくは 、 50°C以上 80°C以下である。カルボン酸水溶液の濃度は、好ましくは、 0. 5%以上 10%以下である。
[0017] 上記の大気雰囲気での加熱温度は、好ましくは、 300°C以上 1100°C以下である。
[0018] 好ましくは、有機系廃棄物を大気雰囲気中で加熱する工程は、 300°C以上 500°C 以下にて加熱する第 1次加熱工程と、続いて 600°C以上 1100°C以下にて加熱する 第 2次加熱工程とを含む。
[0019] 出発原料としての有機系廃棄物は、好ましくは、籾殻、稲わら、米ぬか、麦わら、木 材、間伐材、建設廃材、おが屑、樹皮、ノ ガス、トウモロコシ、サトウキビ、さつまいも、 大豆、落花生、キヤッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙のいずれか である。
[0020] 一つの実施形態では、出発原料としての有機系廃棄物を準備する工程は、有機系 廃棄物を粉砕して微細化することを含む。
[0021] 好ましくは、カルボン酸水溶液中の浸漬した有機系廃棄物の燃焼後の重量減少率 は、 87%以上である。
[0022] 洗浄効果を高めるために、好ましくは、水洗処理で使用する水の容積は、処理する 有機系廃棄物の体積の 30倍以上である。一つの実施形態では、水洗処理を 3回以 上行い、各回の水洗処理で使用する水の容積は、処理する有機系廃棄物の体積の 10倍以上である。
[0023] 有機系廃棄物中の特定の成分を効率的に除去するために、カルボン酸水溶液中 に浸漬する工程に加えて、有機系廃棄物を異なった種類の酸に浸漬する工程を備 えるようにしても良い。異なった種類の酸として、例えばシユウ酸を用いることができる 。異なった種類の酸洗浄の組み合わせとして、例えば、有機系廃棄物をクェン酸によ つて洗浄した後に、シユウ酸で洗浄する方法や、その逆に、有機系廃棄物をシユウ酸 で洗浄した後に、クェン酸で洗浄する方法を採用し得る。また、クェン酸とシユウ酸と を混合した溶液中に有機系廃棄物を浸漬して洗浄するようにしてもよい。
[0024] 本発明に従った非晶質シリカは、上記のいずれかに記載の方法によって得られた ものであって、二酸化ケイ素(SiO )の純度が 98 %以上であることを特徴とする。
2
[0025] 好ましくは、非晶質シリカ中の不純物である炭素の含有量が重量基準で 0. 2%以 下であり、硫黄の含有量が重量基準で 0. 1 %以下である。より好ましくは、非晶質シ リカ中の不純物である炭素の含有量が重量基準で 0. 1 %以下であり、硫黄の含有量 が重量基準で 0. 05%以下である。
[0026] 上記に記載の特徴事項の技術的意義または作用効果については、以下の項で詳 細に説明する。
図面の簡単な説明
[0027] [図 1]本発明に従った高純度非晶質シリカの製造方法の一例を示す図である。 [図 2]酸処理後の籾殻試料についての示差熱分析結果を示す図である。
[図 3]常温から 1000°Cまでの加熱過程における種々の試料の重量変化率を示す図 である。
[図 4]カルボン酸洗浄処理を施さない原料籾殻の示差熱分析結果を示す図である。 発明を実施するための最良の形態
[0028] (1)本発明の主要な特徴
本発明においては、籾殻、稲わら、米ぬか、麦わら、木材、おが屑、樹皮などの農 作物や木材などの有機系廃棄物を処理すべき対象物とし、この有機系廃棄物に対し てある特定のカルボン酸水溶液中に浸漬'攪拌するといった酸洗浄処理を施し、そ の廃棄物を水洗処理した後に適切な温度条件で焼成することによって、純度 98%以 上の非晶質シリカを創製する。
[0029] カルボン酸水溶液による酸洗浄処理過程において、有機系廃棄物中に含まれる力 リウム、カルシウム、アルミニウムなどの金属不純物をキレート反応によって廃棄物か ら系外に排出 ·除去する。このような金属不純物の排出 ·除去により、焼成過程にお いてセルロースやへミセルロースなどの炭水化物と上記の金属不純物との反応を抑 制すること力 Sでき、その結果、残留炭素量を低減して高純度シリカを得ることができる
[0030] 上記のようにして得た非晶質シリカは、コンクリート用混和材、タイヤゴム用強化材、 可溶性肥料、化粧品用原料、塗料材料などに利用され得る。
[0031] (2)高純度非晶質シリカの製造方法の一例
図 1は、本発明に従った高純度非晶質シリカの製造方法の一例を示している。本発 明者らは、農作物、木材、草食物などの有機系廃棄物からなる投入原料に対して次 の処理を施すことにより、高純度の非晶質シリカが得られることを見出した。
[0032] (A)投入原料である有機系廃棄物に対して、水酸基を有するカルボン酸水溶液中 に浸漬して攪拌するとレヽつた酸洗浄処理を施す。
[0033] (B)続いて、有機系廃棄物に対して水洗処理を施す。
[0034] (C)上記の酸洗浄処理および複数回の水洗処理を施すことにより、原料中に含ま れるカリウム、カルシウム、アルミニウムなどの金属不純物をキレート反応ならびに脱 水反応によって原料から系外に排出して除去する。
[0035] (D)その後、上記の有機系廃棄物を適正な温度かつ雰囲気下で焼成することによ り、高純度の非晶質シリカを得る。
[0036] 高純度の非晶質シリカを得るには、酸洗浄処理、水洗処理および焼成に関する各 条件を適正に管理する必要がある。
[0037] (3)投入原料に対するカルボン酸洗浄処理
投入原料(出発原料)としての有機系廃棄物は、好ましくは、籾殻、稲わら、米ぬか 、麦わら、木材、間伐材、建設廃材、おが屑、樹皮、ノ ガス、トウモロコシ、サトウキビ、 さつまいも、大豆、落花生、キヤッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙 のいずれかである。
[0038] 水酸基を有するカルボン酸を用いるのは、次の理由からである。
[0039] (a)カルボン酸を構成するカルボキシル基によるキレート反応を利用して、投入原 料中に含まれるカリウム、カルシウム、アルミニウムなどの不純物金属イオンを包含し 、次工程の水洗処理過程にお!/、てそれらを原料の系外に排出して除去すること。
[0040] (b)投入原料の焼成過程において水酸基による脱水反応を促進させることにより、 上記の不純物金属成分を原料の系外に排出して除去すること。
[0041] 上記の作用を効果的に奏するために、水酸基を有するカルボン酸として、クェン酸 、イソクェン酸、酒石酸、リンゴ酸、乳酸のいずれかが望ましい。特に、籾殻や稲わら の場合、他の農作物や木材などに比べてシリカ成分が多ぐしかも上記の不純物金 属元素を多く含むため、シリカと金属成分との共晶反応による残留炭素量の増加を 招き易い。そのため、焼成後の非晶質シリカの純度を 98%以上とするには、キレート 反応と脱水反応をさらに効率的に引き起こす必要がある。その観点からすれば、より 望ましいカルボン酸は、水酸基を有していて、し力、もカルボキシル基の数が 3以上で ある。具体的には、クェン酸またはイソクェン酸の使用がより望ましい。
[0042] 5%濃度硫酸水溶液と 5%濃度クェン酸水溶液を準備し、それぞれを用いて籾殻を 酸洗浄処理し、さらに水洗処理を施した。処理後の籾殻試料についての示差熱分析 結果を図 2に示す。
[0043] 硫酸洗浄処理籾殻では、 300°C〜500°Cの範囲において炭水化物の燃焼による 発熱ピークが観察される。これに対してクェン酸水溶液を用いた場合には、 300°C〜 380°C付近で顕著な吸熱ピークが観察される。これはクェン酸が有する水酸基による 脱水反応に起因するものである。このように、水酸基を有するカルボン酸水溶液を用 V、て農作物等の有機系廃棄物を洗浄処理した場合には、水酸基による脱水反応が 生じてカリウム、カルシウム、アルミニウムなどの不純物金属元素が有機系廃棄物の 系外に排出され、その結果、焼成後のシリカ純度が向上する。
[0044] なお、塩酸や硫酸などの強鉱酸を用いた酸洗浄処理と比較して、本発明の製法に よれば、燃焼灰中の塩素含有量は測定下限値未満(< 0. 01 %)であり、また灰中の 硫黄含有量については 0. 1 %以下である。硫黄含有量に関しては、次工程の水洗 処理条件の最適化によって 0. 01 %〜0. 05%以下にまで低減でき、硫酸洗浄処理 を施した燃焼灰(0. 2%〜0. 6%)と比較して顕著に減少している。
[0045] カルボン酸水溶液の濃度は、好ましくは、 0. 5%以上 10%以下である。濃度が 0.
5%未満では十分なキレート効果が得られず、他方、 10%を超えてもキレート効果は 向上せず、むしろ次工程である水洗処理の回数が増えるといった経済性の問題を引 き起こす。上記の好まし!/、濃度のカルボン酸水溶液を用いて酸処理を施した籾殻に 対して水洗処理を施し、さらにそれを焼成処理して得られた籾殻燃焼灰における炭 素含有量は、 0. 2%以下である。また、複数回の水洗処理工程との組み合わせによ つて炭素含有量を 0. 1 %以下にまで低減することができる。さらに、好ましくは、カル ボン酸水溶液を 50°C以上 80°C以下の温度範囲に管理することで、燃焼灰中の酸化 カリウム、酸化カルシウム、酸化リンなどの不純物含有量も低減し、炭素含有量も 0. 0 1 %〜0. 03%以下と著しく減少する。こうして、キレート反応および脱水反応による 不純物金属元素の削減によって、燃焼灰中の不純物含有量を減少させることができ
[0046] カルボン酸水溶液の温度は常温以上が好ましぐより好ましくは 50°C〜80°Cとする 。カルボン酸水溶液の温度を 50〜80°Cに高めることで、カリウム(K)、カルシウム(K )、リン (P)の含有量を低減できる。カルボン酸水溶液の温度を上記の範囲以上にし てもその効果は向上せず、 100°C付近の沸騰状態では、水分が蒸発してカルボン酸 水溶液の濃度変動を引き起こすといった問題が生じる。 [0047] なお、前述した特開平 8— 94056号公報においても、本発明と類似の方法が開示 されている。この公報に開示された方法では、籾殻、麦わらなどの有機系廃棄物を 1 50°C〜; 1000°Cで乾留又は加熱処理した後に、その炭化物を酸液、又はアルカリ液 、又は金属キレート剤を含む水洗液で洗浄して脱塩した後、この脱塩炭化物を焼却 している。つまり、金属キレート剤を含む水溶液での洗浄工程を行なう前に有機系廃 棄物を加熱処理しており、この手順は本発明において提案する方法とは逆の関係に ある。また本発明の特徴である、水酸基を含むカルボン酸の有効性に関する記述や 規定がない。特開平 8— 94056号公報に記載の製法によれば、不純物金属元素を 含んだ状態の有機系廃棄物を加熱するため、金属元素とシリカとの反応が生じて残 留炭素量が増大し、結果としてシリカ純度の低下をもたらす。
[0048] 前述したエス 'チャンドラセクハーらの論文(S.Chandrasekhar et. al. : Effect of organ ic acid treatment on the properties of rice husk silica, Journal of Materials science 4 0 (2005), 6535-6544)に開示された方法においては、濃度を約 0. 5%〜30%とした 酢酸およびシユウ酸の 2種類の有機酸水溶液を用い、それぞれを沸騰させた状態で 籾殻を投入し、 90分間攪拌した後に籾殻を取り出し、水洗処理した後に 110°Cで乾 燥処理、さらに 700°Cで 2時間の焼成処理を行うことにより、籾殻から非晶質シリカを 生成して!/、る。ここで用いる酢酸とシユウ酸は!/、ずれも水酸基を有しな!/、カルボン酸 であり、本発明の特徴である、水酸基を有するカルボン酸ではない。またキレート反 応および脱水反応によるカリウム、カルシウム等の不純物金属元素の除去、ならびに シリカの高純度化に関する水酸基の効果についての記述や規定はない。上記の論 文に記載の製造方法によれば、有機酸洗浄処理後の籾殻中に不純物金属元素が 十分に除去されずに残留する。そのため、その籾殻を焼成して得られる籾殻灰に含 まれる酸化カルシウム(CaO)および酸化カリウム(K O)の含有量は、それぞれ 0. 4
2
%〜1 · 5%、 0. 03%〜0. 3%となり、本発明の製法によるものに比べて多い。また、 酸化マグネシウム(MgO)、酸化ナトリウム(Na 0)、酸化鉄(Fe O )についても同様
2 2 3
に有機酸洗浄処理後の燃焼灰中におけるそれらの減少量は小さい。以上の結果、 籾殻燃焼灰中のシリカ純度は 93%〜96. 7%であり、本発明の製法で得られるシリ 力の純度(98%以上)よりも低いものとなっている。 [0049] なお、本発明者らは、事前に粉砕 ·微細化した農作物原料を使用することにより、力 ルボン酸水溶液と接する原料の面積が増大し、その結果、キレート反応が生じる領域 が増え、不純物金属元素の削減効果がさらに向上し、燃焼灰中の残留炭素量も減 少してシリカの高純度化が図れることを確認した。例えば、事前に粉砕処理を施さな い原料籾殻に対してクェン酸洗浄処理、水洗処理、燃焼を施して得られた燃焼灰の シリカ純度は 99. 1 %であったが、籾殻をフードミキサーによって乾式条件下で粉砕 し、原料に対して平均粒径を約 1/3に微細化した場合、同一条件下でのクェン酸洗 浄処理、水洗処理、燃焼処理を経由して得られた焼成灰のシリカ純度は 99. 6%で あった。このように出発原料としての有機系廃棄物を準備するに際し、有機系廃棄物 を粉砕して微細化すれば、シリカの高純度化を図ることができる。
[0050] 籾殻や稲わらがバイオマス燃料であることを考えると、上述したいずれのカルボン 酸水溶液による酸洗浄処理を施しても籾殻や稲わらに含まれるセルロースやへミセ ルロースなどの炭水化物量が顕著に減少しないのは望ましいことである。
[0051] 図 3は、常温から 1000°Cまでの加熱過程における種々の試料の重量変化率を示 している。試料として、硫酸洗浄を 1回行なった試料、硫酸洗浄を 2回行なった試料、 クェン酸洗浄を行なった試料、酸洗浄を行なわなかった試料を準備した。
[0052] 図 3に示すように、酸処理を行わない原料籾殻の場合には、約 87%の重量減少を 伴う。これは 1000°Cまでの加熱過程におけるセルロースやへミセルロースなどの炭 水化物の熱分解が主要因である。一方、 5%濃度の硫酸水溶液を用いて籾殻を洗 浄処理した場合(図では 1回洗浄と 2回洗浄の結果を示す)、それぞれ 80%および 6 8%の重量減少が見られた。これらの結果は、分析前の試料に含まれる炭水化物量 が原料籾殻を用いた場合に比べて 10〜20%程度少ないこと、すなわち、硫酸水溶 液中で籾殻を洗浄した際に炭水化物が硫酸によって溶融分解したことを意味する。 したがって、バイオマス発電燃料として硫酸洗浄処理した籾殻を利用する場合、発熱 量が減少して回収するエネルギー効率が低下するといつた問題を伴う。
[0053] 5%濃度のクェン酸水溶液を用いた場合の重量減少率は約 88%であり、原料籾殻 と同等である。つまり、硫酸洗浄処理で見られた炭水化物の溶融分解が生じることな ぐバイオマス燃料として用いた場合でも高いエネルギー効率を実現できる。このこと から、本発明による有機酸洗浄処理を施した籾殻や稲わらなどをバイオマスエネルギ 一用燃焼燃料とした場合、高い効率下で熱 ·電気エネルギーを採取すると同時に、 燃焼後に排出される籾殻'稲わら灰は 98%以上の高純度を有する非晶質シリカとな り、資源としての再利用が可能となる。エネルギーとしての有効活用を考慮すると、力 ルボン酸水溶液中に浸漬した有機系廃棄物の燃焼後の重量減少率を 87 %以上に するのが望ましい。
[0054] (4)カルボン酸洗浄処理した投入原料の水洗処理
上記のカルボン酸によるキレート効果によって農作物等の原料中の不純物金属元 素イオンを包含した状態で原料から系外に排出 ·除去するには、続!/、て水洗処理が 必要である。常温での水洗処理によっても除去効果はある力 50°C以上での水洗処 理によって、さらに除去効果は向上する。
[0055] また水洗処理条件に関して、原料の体積に対して 30倍以上、より好ましくは 50倍 以上の水を用いることで十分な除去効果が得られる。例えば、籾殻 50ccを用いる場 合、所定の条件下でカルボン酸洗浄処理した籾殻を蒸留水 500ccの浴槽に投入し 、 15分間の攪拌処理を行った後に蒸留水を廃棄する。そして、再度 500ccの蒸留水 を、籾殻が残る浴槽に投入する。これを 3回繰り返すことで、原料籾殻の体積に対し て 30倍の蒸留水での水洗処理を行なうこととなる。
[0056] 水洗処理の回数を 1回にして、 1回の水洗処理に使用する水の量を原料体積の 30 倍以上にしてもよいが、上記のように、 3回以上の水洗処理を行い、各回の水洗処理 で使用する水の容積を原料体積の 10倍以上とすれば、より十分な除去効果が得ら れる。
[0057] 硫酸、塩酸、硝酸などには、硫黄、塩素など、環境に害を及ぼす成分が含まれて!/、 るが、本発明において酸洗浄工程で使用するのはカルボン酸であるので、酸処理後 の農作物等を水洗処理した際の使用済みの排水には、環境に害を及ぼす成分が含 まれない。従って、排水処理も容易となるといつた利点が得られる。
[0058] (5)カルボン酸処理および水洗処理した原料の燃焼工程
前述の通りシリカ純度を高めるためには、不純物金属元素の含有量を事前に低減 して燃焼後の残留炭素量を減少することが必要である。さらに、燃焼過程において水 酸基による脱水反応および十分な空気(酸素)供給による炭水化物の完全燃焼を実 現することにより、残留炭素量を削減することも重要である。本発明者らは、カルボン 酸洗浄および水洗処理を施した原料を燃焼する条件として、大気雰囲気で 300°C以 上 1100°C以下の加熱温度とすることが望ましいことを見出した。 300°C未満では、 炭水化物が十分に燃焼しないために残留炭素成分が増加してシリカ純度が低下す る。一方、燃焼温度が 1100°Cを超えると、シリカの結晶構造がクリストバライト化(結 晶化)するとレ、つた問題が生じる。
[0059] カルボン酸洗浄処理を施さない原料籾殻の示差熱分析結果を図 4に示す。図 4で は、 300°C〜400°Cおよび 400°C〜480°Cにかけて 2段階の発熱ピークが確認され る。これは籾殻に含まれる炭水化物(五炭糖成分および六炭糖成分の 2種類の炭水 化物)が燃焼する際に発生する熱量に相当するものである。
[0060] 本発明者らは、上記の 2つの発熱過程において完全に炭水化物を熱分解すれば、 残留炭素量を減少させてシリカ純度を向上できると考え、以下の好ましい方法を見出 した。すなわち、籾殻等の有機系廃棄物を大気雰囲気中で加熱する工程は、 2つの 発熱ピークが発現する 300°C〜500°Cにおいて酸素を十分に供給した状態で原料 を燃焼する第 1次加熱工程と、続いて大気雰囲気で 600°C〜; 1100°Cにて加熱する 第 2次加熱工程とを備える。このような 2段階加熱により、炭水化物の完全燃焼が可 能となる。
[0061] 上記の効果を確認するために、酸洗浄処理を行わな!/、原料稲わらを準備し、空気 を強制的に供給した状態で 400°Cに管理された炉内に原料稲わらを投入して 30分 間加熱し、続いて大気中で 800°Cにて 15分間加熱保持して燃焼灰を得た。この燃 焼灰中のシリカ純度は 98. 4%と高ぐ炭素含有量は 0. 08%と低かった。また 5%濃 度クェン酸水溶液中での洗浄処理および水洗処理を施した稲わらを上記と同様に 4 00°Cにて 30分間加熱し、続いて 800°Cで 15分間加熱保持した場合に得られた燃 焼灰中のシリカ純度は 99. 5%、炭素含有量は 0. 04%であった。このように、本発明 による酸処理および水洗処理を施すことで、不純物を減少させて、更にシリカの高純 度化が達成できる。
[0062] なお、特開平 7— 196312号公報においても、本発明と類似の方法が提案されて いる。この公報には、第 1燃焼工程として流動床を用いて 640°C〜800°Cで 4秒〜 10 秒の短時間焼成を行な!/、、続!/、て第 2燃焼工程として外熱式回転炉を用いて 700°C 〜950°Cで 8分〜 15分の焼成を行なうことにより、未燃焼炭素が少なぐかつポゾラ ン反応性の高い非晶質シリカを作製する製法が記載されている。しかしながら、第 1 燃焼工程の加熱温度が 640°C〜800°Cであり、本発明において規定する 300°C〜5 00°Cとは大きく異なる温度範囲である。図 4に示したように、籾殻を燃焼した場合、 6 00°C以上の温度では発熱現象は生じず、既に炭水化物の燃焼は完了している。言 V、換えると、 600°C以上での酸素の供給は炭水化物の熱分解に対して効果的では なぐその結果、残留炭素量は低減せずにシリカの高純度化は困難となる。
[0063] (6)本発明の製法によって得た非晶質シリ力
上述した本発明の製造条件によって農作物等の有機系廃棄物から作製される非 晶質シリカは、二酸化ケイ素 ば) )の純度が 98%以上である。また、好ましくは、非
2
晶質シリカ中の炭素含有量が 0. 2重量%以下である。炭素含有量が 0. 2重量%を 超えると、高純度非晶質シリカ粉末を用いた素形材料の一つである坩堝材料として 使用した際に、作製した坩堝の耐熱性が低下し、使用寿命が低減する。また、ァモル ファス酸化ケィ素粉末をファンデーションなどの化粧品用原料として用いた場合、皮 膚への影響が懸念される。さらに、アモルファス酸化ケィ素を高強度コンクリート用補 強材として用いた場合、炭素含有量が 0. 2重量%を超えると、減水剤や空気連行剤 (Air Entraining Agent)などの化学混和剤を吸収し、また二酸化ケイ素の含有量が 9 8重量%未満であれば十分な強度改善が得られない。
[0064] 非晶質シリカ中の好ましい炭素含有量は 0. 2重量%以下で、硫黄の含有量が 0. 1 重量%以下であり、より好ましくは、炭素含有量が 0. 1重量%以下、硫黄の含有量が 0. 05重量%以下である。
[0065] なお、純度 98%未満の非晶質シリカを用いた場合でも、結晶性シリカに比べると、 ポゾラン活性によるコンクリートの強度向上効果は認められる。本発明による純度 98 %以上の非晶質シリカを用いると、コンクリート材の更なる高強度化が実現できる。さ らに、本発明の高純度非晶質シリカ粉末を塗料材料として用いることもできる。
[0066] (7)異なった種類の酸を用いた洗浄処理 有機系廃棄物中の特定の成分を効率的に除去するために、カルボン酸水溶液中 に浸漬する工程に加えて、有機系廃棄物を異なった種類の酸に浸漬する工程を備 えるようにしても良い。異なった種類の酸として、例えばシユウ酸を用いることができる 。有機系廃棄物をカルボン酸水溶液中に浸漬して洗浄する工程に加えて、シユウ酸 水溶液中に浸漬して洗浄すると、有機系廃棄物中のリン成分やカリウム成分をより効 率的に除去できる。異なった種類の酸洗浄の組み合わせとして、例えば、有機系廃 棄物をクェン酸によって洗浄した後に、シユウ酸で洗浄する方法や、その逆に、有機 系廃棄物をシユウ酸で洗浄した後に、クェン酸で洗浄する方法を採用し得る。また、 クェン酸とシユウ酸とを混合した溶液中に有機系廃棄物を浸漬して洗浄するようにし てもよい。
実施例 1
[0067] 原料として籾殻 10gをクェン酸、酒石酸、リンゴ酸、乳酸、リン酸、エチレンジァミン 四酢酸 (EDTA)、酢酸、シユウ酸のそれぞれの水溶液中に投入し、 15分間浸漬した 後、水洗処理(体積比で 30倍の常温水で洗浄)を行ない、電気炉内において大気雰 囲気下で 800°Cにて 30分間焼成した。
[0068] 得られた籾殻燃焼灰に含まれる元素の定量分析に関しては、蛍光 X線分析 (XRF: X-ray fluorescence spectroscopy)装置を用いて行なった。その結果を表 1に示す。
[0069] [表 1]
Figure imgf000016_0001
[0070] 本発明例である試料 No. 2 5では、カルボシキル基によるキレート反応および水 酸基による脱水反応によって酸化カリウム、酸化カルシウムが減少しており、その結 果、残留炭素量も 0. 1 %を下回る低い値となり、 目的とするシリカ純度は 98%以上と なった。
[0071] 一方、比較例である試料 No. 1および 6 9は、次の通りであった。無処理の籾殻( 試料 No. 1)では、金属成分が除去されず、その結果、残留炭素量も 0· 6%と多くな り、結果としてシリカ純度は 95%を下回る値となった。試料 Νο· 6のリン酸では、酸化 リンの含有量が増大し、結果としてシリカ純度が低下した。試料 Νο· 7 9では、カル ボン酸ではあるものの、水酸基を有さないためにカリウム、カルシウム等の不純物金 属元素の除去が不十分となり、結果として、燃焼灰中の残留炭素量が増大し、シリカ 純度が 95 97%と低レヽ値を示した。
実施例 2
[0072] 実施例 1と同様に、籾殻を投入原料として準備し、クェン酸および硫酸を酸洗浄水 溶液として用いた。表 2に示す濃度条件下で酸洗浄処理を行ない、本発明の適正条 件下での水洗処理を施した後に、電気炉を用 、て大気雰囲気下で 800°Cにて 30分 間焼成した。蛍光 X線分析 (XRF)装置によって、得られた籾殻燃焼灰の定量分析を 行なった。その結果を表 2に示す。
[0073] [表 2]
Figure imgf000017_0001
[0074] 試料 No. 11〜: 13に示すように、クェン酸水溶液の濃度が増大するにつれてシリカ 成分の高純度化が進行している。ただし、濃度 30% (試料 No. 14)の場合には、シリ 力純度は 98. 9%と高いものの、キレート効果によって包含された金属元素イオンが 再度、籾殻内に浸透したために酸化カリウムや酸化カルシウムの含有量が増大して 純度低下を招いた。
[0075] 一方、比較例である試料 No. 15〜; 18においては、硫酸水溶液を用いることで不純 物金属元素の除去が可能となり、残留炭素量の減少および 99%以上のシリカの高 純度化が可能となるが、燃焼灰中の硫黄含有量が増大するといつた問題が見られた 実施例 3
[0076] 稲わらおよび籾殻を投入原料として準備し、クェン酸水溶液の温度の影響を検討し た。濃度は全て 5%で、クェン酸水溶液の温度を常温、 50°C、 80°Cとした。それぞれ の水溶液にお!/、て各原料農作物を 15分間浸漬した後、水洗処理 (体積比で 30倍の 常温水で洗浄)を行ない、電気炉内において大気雰囲気下で 800°Cにて 30分間焼 成した。蛍光 X線分析 (XRF)装置を用いて、得られた燃焼灰の定量分析を行なった 。稲わらの結果を表 3に示し、籾殻を用いた場合の結果を表 4に示す。いずれの場合 においても、 50〜80°Cの温水条件下で酸洗浄処理を行うことでシリカの更なる高純 度化が実現できる。
[0077] [表 3]
Figure imgf000018_0001
[0078] [表 4]
Figure imgf000019_0001
実施例 4
[0079] 実施例 1と同様に、籾殻を投入原料として準備し、酒石酸を酸洗浄水溶液 (濃度 5 %)として用いて室温にて酸処理洗浄を行なった。その後、水洗処理条件を籾殻と水 との体積比を 5倍、 30倍、 50倍とした。
[0080] 水洗処理後の籾殻を電気炉内にて大気雰囲気下で 800°Cにて 30分間焼成した。
蛍光 X線分析 (XRF)装置によって各籾殻燃焼灰の定量分析を行なった。その結果 を表 5に示す。体積比 5倍の水洗条件に比べて、 30倍、 50倍の体積比に増加すると 、つまり水洗回数を増やすことで酸化カリウムや酸化カルシウムなどが減少し、キレー ト反応による不純物金属元素の系外への排出効果が促進され、その結果、シリカ純 度は更に増加した。
[0081] [表 5]
Figure imgf000020_0001
実施例 5
[0082] 表 6に示す酸水溶液(全て 5%濃度) 500mlに籾殻 10gを浸漬し、水温を 60°Cとし て 30分間、攪拌した後、水洗処理 (籾殻との体積比で 30倍の蒸留水で洗浄)を行な い、ろ過後に 105°Cで 60分間の乾燥処理によって籾殻中の水分を完全に除去した 。このような一連の処理工程の前 ·後での籾殻重量の変化を表 6に示す。
[0083] [表 6]
Figure imgf000020_0002
[0084] 硫酸 (試料 No. 32)、塩酸 (試料 No. 33)、リン酸 (試料 No. 35)は籾殻中の炭水 化物を溶融 '分解するため、他の酸を用いた場合に比べて重量減少量が大きい。言 い換えると、本発明の酸であるクェン酸 (試料 No. 31)を用いて籾殻を酸処理した場 合、セルロースやへミセルロースなどの炭水化物を溶融 ·分解することなぐ酸洗浄- 水洗処理後の籾殻内に炭水化物が十分に残存しており、バイオマス燃料として効率 的に利用できる。
実施例 6
[0085] 実施例 5と同様に、表 7に示す酸水溶液 (全て 5%濃度) 500mlに籾殻 10gを浸漬 し、水温を 60°Cとして 30分間、攪拌した後、水洗処理 (籾殻との体積比で 30倍の蒸 留水で洗浄)を行ない、ろ過後に 105°Cで 60分間の乾燥処理によって籾殻中の水 分を完全に除去した。酸処理前 ·後の酸水溶液中のカルシウム(Ca)および力リウム( K)の含有量を ICP (Inductively Coupled Plasma)発光分析装置によって定量測定し た。酸洗浄前後での重量変化量から、それぞれの不純物金属元素の除去効果を評 価した。酸水溶液中の Ca含有量および K含有量の分析結果を表 7および表 8にそれ ぞれ示す。
[表 7]
Ca含有量の変化
Figure imgf000021_0001
[0087] [表 8]
κ含有量の変化
Figure imgf000021_0002
[0088] Ca含有量に関して、本発明例である試料 No. 37〜41における重量変化量(7. 2 ppm〜9. 8ppm)は、比較例であるシユウ酸洗浄した試料 No. 42〜43の重量変化 量(5. 5ppn!〜 6. 2ppm)に比べて大きぐ水酸基を含むカルボン酸を用いることで カルシウムの除去効果が高いことが認められた。
[0089] K含有量に関しても、本発明例である試料 No. 48〜52における重量変化量(35· 3ppm〜36. lppm)は、比較例であるシユウ酸洗浄した試料 No. 53〜54の重量変 ィ匕量(28. 4ppm〜29. lppm)に比べても大きく、水酸基を含むカルボン酸を用いる ことでカリウムの除去効果が高いことが認められた。
[0090] さらに、いずれにおいても、クェン酸水溶液の濃度が増加すると、 Caおよび Kの重 量変化が増加しており、除去効果が向上することが認められた。 実施例 7
[0091] 有機系廃棄物をカルボン酸水溶液中に浸漬する工程に加えて、この有機系廃棄 物を異なった種類の酸に浸漬した場合に、有機系廃棄物中の成分濃度がどのように 変化するかを調べた。その結果を表 9に示す。
[0092] [表 9] 酸洗浄処理の方法の相違による成分濃度の *化を示す計量結果
Figure imgf000022_0001
[0093] 表 9の結果から明らかなように、有機系廃棄物をクェン酸水溶液中に浸漬する 1段 階の酸洗浄方法に比べて、クェン酸水溶液中の浸漬に加えてシユウ酸水溶液中の 浸漬を行なう 2段階の酸洗浄方法によれば、リン成分やカリウム成分をより効率的に 除去すること力 Sできる。実験を行なった 2段階の酸洗浄の具体的手順は、以下のとお りであった。
[0094] (a)クェン酸溶液中への浸漬→水洗→シユウ酸溶液中への浸漬→水洗
(b)シユウ酸溶液中への浸漬→水洗→クェン酸溶液中への浸漬→水洗
(c)クェン酸とシユウ酸とを混ぜた溶液中への浸漬→水洗
[0095] 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可 能である。
産業上の利用可能性 本発明の方法によって得られた高純度非晶質シリカは、セメント用混和材、タイヤゴ ム用強化材、可溶性肥料、化粧品用原料、塗料材料などに有利に利用され得る。

Claims

請求の範囲
[I] 酸化ケィ素を含む有機系廃棄物を出発原料として準備する工程と、
前記有機系廃棄物を、水酸基を有するカルボン酸水溶液中に浸漬する工程と、 続!/、て前記有機系廃棄物を水洗処理する工程と、
さらに前記有機系廃棄物を大気雰囲気中で加熱する工程とを備えた、非晶質シリ 力の製造方法。
[2] 前記カルボン酸は、クェン酸、イソクェン酸、酒石酸、リンゴ酸および乳酸からなる群 力、ら選ばれたいずれかの酸である、請求項 1に記載の非晶質シリカの製造方法。
[3] 前記カルボン酸水溶液の温度は、 50°C以上 80°C以下である、請求項 1に記載の非 晶質シリカの製造方法。
[4] 前記カルボン酸水溶液の濃度は、 0. 5%以上 10%以下である、請求項 1に記載の 非晶質シリカの製造方法。
[5] 前記大気雰囲気での加熱温度は、 300°C以上 1100°C以下である、請求項 1に記載 の非晶質シリカの製造方法。
[6] 前記有機系廃棄物を大気雰囲気中で加熱する工程は、 300°C以上 500°C以下にて 加熱する第 1次加熱工程と、続いて 600°C以上 1100°C以下にて加熱する第 2次加 熱工程とを含む、請求項 1に記載の非晶質シリカの製造方法。
[7] 前記有機系廃棄物は、籾殻、稲わら、米ぬか、麦わら、木材、間伐材、建設廃材、お が屑、樹皮、ノ ガス、トウモロコシ、サトウキビ、さつまいも、大豆、落花生、キヤッサバ
、ユーカリ、シダ、パイナップル、竹、ゴム、古紙のいずれかである、請求項 1に記載 の非晶質シリカの製造方法。
[8] 出発原料としての有機系廃棄物を準備する工程は、有機系廃棄物を粉砕して微細 化することを含む、請求項 1に記載の非晶質シリカの製造方法。
[9] 前記カルボン酸水溶液中に浸漬した有機系廃棄物の燃焼後の重量減少率は、 87
%以上である、請求項 1に記載の非晶質シリカの製造方法。
[10] 前記水洗処理で使用する水の容積は、処理する有機系廃棄物の体積の 30倍以上 である、請求項 1に記載の非晶質シリカの製造方法。
[I I] 前記水洗処理を 3回以上行い、各回の水洗処理で使用する水の容積は、処理する 有機系廃棄物の体積の 10倍以上である、請求項 10に記載の非晶質シリカの製造方 法。
[12] 前記カルボン酸水溶液中に浸漬する工程に加えて、前記有機廃棄物を異なった種 類の酸に浸漬する工程を備える、請求項 1に記載の非晶質シリカの製造方法。
[13] 前記異なった種類の酸は、シユウ酸である、請求項 12に記載の非晶質シリカの製造 方法。
[14] 前記カルボン酸はクェン酸であり、前記異なった種類の酸はシユウ酸である、請求項
12に記載の非晶質シリカの製造方法。
[15] 請求項 1に記載の方法によって得られた非晶質シリカであって、
二酸化ケイ素の純度が 98%以上である、非晶質シリカ。
[16] 不純物である炭素の含有量が重量基準で 0. 2%以下であり、硫黄の含有量が重量 基準で 0. 1 %以下である、請求項 15に記載の非晶質シリカ。
[17] 不純物である炭素の含有量が重量基準で 0. 1 %以下であり、硫黄の含有量が重量 基準で 0. 05%以下である、請求項 15に記載の非晶質シリカ。
PCT/JP2007/070281 2006-10-27 2007-10-17 Silice amorphe et son procédé de fabrication WO2008053711A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800394853A CN101528601B (zh) 2006-10-27 2007-10-17 非晶质二氧化硅及其制造方法
US12/312,075 US7998448B2 (en) 2006-10-27 2007-10-17 Amorphous silica and its manufacturing method
JP2008542038A JP5213120B2 (ja) 2006-10-27 2007-10-17 非晶質シリカの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006292838 2006-10-27
JP2006-292838 2006-10-27

Publications (1)

Publication Number Publication Date
WO2008053711A1 true WO2008053711A1 (fr) 2008-05-08

Family

ID=39344054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070281 WO2008053711A1 (fr) 2006-10-27 2007-10-17 Silice amorphe et son procédé de fabrication

Country Status (4)

Country Link
US (1) US7998448B2 (ja)
JP (1) JP5213120B2 (ja)
CN (1) CN101528601B (ja)
WO (1) WO2008053711A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214158A (ja) * 2007-03-06 2008-09-18 Maywa Co Ltd 籾殻から非晶質シリカの製造方法
WO2011064815A1 (ja) * 2009-11-25 2011-06-03 丸仙陶器原料株式会社 セメント混和剤用籾殻灰
JP2013108629A (ja) * 2011-11-17 2013-06-06 Jfe Engineering Corp 廃棄物溶融処理方法
WO2015008730A1 (ja) * 2013-07-16 2015-01-22 株式会社栗本鐵工所 有機系廃棄物由来の球状シリカ粒子およびその製造方法
JP2015517898A (ja) * 2012-03-26 2015-06-25 ▲陽▼光▲凱▼迪新能源集▲団▼有限公司 工業排ガスを利用するもみ殻からの金属イオン除去方法
KR20160124099A (ko) * 2014-02-14 2016-10-26 로디아 오퍼레이션스 침강 실리카의 제조 방법, 침강 실리카, 및 특히 중합체 보강을 위한 이의 용도
WO2017022345A1 (ja) * 2015-07-31 2017-02-09 勝義 近藤 放射性廃棄物処分場用セメント系材料
JP2020114791A (ja) * 2018-09-20 2020-07-30 ジカンテクノ株式会社 シリカ、シリカの製造方法及びシリカの製造装置
JP2021536426A (ja) * 2018-09-05 2021-12-27 キルト エルエルシー 生物源シリカの特性を制御する方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201033123A (en) * 2009-03-13 2010-09-16 Radiant Technology Co Ltd Method for manufacturing a silicon material with high purity
CN101830470B (zh) * 2010-03-22 2012-07-25 大连民族学院 有机羧酸转化分离法高值化利用灰渣类物质的方法
US9359214B2 (en) 2011-02-28 2016-06-07 Texas State University-San Marcos Silica nanoaggregates and organosilicon complexes and methods of forming them from biomass materials
RU2488558C2 (ru) * 2011-09-01 2013-07-27 Общество С Ограниченной Ответственностью "Рисилика" Способ получения аморфного микрокремнезема высокой чистоты из рисовой шелухи
CN102923717A (zh) * 2012-09-04 2013-02-13 华南理工大学 一种利用稻草制备电子级球形硅微粉的方法
US10570019B2 (en) * 2014-06-03 2020-02-25 Gaia Institute Of Environment Technology Inc. Amorphous silicon for use in foods, drugs, cosmetics and feed, and production method and production device thereof
CN105417543B (zh) * 2015-10-26 2020-07-03 河北民族师范学院 一种纳米多孔硅电极材料的制备工艺
TWI671010B (zh) * 2018-01-24 2019-09-11 綠世紀生物科技股份有限公司 茶葉萃取物的製造方法
CN112188995A (zh) 2018-03-02 2021-01-05 波尔纳工程公司 可持续的硅酸盐及其提取方法
CN110407214A (zh) * 2018-04-27 2019-11-05 中国科学院大连化学物理研究所 一种由木质纤维素水解渣制备二氧化硅的工艺方法
EP3816106A4 (en) * 2018-06-28 2022-02-09 Koukishev, Evgueniy Anatolievich SILICON DIOXIDE PRODUCTION PROCESS
CN111747420A (zh) * 2019-03-29 2020-10-09 福建通源硅业有限公司 一种二氧化硅的提纯方法
US11530158B2 (en) * 2019-08-22 2022-12-20 Xaris Holdings, LLC Amorphous silica products, articles, and particles and methods of producing amorphous silica products, articles, and particles from concrete
CN115244000B (zh) * 2020-03-11 2024-09-20 株式会社久保田 非晶质二氧化硅的制造方法及非晶质二氧化硅的制造装置
JP2023098018A (ja) * 2021-12-28 2023-07-10 株式会社クボタ 非晶質シリカの製造装置および非晶質シリカの製造方法
JP2023098019A (ja) * 2021-12-28 2023-07-10 株式会社クボタ 非晶質シリカの製造装置および非晶質シリカの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071404A (ja) * 2001-08-31 2003-03-11 Nippon Paper Industries Co Ltd 新規多孔性粒体
JP2003171114A (ja) * 2000-05-08 2003-06-17 B M:Kk シリカゲルの製造方法
JP2003522703A (ja) * 2000-02-09 2003-07-29 アールケイ・ケミカル・カンパニー・リミテッド 米ぬかからシリカを抽出する方法
JP2003529518A (ja) * 2000-03-31 2003-10-07 アグリテック,インク. バイオマス灰溶液からの沈着炭素を含む又は含まない沈降シリカ及びシリカ・ゲル、及びプロセス
JP2004527445A (ja) * 2001-03-26 2004-09-09 プロセス マネジメント, インコーポレイテッド バイオジェニック材料からの高純度アモルファスシリカの製造方法
JP2004529054A (ja) * 2001-02-19 2004-09-24 フンダソン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ 植物性材料から抽出される酸化物と抽出方法
WO2007026680A1 (ja) * 2005-08-31 2007-03-08 Kurimoto, Ltd. アモルファス酸化ケイ素粉末およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733249B2 (ja) 1992-01-17 1995-04-12 前田製管株式会社 非晶質シリカ微粉末の製造方法及び非晶質シリカ微粉末混入のコンクリート製品
US5378891A (en) 1993-05-27 1995-01-03 Varian Associates, Inc. Method for selective collisional dissociation using border effect excitation with prior cooling time control
JPH0825736B2 (ja) 1993-12-28 1996-03-13 前田製管株式会社 籾殻を原料とする非晶質シリカの製造方法
JP2673785B2 (ja) 1994-08-05 1997-11-05 前田製管株式会社 籾殻を原料とする非晶質シリカの製造方法
JPH0894056A (ja) 1994-09-28 1996-04-12 Kawasaki Heavy Ind Ltd 有機系廃棄物の焼却処理方法
JPH11323752A (ja) 1998-04-30 1999-11-26 Akita Prefecture シリカ、セルロースおよびリグニン高含有素材の製造法
JP3579417B1 (ja) 2003-08-27 2004-10-20 株式会社西村組 ケイ酸含有粉末製造方法およびケイ酸含有粉末製造システム
US7270794B2 (en) * 2005-03-30 2007-09-18 Shipley Larry W Process for recovering useful products and energy from siliceous plant matter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522703A (ja) * 2000-02-09 2003-07-29 アールケイ・ケミカル・カンパニー・リミテッド 米ぬかからシリカを抽出する方法
JP2003529518A (ja) * 2000-03-31 2003-10-07 アグリテック,インク. バイオマス灰溶液からの沈着炭素を含む又は含まない沈降シリカ及びシリカ・ゲル、及びプロセス
JP2003171114A (ja) * 2000-05-08 2003-06-17 B M:Kk シリカゲルの製造方法
JP2004529054A (ja) * 2001-02-19 2004-09-24 フンダソン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ 植物性材料から抽出される酸化物と抽出方法
JP2004527445A (ja) * 2001-03-26 2004-09-09 プロセス マネジメント, インコーポレイテッド バイオジェニック材料からの高純度アモルファスシリカの製造方法
JP2003071404A (ja) * 2001-08-31 2003-03-11 Nippon Paper Industries Co Ltd 新規多孔性粒体
WO2007026680A1 (ja) * 2005-08-31 2007-03-08 Kurimoto, Ltd. アモルファス酸化ケイ素粉末およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214158A (ja) * 2007-03-06 2008-09-18 Maywa Co Ltd 籾殻から非晶質シリカの製造方法
WO2011064815A1 (ja) * 2009-11-25 2011-06-03 丸仙陶器原料株式会社 セメント混和剤用籾殻灰
JP2013108629A (ja) * 2011-11-17 2013-06-06 Jfe Engineering Corp 廃棄物溶融処理方法
JP2015517898A (ja) * 2012-03-26 2015-06-25 ▲陽▼光▲凱▼迪新能源集▲団▼有限公司 工業排ガスを利用するもみ殻からの金属イオン除去方法
WO2015008730A1 (ja) * 2013-07-16 2015-01-22 株式会社栗本鐵工所 有機系廃棄物由来の球状シリカ粒子およびその製造方法
JP5703428B1 (ja) * 2013-07-16 2015-04-22 勝義 近藤 有機系廃棄物由来の球状シリカ粒子およびその製造方法
JP2017511783A (ja) * 2014-02-14 2017-04-27 ローディア オペレーションズ 沈澱シリカの製造方法、沈澱シリカおよび、特にポリマーの強化のための、それらの使用
KR20160124099A (ko) * 2014-02-14 2016-10-26 로디아 오퍼레이션스 침강 실리카의 제조 방법, 침강 실리카, 및 특히 중합체 보강을 위한 이의 용도
KR102398816B1 (ko) 2014-02-14 2022-05-17 로디아 오퍼레이션스 침강 실리카의 제조 방법, 침강 실리카, 및 특히 중합체 보강을 위한 이의 용도
WO2017022345A1 (ja) * 2015-07-31 2017-02-09 勝義 近藤 放射性廃棄物処分場用セメント系材料
JPWO2017022345A1 (ja) * 2015-07-31 2018-04-05 勝義 近藤 放射性廃棄物処分場用セメント系材料
US10807910B2 (en) 2015-07-31 2020-10-20 Katsuyoshi Kondoh Cementitious material for radioactive waste disposal facility
JP2021536426A (ja) * 2018-09-05 2021-12-27 キルト エルエルシー 生物源シリカの特性を制御する方法
JP7407172B2 (ja) 2018-09-05 2023-12-28 キルト エルエルシー 生物源シリカの特性を制御する方法
JP2020114791A (ja) * 2018-09-20 2020-07-30 ジカンテクノ株式会社 シリカ、シリカの製造方法及びシリカの製造装置
JP7237271B2 (ja) 2018-09-20 2023-03-13 ジカンテクノ株式会社 シリカの製造装置

Also Published As

Publication number Publication date
CN101528601A (zh) 2009-09-09
US20100061910A1 (en) 2010-03-11
CN101528601B (zh) 2012-08-22
JPWO2008053711A1 (ja) 2010-02-25
US7998448B2 (en) 2011-08-16
JP5213120B2 (ja) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2008053711A1 (fr) Silice amorphe et son procédé de fabrication
JP5100385B2 (ja) アモルファス酸化ケイ素粉末の製造方法
JP4174795B2 (ja) バイオジェニック材料からの高純度アモルファスシリカの製造方法
EP1866249B1 (en) Process for recovering useful products and energy from siliceous plant matter
KR100414888B1 (ko) 쌀겨로부터 실리카를 추출하는 방법
CN103539119A (zh) 一种用于电化学储能器件的活性炭制备方法
CN104785207B (zh) 一种对重金属离子高吸附性能生物炭及其制备方法
Zhang et al. Biological calcium carbonate with a unique organic–inorganic composite structure to enhance biochar stability
CN107115841A (zh) 多段酸洗后处理工艺制备超低灰分植物基生物炭
CN109748475A (zh) 一种生物油降酸提质的方法
JP2003171114A (ja) シリカゲルの製造方法
JP2002265257A (ja) シリカ原料の製造方法
JP7407172B2 (ja) 生物源シリカの特性を制御する方法
CN114130360A (zh) 一种载锰麦糟生物炭的制备方法
US1535798A (en) Decolorizing carbon and process of producing the same
CN112938968A (zh) 一种用糠醛渣生产活性炭的方法
CN108913272A (zh) 一种增强生物质颗粒燃烧效果的添加剂的制备方法
JP2016052954A (ja) 植物由来炭素前駆体の精製方法
US1537286A (en) Process for the manufacture of decolorizing carbons
CN102757045A (zh) 一种利用制铝工业赤泥中的碱制备活性炭并回收碱的方法
Girgis et al. Potential of activated carbon derived from local common reed in the refining of raw cane sugar
CN116986592A (zh) 一种二氧化碳气氛中连续热解并活化生物质制备高品质活性炭的方法
Al-Otaibi et al. Biochar Characteristics and Pyrolysis Pretreatment Performance
RU2182906C1 (ru) Способ получения кверцетина
JP2024110337A (ja) 炭化ケイ素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039485.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542038

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 622/MUMNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12312075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830015

Country of ref document: EP

Kind code of ref document: A1