WO2015008730A1 - 有機系廃棄物由来の球状シリカ粒子およびその製造方法 - Google Patents
有機系廃棄物由来の球状シリカ粒子およびその製造方法 Download PDFInfo
- Publication number
- WO2015008730A1 WO2015008730A1 PCT/JP2014/068719 JP2014068719W WO2015008730A1 WO 2015008730 A1 WO2015008730 A1 WO 2015008730A1 JP 2014068719 W JP2014068719 W JP 2014068719W WO 2015008730 A1 WO2015008730 A1 WO 2015008730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic waste
- silica particles
- spherical silica
- silica
- particles
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 257
- 239000010815 organic waste Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 title abstract 4
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 91
- 239000000843 powder Substances 0.000 claims abstract description 23
- 238000010298 pulverizing process Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 238000010304 firing Methods 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 43
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 42
- 240000007594 Oryza sativa Species 0.000 claims description 40
- 235000007164 Oryza sativa Nutrition 0.000 claims description 40
- 235000009566 rice Nutrition 0.000 claims description 40
- 238000011282 treatment Methods 0.000 claims description 40
- 239000010419 fine particle Substances 0.000 claims description 35
- 239000010903 husk Substances 0.000 claims description 28
- 238000005563 spheronization Methods 0.000 claims description 25
- 239000007858 starting material Substances 0.000 claims description 22
- 239000000155 melt Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000010902 straw Substances 0.000 claims description 11
- 239000002023 wood Substances 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 6
- 241000609240 Ambelania acida Species 0.000 claims description 5
- 244000099147 Ananas comosus Species 0.000 claims description 5
- 235000007119 Ananas comosus Nutrition 0.000 claims description 5
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 5
- 244000105624 Arachis hypogaea Species 0.000 claims description 5
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 5
- 235000018262 Arachis monticola Nutrition 0.000 claims description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 5
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 5
- 244000004281 Eucalyptus maculata Species 0.000 claims description 5
- 244000068988 Glycine max Species 0.000 claims description 5
- 235000010469 Glycine max Nutrition 0.000 claims description 5
- 244000017020 Ipomoea batatas Species 0.000 claims description 5
- 235000002678 Ipomoea batatas Nutrition 0.000 claims description 5
- 240000003183 Manihot esculenta Species 0.000 claims description 5
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 5
- 244000082204 Phyllostachys viridis Species 0.000 claims description 5
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 5
- 240000000111 Saccharum officinarum Species 0.000 claims description 5
- 235000007201 Saccharum officinarum Nutrition 0.000 claims description 5
- 240000008042 Zea mays Species 0.000 claims description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 5
- 239000010905 bagasse Substances 0.000 claims description 5
- 239000011425 bamboo Substances 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 5
- 235000005822 corn Nutrition 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 235000020232 peanut Nutrition 0.000 claims description 5
- 239000005060 rubber Substances 0.000 claims description 5
- 239000010893 paper waste Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 abstract description 12
- 239000011859 microparticle Substances 0.000 abstract 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 20
- 239000011707 mineral Substances 0.000 description 20
- 239000012535 impurity Substances 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 235000014633 carbohydrates Nutrition 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
Definitions
- the present invention relates to spherical silica particles used for semiconductor device sealing materials and the like and a method for producing the same, and more particularly to spherical silica particles derived from organic waste and a method for producing the same.
- silica silicon oxide
- high-purity meteorite is used as a raw material.
- the silica powder particles obtained by pulverizing the meteorite have an angular shape, so the fluidity is poor and the filling property is also poor. Therefore, for example, as described in JP-A-2009-221054 (Patent Document 1), pulverized silica powder is melted and spheroidized in a flame to obtain spherical silica particles.
- Meteorite has an advantage that it is suitable for use as a sealing material for semiconductor devices because of its inherently high silica (SiO 2 ) purity.
- meteorites have the disadvantage that they cannot be obtained in a wide range of areas because their origin is specified.
- a meteorite having a diameter (maximum length) of 5 cm to 6 cm by, for example, a ball mill, and further pulverize it to fine particles of 3 to 30 ⁇ m. The device will also become larger.
- Patent Document 2 discloses that silica powder is obtained by acid-treating organic waste (biomass raw material) such as rice husk, rice straw, rice bran, and wood, followed by heating and baking. is doing.
- organic waste biomass raw material
- biomass raw material such as rice husk, rice straw, rice bran, and wood
- organic waste has the advantage that it can be obtained in a wide area.
- silica powder derived from organic waste has lower silica purity than meteorite and contains many components such as iron (Fe), potassium (K), calcium (Ca), and carbon (C). Therefore, it has been considered to be unsuitable as a sealing material for semiconductor devices that require electrical insulation.
- JP 2009-221054 A Japanese Patent No. 5213120
- the inventors of the present application can obtain relatively high-purity silica powder particles by treating organic waste such as rice husks under appropriate conditions, and can reduce impure metal components by high-temperature flame treatment. Focused on.
- the object of the present invention is to produce high-purity spherical silica particles using organic waste as a starting material.
- the method for producing spherical silica particles according to the present invention includes a step of preparing an organic waste containing silica as a starting material, a step of increasing the purity of silica by immersing the organic waste in a liquid, an organic type There are provided a step of firing the waste to obtain silica powder, a step of obtaining silica fine particles by pulverizing the silica powder, and a step of obtaining spherical silica particles by melting and spheronizing the silica fine particles in a flame.
- the particle size of the silica powder particles before pulverization is 10 mm or less, and the particle size of the silica fine particles after pulverization is 15 ⁇ m or less.
- the silica fine particles before the melt spheroidization treatment are in a porous state because they use organic waste as a starting material. Therefore, silica fine particles have a large surface area and many internal voids. Therefore, an increase in the particle size after the melt spheronization treatment is suppressed as compared with the meteorite raw material.
- the average particle diameter of the spherical silica particles after the melt spheronization treatment is 20 ⁇ m or less.
- Organic waste is preferably rice husk, rice straw, rice bran, straw, wood, thinned wood, construction waste, sawdust, bark, bagasse, corn, sugarcane, sweet potato, soybean, peanut, cassava, eucalyptus, fern, pineapple, One selected from the group consisting of bamboo, rubber and waste paper.
- the liquid for immersing the organic waste is an acid solution.
- An example of an acid solution is citric acid.
- the preferred citric acid concentration is 0.5% to 10%.
- the liquid for immersing the organic waste is water at room temperature to 80 ° C.
- the organic waste is fired in an air atmosphere, and the firing temperature is 300 ° C. or higher and 1100 ° C. or lower.
- a preferable flame treatment temperature is 1750 ° C. to 2500 ° C.
- the purity of the spherical silica particles after the melt spheronization treatment is 0.2% or more higher than the silica purity of the silica fine particles.
- the spherical silica particles derived from organic waste according to the present invention are obtained by preparing silica fine particles using organic waste containing silica as a starting material, and melting and spheronizing the silica fine particles in a flame.
- Organic waste used as a starting material contains many types of impurity components compared to meteorites. Therefore, spherical silica particles derived from organic wastes and spheroidized silica particles derived from minerals can be clearly distinguished in the contained components.
- preferred spherical silica particles derived from organic waste contain at least SiO 2 , MgO, K 2 O and CaO as contained components, and their mass-based contents are as follows.
- SiO 2 95.60% or more MgO: 0.12 to 0.16% K 2 O: 0.02 to 0.08% CaO: 0.50 to 0.65%
- the preferable spherical silica particle derived from an organic waste further contains P 2 O 5 and MnO as contained components, and their mass-based contents are as follows.
- Organic waste is preferably rice husk, rice straw, rice bran, straw, wood, thinned wood, construction waste, sawdust, bark, bagasse, corn, sugarcane, sweet potato, soybean, peanut, cassava, eucalyptus, fern, pineapple, One selected from the group consisting of bamboo, rubber and waste paper.
- the raw material for spherical silica particles is widely available.
- the energy required for pulverization can be considerably reduced as compared with those using meteorite as a starting material.
- FIG. 1 shows the processing steps according to the manufacturing method of the present invention in order.
- the method of the present invention uses organic waste as a starting material to finally obtain spherical silica particles.
- the organic waste of the starting material is immersed in the liquid to increase the silica purity while reducing impurities. Thereafter, the organic waste is fired at a predetermined temperature to obtain silica powder. Then, the silica powder is pulverized to form silica fine particles, which are melt-spheroidized in a flame to obtain spherical silica particles.
- each step will be described in detail.
- the starting material to be prepared is organic waste containing silica. Specifically, rice husk, rice straw, rice bran, straw, wood, thinned wood, construction waste, sawdust, bark, bagasse, corn, sugar cane, sweet potato, soybean, peanut, cassava, eucalyptus, fern, pineapple, bamboo, rubber, One selected from the group of used paper. These raw materials, unlike meteorites, are available in a wide range of areas. The present inventors conducted experiments of the present invention using rice husks that are easily available and easy to handle, but equivalent effects can be expected even when other organic wastes are used.
- the size (maximum length) of the rice husk is about a few tens of millimeters, much smaller than the 5-6 cm size meteorite.
- pulverization In order to perform flame treatment for melt spheroidization, pulverization must be performed until the particles have a particle diameter of about 3 to 15 ⁇ m. A great deal of energy is required to pulverize the meteorite to this particle size, but organic waste such as rice husk can be pulverized to a desired size with relatively small energy. In this respect, organic waste is advantageous over meteorite.
- organic waste may be pulverized until it becomes a fine size.
- the organic waste as the starting material is immersed in an acid solution or warm water and stirred to remove impurities from the raw material and increase the silica purity.
- the acid is preferably a carboxylic acid having a hydroxyl group, more preferably citric acid.
- metal impurities such as potassium, calcium, and aluminum contained in the raw material are discharged from the raw material and removed by a chelate reaction and a dehydration reaction.
- the organic waste after the acid treatment and the water washing treatment is dried at room temperature or warm air.
- the preferred concentration of citric acid is 0.5% to 10%. If the concentration is less than 0.5%, a sufficient chelating effect cannot be obtained. On the other hand, if the concentration exceeds 10%, the chelating effect is not improved, but rather the economical problem of increasing the number of subsequent water washing treatments is caused.
- the temperature of the aqueous acid solution such as citric acid is preferably set to room temperature or higher, preferably 50 to 80 ° C.
- the liquid for immersing the organic waste may be water at normal temperature to 80 ° C. (hot water) instead of acid. Even if hot water is used, the effect of removing impurities can be expected.
- the step of heating organic waste such as rice husk in the air atmosphere is a primary heating step of burning the raw material in a state where oxygen is sufficiently supplied at 300 to 500 ° C. at which two exothermic peaks appear. And a secondary heating step of heating at 600 ° C. to 1100 ° C. in an air atmosphere.
- Such two-stage heating enables complete combustion of carbohydrates.
- the particle size (maximum length) of the silica powder particles obtained by firing organic waste such as rice husks corresponds to the size of the raw material particles, and is typically 10 mm or less. Moreover, the powder particle derived from organic waste is porous. As a comparison, the size of the meteorite is 5-6 cm and is non-porous. Since the size of silica powder particles derived from organic waste is 10 mm or less and porous, the energy required for pulverization to obtain silica fine particles of 15 ⁇ m or less is significantly smaller than the energy of fluorite pulverization. .
- the equipment for melt spheroidization is preferably composed of a powder supply device, a burner, a melting zone, a cooling zone, a powder recovery device, and a suction fan.
- Silica fine particles of 15 ⁇ m or less treated in the above pulverization step are put into a burner, spheronized in a high-temperature flame in a melting zone, extracted with combustion exhaust gas in a cooling zone, and recovered by a powder recovery device.
- Silica fine particles thrown into the high-temperature flame reach the melting point or higher and become spherical due to the surface tension of the fine particles themselves in the process of melting and liquefaction.
- the temperature of the flame treatment is preferably 1750 ° C. to 2500 ° C.
- the average particle size of the spherical silica particles spheroidized by the melt spheronization treatment is increased as compared with the average particle size of the silica fine particles before being introduced into the burner.
- One reason for the increase in the average particle size is that a plurality of silica fine particles are spheroidized in an aggregated state due to static electricity or intermolecular attractive force.
- the increase in particle size is suppressed as compared with the silica fine particles derived from mineral. The reason for this has not been fully elucidated, but since silica fine particles derived from organic waste are porous, it may have a large surface area and a high surface tension effect, and there may be voids inside.
- the pulverized size of the raw material silica (crushed silica) can be made closer to the spheroidized product. Therefore, it is not necessary to finely pulverize the particles until the average particle size is expected to increase. As a result, the pulverization cost can be reduced, so it is meaningful to use organic waste as a starting material.
- the average particle diameter of the spherical silica particles after the melt spheronization treatment is 20 ⁇ m or less. When mineral-derived silica fine particles were used, it was recognized that the average particle diameter of the spherical silica particles after the melt spheronization treatment exceeded 20 ⁇ m.
- silica purity of meteorite is high and the content of other impurities is small. Therefore, even if the silica fine particles derived from minerals are melt-spheroidized, the silica purity is hardly changed.
- silica fine particles derived from organic waste contain many kinds of impurities, so that the amount of impurities decreases during the process of melt spheroidization.
- the silica purity of the spherical silica particles after the melt spheronization treatment is higher than the silica purity of the silica fine particles derived from the organic waste before the treatment.
- the purity of the spherical silica particles after the melt spheronization treatment was 0.2% or more higher than the silica purity of the silica fine particles.
- Example 1 A hot-water-treated baked product made from unwashed baked product (sample No. 1) baked without immersing it in liquid, baked by immersing it in hot water, using rice husks produced in Shiga Prefecture as the starting material
- the components of the product (samples No. 2 to No. 6) and the components of the citric acid-treated fired product (samples No. 7 to No. 8) fired by immersion treatment in a citric acid solution were compared.
- the temperature of warm water was normal temperature (sample No. 2), 40 ° C. (sample No. 3), 50 ° C. (sample No. 4), 60 ° C. (sample No. 5), and 80 ° C. (sample No. 6). It was.
- the temperature of the citric acid solution was 50 ° C., and the concentrations thereof were 1% (Sample No. 7) and 0.5% (Sample No. 8).
- the citric acid-treated calcined product No. 8 has a silica purity of 98.60 to 98.72%, and it is recognized that the effect of removing impurities is higher than that of warm water washing. Further, it is recognized that when the concentration of citric acid is increased from 0.5% to 1.0%, impurity removal is further promoted and silica purity is improved.
- Example 2 It was investigated how the components changed after melt spheronization. The results are shown in Table 2.
- Sample No. 11 is a pulverized product which is baked after citric acid treatment and further pulverized until the average particle size becomes 10 ⁇ m.
- Sample No. 12 is Sample No. 11 is a spheroidized product after melt spheronization of the fired and pulverized product of No. 11 at a throughput of 5 kg / hr.
- Sample No. 13 is sample No. 11 is a spheroidized product after melt-spheroidizing the fired and pulverized product of No. 11 at a throughput of 15 kg / hr.
- Sample No. 14 is a pulverized product obtained by pulverizing Chinese meteorite until the average particle size becomes 14 ⁇ m.
- Sample No. 15 is Sample No. 14 is a spheroidized product after melt spheronization of 14 pulverized products at a processing rate of 5 kg / hr.
- Sample No. 16 is Sample No. 14 is a spheroidized product after melt spheronization of 14 pulverized products at a throughput of 15 kg / hr.
- the conditions for the melt spheronization treatment were as follows.
- Furnace temperature 1300 ° C Flame temperature: 2000 ° C or more Combustion amount: 135,000 kcal / hr Oxygen ratio: 1.05
- the silica purity of the pulverized product was 98.71%, whereas the spheroidized product after the spheronization treatment increased the silica purity to 98.91 to 98.93%.
- the increase rate is 0.2% or more.
- the silica purity of the pulverized product was 99.91%, whereas the spheroidized product after the spheroidization treatment had a silica purity of 99.90%, No change was observed.
- the carbon content after spheroidizing treatment when the rice husk is used as the starting material and the case where the meteorite (mineral) is used as the starting material, the mineral-derived carbon content is 0.01%. It can be seen that the carbon content of is as high as 0.02 to 0.03%.
- Example 3 The sphericity (circularity) and the average particle diameter of spherical silica particles starting from meteorite (mineral) and spherical silica particles starting from rice husk (organic waste) were measured.
- the average sphericity (circularity) of the powder was measured by a dynamic image analysis method using a circularity measuring device (PITA-2) manufactured by Seishin Enterprise Co., Ltd. Specifically, the projected area and perimeter of the particle were measured from the SEM photograph, and the sphericity (circularity) was measured by the following formula.
- the conditions for the melt spheronization treatment were as follows.
- Furnace temperature 1300 ° C Flame temperature: 2000 ° C or more Combustion amount: 135,000 kcal / hr Oxygen ratio: 1.05
- the average particle size of the mineral-derived silica fine particles before the melt spheronization treatment was 14.2 ⁇ m, and the average particle size of the silica fine particles derived from the rice husk before the melt spheronization treatment was 10.3 ⁇ m.
- silica fine particles derived from minerals before melt spheronization treatment silica fine particles derived from rice husks before melt spheronization treatment
- silica fine particles derived from rice husks before melt spheronization treatment silica fine particles derived from rice husks before melt spheronization treatment
- spherical silica particles derived from minerals after melt spheronization treatment spherical silica derived from rice husks after melt spheronization treatment
- a micrograph of the particles is shown in FIG. The amount of spheroidizing treatment was 5 kg / hr, 10 kg / hr, and 15 kg / hr, and photographs were taken for each.
- the optical microscope used is a DMLM manufactured by LEICA.
- the sphericity of spherical silica particles derived from rice husk is higher than the sphericity of spherical silica particles derived from mineral (meteorite).
- the increase rate is higher for the spherical silica particles derived from mineral (meteorite).
- the increase rate of spherical silica particles derived from mineral (meteorite) is about 147%, whereas the increase rate of spherical silica particles derived from rice husk is about 106%. It is. Therefore, in order to obtain spherical silica particles with a small enlargement rate, it is better to use rice husk as a starting material.
- the size of the spherical silica particles derived from rice husk is smaller than the spherical silica particles derived from mineral (meteorite).
- Table 4 described below shows that silica fine particles derived from organic waste (rice husk) are washed with 0.5% citric acid (50 ° C.), and the fired product after calcination is spheroidized in a flame. It is the actual content of each component of the spherical silica particles derived from the organic waste obtained in this way.
- Sample No. in Table 4 12 and 13 are sample Nos. 12 and 13 are the same. The only difference is whether or not unavoidable impurities are included in the total content. Sample No.
- the throughputs of the spheroidizing treatments of 17, 18, 19 and 20 were 7.5 kg / hr, 7.5 kg / hr, 7.5 kg / hr and 5 kg / hr, respectively.
- Organic waste such as rice husk
- Organic waste used as a starting material contains many types of impurity components compared to meteorites and the like. Therefore, spherical silica particles derived from organic wastes and spheroidized silica particles derived from minerals can be clearly distinguished in the contained components.
- the organic silica-derived spherical silica particles contain more MgO, P 2 O 5 , K 2 O, CaO and MnO than the mineral-derived spherical silica particles.
- SiO 2 95.80% or more MgO: 0.13 to 0.15%
- P 2 O 5 0.09 to 0.11%
- K 2 O 0.03-0.06%
- CaO 0.55-0.62%
- MnO 0.04 to 0.05%
- spherical silica particles derived from organic waste that can be distinguished from spherical silica particles derived from minerals contain at least SiO 2 , MgO, K 2 O and CaO as contained components, and their mass standard The content is as follows.
- SiO 2 95.60% or more MgO: 0.12 to 0.16% K 2 O: 0.02 to 0.08% CaO: 0.50 to 0.65%
- the spherical silica particles derived from organic waste further contain P 2 O 5 and MnO as components, their mass-based contents are as follows in consideration of measurement errors and the like.
- SiO 2 99.90% or more MgO: 0 to 0.01%
- P 2 O 5 0.03 to 0.04%
- K 2 O 0%
- CaO 0 to 0.04%
- MnO 0.01%
- the present invention can be advantageously used as spherical silica particles derived from organic waste and a method for producing the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Silicon Compounds (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
MgO:0.12~0.16%
K2O:0.02~0.08%
CaO:0.50~0.65%
MnO:0.03~0.06%
準備すべき出発原料は、シリカを含む有機系廃棄物である。具体的には、籾殻、稲わら、米ぬか、麦わら、木材、間伐材、建設廃材、おが屑、樹皮、バガス、トウモロコシ、サトウキビ、サツマイモ、大豆、落花生、キャッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙からなる群から選ばれたいずれかである。これらの原料は、硅石と異なり、広範囲な地域で入手可能である。本発明者らは、入手し易く、かつ取り扱い易い籾殻を使用して本発明の実験を行なったが、他の有機系廃棄物を使用しても同等の作用効果を期待できる。
出発原料である有機系廃棄物に対して、酸溶液または温水中に浸漬して撹拌することによって原料から不純物を取り除き、シリカ純度を高める。酸は、水酸基を有するカルボン酸が好ましく、より好ましくはクエン酸である。
シリカ純度を高めるためには、不純物金属元素の含有量を事前に低減して燃焼後の残留炭素量を減少することが必要である。さらに、燃焼過程において水酸基による脱水反応および十分な空気(酸素)供給による炭水化物の完全燃焼を実現することにより、残留炭素量を削減することも重要である。液中での浸漬後の有機系廃棄物を燃焼する条件として、好ましくは、大気雰囲気中で300℃以上1100℃以下の加熱温度とすることが望ましい。300℃未満では、炭水化物が十分に燃焼しないために残留炭素成分が増加してシリカ純度が低下する。一方、燃焼温度が1100℃を超えると、シリカの結晶構造がクリストバライト化(結晶化)するといった問題が生ずる。
最終的に微細な球状シリカ粒子を得るためには、溶融球状化処理に先立ち、上記の焼成後に得られるシリカ粉末をより微細に粉砕してシリカ微粒子とすることが必要である。
溶融球状化のための設備は、好ましくは、粉体供給装置、バーナ、溶融帯、冷却帯、粉体回収装置、吸引ファンによって構成される。上記の粉砕工程で処理された15μm以下のシリカ微粒子は、バーナに投入され、溶融帯の高温火炎内で球状化し、冷却帯にて燃焼排ガスとともに抜熱され、粉体回収装置で回収される。高温火炎内に投入されたシリカ微粒子は融点以上に達し、溶融・液状化の過程で微粒子自身の表面張力により球状化する。火炎処理の温度は、好ましくは、1750℃~2500℃である。
滋賀県産の籾殻を出発原料として用い、液中での浸漬処理を行うことなく焼成した未洗浄焼成品(試料No.1)の成分、温水中での浸漬処理を行なって焼成した温水処理焼成品(試料No.2~No.6)の成分、クエン酸溶液中での浸漬処理を行って焼成したクエン酸処理焼成品(試料No.7~No.8)の成分を比較した。
溶融球状化後に成分がどのように変化するのかを調査した。その結果を、表2に示す。
火炎温度:2000℃以上
燃焼量:135,000kcal/hr
酸素比:1.05
硅石(鉱物)を出発原料とした球状シリカ粒子と、籾殻(有機系廃棄物)を出発原料とした球状シリカ粒子に関して、球形度(円形度)および平均粒径を測定した。
上記の式で算出した値が1に近づくほど、真球に近くなる。
火炎温度:2000℃以上
燃焼量:135,000kcal/hr
酸素比:1.05
MgO:0.13~0.15%
P2O5:0.09~0.11%
K2O:0.03~0.06%
CaO:0.55~0.62%
MnO:0.04~0.05%
MgO:0.12~0.16%
K2O:0.02~0.08%
CaO:0.50~0.65%
MnO:0.03~0.06%
MgO:0~0.01%
P2O5:0.03~0.04%
K2O:0%
CaO:0~0.04%
MnO:0.01%
Claims (16)
- シリカを含む有機系廃棄物を出発原料として準備する工程と、
前記有機系廃棄物を液中に浸漬してシリカの純度を上げる工程と、
前記有機系廃棄物を焼成してシリカ粉末を得る工程と、
前記シリカ粉末を粉砕してシリカ微粒子を得る工程と、
前記シリカ微粒子を火炎中で溶融球状化して球状シリカ粒子を得る工程とを備える、球状シリカ粒子の製造方法。 - 前記粉砕前のシリカ粉末粒子の粒径は10mm以下であり、
前記粉砕後のシリカ微粒子の粒径は15μm以下である、請求項1に記載の球状シリカ粒子の製造方法。 - 前記溶融球状化処理前のシリカ微粒子は多孔質である、請求項1または2に記載の球状シリカ粒子の製造方法。
- 前記溶融球状化処理後の球状シリカ粒子の平均粒径は20μm以下である、請求項1~3のいずれかに記載の球状シリカ粒子の製造方法。
- 前記有機系廃棄物は、籾殻、稲わら、米ぬか、麦わら、木材、間伐材、建設廃材、おが屑、樹皮、バガス、トウモロコシ、サトウキビ、サツマイモ、大豆、落花生、キャッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙からなる群から選ばれたいずれかである、請求項1~4のいずれかに記載の球状シリカ粒子の製造方法。
- 前記有機系廃棄物を浸漬する液は、酸溶液である、請求項1~5のいずれかに記載の球状シリカ粒子の製造方法。
- 前記酸溶液はクエン酸である、請求項6に記載の球状シリカ粒子の製造方法。
- 前記クエン酸の濃度は0.5%~10%である、請求項7に記載の球状シリカ粒子の製造方法。
- 前記有機系廃棄物を浸漬する液は常温~80℃の水である、請求項1~5のいずれかに記載の球状シリカ粒子の製造方法。
- 前記有機系廃棄物の焼成は大気雰囲気中で行い、その焼成温度は300℃以上1100℃以下である、請求項1~9のいずれかに記載の球状シリカ粒子の製造方法。
- 前記火炎処理の温度は1750℃~2500℃である、請求項1~10のいずれかに記載の球状シリカ粒子の製造方法。
- 前記シリカ微粒子のシリカ純度に対して、前記溶融球状化処理後の球状シリカ粒子の純度は0.2%以上高い、請求項1~11のいずれかに記載の球状シリカ粒子の製造方法。
- シリカを含む有機系廃棄物を出発原料としてシリカ微粒子を作成し、このシリカ微粒子を火炎中で溶融球状化して得られた、有機系廃棄物由来の球状シリカ粒子。
- 含有成分として、少なくともSiO2、MgO、K2OおよびCaOを含み、それらの質量基準含有量は以下のとおりである、請求項13に記載の有機系廃棄物由来の球状シリカ粒子。
SiO2:95.60%以上
MgO:0.12~0.16%
K2O:0.02~0.08%
CaO:0.50~0.65% - 含有成分として、さらにP2O5およびMnOを含み、それらの質量基準含有量は以下のとおりである、請求項13または14に記載の有機系廃棄物由来の球状シリカ粒子。
P2O5:0.08~0.12%
MnO:0.03~0.06% - 前記有機系廃棄物は、籾殻、稲わら、米ぬか、麦わら、木材、間伐材、建設廃材、おが屑、樹皮、バガス、トウモロコシ、サトウキビ、サツマイモ、大豆、落花生、キャッサバ、ユーカリ、シダ、パイナップル、竹、ゴム、古紙からなる群から選ばれたいずれかである、請求項13~15のいずれかに記載の有機系廃棄物由来の球状シリカ粒子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014555645A JP5703428B1 (ja) | 2013-07-16 | 2014-07-14 | 有機系廃棄物由来の球状シリカ粒子およびその製造方法 |
KR1020147035266A KR101588548B1 (ko) | 2013-07-16 | 2014-07-14 | 유기계 폐기물 유래의 구상 실리카 입자 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-147229 | 2013-07-16 | ||
JP2013147229 | 2013-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008730A1 true WO2015008730A1 (ja) | 2015-01-22 |
Family
ID=52346185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068719 WO2015008730A1 (ja) | 2013-07-16 | 2014-07-14 | 有機系廃棄物由来の球状シリカ粒子およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5703428B1 (ja) |
KR (1) | KR101588548B1 (ja) |
WO (1) | WO2015008730A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017022345A1 (ja) | 2015-07-31 | 2017-02-09 | 勝義 近藤 | 放射性廃棄物処分場用セメント系材料 |
KR101666169B1 (ko) * | 2015-08-19 | 2016-10-13 | 롯데케미칼 주식회사 | 잠열축열재 및 이의 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053711A1 (fr) * | 2006-10-27 | 2008-05-08 | Kurimoto, Ltd. | Silice amorphe et son procédé de fabrication |
JP2009221054A (ja) * | 2008-03-17 | 2009-10-01 | Admatechs Co Ltd | 球状化シリカの製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05213120A (ja) | 1992-01-31 | 1993-08-24 | Tokai Kogyo Kk | ドアウェザ−ストリップ、及びその製造方法 |
KR100414888B1 (ko) * | 2000-02-09 | 2004-01-13 | 알케이케미칼 주식회사 | 쌀겨로부터 실리카를 추출하는 방법 |
US20120288716A1 (en) * | 2010-01-07 | 2012-11-15 | Mitsubishi Materials Corporation | Synthetic amorphous silica powder |
KR20130071451A (ko) * | 2013-05-28 | 2013-06-28 | 한국과학기술원 | 왕겨로부터 고순도의 실리카를 제조하는 방법 |
-
2014
- 2014-07-14 WO PCT/JP2014/068719 patent/WO2015008730A1/ja active Application Filing
- 2014-07-14 JP JP2014555645A patent/JP5703428B1/ja active Active
- 2014-07-14 KR KR1020147035266A patent/KR101588548B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053711A1 (fr) * | 2006-10-27 | 2008-05-08 | Kurimoto, Ltd. | Silice amorphe et son procédé de fabrication |
JP2009221054A (ja) * | 2008-03-17 | 2009-10-01 | Admatechs Co Ltd | 球状化シリカの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150024839A (ko) | 2015-03-09 |
JPWO2015008730A1 (ja) | 2017-03-02 |
JP5703428B1 (ja) | 2015-04-22 |
KR101588548B1 (ko) | 2016-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Patel et al. | Recent advance in silica production technologies from agricultural waste stream | |
US7754186B2 (en) | Oxides extracted from vegetal matter and process therefor | |
CN102666384B (zh) | 合成非晶态二氧化硅粉末 | |
JP2011157263A (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP5703428B1 (ja) | 有機系廃棄物由来の球状シリカ粒子およびその製造方法 | |
CN105417949A (zh) | 一种硅酸铝纤维的制备方法 | |
KR20130071451A (ko) | 왕겨로부터 고순도의 실리카를 제조하는 방법 | |
Pa et al. | Extraction of silica from palm ash using organic acid leaching treatment | |
JP2011157262A (ja) | 合成非晶質シリカ粉末及びその製造方法 | |
JP2021038114A (ja) | シリコン素材及びそのシリコン素材を含むリチウムイオン電池 | |
Kurama et al. | The effect of chemical treatment on the production of active silica from rice husk | |
TWI552952B (zh) | 以微波加熱方式精煉碳粉之方法 | |
JP7406444B2 (ja) | 球状粒子材料の製造方法 | |
JP6420695B2 (ja) | 微細シリカ粉末の製造方法 | |
TW201350202A (zh) | 固體鹼觸媒、其製備方法及應用其之生質柴油製造方法 | |
WO2022065387A1 (ja) | 球状粒子材料の製造方法 | |
KR101281766B1 (ko) | 다공성 탄소재 및 그 제조방법 | |
JP2019065204A (ja) | バイオマス原料及びその製造方法 | |
CN101673781A (zh) | 一种用稻壳制备生产太阳能电池多晶硅原料的方法 | |
JP5407028B2 (ja) | 乾燥剤原料およびその製造方法 | |
JP6552502B2 (ja) | 籾殻燃焼灰の無害化方法および籾殻の燃焼設備 | |
CN112661162B (zh) | 一种石油焦制氢灰渣的处理办法及介孔硅材料 | |
JP2017219398A (ja) | フライアッシュの製造方法 | |
CN110982618A (zh) | 一种油脂的蒸汽加热方法 | |
KR20160015625A (ko) | 고순도 구상 알루미나 제조 장치 및 이것을 이용한 고순도 구상 알루미나 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014555645 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147035266 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14826978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14826978 Country of ref document: EP Kind code of ref document: A1 |