WO2008050740A1 - Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device - Google Patents

Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device Download PDF

Info

Publication number
WO2008050740A1
WO2008050740A1 PCT/JP2007/070600 JP2007070600W WO2008050740A1 WO 2008050740 A1 WO2008050740 A1 WO 2008050740A1 JP 2007070600 W JP2007070600 W JP 2007070600W WO 2008050740 A1 WO2008050740 A1 WO 2008050740A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pressure
pressure vessel
decomposition
cellulosic biomass
Prior art date
Application number
PCT/JP2007/070600
Other languages
English (en)
French (fr)
Inventor
Takeshi Nagahama
Noriaki Izumi
Original Assignee
Kawasaki Plant Systems Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Plant Systems Kabushiki Kaisha filed Critical Kawasaki Plant Systems Kabushiki Kaisha
Priority to AU2007274388A priority Critical patent/AU2007274388B8/en
Priority to JP2008512641A priority patent/JP4990271B2/ja
Priority to EP07830334.4A priority patent/EP2075347B1/en
Priority to US12/063,757 priority patent/US20100175690A1/en
Priority to ES07830334.4T priority patent/ES2566494T3/es
Priority to CN2007800009733A priority patent/CN101346476B/zh
Priority to BRPI0706024-6A priority patent/BRPI0706024B1/pt
Publication of WO2008050740A1 publication Critical patent/WO2008050740A1/ja
Priority to US13/451,858 priority patent/US8562747B2/en
Priority to US13/451,854 priority patent/US20120260912A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the present invention relates to a decomposition method and apparatus for efficiently producing saccharides from biomass, particularly cellulosic biomass.
  • the main components of plants are cellulose (polymer of glucose, which is a C6 monosaccharide composed of 6 carbons), hemicellulose (polymerization of C5 and C6 monosaccharides composed of 5 carbons) ), Lignin, starch, etc.
  • Ethanol is produced by fermentation of yeast and other sugars using saccharides such as C5 monosaccharides, C6 monosaccharides, and oligosaccharides, which are complexes thereof.
  • Cellulosic biomass such as cellulose and hemicellulose can be decomposed into sugars by 1) hydrolysis using strong acid oxidizing power such as sulfuric acid, 2) enzymatic decomposition, 3) supercritical water or There are three industrial methods that use oxidizing power such as critical water.
  • the acid decomposition method of 1) the added acid becomes an inhibitor to the fermentation of yeast and the like. Therefore, the cellulose and hemicellulose are decomposed into sugars, and then the sugars are ethanol.
  • the neutralization treatment of the acid added before fermentation is essential, and it is difficult to put it to practical use economically.
  • Patent Document 1 discloses a method for producing a water-insoluble polysaccharide characterized by the above. Ma The stripped biomass was hydrolyzed with hot water pressurized at 140-230 ° C above the saturated water vapor pressure for a specified time to decompose and extract hemicellulose, and then heated above the decomposition temperature of cellulose.
  • Patent Document 2 discloses a method for decomposing and extracting cellulose by hydrolyzing with pressurized hot water.
  • cellulose having an average degree of polymerization of 100 or more is contact-reacted with supercritical water or subcritical water at a temperature of 250 ° C or higher and 45 ° C or lower and a pressure of 15MPa or higher and 450MPa or lower for 0.01 seconds or more and 5 seconds or less, and then cooled.
  • an object to be treated containing a solvent mainly composed of low molecular weight alcohol and biomass waste is contained in a sealed container, and the inside of the sealed container is pressurized and heated to a supercritical state of low molecular weight alcohol.
  • a biomass-based waste treatment method to be treated is disclosed in Patent Document 4.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-186102
  • Patent Document 2 JP-A-2002-59118
  • Patent Document 3 JP 2003-212888
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-170601
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-296906
  • the present invention relates to a method for decomposing cellulose and / or hemicellulose in cellulosic biomass into monosaccharides and oligosaccharides (hereinafter referred to as saccharides) with high-temperature and high-pressure water in a subcritical state.
  • An object of the present invention is to provide a method and apparatus excellent in thermal efficiency and saccharide yield.
  • the present inventor When decomposing cellulose or hemicellulose into saccharides using subcritical high-temperature and high-pressure water, the present inventor filled a slurry in a pressure vessel in a high-temperature and high-pressure state with a slurry of cellulosic biomass. By flash-evaporating into a heated pressure vessel, a large amount of slurry is rapidly cooled to below the cellulose decomposition temperature, preventing excessive decomposition of saccharides to organic acids, etc., and saving energy by recovering thermal energy As a result, the present invention has been completed.
  • the present invention provides:
  • a saccharification / decomposition method for cellulosic biomass using a plurality of pressure vessels wherein a filling step, a temperature raising step, a decomposition step, a temperature lowering step and a discharging step are sequentially performed in each pressure vessel,
  • the filling step is a step of filling a pressure vessel with a slurry obtained by pulverizing cellulosic biomass and mixing with water (hereinafter referred to as “slurry one”).
  • the temperature raising step is a step of raising the temperature by sealing the pressure vessel,
  • the decomposition step is a step of decomposing cellulose and / or hemicellulose in cellulosic biomass into saccharides by oxidizing power of high-temperature high-pressure water,
  • the discharge process is a process of taking out the slurry in the pressure vessel to the outside of the pressure vessel.
  • V when one of the pressure vessels is filled and the filling step is executed, the other The discharge process is performed in any of the pressure vessels, and heat is exchanged between the slurry filled in the pressure vessel during the filling process and the slurry discharged from the pressure vessel during the discharge process.
  • the present invention relates to a saccharification / decomposition method for cellulosic biomass, characterized in that heat is recovered by supplying discharged flash vapor to a pressure vessel during a temperature raising process (Claim 1).
  • the present invention also provides:
  • a saccharification / decomposition apparatus for cellulosic biomass comprising a plurality of pressure vessels, a filling step of filling a pressure vessel with a slurry obtained by crushing cellulosic biomass and mixing with water,
  • the discharge process for taking out the slurry in the pressure vessel is sequentially executed in each pressure vessel, and among the plurality of pressure vessels, V, any of the pressure vessels is filled and the filling step is executed.
  • the discharge process is executed in any pressure vessel, and the filling process is executed Heat is exchanged between the slurry filled in the pressure vessel inside and the slurry discharged from the pressure vessel during the discharge process,
  • the present invention relates to a saccharification / decomposition device for cellulosic biomass, characterized in that heat is recovered by supplying the discharged flash vapor to the pressure vessel during the temperature rise process execution (Claim 23).
  • the pressure vessel force discharge (drainage) slurry in the discharge step and the slurry charged in another pressure vessel in the filling step are heated. Because it is exchanged, it is possible to further save the energy required to heat the slurry.
  • the present invention provides:
  • a saccharification / decomposition method for cellulosic biomass using a plurality of pressure vessels wherein a filling step, a temperature raising step, a decomposition step, a temperature lowering step and a discharging step are sequentially performed in each pressure vessel,
  • the filling step is a step of filling the water-permeable container and water in a pressure vessel after filling the cellulosic biomass into the water-permeable vessel.
  • the temperature raising step is a step of raising the temperature by sealing the pressure vessel,
  • the decomposition step is a step of decomposing cellulose and / or hemicellulose in cellulosic biomass into saccharides by oxidizing power of high-temperature high-pressure water,
  • the temperature lowering process is a process of lowering the temperature by flash evaporation of the high-temperature high-pressure water in the pressure vessel.
  • the discharge process is a process of removing the residue of cellulosic biomass in the water-permeable container
  • V if any of the pressure vessels is filled and the filling process is executed, the discharging process is being executed in any of the other pressure vessels and the filling process is being executed. Heat exchange between the water filled in the pressure vessel and the high-temperature water discharged from the pressure vessel during the discharge process,
  • the present invention relates to a saccharification / decomposition method for cellulosic biomass, characterized in that heat is recovered by supplying the discharged flash vapor to a pressure vessel during a temperature raising process (Claim 2).
  • a saccharification / decomposition apparatus for cellulosic biomass comprising a plurality of pressure vessels, a water-permeable vessel filled with cellulosic biomass and a filling step of sealing water in the pressure vessel;
  • a temperature lowering process for lowering the temperature by flash-evaporating the high-temperature high-pressure water in the pressure vessel and a discharge process for taking out residues in the cellulosic biomass in the pressure vessel are sequentially executed in each pressure vessel.
  • V if any of the pressure vessels is filled and the filling process is executed, the discharge process is executed in any of the other pressure vessels, and the filling process is executed.
  • the present invention relates to a saccharification / decomposition device for cellulosic biomass, characterized in that heat is recovered by supplying the discharged flash vapor to the pressure vessel during the temperature rise process execution (claim 24).
  • cellulose or hemicellulose When cellulose or hemicellulose is decomposed into saccharides using subcritical high-temperature and high-pressure water, the cellulose is placed in a water-permeable container that has openings or gaps and water can move inside and outside the container. Filled with water-based biomass and sealed the water-permeable container and water in a pressure container (pressure-sealed
  • the number of pressure vessels to be used is preferably a multiple of 5 (claims 3 and 25). This is because the two processes of heat recovery are performed in order to smoothly perform a series of processing steps.
  • the number of pressure vessels is preferably a multiple of (4 + n) (claims 4 and 26). If the decomposition process is n times longer than other processes, the number of pressure vessels that perform the decomposition process is n times that of the pressure vessels that perform the other processes. The process can be done smoothly.
  • hemicellulose can be decomposed into saccharides (mainly C5 monosaccharides) (claims 5 and 6).
  • C5 monosaccharides and the like will be excessively decomposed into organic acids etc. when treated at high temperatures, so it is preferable to perform the degradation treatment under relatively mild conditions! /.
  • the slurry generated in the discharging step is subjected to solid-liquid separation, and the solid content after the hemicellulose is decomposed and eluted to the solvent side is separated to form a new raw material slurry, which is again supplied to the filling step.
  • the decomposition process temperature is 240 ° C or higher and 280 ° C or lower, Can be broken down into saccharides (mainly C6 monosaccharides) (claim 7).
  • the water-permeable container after the discharging step is subjected again to the filling step, and the temperature of the decomposition step is set to 240 ° C or higher and 280 ° C or lower to decompose cellulose into saccharides. It is possible to do S (claim 8).
  • cellulose can be separated as a solid by decomposing hemicellulose in biomass into saccharides in a temperature range of 140 ° C or higher and 180 ° C or lower, followed by solid-liquid separation.
  • Cellulose can be decomposed into saccharides by subjecting this cellulose to a filling step as a slurry and performing the decomposition step in a temperature range of 240 ° C or higher and 280 ° C or lower. Effective for biomass with similar cellulose and hemicellulose content.
  • cellulose can be decomposed into saccharides (mainly C 6 monosaccharide) (claim 9).
  • saccharides mainly C 6 monosaccharide
  • the filling step it is preferable to add 2 mol% or more and 10 mol% or less of ethanol to the raw material slurry or water sealed in the pressure vessel (claims 10 and 11).
  • ethanol By adding a small amount of ethanol to the raw material slurry, the rate of decomposition of cell mouth sucrose and / or hemicellulose into saccharides by subcritical water is slowed.
  • the yield can be increased by adjusting the decomposition time of cellulose and / or hemicellulose in the decomposition step and making it easy to prevent excessive decomposition to an organic acid or the like.
  • a method for saccharifying and decomposing cellulosic biomass using a plurality of pressure vessels wherein a discharge filling step, a temperature raising step, a decomposing step, and a temperature lowering step are sequentially performed in each pressure vessel,
  • the discharge filling process is a process in which the slurry in the pressure vessel is taken out after the temperature lowering step is performed, and the same pressure vessel is filled with a slurry obtained by pulverizing cellulosic biomass and mixed with water.
  • the temperature raising step is performed by sealing the pressure vessel. The process of raising the temperature,
  • the decomposition step is a step of decomposing cellulose and / or hemicellulose in cellulosic biomass into saccharides by oxidizing power of high-temperature high-pressure water, This is the process of lowering the temperature by flash evaporation of the high-temperature and high-pressure slurry in the pressure vessel.
  • the present invention relates to a saccharification / decomposition method for cellulosic biomass, characterized in that heat is recovered by supplying the discharged flash vapor to a pressure vessel during a temperature raising process (Claim 12).
  • the present invention provides:
  • a saccharification / decomposition system for cellulosic biomass with multiple pressure vessels which takes out the high-temperature slurry after the temperature lowering step from the pressure vessel, and discharges the same pressure vessel with the slurry obtained by pulverizing cellulose-based biomass and mixing it with water Filling process;
  • the present invention relates to a saccharification / decomposition device for cellulosic biomass, characterized in that heat is recovered by supplying the discharged flash steam to the pressure vessel during the temperature rise process (Claim 27).
  • the present invention provides:
  • a method for saccharifying and decomposing cellulosic biomass using a plurality of pressure vessels wherein a discharge filling step, a temperature raising step, a decomposing step, and a temperature lowering step are sequentially performed in each pressure vessel,
  • the discharge and filling process is a process in which the residue of cellulosic biomass in the pressure vessel is taken out after the temperature lowering step, and a water-permeable container filled with cellulosic biomass and water are sealed in the same pressure vessel.
  • the temperature raising step is a step of raising the temperature by sealing the pressure vessel,
  • the decomposition step is a step of decomposing cellulose and / or hemicellulose in cellulosic biomass into saccharides by oxidizing power of high-temperature high-pressure water,
  • the temperature lowering process is a process of lowering the temperature by flash evaporation of the high-temperature high-pressure water in the pressure vessel.
  • the present invention relates to a saccharification / decomposition method for cellulosic biomass, characterized in that heat is recovered by supplying discharged flash vapor to a pressure vessel during a temperature raising process (Claim 13).
  • the present invention provides:
  • a saccharification / decomposition device for cellulosic biomass comprising a plurality of pressure vessels, wherein a residue of cellulosic biomass after the temperature lowering step is taken out of the pressure vessel, and a water-permeable vessel filled with cellulosic biomass in the same pressure vessel and water A discharge filling process to enclose,
  • the temperature lowering process of lowering the temperature is performed sequentially on each pressure vessel
  • the present invention relates to a saccharification / decomposition device for cellulosic biomass, characterized in that heat is recovered by supplying the discharged flash vapor to the pressure vessel during the temperature rise process (Claim 28).
  • the saccharification component of the present invention which is the power of all processes, In the solution method and the saccharification / decomposition equipment, it is possible to exchange heat between the high temperature slurry to be discharged and the slurry (raw material slurry) to be filled in the same pressure vessel in the discharge and filling step.
  • the number of pressure vessels to be used is preferably a multiple of four (claims 14, 29). This is to make a series of processing steps smooth while performing two heat recoveries.
  • the required time for the decomposition step is n times the required time for the other three steps (n is a natural number)
  • hemicellulose can be decomposed into saccharides (mainly C5 monosaccharides) if the temperature in the decomposition step is 140 ° C or higher and 180 ° C or lower. (Claims 16 and 17).
  • the slurry generated in the discharge and filling step is subjected to solid-liquid separation, and the solid content after the hemicellulose is decomposed and eluted to the solvent side is separated to obtain a new raw material slurry. If the temperature in the decomposition step is 240 ° C or higher and 280 ° C or lower, cellulose can be decomposed into saccharides (mainly C6 monosaccharides). 18).
  • the water-permeable container after the discharging step is subjected again to the filling step, and the temperature of the decomposition step is set to 240 ° C or higher and 280 ° C or lower to decompose cellulose into saccharides. (Claim 19).
  • the temperature in the decomposition step is 240 ° C or higher and 280 ° C or lower, cellulose is converted into saccharides.
  • cellulose and / or hemicellulose in cellulose-based biomass can be decomposed into saccharides at low cost and in high yield using a plurality of pressure vessels.
  • the waste heat of the pressure vessel in another area can be easily recovered to preheat to a temperature suitable for the saccharification / decomposition reaction, thereby saving about 60% of the required heat amount and economical Very good.
  • FIG. 1 is a diagram showing an operation procedure of the saccharification / decomposition apparatus according to Embodiment 1.
  • FIG. 2 is a diagram showing a time schedule when the saccharification / decomposition device of Embodiment 1 is operated as a continuous batch system.
  • FIG. 3 is a diagram showing a time schedule when the saccharification / decomposition device of Embodiment 2 is operated as a continuous batch system.
  • FIG. 4 is a graph showing the relationship between the reaction time and saccharide yield (%) in biomass saccharification / decomposition reaction.
  • FIG. 5 is a diagram showing a time schedule when the saccharification / decomposition apparatus of Embodiment 3 is operated as a continuous batch system.
  • FIG. 6 is a diagram showing an example in which dry bagasse is compactly filled in a water-permeable container in the fourth embodiment.
  • cellulosic biomass for example, vegetable biomass such as bagasse, sugar beet, straw, etc.
  • cellulosic biomass for example, vegetable biomass such as bagasse, sugar beet, straw, etc.
  • slurry raw material slurry
  • filling step When the saccharification / decomposition unit is started, there is no heat energy discharged from other pressure vessel power, so the raw slurry is not preheated by heat exchange.
  • the pressure vessels No. 1 to No. 5 repeat the filling process ⁇ heating process ⁇ decomposition process ⁇ cooling process ⁇ discharge process in sequence, and the four pressure containers ⁇ ⁇ ⁇ 2 to ⁇ ⁇ 5 Each is operated with a time difference by one process. That is, in FIGS. 1 (a) to 1 (e), when No. 1 is in the filling process, No. 2 is the discharge process, No. 3 is the temperature lowering process, No. 4 is the decomposition process, and N 0 . 5 is the heating process. In FIG. 1 (a) to FIG.
  • heating filling is a filling process
  • preheating temperature rise is a temperature raising process
  • heating temperature rise is a decomposition process
  • flash Indicates the temperature lowering process
  • drainage indicates the discharge process.
  • the saccharification / decomposition unit When the saccharification / decomposition unit has already been operated and the second and subsequent filling steps are performed with the No. 1 pressure vessel, the slurry discharged (drained) from the pressure vessel ⁇ ⁇ 2 in the discharge step The material slurry is preheated by exchanging heat (including sugars) and the material slurry filled in the No. 1 pressure vessel.
  • the hot gas in the upper part of the No. 4 pressure vessel is supplied to the No. 1 pressure vessel as flash vapor and heat is recovered (as described above, the flash steam Is preferably supplied to the aqueous solution in the pressure vessel).
  • the temperature of the slurry in the No. 1 pressure vessel further increases, saving energy for making the slurry sub-critical.
  • the inside of the No. 1 pressure vessel is heated using a heat source such as high-temperature steam to bring the slurry into a subcritical state (decomposition step).
  • a heat source such as high-temperature steam
  • the decomposition reaction rate can be reduced, so that the decomposition reaction of cellulose or hemicellulose can be easily controlled.
  • the decomposition step referred to in the present application includes the time for heating the slurry whose temperature has been raised in the temperature raising step to the subcritical state, in addition to the time in which the slurry is in the subcritical state. Yes.
  • the No. l pressure vessel after an appropriate decomposition time was connected to the No. 3 pressure vessel in the preheating stage.
  • the high-temperature slurry at the bottom of the pressure vessel is fed into the pressure vessel of 3 ⁇ ⁇ 3 as flash vapor.
  • the inside of the No. l pressure vessel It can be rapidly cooled to below the decomposition temperature to stop the excessive decomposition reaction of sugars to organic acids.
  • the temperature of the slurry in the ⁇ ⁇ ⁇ 3 pressure vessel rises.
  • the temperature is not increased up to a temperature range (240 ° C to 280 ° C) where the cellulose is saccharified and decomposed. Adjust to a temperature range of 140 ° C to 180 ° C where only the saccharose decomposes.
  • the temperature is raised to a temperature range (240 ° C to 280 ° C) at which cellulose saccharifies and decomposes.
  • This slurry is subjected to ethanol fermentation after removing the remaining solid content by solid-liquid separation, and bioethanol is produced by the fermentation action of yeast and the like. Since such ethanol fermentation technology is a well-known technology, the power to omit the description here.
  • the saccharide obtained by the present invention can be converted to bioethanol by a known fermentation treatment other than yeast fermentation. .
  • the decomposition apparatus using the five pressure vessels shown in FIGS. 1 (a) to 1 (e) is connected to a continuous batch system.
  • the time schedule when operating as a stem will be described with reference to FIG. In Fig. 2, the time required for each process is 5 minutes.
  • the filling process is performed with 5 pressure vessels.
  • the pressure vessels of ⁇ ⁇ 1 to ⁇ ⁇ 5 perform this cycle continuously with a time difference of 5 minutes.
  • the flushing vapor of the No. 1 pressure vessel in the temperature lowering process is supplied to the pressure vessel of No. 2 in the temperature raising process, and heat recovery can be achieved.
  • ⁇ .2, ⁇ .3, ⁇ .4, and ⁇ ⁇ 5 pressure vessel flushing steam in the temperature lowering process are ⁇ ⁇ ⁇ 3, ⁇ ⁇ 4, ⁇ ⁇ 5 and ⁇ ⁇ 1 in the temperature raising process.
  • Each of the pressure vessels is supplied to recover heat.
  • the slurry discharged (drained) from the No. 1 pressure vessel in the discharge process is heat-exchanged with the slurry charged in the pressure vessel 5 in the filling step.
  • the high temperature slurry of the pressure vessels ⁇ ⁇ 2, ⁇ ⁇ 3, ⁇ ⁇ 4 and ⁇ ⁇ 5 in the discharge process is ⁇ ⁇ 1, ⁇ ⁇ 2, ⁇ ⁇ 3 and ⁇ ⁇ 4 in the filling process. Heat exchange is performed with the slurry filled in the pressure vessel.
  • the first filling step C is performed on the No. l pressure vessel, and a time difference of 5 minutes is taken.
  • the first filling step C is performed with the pressure vessels No.2 to No.4. When starting operation, it is shown in Fig. 1.
  • each pressure vessel Since the same process as the filling process of the saccharification / decomposition device is performed, the discharge filling process performed first is indicated as the first filling process C in FIG. During steady operation, each pressure vessel
  • the flushing vapor of the No. 1 pressure vessel in the temperature lowering process is supplied to the pressure vessel No. 2 in the temperature raising process, and heat recovery can be achieved.
  • the flashing steam from the ⁇ ⁇ .2, ⁇ .3, and ⁇ .4 pressure vessels in the temperature lowering process is supplied to the pressure vessels in ⁇ ⁇ ⁇ 3, ⁇ ⁇ 4, and ⁇ ⁇ 5 in the temperature raising process, respectively. Recovery is planned.
  • the slurry is taken out from the No. 1 pressure vessel in the discharge and filling step, and then the same pressure vessel is filled with the raw slurry. That is, in the No. 1 pressure vessel after completion of the temperature lowering process, the discharging process and the filling process are performed in parallel as the discharging and filling process. At this time, if the discharged slurry has a sufficiently high temperature, heat exchange may be performed with the raw material slurry to be filled.
  • the No. 1 pressure vessel that has performed the last temperature-falling step is subjected to the final discharge step C, with a time difference of 5 minutes, and the pressure vessels of ⁇ ⁇ 2 to ⁇ ⁇ 4 Last discharge
  • step C At the end of operation, the same process as the saccharification / decomposition unit discharge process shown in Fig. 1 is performed.
  • continuous saccharification / decomposition can be performed in a shorter time with a pressure vessel smaller than the saccharification / decomposition apparatus shown in Figs.
  • Fig. 4 shows the experimental results when pure water and a 5 wt% (2 mol%) aqueous ethanol solution were passed through the cellulose at 280 ° C.
  • Figure 4 shows the relationship between reaction time and saccharide yield (%).
  • the highest yield of sugars was hardly affected by the addition of ethanol.
  • the production rate and decomposition rate of sugars are clearly lower when ethanol is added.
  • the time to reach the maximum yield is increased by about 3 times (0.7 minutes ⁇ 2.0 minutes) by adding ethanol. did.
  • the filling process is performed from the No. 1 pressure vessel, and No. 2 to No.
  • the filling process is performed with 8 pressure vessels.
  • the No. 1 to No. 8 pressure vessels continuously perform this cycle with a time difference of 5 minutes.
  • the decomposition process is four times longer than the other processes. For this reason, if five pressure vessels, the same as the number of processes, are used, the heat energy of flash steam and high-temperature slurry cannot be recovered unless the process other than the decomposition process takes 20 minutes. It becomes long. For this reason, the saccharification / decomposition device of this embodiment uses eight pressure vessels, and even if the decomposition process is set to 20 minutes, the other processes remain at 5 minutes so that effective heat recovery can be performed.
  • the flushing vapor is supplied to the pressure vessel of ⁇ ⁇ 6 in the temperature increasing process.
  • the pressure vessels of ⁇ ⁇ 2, ⁇ ⁇ 3, ⁇ ⁇ 4, ⁇ .5, ⁇ ⁇ 6, ⁇ ⁇ 7 and ⁇ ⁇ 8 in the temperature lowering process are in the temperature rising process ⁇ ⁇ 7, ⁇ ⁇ 8, ⁇ ⁇ 1, ⁇ ⁇ 2, ⁇ .3, ⁇ ⁇ 4 and ⁇ ⁇ 5 are respectively supplied to the pressure vessels for heat recovery.
  • the high-temperature slurry discharged (drained) from the No. 1 pressure vessel in the discharge process is heat-exchanged with the slurry charged in the pressure vessel 8 in the filling step.
  • the high temperature slurry of the pressure vessels ⁇ ⁇ ⁇ 2, ⁇ ⁇ 3, ⁇ ⁇ 4, ⁇ ⁇ 5, ⁇ ⁇ 6, ⁇ ⁇ 7 and ⁇ ⁇ 8 in the discharge process is in the filling process ⁇ ⁇ 1 , ⁇ ⁇ 2, ⁇ ⁇ 3, ⁇ ⁇ 4, ⁇ ⁇ 5, ⁇ ⁇ 6, and ⁇ ⁇ 7 are each heat exchanged with the slurry.
  • Embodiment 3 if a series of batch systems has two systems with eight pressure vessels, a total of 16 pressure vessels may be used. The same operation can be carried out even with a saccharification / decomposition apparatus with 4 processes.
  • the cellulosic biomass does not necessarily have to be slurried, and the cellulosic biomass such as bagasse has an opening or a gap, and water can move in and out of the container.
  • Cellulosic biomass can be saccharified and decomposed by filling the water-permeable container with such cellulose-based biomass and enclosing the water-permeable container and water in a pressure vessel (pressure-sealed).
  • the material of the water-permeable container is not limited as long as it can withstand the high temperature in the pressure container.
  • the shape is not particularly limited and can be appropriately selected from a rectangular parallelepiped, a cylinder, and the like, but the same shape (cylinder) as the pressure vessel shape is preferable in terms of increasing the force-volume efficiency.
  • a part or all of the water-permeable container may be provided with a slit or a circular opening, which may be a mesh, or water which is open even when the upper surface is opened. There is no particular limitation as long as it can move in and out of the container.
  • Fig. 6 shows an example of filling a water-permeable container with dry bagasse as cellulosic biomass.
  • bagasse is filled into a cylindrical water-permeable container (the upper surface is open) having a large number of openings on the bottom and side surfaces.
  • the dried bagasse may be as long as necessary to be pulverized, or may be cut into an appropriate length.
  • dry bagasse that has been compressed in advance may be filled into the aqueous container.
  • Dry bagasse can be compressed to a bulk specific gravity of 50 kg / m 3 or more by compressing force with a bulk specific gravity before compression of ⁇ 10 kg / m 3 .
  • the solids concentration in the pressure vessel will be about several percent, the same solid content concentration as the slurry, and dry bagasse will be slurried. The same volumetric efficiency as that of can be obtained.
  • the dry bagasse when the dry bagasse is compressed in the water-permeable container, the charging of the dry bagasse into the water-permeable container and the press treatment are repeated, so that there is much more in the water-permeable container.
  • the dry bagasse is preferably compacted, but if a sufficient amount of dry bagasse can be compacted, it may be pressed once.
  • the cellulosic biomass such as dry bagasse is preferably adjusted to a bulk specific gravity of 50 kg / m 3 or more and 300 kg / m 3 or less before being sealed in the pressure vessel, and 100 kg / m 3 or more and 200 kg / m. It is more preferable to adjust to 3 or less! This is because the volumetric efficiency is lowered because the solid content concentration is lower than in the case of slurrying with a low strength and low specific gravity. On the other hand, if the force and specific gravity are increased too much, water will not easily penetrate into the cellulosic biomass, and the decomposition reaction will not easily occur.
  • the remaining solid is heated at 240 ° C or higher and 280 ° C or lower to decompose cellulose into saccharides.
  • the water-permeable container is taken out from the pressure vessel, and the solid residue (the solid content remaining after the cellulose and / or hemicellulose contained in the cellulosic biomass is decomposed into saccharides, Remove lignin and ash) and discard.
  • this residue can be used as a fuel for heating the inside of the pressure vessel, it is taken out from the pressure vessel in the present embodiment in which the solid content concentration in the pressure vessel can be increased. It is possible to suppress the use of fuel such as petroleum, which has a large amount of residue.
  • the temperature lowering step high-temperature water in the pressure vessel is flash-evaporated, and heat exchange is performed with water filled in the pressure vessel during the filling step. Other than that, it is the same as the case where the cellulosic biomass slurried in the filling step or the discharge filling step is filled.
  • the present invention is useful in fields such as biotechnology and energy as a method and apparatus for decomposing cellulosic biomass and producing saccharides.

Description

明 細 書
セルロース系バイオマスの糖化分解方法及び糖化分解装置
技術分野
[0001] 本発明は、バイオマス、特にセルロース系バイオマスを原料として効率よく糖類を製 造するための分解方法及び装置に関する。
背景技術
[0002] バイオマスエネルギー利用の一環として、植物の主成分であるセルロース又はへミ セルロースを分解し、エタノール (バイオエタノール)を得ようとする試みがある。そこ では、得られたエタノールは、燃料用として主として自動車燃料に一部混入させたり、 ガソリンの代替燃料として利用されることが計画されている。
[0003] 植物の主な成分は、セルロース(炭素 6個から構成される C6単糖であるグルコース の重合物)、へミセルロース(炭素 5個から構成される C5単糖と C6単糖の重合物)、リ グニン、デンプン等であるが、エタノールは C5単糖、 C6単糖、それらの複合体である オリゴ糖等の糖類を原料として、酵母菌等の醱酵作用によって生成される。
[0004] セルロースやへミセルロース等のセルロース系バイオマスを糖類に分解するには、 1)硫酸など強酸の酸化力により加水分解する方法、 2)酵素により分解する方法、 3) 超臨界水又は亜臨界水等の酸化力を利用する方法、の 3種類が工業的に利用され ようとしている。し力、し、 1)の酸分解法は、添加した酸が酵母菌等の醱酵に対して阻 害物質となることから、セルロースやへミセルロースを糖類に分解した後、糖類をエタ ノール発酵させる前に添加した酸の中和処理が必須であり、その処理費用で経済的 に実用化困難な面がある。
[0005] また、 2)の酵素分解法は、常温定圧処理が可能ではあるが、有効な酵素が見出さ れておらず、発見されたとしても酵素の生産コストが高くなることが予想されており、経 済性の面で未だ工業規模で実現の目処が立って!/、な!/、。
[0006] ここで、 3)の超臨界水又は亜臨界水によってセルロース等を加水分解して糖類と する方法として、セルロース粉末を 240〜340°Cの加圧熱水と接触させて加水分解す ることを特徴とする非水溶性多糖類の製造方法が、特許文献 1に開示されている。ま た、細片されたバイオマスを 140〜230°Cで飽和水蒸気圧以上に加圧した熱水で所 定時間加水分解してへミセルロースを分解抽出し、その後セルロースの分解温度以 上に加熱した加圧熱水で加水分解してセルロースを分解抽出する方法力 特許文 献 2に開示されている。また、平均重合度 1 00以上のセルロースを、温度 250°C以上 4 50°C以下、圧力 15MPa以上 450MPa以下の超臨界水又は亜臨界水と 0.01秒以上 5秒 以下接触反応させ、その後冷却して温度 250°C以上 350°C以下、圧力 15MPa以上 450 MPa以下の亜臨界水と 1秒以上 10分以下接触させて加水分解することを特徴とする グルコース及び/又は水溶性セロオリゴ糖の製造方法が、特許文献 3に開示されて いる。
[0007] 一方、低分子量アルコールを主成分とする溶媒と、バイオマス系廃棄物とを含有す る被処理物を密閉容器に収容し、密閉容器内を低分子量アルコールの超臨界状態 に加圧加熱処理するバイオマス系廃棄物処理方法が、特許文献 4に開示されている 。また、セルロース系バイオマス等を C1〜C8の脂肪族アルコールに 5〜20体積%の 水を加えた混合溶媒を用いて、アルコールの超臨界条件又は亜臨界条件にて処理 するバイオマスの分解 ·液化方法が、特許文献 5に開示されている。
特許文献 1 :特開 2000— 186102号公報
特許文献 2 :特開 2002— 59118号公報
特許文献 3 :特開 2003— 212888号公報
特許文献 4 :特開 2001— 170601号公報
特許文献 5:特開 2005— 296906号公報
発明の開示
発明が解決しょうとする課題
[0008] バイオマスの主な構成成分のセルロース及びへミセルロースを、高温高圧の超臨 界水又は亜臨界水で糖化分解する方法は、強酸を用いる加水分解法に比べ、酸の 中和処理が不要なため処理コストも安ぐ環境にも優しい処理方法である。しかし、超 臨界水又は亜臨界水を用いると、その強力な酸化力のため数秒〜数分でセルロー ス及びへミセルロースの分解が完了してしまうため、分解終了後直ちに冷却しなけれ ば、せっかく生成した糖類が有機酸等にまで過分解してしまう欠点がある。 [0009] 実験室レベルの小規模分解装置では、加熱容器内の超臨界水又は亜臨界水を急 冷し、過分解を防止することも可能と思われるカ、工業的規模の分解装置において は、短時間で大量の超臨界水又は亜臨界水を急冷することは非常に困難である。こ のため、高温高圧の超臨界水又は亜臨界水を用いるセルロース系バイオマスの分解 方法は、プラント規模においては糖類の収率が低ぐそのことが実用化を妨げる要因 の一つとなっている。
[0010] また、大量の超臨界水又は亜臨界水を使用するためには、スラリーの加熱に大きな エネルギーが必要であり、処理コストが上昇する要因ともなつている。アルコール等を 溶媒とするスラリーを超臨界又は亜臨界状態で行なうセルロース系バイオマスの分解 方法では、蒸気圧が非常に高くなるため、さらに大きなエネルギーが必要となり、使 用する装置の耐圧性も要求される。
[0011] 本発明は、亜臨界状態の高温高圧水によって、セルロース系バイオマス中のセル ロース及び/又はへミセルロースを、単糖類やオリゴ糖(以下、糖類と呼ぶ)まで分解 するための方法及び装置であって、熱効率と糖類の収率に優れた方法及び装置の 提供を目的とする。
課題を解決するための手段
[0012] 本発明者は、亜臨界状態の高温高圧水を用いてセルロース又はへミセルロースを 糖類に分解する際、高温高圧状態にある圧力容器内のスラリーを、セルロース系バイ ォマスのスラリーを充填した加熱途上の圧力容器内へフラッシュ蒸発させれば、大量 のスラリーをセルロース分解温度以下にまで急冷し、糖類が有機酸等にまで過分解 することを防止し、かつ、熱エネルギーの回収により省エネ化が図れることを見出し、 本発明を完成させるに至った。
[0013] 具体的に、本発明は、
複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において充填工程、昇温工程、分解工程、降温工程及び排出工程が 順次実行され、
充填工程が、セルロース系バイオマスを粉砕し水と混合したスラリー(以下、「スラリ 一」と呼称する)を圧力容器に充填する工程であり、 昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程力、圧力容器内の高温高圧のスラリーをフラッシュ蒸発させることにより、 降温する工程であり、
排出工程が、圧力容器内のスラリーを圧力容器外に取り出す工程であり、 複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填されるスラリーと排出工程実行中の圧力容器から排出されるス ラリーとの間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法 に関する (請求項 1)。
また、本発明は、
複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、 セルロース系バイオマスを粉砕し水と混合したスラリーを圧力容器に充填する充填 工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧のスラリーをフラッシュ蒸発させることにより、降温する降温 工程と、
圧力容器内のスラリーを取り出す排出工程とが各圧力容器において順次実行され 複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填されるスラリーと排出工程実行中の圧力容器から排出されるス ラリーとの間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置に関する (請求項 23)。
[0015] 本発明のセルロース系バイオマスの糖化分解方法及び糖化分解装置では、複数 の圧力容器内で 5つの工程を順次行う。そして、降温工程にある圧力容器と昇温ェ 程にある別の圧力容器とを接続することにより、降温工程にある圧力容器内のスラリ 一をフラッシュ蒸発により急冷することができる。同時に、高温のフラッシュ蒸気によつ て、昇温工程を行う圧力容器内のスラリーを加熱することができるため、スラリーの加 熱に要するエネルギーを節約することが可能である。
[0016] また、高圧容器の気相部分より減圧することで、スラリー中の溶解成分又は固形物 が移動することもなぐフラッシュ蒸気を導通させるためのノズルや配管の閉塞の危険 がない。さらに、特別な温度制御装置等も必要ない。なお、予熱される側(昇温工程 にある圧力容器)へのフラッシュ蒸気の供給は、スラリー液中に供給するようにすると 、さらに効果的である。
[0017] また、本発明のセルロース系バイオマスの糖化分解方法及び糖化分解装置では、 排出工程にある圧力容器力 排出(排水)スラリーと、充填工程にある別の圧力容器 に充填するスラリーとを熱交換するため、スラリーの加熱に要するエネルギーをさらに 節約することが可能である。
[0018] さらに、本発明は、
複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において充填工程、昇温工程、分解工程、降温工程及び排出工程が 順次実行され、
充填工程が、セルロース系バイオマスを通水性容器に充填した後、該通水性容器 及び水を圧力容器に封入する工程であり、 昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程が、圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する 工程であり、
排出工程が、通水性容器内のセルロース系バイオマスの残渣を取り出す工程であ り、
複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填される水と排出工程実行中の圧力容器から排出される高温水 との間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法 に関する (請求項 2)。
さらに、本発明は、
複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、 セルロース系バイオマスを充填した通水性容器及び水を圧力容器に封入する充填 工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する降温工程と、 圧力容器内のセルロース系バイオマス中の残渣を取り出す排出工程とが各圧力容 器において順次実行され、
複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填される水と排出工程実行中の圧力容器から排出される高温水 との間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置に関する (請求項 24)。
亜臨界状態の高温高圧水を用いてセルロース又はへミセルロースを糖類に分解す る際、開孔部又は隙間等を有し、水が容器の内外を移動しうるような通水性容器にセ ルロース系バイオマスを充填し、該通水性容器及び水を圧力容器に封入 (圧密封入
)するようにすれば、セルロース系バイオマスをスラリー化して高温高圧処理する場合 と比較して、微細なスラリー残留物による配管又は容器の汚染を防止しうる。
[0020] 前記 5工程がすべて同じ所要時間である場合には、使用する圧力容器の数が 5の 倍数であることが好ましい(請求項 3, 25)。 2つの熱回収を行いつつ、一連の処理工 程をスムースに fiうためである。
[0021] 前記分解工程以外の 4工程がすべて同じ所要時間であり、かつ、前記分解工程の 所要時間がそれ以外の 4工程の所要時間の n倍 (nは自然数)である場合には、使用 する圧力容器の数が(4 + n)の倍数台であることが好ましい(請求項 4, 26)。分解ェ 程が他の工程よりも n倍長い場合、分解工程を行う圧力容器の台数を、他工程をおこ なう圧力容器の n倍とすれば、 2つの熱回収を行いつつ、一連の処理工程をスムース に fiうことができる。
[0022] 前記分解工程の温度が 140°C以上 180°C以下であれば、へミセルロースを糖類(主 に C5単糖)に分解することができる(請求項 5, 6)。へミセルロース含量の多いバイオ マスの場合には、高温で処理すると C5単糖等が有機酸等にまで過分解してしまうた め、比較的温和な条件で分解処理を行うことが好まし!/、。
[0023] その後、前記排出工程で生じたスラリーを固液分離し、へミセルロースが分解され 溶媒側に溶出した後の固体分を分離して、新たに原料スラリーとし、前記充填工程に 再び供すると共に、前記分解工程の温度を 240°C以上 280°C以下とすれば、セルロー スを糖類(主に C6単糖)に分解することができる(請求項 7)。
[0024] 同様に、前記排出工程後の通水性容器を、前記充填工程に再び供すると共に、前 記分解工程の温度を 240°C以上 280°C以下とすることにより、セルロースを糖類に分 解すること力 Sできる(請求項 8)。
[0025] まず、バイオマス中のへミセルロースを 140°C以上 180°C以下の温度範囲で糖類に 分解した後、固液分離すればセルロースを固体として分離することができる。このセ ルロースをスラリーとして充填工程に供し、分解工程を 240°C以上 280°C以下の温度 範囲で行えば、セルロースを糖類に分解することができる。セルロース及びへミセル ロースの含量が同程度のバイオマスに効果的である。
[0026] 前記分解工程の温度が 240°C以上 280°C以下であれば、セルロースを糖類(主に C 6単糖)に分解することができる(請求項 9)。セルロースの含量が多!/、バイオマスの場 合には、へミセルロースの過分解を考慮する必要性が低いため、比較的高温でセル ロースのみを糖類に分解する方が効果的である。
[0027] 前記充填工程において、原料スラリー又は圧力容器に封入する水にエタノールを 2 mol%以上 10mol%以下添加することが好ましい(請求項 10, 11)。少量のエタノール を原料スラリ一に添加することにより、亜臨界水によるセル口ース及び/又はへミセル ロースの糖類への分解反応速度が遅くなる。これにより、分解工程におけるセルロー ス及び/又はへミセルロースの分解時間を調整し、有機酸等に過分解することを防 止しやすくなることで、収率を上げることができる。
[0028] さらに本発明は、
複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において排出充填工程、昇温工程、分解工程及び降温工程が順次実 行され、
排出充填工程が、降温工程実施後に圧力容器内のスラリーを取り出し、同じ圧力 容器にセルロース系バイオマスを粉砕し水と混合したスラリーを充填する工程であり、 昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、 降温工程力、圧力容器内の高温高圧のスラリーをフラッシュ蒸発させることにより、 降温する工程であり、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法 に関する (請求項 12)。
[0029] さらに本発明は、
複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、 降温工程実施後の高温スラリーを圧力容器から取り出し、同じ圧力容器にセルロー ス系バイオマスを粉砕し水と混合したスラリーを充填する排出充填工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧のスラリーをフラッシュ蒸発させることにより、降温する降温 工程とが各圧力容器にお!/、て順次実行され、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置に関する (請求項 27)。
[0030] さらにまた、本発明は、
複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において排出充填工程、昇温工程、分解工程及び降温工程が順次実 行され、
排出充填工程が、降温工程実施後に圧力容器内のセルロース系バイオマスの残 渣を取り出し、同じ圧力容器にセルロース系バイオマスを充填した通水性容器及び 水を封入する工程であり、 昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程が、圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する 工程であり、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法 に関する (請求項 13)。
さらにまた、本発明は、
複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、 降温工程実施後のセルロース系バイオマスの残渣を圧力容器から取り出し、同じ圧 力容器にセルロース系バイオマスを充填した通水性容器及び水を封入する排出充 填工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する降温工程と が各圧力容器にお!/、て順次実行され、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置に関する (請求項 28)。
このように、排出工程と充填工程とを 1台の圧力容器内で行うことにより、全 4工程と なって、構成する圧力容器も 4 (あるいは 4の倍数)基で済み、処理時間も短縮される ので、生産能力が向上する利点がある。なお、全工程数力 である本発明の糖化分 解方法及び糖化分解装置では、排出充填工程において、排出する高温スラリーと、 同じ圧力容器に充填するスラリー(原料スラリー)との間で熱交換することも可能であ
[0032] 同様に、全工程数が 4である本発明の糖化分解方法及び糖化分解装置では、排 出充填工程において、排出する高温水と、同じ圧力容器に充填する水との間で熱交 換することも可能である。
[0033] 前記 4工程がすべて同じ所要時間である場合には、使用する圧力容器の数が 4の 倍数であることが好ましい(請求項 14, 29)。 2つの熱回収を行いつつ、一連の処理 工程をスムースにネ亍うためである。
[0034] 前記分解工程以外の 3工程がすべて同じ所要時間で、かつ、前記分解工程の所 要時間がそれ以外の 3工程の所要時間の n倍 (nは自然数)である場合には、使用す る圧力容器の数が(3 + n)の倍数台であることが好ましい(請求項 15, 30)。分解ェ 程が他の工程よりも n倍長い場合、分解工程を行う圧力容器の台数を、他工程をおこ なう圧力容器の n倍とすれば、 2つの熱回収を行いつつ、一連の処理工程をスムース に fiうことができる。
[0035] 全 4工程の糖化分解方法においても、前記分解工程の温度が 140°C以上 180°C以 下であれば、へミセルロースを糖類(主に C5単糖)に分解することができる(請求項 1 6, 17)。
[0036] また、前記排出充填工程で生じたスラリーを固液分離し、へミセルロースが分解さ れ溶媒側に溶出した後の固体分を分離して、新たに原料スラリーとし、前記排出充填 工程として再び同様の圧力容器へと供すると共に、前記分解工程の温度を 240°C以 上 280°C以下とすれば、セルロースを糖類(主に C6単糖)に分解することができる(請 求項 18)。
[0037] 同様に、前記排出工程後の通水性容器を、前記充填工程に再び供すると共に、前 記分解工程の温度を 240°C以上 280°C以下とすることにより、セルロースを糖類に分 解することができる(請求項 19)。
[0038] さらに、前記分解工程の温度が 2 40°C以上 280°C以下であれば、セルロースを糖類
(主に C6単糖)に分解することができる(請求項 20)。 [0039] また、前記排出充填工程において、原料スラリー又は圧力容器に封入する水にェ タノールを 2mol%以上 10mol%以下添加することが好ましい(請求項 21 , 22)。これら 温度条件及びエタノール添加が好まし!/、理由につ!/、ては、全 5工程の糖化分解方法 の充填工程について説明した通りである。
[0040] ここで、原料スラリーに添加されたエタノールは、降温工程においてフラッシュ蒸気 に大部分移行し、昇温工程にある別の圧力容器内のスラリーへと回収される。排出 工程で取り出された糖類を含む水溶液は、エタノール発酵に供されてバイオエタノー ルへと変換されるが、エタノール発酵の当初にエタノールが残存していると、酵母に よる発酵が阻害される。請求項 10, 11 , 21及び 22に係る発明では、分解工程にお けるエタノール濃度を維持しつつ、排出工程後のセルロース及び/又はへミセルロ ースを含むスラリ一にはエタノールが減少するため、エタノール発酵が阻害されにく いという特徴がある。
[0041] なお、特許文献 4又は特許文献 5に開示されているように、アルコール等を主成分 とする媒体を亜臨界状態とすると、例えば 280°Cで圧力容器内が 12MPa以上の高圧 となる。しかし、請求項 7に係る発明では、同じ 280°Cで 7.5〜9.7MPa程度の圧力にし 力、ならず、加圧エネルギーを節約できると共に圧力容器の耐圧度を軽減でき経済的 である。
本発明の上記目的、他の目的、特徴及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0042] 本発明によれば、複数台の圧力容器を用いて、低コスト、かつ、高い収率でセル口 ース系バイオマス中のセルロース及び/又はへミセルロースを糖類に分解することが できる。また、本発明によれば、糖化分解反応に適した温度まで予熱するのに、他ェ 程にある圧力容器の廃熱を容易に回収できるため、必要熱量の約 60%を節約でき、 経済的に非常に優れている。
[0043] また、セルロース系バイオマスを通水性容器に充填し、水と共に圧力容器に封入す れば、配管等の汚れも防止でき、作業効率をさらに向上させることが可能である。 図面の簡単な説明 [0044] [図 1]図 1は、実施の形態 1の糖化分解装置の操作手順を示す図である。
[図 2]図 2は、実施の形態 1の糖化分解装置を、連続バッチシステムとして運転する場 合のタイムスケジュールを表す図である。
[図 3]図 3は、実施の形態 2の糖化分解装置を、連続バッチシステムとして運転する場 合のタイムスケジュールを表す図である。
[図 4]図 4は、バイオマスの糖化分解反応における反応時間と糖類の収率(%)との関 係を表すグラフである。
[図 5]図 5は、実施の形態 3の糖化分解装置を、連続バッチシステムとして運転する場 合のタイムスケジュールを表す図である。
[図 6]図 6は、実施の形態 4において、通水性容器に乾燥バガスを圧密充填する一例 を表す図である。
発明を実施するための最良の形態
[0045] 以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、 本発明は、以下に限定されない。
[0046] (実施の形態 1)
本発明の実施の形態 1として、全工程数が 5であり、 5台の圧力容器を用いる糖化 分解装置の操作手順を、図 1を参照しながら説明する。
[0047] まず、セルロース系バイオマス(例えば、バガスゃ甜菜かす、わら等の草木系バイオ マス)を、数 mm以下に粉砕し、水又は希エタノール水溶液(2〜10mol%)を用いて固 形物濃度 30%程度のスラリーとする。そして、図 1(a)に示すように、そのスラリー(原料 スラリー)を No.1の圧力容器内に充填する(充填工程)。糖化分解装置を始動させた ときには、他の圧力容器力 排出される熱エネルギーがないので、原料スラリーは熱 交換によって予熱されなレ、。
[0048] No. l〜No.5の圧力容器は、充填工程→昇温工程→分解工程→降温工程→排出 工程を順次繰り返しており、 Νο·2〜Νο·5の 4台の圧力容器は、それぞれ 1工程ずつ 時間差をおいて運転している。すなわち、図 1(a)〜図 1(e)においては、 No.1が充填ェ 程のときには、 No.2が排出工程、 No.3が降温工程、 No.4が分解工程、 N 0.5が昇温 工程となっている。 [0049] なお、図 1(a)〜図 1(e)においては、「予熱充填」は充填工程、「予熱昇温」は昇温ェ 程、「加熱昇温」は分解工程、「フラッシュ」は降温工程、「排水」は排出工程を、それ ぞれ表している。
[0050] 既に糖化分解装置を作動させており、 No. lの圧力容器で 2回目以降の充填工程を 行う場合には、排出工程にある Νο·2の圧力容器から排出(排水)されるスラリー(糖類 を含む)と、 No. lの圧力容器に充填する原料スラリーとの間で熱交換を行い、原料ス ラリーを予熱する。
[0051] 次に、 No. lの圧力容器を密閉する(昇温工程)。このとき、図 1(b)に示すように、 No.
4の圧力容器が降温工程となっているため、 No.4の圧力容器上部の高温ガスをフラッ シュ蒸気として No. lの圧力容器へと供給し、熱回収する(上述したように、フラッシュ 蒸気は圧力容器内の水溶液へと供給することが好ましい)。その結果、 No. lの圧力 容器内のスラリーの温度がさらに上昇し、スラリーを亜臨界状態とするためのェネル ギ一が節約される。
[0052] 次に、図 1(c)に示すように、高温スチーム等の熱源を用いて No. lの圧力容器内部 を加熱し、スラリーを亜臨界状態とする(分解工程)。このとき、原料スラリーにエタノー ルを 2mol%以上 10mol%以下の濃度範囲で添加しておけば、分解反応速度を低下 させることカできるので、セルロース又はへミセルロースの分解反応を制御しやすくな
[0053] ここで、本願でいう分解工程とは、スラリーが亜臨界状態となっている時間だけでは なぐ昇温工程で温度上昇したスラリーを、亜臨界状態にまで加熱するための時間も 含んでいる。
[0054] なお、原料スラリーに対して 10mol%を越える濃度までエタノールを添加すると、必 要以上に分解時間が長引くと共に、容器の耐圧度も上がる。また、排出工程で排出( 排水)スラリーにもエタノールが高濃度で残存することになるため、実用的価値が損な われる。
[0055] 次に、図 1(d)に示すように、適切な分解時間を経過した No. lの圧力容器と、予熱ェ 程にある No.3の圧力容器とを接続し、 No. lの圧力容器下部の高温スラリーをフラッシ ュ蒸気として Νο· 3の圧力容器内へと供給する。これにより、 No. lの圧力容器内部が糖 化分解温度以下まで急冷され、糖類の有機酸等への過分解反応を停止することが できる。同時に、 Νο·3の圧力容器内のスラリーの温度が上昇する。
[0056] ここで、分解工程においてバイオマス中のへミセルロースを糖化分解する場合には 、セルロースが糖化分解する温度範囲(240°C〜280°C)までは昇温せず、へミセル口 ースのみが糖化分解する 140°C〜180°Cの温度範囲に調整する。一方、バイオマス 中のセルロースを糖化分解する場合には、セルロースが糖化分解する温度範囲(240 °C〜280°C)まで昇温する。
[0057] 次に、図 1(e)に示すように、温度が低下し、常圧あるいは常圧近くまで圧力が低下 した No. lの圧力容器を開き、糖類が含まれたスラリーを排出 (排水)する (排出工程) 。このとき、スラリーは分解過程の温度が 240〜280°Cの場合、 110〜150°C程度である ため、充填工程にある Νο·5の圧力容器に充填するスラリーとの間で熱交換を行う。こ れにより、 Νο·5のスラリーが予熱されると共に、 No. lから取り出すスラリーを冷却するこ と力 Sできる。
[0058] 図 1(a)〜図 1(e)では、主に No. lの圧力容器の操作について説明した力 No.2~No • 5の圧力容器についても No. lと同様の操作を行う。また、図 1(a)〜図 1(e)では、 No. l 以外の圧力容器については、フラッシュ蒸気及び高温スラリーによる排熱回収(熱交 換)がー部省略されている力、これらについても No. lの圧力容器と同様の排熱回収( 熱交換)が行われることはレ、うまでもなレ、。
[0059] 排出工程で排出され (排水され)、さらに熱交換によって冷却されたスラリーには、 糖類と残存固形分が共存する。分解工程が 140°C〜180°Cの温度範囲である場合に は、残存固形分は主にセルロースとリグニンであり、分解工程が 240°C〜280°Cの温 度範囲である場合には、残存固形分は主にリグニンである。
[0060] このスラリーは、固液分離によって残存固形分を除去した後、エタノール発酵に供 され、酵母の発酵作用等によりバイオエタノールが製造される。このようなエタノール 発酵技術は周知技術であるため、ここではその説明を省略する力 本発明によって 得られた糖類は、酵母発酵以外の公知の発酵処理によってもバイオエタノールに変 換することあでさる。
[0061] 次に、図 1(a)〜図 1(e)に示した 5台の圧力容器を用いる分解装置を、連続バッチシ ステムとして運転する場合のタイムスケジュールについて、図 2を参照しながら説明す る。なお、図 2では、各工程の所要時間は、 5分間としている。
[0062] まず、 No.1の圧力容器から充填工程を行い、 5分間ずつ時間差をとつて No.2〜No.
5の圧力容器で充填工程を行う。各圧力容器は「C」→ ΓΡΗ]→「GL」→「F」→「DC」と いう 5工程を順次繰り返すので、セルロース系バイオマスの糖化分解処理は、 5分 X 5 工程 = 25分が 1サイクルとなる。そして、 Νο· 1〜Νο·5の圧力容器は、このサイクルを 5 分ずつの時間差で連続して行う。
[0063] 降温工程にある No.1の圧力容器のフラッシング蒸気は、昇温工程にある Νο·2の圧 力容器に供給され、熱回収が図れる。同様に、降温工程にある Νο.2、 Νο.3、 Νο.4及 び Νο·5圧力容器のフラッシング蒸気は、昇温工程にある Νο·3、 Νο·4、 Νο·5及び Νο· 1 の圧力容器にそれぞれ供給され、熱回収が図られる。
[0064] また、排出工程にある No. lの圧力容器から排出(排水)スラリーは、充填工程にある Νο·5の圧力容器に充填されるスラリーと熱交換される。同様に、排出工程にある Νο·2 、 Νο·3、 Νο·4及び Νο·5の圧力容器の高温スラリーは、充填工程にある Νο· 1、 Νο·2、 Ν ο·3及び Νο·4の圧力容器に充填されるスラリーとそれぞれ熱交換される。
[0065] こうした連続バッチシステムによれば、セルロース系バイオマスを短時間、かつ、省 エネルギーで連続糖化分解することができる。
[0066] (実施の形態 2)
次に、全工程数が 4であり、定常運転時に排出工程及び充填工程を排出充填工程 として平行して行う 4台の圧力容器を用いる分解装置を、連続バッチシステムとして運 転する場合のタイムスケジュールについて、図 3を参照しながら説明する。なお、図 3 では、各工程の所要時間は、 5分間としている。
[0067] まず、 No. lの圧力容器について最初の充填工程 Cを行い、 5分間ずつ時間差をと
0
つて No.2〜No.4の圧力容器で最初の充填工程 Cを行う。運転開始時には、図 1に示
0
した糖化分解装置の充填工程と同じ工程を行うことになるため、図 3では最初に行う 排出充填工程を、最初の充填工程 Cと表示している。定常運転時には、各圧力容器
0
は「C」→「PH」→「GL」→「F」と!/、う 4工程を順次繰り返すので、セルロース系バイオマ スの糖化分解処理は、 5分 X 4工程 = 20分が 1サイクルとなる。そして、 Νο· 1〜Νο·4の 圧力容器は、このサイクルを 5分ずつの時間差で連続して行う。
[0068] 降温工程にある No.1の圧力容器のフラッシング蒸気は、昇温工程にある Νο·2の圧 力容器に供給され、熱回収が図れる。同様に、降温工程にある Νο.2、 Νο.3及び Νο.4 圧力容器のフラッシング蒸気は、昇温工程にある Νο·3、 Νο·4及び Νο·5の圧力容器に それぞれ供給され、熱回収が図られる。
[0069] ここで、降温工程を実行後、排出充填工程にある No.1の圧力容器からスラリーを取 り出し、その後、同じ圧力容器に原料スラリーを充填する。すなわち、降温工程終了 後の No.1の圧力容器において、排出工程と充填工程とが排出充填工程として平行し て実施される。このとき、排出されるスラリーが十分高温ならば、充填する原料スラリー との間で、熱交換を行ってもよい。
[0070] 運転を終了する場合、最後の降温工程を実施した No.1の圧力容器は、最後の排出 工程 Cを行い、 5分間ずつ時間差をとつて Νο·2〜Νο·4の圧力容器で最後の排出ェ
X
程 Cを行う。運転終了時には、図 1に示した糖化分解装置の排出工程と同じ工程を
X
行うことになるため、図 3では最後に行う排出充填工程を、最後の排出工程 Cと表示
X
している。
[0071] この連続バッチシステムによれば、図 1及び図 2に示した糖化分解装置よりも少ない 圧力容器で、より短時間に連続糖化分解を実施することができる。
[0072] [分解工程におけるエタノール添加の影響]
ここで、セルロース系バイオマスとして、試薬セルロースを亜臨界状態で糖化分解さ せる場合におけるエタノール添加の影響について検討した。上記セルロースに、純 水と 5重量% (2mol%)のエタノール水溶液をそれぞれ同じ 280°Cで通水した実験結 果を図 4に示す
図 4は反応時間と糖類の収率(%)との関係を示したものである。糖類の最高収率そ のものにはエタノールの添加による影響は、ほとんど認められなかった。しかし、糖類 の生成速度及び分解速度は、エタノールを添加した場合の方が明らかに低ぐ例え ば、最高収率に到達する時間は、エタノール添加によって約 3倍(0.7分→2.0分)に 拡大した。
[0073] 亜臨界状態である反応時間を工業規模において秒単位で制御することは困難であ るため、原料スラリーへのエタノール添加は、糖類の収率を上げる点で、有効である ことが確認された。
[0074] (実施の形態 3)
次に、セルロース系バイオマスが亜臨界状態で糖化分解されにくぐ分解工程を他 の 4工程よりも長時間にせざるを得ない場合であって、 8台の圧力容器を用いる全ェ 程数 5の分解装置を、連続バッチシステムとして運転する場合のタイムスケジュール について、図 5を参照しながら説明する。なお、図 5では、分解工程の所要時間を 20 分間、その他の工程の所要時間を 5分間としている。
[0075] まず、 No.1の圧力容器から充填工程を行い、 5分間ずつ時間差をとつて No.2〜No.
8の圧力容器で充填工程を行う。各圧力容器は「C」→ ΓΡΗ]→「GL」→「F」→「DC」と いう 5工程を順次繰り返すが、ここではセルロース系バイオマスの糖化分解処理が 20 分であるため、(5分 X 4工程) + (20分 X I工程) =40分が 1サイクルとなる。そして、 N o. l〜No.8の圧力容器は、このサイクルを 5分ずつの時間差で連続して行う。
[0076] ここで、図 5に示す連続バッチシステムでは、分解工程が他工程の 4倍長い。このた め、工程数と同じ 5台の圧力容器を用いたのでは、分解工程以外の工程も 20分とし なければフラッシュ蒸気及び高温スラリーの熱エネルギーを回収することができない ため、処理時間が非常に長くなる。そのため、本実施の形態の糖化分解装置では、 8 台の圧力容器を使用し、分解工程を 20分としても他工程は 5分のままで効果的な熱 回収ができるようにしている。
[0077] すなわち、 No.1の圧力容器が降温工程にあるとき、昇温工程にある Νο·6の圧力容 器にフラッシング蒸気を供給する。同様に、降温工程にある Νο·2、 Νο·3、 Νο·4、 Νο.5 、 Νο·6、 Νο·7及び Νο·8の圧力容器は、昇温工程にある Νο·7、 Νο·8、 Νο· 1、 Νο·2、 Νο.3 、 Νο·4及び Νο·5の圧力容器にそれぞれ供給され、熱回収が図られる。
[0078] また、排出工程にある No. lの圧力容器から排出(排水)高温スラリーは、充填工程 にある Νο·8の圧力容器に充填されるスラリーと熱交換される。同様に、排出工程にあ る Νο·2、 Νο·3、 Νο·4、 Νο·5、 Νο·6、 Νο·7及び Νο·8の圧力容器の高温スラリーは、充填 工程にある Νο· 1、 Νο·2、 Νο·3、 Νο·4、 Νο·5、 Νο·6及び Νο·7の圧力容器に充填される スラリーとそれぞれ熱交換される。 [0079] 分解工程以外の 4工程がすべて同じ所要時間であり、かつ、分解工程の所要時間 がそれ以外の 4工程の所要時間の n倍 (nは自然数であり、ここでは 4)である場合に は、使用する圧力容器の数が(4 + n)の倍数台(ここでは 8台)であれば、実施の形 態 1と同様、連続バッチシステムとして、セルロース系バイオマスを短時間、かつ、省 エネルギーで連続糖化分解することができる。
[0080] 実施の形態 3においては、圧力容器を 8台とした力 一連のバッチシステムを 2系統 とするならば、全部で 16台の圧力容器を使用すればよい。また、全工程数 4の糖化分 解装置にっレ、ても、同様の操作を行うことが可能である。
[0081] (実施の形態 4)
上記実施の形態;!〜 3においては、充填工程又は排出充填工程として、セルロース 系バイオマスを粉砕し、水と混合してスラリーとした後、圧力容器に充填する場合に ついて説明した。しかし、本発明の充填工程又は排出充填工程では、セルロース系 バイオマスを必ずしもスラリー化する必要はなぐバガス等のセルロース系バイオマス を開孔部又は隙間等を有し、水が容器の内外を移動しうるような通水性容器にセノレ ロース系バイオマスを充填し、該通水性容器及び水を圧力容器に封入 (圧密封入) することによつても、セルロース系バイオマスを糖化分解することが可能である。
[0082] 通水性容器は、圧力容器内の高温に耐えうるものであれば、その素材は問わない
1S 耐久性の高いステンレス鋼等が好ましい。また、形状については特に制限はなく 、直方体、円筒等、適宜選択することができるが、圧力容器形状と同じ形状(円筒)と すること力 容積効率が上がる点では好ましい。また、通水性を確保する手段として は、通水性容器の一部又は全部を網目状としてもよぐスリットや円形の開孔部を設 けてもよく、上面を開放してもよぐ水が容器内外を移動しうるのであれば、特に制限 はない。
[0083] 通水性容器にセルロース系バイオマスとして乾燥バガスを充填する一例を、図 6に 示す。この図では、底面及び側面に多数の開孔部を有する円筒状の通水性容器(上 面は開放)にバガスを充填する。このとき、乾燥バガスは粉砕する必要はなぐそのま まの長さでもよいが、適当な長さに切断してもよい。
[0084] 充填後、プレス機等を用いて上から圧縮し、乾燥バガスを通水性容器内で圧縮 (圧 密充填)することが好まし!/、が、予め圧縮した乾燥バガスを通水性容器に充填しても よい。乾燥バガスは、圧縮前のかさ比重力^〜 10kg/m3程度である力 圧縮することに より 50kg/m3以上のかさ比重にまで圧縮できる。この圧縮された状態で圧力容器内に 封入し注水して満水とすれば、圧力容器内の固形物濃度は数%程度となり、スラリー と同レベルの固形分濃度となり、乾燥バガスをスラリ一化するのと同程度の容積効率 が得られる。
[0085] 図 6に示したように、通水性容器内で乾燥バガスを圧縮する場合には、通水性容器 内への乾燥バガスの投入及びプレス処理を繰り返し、通水性容器内になるベく多く の乾燥バガスを圧密充填することが好ましいが、充分量の乾燥バガスを圧密充填で きるのであれば、 1回のプレス処理としてもよい。
[0086] なお、乾燥バガス等のセルロース系バイオマスは、圧力容器に封入する前に、かさ 比重を 50kg/m3以上 300kg/m3以下に調整することが好ましく、 100kg/m3以上 200kg/m 3以下に調整することがより好まし!/、。力、さ比重が低!/、とスラリー化する場合と比較して 固形分濃度が低くなるために容積効率が低くなるためである。一方、力、さ比重をあま り大きくすると、セルロース系バイオマスの内部に水が浸透しにくくなり、分解反応が 起こりにくくなるためである。
[0087] 乾燥バガス等のセルロース系バイオマスをスラリー化するためには、原料 lkg当たり 0.5〜2kW程度、微粉砕のためのエネルギーが必要であるが、本実施の形態では微 粉砕作業は不要であり、仮に粉砕する場合でも微粉砕までする必要がないため、セ ルロース系バイオマスの前処理に必要な仕事量は 1/10〜1/2となる。
[0088] セルロース系バイオマスをスラリーとして圧力容器に充填する場合には、配管の詰 まり防止のため、固形物濃度を低くするか、微粉砕する必要がある。セルロース系バ ィォマスは含有水分が多ぐスラリーの固形分濃度はセルロース系バイオマス内の水 分も含めれば、 10%程度でも流動性が低い。しかし、通水性容器にセルロース系バ ィォマスを充填し、水と共に圧力容器に封入すれば、圧力容器内の固形分濃度は、 上述したようにスラリーと同等とすることができる。
[0089] また、セルロース系バイオマスをスラリー化した場合、配管及び圧力容器の内壁に 固形物が付着し、残存固形物として残ることがある。この残存固形物は、配管及び圧 力容器の容積効率を下げるだけでなぐ反応後の微粉末が未反応のスラリーに混入 するために、洗浄頻度を増加させることとなる。しかし、通水性容器にセルロース系バ ィォマスを充填し、水と共に圧力容器内に封入して加熱すれば、セルロース系バイオ マスは通水性容器内に静置されたままであり、配管を移送するのは水のみであるた め、このような問題が起こらない。
さらに、セルロース系バイオマスを 140°C以上 180°C以下で加熱してへミセルロース を糖類に分解した後、残りの固形分を 240°C以上 280°C以下で加熱してセルロースを 糖類に分解する場合、充填工程又は排出充填工程でスラリー化したセルロース系バ ィォマスを充填した場合、へミセルロース分解後の固形分を固液分離し、新たに水を 加えてスラリー化する必要がある力 通水性容器にセルロース系バイオマスを充填し 、水と共に圧力容器内に封入して加熱すれば、圧力容器から糖類を含む水を排水 するだけで足り、通水性容器が固液分離の役目も果たすという利点がある。なお、通 水性容器内にバイオマス残渣と共に残留する糖類を含む水も、バイオマス残渣の洗 浄操作によって回収すれば、糖類をさらに効率よく回収することが可能である。 充填工程又は排出充填工程において、通水性容器にセルロース系バイオマスを充 填し、水と共に圧力容器内に封入すれば、排出工程又は排出充填工程においては 、圧力容器から糖類を含む高温水を排出し、圧力容器内からは通水性容器を取り出 し、通水性容器から固形の残渣(セルロース系バイオマスに含まれるセルロース及び /又はへミセルロースが糖類に分解された後に残った固形分であり、主にリグニン及 び灰分である)を取り出して廃棄する。
[0090] なお、この残渣は圧力容器内を加熱するための燃料として利用可能であるため、圧 力容器内の固形分濃度を高くすることができる本実施の形態では、圧力容器から取 り出される残渣量も多ぐ石油等の燃料の使用を抑制することが可能である。
[0091] 降温工程においては圧力容器内の高温水をフラッシュ蒸発させ、充填工程実行中 の圧力容器に充填される水との間で熱交換を行う。それ以外は、充填工程又は排出 充填工程でスラリー化したセルロース系バイオマスを充填する場合と同様である。
[0092] 例えば、充填工程において、通水性容器にセルロース系バイオマスを充填し、水と 共に圧力容器内に封入する場合、実施の形態 1の糖化分解装置の操作手順を示す 図 1において、「原料スラリー」とあるのは「セルロース系バイオマスを充填した通水性 容器及び水」となる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明ら かである。従って、上記説明は例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び/又は機能の詳細を実質的に変更できる。
産業上の利用可能性
本発明は、セルロース系バイオマスを分解し、糖類を製造する方法及び装置として 、バイオ、エネルギー等の分野において有用である。

Claims

請求の範囲
[1] 複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において充填工程、昇温工程、分解工程、降温工程及び排出工程が 順次実行され、
充填工程力、セルロース系バイオマスを粉砕し水と混合したスラリーを圧力容器に 充填する工程であり、
昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程が、圧力容器内の高温高圧スラリーをフラッシュ蒸発させることにより、降 温する工程であり、
排出工程が、圧力容器内のスラリーを取り出す工程であり、
複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填されるスラリーと排出工程実行中の圧力容器から排出されるス ラリーとの間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法
[2] 複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において充填工程、昇温工程、分解工程、降温工程及び排出工程が 順次実行され、
充填工程が、セルロース系バイオマスを通水性容器に充填した後、該通水性容器 及び水を圧力容器に封入する工程であり、
昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程が、圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する 工程であり、
排出工程が、通水性容器内のセルロース系バイオマスの残渣を取り出す工程であ り、
複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填される水と排出工程実行中の圧力容器から排出される高温水 との間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法
[3] 前記 5工程がすべて同じ所要時間であり、使用する圧力容器の数が 5の倍数である 請求項 1又は 2に記載のセルロース系バイオマスの糖化分解方法。
[4] 前記分解工程以外の 4工程がすべて同じ所要時間で、かつ、前記分解工程の所 要時間がそれ以外の 4工程の所要時間の n倍 (nは自然数)であり、使用する圧力容 器の数が(4 + n)の倍数台である請求項 1又は 2に記載のセルロース系バイオマスの 糖化分解方法。
[5] 前記分解工程の温度が 140°C以上 180°C以下であり、へミセルロースを糖類に分解 する請求項 1に記載のセルロース系バイオマスの糖化分解方法。
[6] 前記分解工程の温度が 140°C以上 180°C以下であり、へミセルロースを糖類に分解 する請求項 2に記載のセルロース系バイオマスの糖化分解方法。
[7] 前記排出工程で生じたスラリーを固液分離し、へミセルロースが分解し水に溶解し た後の固体分をスラリーとし、固液分離後のスラリーを前記充填工程に再び供すると 共に、前記分解工程の温度を 240°C以上 280°C以下とすることにより、セルロースを糖 類に分解する請求項 5に記載のセルロース系バイオマスの糖化分解方法。
[8] 前記排出工程後の通水性容器を前記充填工程に再び供すると共に、前記分解ェ 程の温度を 240°C以上 280°C以下とすることにより、セルロースを糖類に分解する請求 項 6に記載のセルロース系バイオマスの糖化分解方法。
[9] 前記分解工程の温度が 240°C以上 280°C以下であり、セルロースを糖類に分解する 請求項 1又は 2に記載のセルロース系バイオマスの糖化分解方法。
[10] 前記充填工程において、原料スラリーにエタノールを 2mol%以上 10mol%以下添加す る請求項 1に記載のセルロース系バイオマスの糖化分解方法。
[11] 前記充填工程において、圧力容器に封入する水にエタノールを 2mol%以上 10mol% 以下添加する請求項 2に記載のセルロース系バイオマスの糖化分解方法。
[12] 複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において排出充填工程、昇温工程、分解工程及び降温工程が順次実 行され、
排出充填工程が、降温工程実施後に圧力容器内のスラリーを取り出し、同じ圧力 容器にセルロース系バイオマスを粉砕し水と混合したスラリーを充填する工程であり、 昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程力、圧力容器内の高温高圧のスラリーをフラッシュ蒸発させることにより、 降温する工程であり、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法
[13] 複数の圧力容器を使用するセルロース系バイオマスの糖化分解方法であって、 各圧力容器において排出充填工程、昇温工程、分解工程及び降温工程が順次実 行され、
排出充填工程が、降温工程実施後に圧力容器内のセルロース系バイオマスの残 渣を取り出し、同じ圧力容器にセルロース系バイオマスを充填した通水性容器及び 水を封入する工程であり、
昇温工程が、圧力容器を密閉して昇温する工程であり、
分解工程が、セルロース系バイオマス中のセルロース及び/又はへミセルロースを 高温高圧水の酸化力によって糖類に分解する工程であり、
降温工程が、圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する 工程であり、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収する、ことを特徴とするセルロース系バイオマスの糖化分解方法
[14] 前記 4工程がすべて同じ所要時間であり、使用する圧力容器の数が 4の倍数である 請求項 12又は 13に記載のセルロース系バイオマスの糖化分解方法。
[15] 前記分解工程以外の 3工程がすべて同じ所要時間で、かつ、前記分解工程の所 要時間がそれ以外の 3工程の所要時間の n倍 (nは自然数)であり、使用する圧力容 器の数が(3 + n)の倍数台である請求項 12又は 13に記載のセルロース系バイオマ スの糖化分解方法。
[16] 前記分解工程の温度が 140°C以上 180°C以下であり、へミセルロースを糖類に分解 する請求項 12に記載のセルロース系バイオマスの糖化分解方法。
[17] 前記分解工程の温度が 140°C以上 180°C以下であり、へミセルロースを糖類に分解 する請求項 13に記載のセルロース系バイオマスの糖化分解方法。
[18] 前記排出充填工程で生じたスラリーを固液分離し、へミセルロースが分解し水に溶 解した後の固体分をスラリ一とし、固液分離後のスラリーを前記排出充填工程に再び 供すると共に、前記分解工程の温度を 240°C以上 280°C以下とすることにより、セル口 ースを糖類に分解する請求項 16に記載のセルロース系バイオマスの糖化分解方法
[19] 前記排出工程後の通水性容器を前記充填工程に供すると共に、前記分解工程の 温度を 240°C以上 280°C以下とすることにより、セルロースを糖類に分解する請求項 1
7に記載のセルロース系バイオマスの糖化分解方法。
[20] 前記分解工程の温度が 240°C以上 280°C以下であり、セルロースを糖類に分解する 請求項 12又は 13に記載のセルロース系バイオマスの糖化分解方法。
[21] 前記排出充填工程において、原料スラリーにエタノールを 2mol%以上 10mol%以下添 加する請求項 12に記載のセルロース系バイオマスの糖化分解方法。
[22] 前記排出充填工程において、圧力容器に封入する水にエタノールを 2mol%以上 10 mol%以下添加する請求項 13に記載のセルロース系バイオマスの糖化分解方法。
[23] 複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、 セルロース系バイオマスを粉砕し水と混合したスラリーを圧力容器に充填する充填 工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧スラリーをフラッシュ蒸発させることにより、降温する降温ェ 程と、
圧力容器内のスラリーを取り出す排出工程とが各圧力容器において順次実行され 複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填されるスラリーと排出工程実行中の圧力容器から排出されるス ラリーとの間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置。
[24] 複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、 セルロース系バイオマスを充填した通水性容器及び水を圧力容器に封入する充填 工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する降温工程と、 圧力容器内のセルロース系バイオマスの残渣を取り出す排出工程とが各圧力容器 において順次実行され、
複数の圧力容器のうち、 V、ずれかの圧力容器におレ、て充填工程が実行されてレ、る とき、他のいずれかの圧力容器において排出工程が実行されており、充填工程実行 中の圧力容器に充填される水と排出工程実行中の圧力容器から排出される高温水 との間で熱交換し、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置。
[25] 前記 5工程がすべて同じ所要時間であり、使用する圧力容器の数が 5の倍数である 請求項 23又は 24に記載のセルロース系バイオマスの糖化分解装置。
[26] 前記分解工程以外の 4工程がすべて同じ所要時間で、かつ、前記分解工程の所 要時間がそれ以外の 4工程の所要時間の n倍 (nは自然数)であり、使用する圧力容 器の数が(4 + n)の倍数台である請求項 23又は 24に記載のセルロース系バイオマ スの糖化分解装置。
[27] 複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、
降温工程実施後のスラリーを圧力容器から取り出し、同じ圧力容器にセルロース系 ノ ィォマスを粉砕し水と混合したスラリーを充填する排出充填工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧スラリーをフラッシュ蒸発させることにより、降温する降温ェ 程とが各圧力容器にお!/、て順次実行され、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置。
[28] 複数の圧力容器を備えるセルロース系バイオマスの糖化分解装置であって、
降温工程実施後のセルロース系バイオマスの残渣を圧力容器から取り出し、同じ圧 力容器にセルロース系バイオマスを充填した通水性容器及び水を封入する排出充 填工程と、
圧力容器を密閉して昇温する昇温工程と、
セルロース系バイオマス中のセルロース及び/又はへミセルロースを高温高圧水 の酸化力によって糖類に分解する分解工程と、
圧力容器内の高温高圧水をフラッシュ蒸発させることにより、降温する降温工程と が各圧力容器にお!/、て順次実行され、
複数の圧力容器のうち、 V、ずれかの圧力容器にお!/、て昇温工程が実行されて!/、る とき、他のいずれかの圧力容器において降温工程が実行されており、降温工程実行 中の圧力容器力 排出されるフラッシュ蒸気を昇温工程実行中の圧力容器に供給 することにより熱回収 する、ことを特徴とするセルロース系バイオマスの糖化分解装 置。
[29] 前記 4工程がすべて同じ所要時間であり、使用する圧力容器の数が 4の倍数である 請求項 27又は 28に記載のセルロース系バイオマスの糖化分解装置。
[30] 前記分解工程以外の 3工程がすべて同じ所要時間で、かつ、前記分解工程の所 要時間がそれ以外の 3工程の所要時間の n倍 (nは自然数)であり、使用する圧力容 器の数が(3 + n)の倍数台である請求項 27又は 28に記載のセルロース系バイオマ スの糖化分解装置。
PCT/JP2007/070600 2006-10-26 2007-10-23 Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device WO2008050740A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2007274388A AU2007274388B8 (en) 2006-10-26 2007-10-23 Method and system for hydrolytic saccharification of a cellulosic biomass
JP2008512641A JP4990271B2 (ja) 2006-10-26 2007-10-23 セルロース系バイオマスの糖化分解方法及び糖化分解装置
EP07830334.4A EP2075347B1 (en) 2006-10-26 2007-10-23 Method and system for hydrolytic saccharification of a cellulosic biomass
US12/063,757 US20100175690A1 (en) 2006-10-26 2007-10-23 Method and System for Hydrolytic Saccharification of a Cellulosic Biomass
ES07830334.4T ES2566494T3 (es) 2006-10-26 2007-10-23 Método y sistema para sacarificación hidrolítica de una biomasa celulósica
CN2007800009733A CN101346476B (zh) 2006-10-26 2007-10-23 纤维素系生物物质的糖化分解方法以及糖化分解装置
BRPI0706024-6A BRPI0706024B1 (pt) 2006-10-26 2007-10-23 Método para sacarificação hidrolítica de uma biomassa celulósica com uso de múltiplos recipientes de pressão
US13/451,858 US8562747B2 (en) 2006-10-26 2012-04-20 Method and system for hydrolytic saccharification of a cellulosic biomass
US13/451,854 US20120260912A1 (en) 2006-10-26 2012-04-20 Method and system for hydrolytic saccharification of a cellulosic biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006291194 2006-10-26
JP2006-291194 2006-10-26

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/063,757 A-371-Of-International US20100175690A1 (en) 2006-10-26 2007-10-23 Method and System for Hydrolytic Saccharification of a Cellulosic Biomass
US13/451,854 Division US20120260912A1 (en) 2006-10-26 2012-04-20 Method and system for hydrolytic saccharification of a cellulosic biomass
US13/451,858 Division US8562747B2 (en) 2006-10-26 2012-04-20 Method and system for hydrolytic saccharification of a cellulosic biomass

Publications (1)

Publication Number Publication Date
WO2008050740A1 true WO2008050740A1 (en) 2008-05-02

Family

ID=39324537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070600 WO2008050740A1 (en) 2006-10-26 2007-10-23 Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device

Country Status (8)

Country Link
US (3) US20100175690A1 (ja)
EP (4) EP2520673B1 (ja)
JP (1) JP4990271B2 (ja)
CN (1) CN101346476B (ja)
AU (1) AU2007274388B8 (ja)
BR (1) BRPI0706024B1 (ja)
ES (4) ES2568002T3 (ja)
WO (1) WO2008050740A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012779A2 (en) * 2007-07-25 2009-01-29 Atlas-Stord Denmark A method and a system forthe pretreatment of lignocellulosic material
WO2012042840A1 (ja) 2010-09-30 2012-04-05 川崎重工業株式会社 セルロース系バイオマスを原料とするエタノール製造方法
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8568533B2 (en) 2011-05-04 2013-10-29 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US8968479B2 (en) 2010-01-19 2015-03-03 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
JPWO2013046622A1 (ja) * 2011-09-30 2015-03-26 川崎重工業株式会社 セルロース系バイオマスを原料とするエタノール製造方法
WO2015098070A1 (ja) 2013-12-26 2015-07-02 川崎重工業株式会社 バイオマスを原料とする糖化液製造方法、糖化液製造装置及び連続式反応器
JP5805390B2 (ja) * 2008-12-09 2015-11-04 日本甜菜製糖株式会社 農産物又は農産副産物からの糖アルコール及び糖の製造方法
KR20190050223A (ko) * 2017-11-02 2019-05-10 한국에너지기술연구원 제2세대 바이오매스를 이용한 혼합 바이오 당액 고농도화 시스템
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503648B1 (de) * 2006-08-03 2007-12-15 Tms Transport Und Montagesyste Bearbeitungsstation
US20100175691A1 (en) * 2009-01-15 2010-07-15 Celanese Acetate Llc Process for recycling cellulose acetate ester waste
JP2011068578A (ja) * 2009-09-24 2011-04-07 Ihi Corp バイオマス処理装置及び方法
JP2011142892A (ja) * 2010-01-18 2011-07-28 Ihi Corp 固体酸触媒糖化装置及び方法
JPWO2011087133A1 (ja) * 2010-01-18 2013-05-20 株式会社Ihi バイオマス処理装置
JP2011142893A (ja) * 2010-01-18 2011-07-28 Ihi Corp 熱水流通式糖化装置
CN101851688B (zh) * 2010-06-10 2012-05-30 清华大学 生物质水热处理独立溶解和水解的半连续式反应系统
CN101886143B (zh) * 2010-07-13 2012-12-26 大连理工大学 一种超/亚临界水两步水解生物质制备还原糖的方法
BR112013010659A8 (pt) 2010-11-01 2017-12-26 Reac Fuel Ab Processo para uma conversão controlada de uma matéria-prima da biomassa
SG10201509028YA (en) 2010-11-02 2015-12-30 Inventure Internat Pte Ltd Mixed super critical fluid hydrolysis and alcoholysis of cellulose to form glucose and glucose derivatives
CN102154398A (zh) * 2010-12-28 2011-08-17 国润金华(北京)国际能源投资有限公司佛山高明分公司 一种高温高压纤维素转糖工艺
KR20130132948A (ko) * 2010-12-30 2013-12-05 바이렌트, 아이엔씨. 환원성 바이오매스 액화
US9212316B2 (en) 2010-12-30 2015-12-15 Virent, Inc. Serial deconstruction of biomass
EP2658833A1 (en) 2010-12-30 2013-11-06 Virent, Inc. Solvolysis of biomass using solvent from a bioreforming process
US9157030B2 (en) 2010-12-30 2015-10-13 Virent, Inc. Solvolysis of biomass and stabilization of biomass hydrolysate
US9212315B2 (en) 2010-12-30 2015-12-15 Virent, Inc. Methods for biomass deconstruction and purification
US9157031B2 (en) 2010-12-30 2015-10-13 Virent, Inc. Solvolysis of biomass to produce aqueous and organic products
MY162806A (en) * 2010-12-30 2017-07-14 Virent Inc Organo-catalytic biomass deconstruction
CN102676706A (zh) * 2011-03-09 2012-09-19 逢甲大学 还原醣的制造方法及设备
JP5849464B2 (ja) * 2011-04-28 2016-01-27 株式会社エクォス・リサーチ セルロースから水可溶性成分を抽出する抽出方法
CN103502259A (zh) * 2011-05-04 2014-01-08 瑞恩麦特克斯股份有限公司 增强的可溶性c5糖产率
RU2609001C2 (ru) 2011-05-04 2017-01-30 Ренмэтикс, Инк. ГИДРОЛИЗ ЦЕЛЛЮЛОЗЫ С КОРРЕКТИРОВАНИЕМ Ph
EP2776591B1 (en) 2011-11-08 2020-03-18 Renmatix, Inc. Liquefaction of biomass at low ph
BR112014025714A8 (pt) * 2012-04-30 2018-02-06 Renmatix Inc Processo que envolve a liquefação de uma calda de biomassa por meio de tratamento em água comprimida quente (hcw)
US9695484B2 (en) 2012-09-28 2017-07-04 Industrial Technology Research Institute Sugar products and fabrication method thereof
WO2014066097A1 (en) 2012-10-23 2014-05-01 Old Dominion University Research Foundation Subcritical water assisted oil extraction and green coal production from oilseeds
CN104781425B (zh) * 2012-11-08 2018-08-07 瑞恩麦特克斯股份有限公司 用于淬灭生物质原料水解反应的瞬时冷却
CN103966367B (zh) 2013-02-01 2016-01-20 财团法人工业技术研究院 醣类的制备方法
US9765411B2 (en) * 2013-05-07 2017-09-19 Tyton Biosciences, Llc Green process to hydrolyze carbohydrates from tobacco biomass using subcritical water
US9328963B2 (en) * 2013-07-10 2016-05-03 Renmatix, Inc. Energy recovery when processing materials with reactive fluids
EP3019791A4 (en) * 2013-07-10 2017-04-26 Renmatix Inc. Energy recovery when processing materials with reactive fluids
CN109536645A (zh) * 2018-11-07 2019-03-29 北京博泰至淳生物科技有限公司 回收短链碳水化合物的方法
WO2023192177A1 (en) * 2022-03-28 2023-10-05 Worcester Polytechnic Institute Method of improved cellulose hydrolysis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470444A (en) * 1977-08-17 1979-06-06 Puroiekuchiirungu Chem Fuerufu Treatment of vegetable material
JPS58500431A (ja) * 1981-03-26 1983-03-24 バウ−ウント フオルシユングスゲゼルシヤフト テルモフオルム アクチエンゲゼルシヤフト 高能率オルガノソルブ糖化法
JPS6110009A (ja) * 1984-06-26 1986-01-17 Kimura Kakoki Kk 機械圧縮式蒸発方法の改良
JPS6211501A (ja) * 1985-07-06 1987-01-20 Kimura Kakoki Kk 蒸発装置等の熱回収装置
JP2000186102A (ja) * 1998-12-22 2000-07-04 Agency Of Ind Science & Technol 非水溶性多糖類の製造方法
JP2002233400A (ja) * 2001-02-09 2002-08-20 Mokushitsu Biomass Energie Gijutsu Kenkyu Kumiai 木質バイオマスを原料にした分解物質の製造方法および装置
JP2003212888A (ja) * 2002-01-18 2003-07-30 Asahi Kasei Corp グルコース及び/又は水溶性セロオリゴ糖の製造方法
JP2006223152A (ja) * 2005-02-16 2006-08-31 Hitachi Zosen Corp セルロース溶剤による溶解と加水分解の組合せによるバイオマス処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI810523L (fi) * 1980-02-23 1981-08-24 Franz Johann Reitter Foerfarande och anlaeggning foer kontinuerlig hydrolys av cellulosahaltig vaext-biosubstans foer utvinning av socker
US4470851A (en) 1981-03-26 1984-09-11 Laszlo Paszner High efficiency organosolv saccharification process
CA1225636A (en) * 1984-07-13 1987-08-18 Robert P. Chang Method for continuous countercurrent organosolv saccharification of wood and other lignocellulosic materials
US4615742A (en) * 1985-01-10 1986-10-07 The United States Of America As Represented By The Department Of Energy Progressing batch hydrolysis process
DE3729428A1 (de) * 1987-09-03 1989-03-16 Werner & Pfleiderer Verfahren und vorrichtung zur hydrolytischen spaltung von cellulose
NO300094B1 (no) * 1994-09-28 1997-04-07 Cambi As Fremgangsmate og anordning ved hydrolyse av organisk materiale under reduserende betingelser
CZ281504B6 (cs) * 1995-02-08 1996-10-16 Zdeněk Kratochvíl Způsob zpracování lignocelulózových materiálů kontinuální tlakovou hydrolýzou a zařízení
JP2001170601A (ja) 1999-12-17 2001-06-26 Noritsu Koki Co Ltd バイオマス系廃棄物処理方法
JP3802325B2 (ja) 2000-08-23 2006-07-26 信行 林 植物系バイオマスの加圧熱水分解方法とそのシステム
US20030234212A1 (en) * 2002-06-21 2003-12-25 Sanden Corporation Mineral water making apparatus
JP4982036B2 (ja) 2004-04-16 2012-07-25 志朗 坂 バイオマスの分解・液化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470444A (en) * 1977-08-17 1979-06-06 Puroiekuchiirungu Chem Fuerufu Treatment of vegetable material
JPS58500431A (ja) * 1981-03-26 1983-03-24 バウ−ウント フオルシユングスゲゼルシヤフト テルモフオルム アクチエンゲゼルシヤフト 高能率オルガノソルブ糖化法
JPS6110009A (ja) * 1984-06-26 1986-01-17 Kimura Kakoki Kk 機械圧縮式蒸発方法の改良
JPS6211501A (ja) * 1985-07-06 1987-01-20 Kimura Kakoki Kk 蒸発装置等の熱回収装置
JP2000186102A (ja) * 1998-12-22 2000-07-04 Agency Of Ind Science & Technol 非水溶性多糖類の製造方法
JP2002233400A (ja) * 2001-02-09 2002-08-20 Mokushitsu Biomass Energie Gijutsu Kenkyu Kumiai 木質バイオマスを原料にした分解物質の製造方法および装置
JP2003212888A (ja) * 2002-01-18 2003-07-30 Asahi Kasei Corp グルコース及び/又は水溶性セロオリゴ糖の製造方法
JP2006223152A (ja) * 2005-02-16 2006-08-31 Hitachi Zosen Corp セルロース溶剤による溶解と加水分解の組合せによるバイオマス処理方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932467B2 (en) 2007-07-25 2015-01-13 Haarslev A/S Method and a system for the pretreatment of lignocellulosic material
WO2009012779A3 (en) * 2007-07-25 2009-05-07 Atlas Stord Denmark A method and a system forthe pretreatment of lignocellulosic material
WO2009012779A2 (en) * 2007-07-25 2009-01-29 Atlas-Stord Denmark A method and a system forthe pretreatment of lignocellulosic material
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
JP5805390B2 (ja) * 2008-12-09 2015-11-04 日本甜菜製糖株式会社 農産物又は農産副産物からの糖アルコール及び糖の製造方法
US8968479B2 (en) 2010-01-19 2015-03-03 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US9359651B2 (en) 2010-01-19 2016-06-07 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
WO2012042840A1 (ja) 2010-09-30 2012-04-05 川崎重工業株式会社 セルロース系バイオマスを原料とするエタノール製造方法
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US8568533B2 (en) 2011-05-04 2013-10-29 Renmatix, Inc. Multistage cellulose hydrolysis and quench with or without acid
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
JPWO2013046622A1 (ja) * 2011-09-30 2015-03-26 川崎重工業株式会社 セルロース系バイオマスを原料とするエタノール製造方法
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
EP3456835A1 (en) 2013-12-26 2019-03-20 Kawasaki Jukogyo Kabushiki Kaisha Continuous reactor for hydrothermally treating cellulosic biomass
US10344342B2 (en) 2013-12-26 2019-07-09 Kawasaki Jukogyo Kabushiki Kaisha Method of and apparatus for producing saccharified solution by using biomass as raw material, and continuous reactor
WO2015098070A1 (ja) 2013-12-26 2015-07-02 川崎重工業株式会社 バイオマスを原料とする糖化液製造方法、糖化液製造装置及び連続式反応器
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
KR20190050223A (ko) * 2017-11-02 2019-05-10 한국에너지기술연구원 제2세대 바이오매스를 이용한 혼합 바이오 당액 고농도화 시스템
KR102028451B1 (ko) 2017-11-02 2019-11-14 한국에너지기술연구원 제2세대 바이오매스를 이용한 혼합 바이오 당액 고농도화 시스템

Also Published As

Publication number Publication date
US20120255543A1 (en) 2012-10-11
EP2075347B1 (en) 2016-03-16
BRPI0706024A2 (pt) 2011-03-15
JP4990271B2 (ja) 2012-08-01
CN101346476A (zh) 2009-01-14
EP2520673A1 (en) 2012-11-07
EP2520672A1 (en) 2012-11-07
AU2007274388B8 (en) 2010-01-28
JPWO2008050740A1 (ja) 2010-02-25
ES2545754T3 (es) 2015-09-15
AU2007274388B2 (en) 2009-10-01
EP2075347A1 (en) 2009-07-01
EP2520673B1 (en) 2016-03-16
CN101346476B (zh) 2012-06-06
ES2566494T3 (es) 2016-04-13
EP2075347A4 (en) 2011-06-22
EP2520671A1 (en) 2012-11-07
US8562747B2 (en) 2013-10-22
AU2007274388A1 (en) 2008-05-15
US20100175690A1 (en) 2010-07-15
EP2520671B1 (en) 2016-03-23
BRPI0706024B1 (pt) 2020-06-16
ES2566672T3 (es) 2016-04-14
ES2568002T3 (es) 2016-04-27
US20120260912A1 (en) 2012-10-18
EP2520672B1 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2008050740A1 (en) Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device
KR101657100B1 (ko) 리그노셀룰로오스계 바이오매스의 분별방법 및 분별장치
JP4436429B1 (ja) バイオマス原料を用いた有機原料の製造システム及び方法
JP5314917B2 (ja) セルロース系バイオマスの糖化分解方法及び糖化分解装置
US20080032344A1 (en) Process for recovery of holocellulose and near-native lignin from biomass
CN103748231B (zh) 以纤维素系生物质为原料的乙醇制造方法
JP5265013B2 (ja) リグノセルロース系バイオマスからエタノールを製造する方法
JP5103260B2 (ja) セルロース系バイオマスの糖化分解方法及び糖化分解装置
WO2012042840A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
JP2010253348A (ja) バイオマスの加水分解方法、および、エタノールの製造方法
JP2017139973A (ja) セルロース系バイオマスを原料とする酵素法による糖化液製造方法
WO2016036584A1 (en) Continuous countercurrent enzymatic hydrolysis of pretreated biomass at high solids concentrations
WO2013046623A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
JP2009213449A (ja) 油系植物バイオマス残渣を原料とする単糖類、エタノールの製造方法
JP4726035B2 (ja) バイオマスを原料とする糖類および固形燃料の製造方法
WO2012132545A1 (ja) 改質された植物バイオマスの製造方法及び製造装置、並びにエタノールの製造方法
WO2019124143A1 (ja) セルロース系バイオマスを原料とする酵素法によるバイオエタノール製造方法
JP2018099082A (ja) セルロース系バイオマスを原料とする糖化液製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000973.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007274388

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 643/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007830334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008512641

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12063757

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0706024

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080314