WO2013046623A1 - セルロース系バイオマスを原料とするエタノール製造方法 - Google Patents

セルロース系バイオマスを原料とするエタノール製造方法 Download PDF

Info

Publication number
WO2013046623A1
WO2013046623A1 PCT/JP2012/006049 JP2012006049W WO2013046623A1 WO 2013046623 A1 WO2013046623 A1 WO 2013046623A1 JP 2012006049 W JP2012006049 W JP 2012006049W WO 2013046623 A1 WO2013046623 A1 WO 2013046623A1
Authority
WO
WIPO (PCT)
Prior art keywords
saccharification
solid
liquid separation
decomposition
strong acid
Prior art date
Application number
PCT/JP2012/006049
Other languages
English (en)
French (fr)
Inventor
浩雅 楠田
憲明 和泉
浩範 田尻
章次 辻田
西野 毅
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2013046623A1 publication Critical patent/WO2013046623A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing ethanol (bioethanol) by hydrolyzing cellulosic biomass in a supercritical state or a subcritical state to produce a saccharide, and then subjecting the saccharide to alcohol fermentation.
  • ethanol As part of biomass energy utilization, there are attempts to obtain ethanol by decomposing cellulose or hemicellulose, which are the main components of plants. There, it is planned that the obtained ethanol is partly mixed in automobile fuel mainly for fuel or used as an alternative fuel for gasoline.
  • the main components of the plant are cellulose (polymer of glucose, which is a C6 saccharide composed of 6 carbons), hemicellulose (polymer of C5 saccharides and C6 saccharides composed of 5 carbons), lignin, and starch.
  • cellulose polymer of glucose, which is a C6 saccharide composed of 6 carbons
  • hemicellulose polymer of C5 saccharides and C6 saccharides composed of 5 carbons
  • lignin lignin
  • starch starch
  • ethanol is produced by fermentation of microorganisms such as yeast using saccharides such as C5 saccharides, C6 saccharides, and oligosaccharides that are complex thereof as raw materials.
  • Patent Document 1 discloses that cellulose powder is hydrolyzed by contacting with pressurized hot water at 240 to 340 ° C.
  • a method for producing a water-insoluble polysaccharide is disclosed.
  • Patent Document 2 discloses a method in which a fragmented biomass is hydrolyzed with hot water pressurized at 140 to 230 ° C. to a saturated water vapor pressure or higher for a predetermined time to decompose and extract hemicellulose, and then heated to a temperature higher than the decomposition temperature of cellulose.
  • a method for decomposing and extracting cellulose by hydrolyzing with hot water is disclosed.
  • cellulose having an average degree of polymerization of 100 or more is contact-reacted with supercritical water or subcritical water having a temperature of 250 ° C. or more and 450 ° C. or less and a pressure of 15 MPa or more and 450 MPa or less and 0.01 seconds or more and 5 seconds or less, and then cooled.
  • a method for producing glucose and / or water-soluble cellooligosaccharide which comprises hydrolyzing by contacting with subcritical water at a temperature of 250 ° C. to 350 ° C. and a pressure of 15 MPa to 450 MPa for 1 second to 10 minutes. Yes.
  • Patent Document 4 is a method for producing a saccharide from lignocellulosic biomass, in which a raw material mixture containing lignocellulosic biomass, weak acid (such as phosphoric acid), and water is heated (373-453K) under a nitrogen gas atmosphere. ) And a weak acid hydrothermal treatment process under pressure (0.1 to 5 MPa).
  • the method of Patent Document 4 may further include an enzymatic saccharification treatment step of enzymatic saccharification of undegraded cellulose after the weak acid hydrothermal treatment step.
  • Patent document 5 is used for hydrolysis treatment as a method for producing saccharides inexpensively and easily by reducing the amount of energy and water used for hydrolysis of polysaccharides in the production of saccharides from woody materials.
  • a method for producing saccharides characterized in that the treated water contains acidic water after the saccharides are recovered from the hydrolyzed extract containing the saccharide obtained by the hydrolysis treatment of woody materials.
  • the pH of the treated water used for hydrolysis is preferably 2.6 to 2.9.
  • Patent Document 6 discloses a reactor in which water vapor supplied from a boiler is pressurized with a piston to form supercritical water or subcritical water. .
  • the method of saccharifying (hydrolyzing) cellulose and hemicellulose, which are the main components of biomass, with supercritical water or subcritical water at high temperature and high pressure does not require acid neutralization compared to hydrolysis using strong acids Therefore, the processing cost is low and the processing method is friendly to the environment.
  • an acid may be added as a catalyst for the hydrolysis reaction in order to increase the decomposition efficiency of cellulose and hemicellulose.
  • the acid recovered in the present invention is an organic acid that is a weak acid, and its recovery amount is small, so that it is insufficient for improving the hydrolysis efficiency of the polysaccharide.
  • hemicellulose in cellulosic biomass is first hydrolyzed to C5 sugars.
  • the saccharified solution containing C5 saccharide is recovered by solid-liquid separation of the hydrolyzed slurry.
  • the solid content (dehydrated cake) as a residue is hydrothermally treated under higher temperature and pressure conditions, and cellulose in the cellulosic biomass is hydrolyzed to C6 sugars.
  • the saccharified solution containing C6 saccharide is recovered by solid-liquid separation of the hydrolyzed slurry.
  • Patent Document 4 discloses that an enzymatic saccharification treatment step of enzymatic saccharification of undegraded cellulose can be performed after the weak acid hydrothermal treatment step.
  • the slurry is added after the weak acid hydrothermal treatment step.
  • Cellulase is added without performing solid-liquid separation, and the reaction is performed at a temperature of 45 to 55 ° C. so that the cellulase functions for 10 to 30 hours (paragraph 0043).
  • acid does not function as a catalyst for saccharification and decomposition of cellulose to C6 saccharides, and it is performed with supercritical water or subcritical water at high temperature and high pressure.
  • saccharifying and decomposing cellulose requires a long time.
  • the present invention is a method of saccharifying and decomposing cellulosic biomass in a supercritical state or subcritical state at high temperature and pressure, and further producing ethanol by alcohol fermentation, from the outside in order to improve the saccharification and decomposition efficiency of cellulosic biomass.
  • An object of the present invention is to provide a method capable of avoiding an increase in processing cost by maximally effectively using the strong acid to be added while adding the strong acid.
  • the present inventors have added a strong acid to a slurry of cellulosic biomass to saccharify and decompose hemicellulose into C5 saccharides, and then the solid-liquid separated dehydrated cake is subjected to a hydraulic cylinder reaction. It was found that the strong acid added first could be effectively used for saccharification / decomposition of hemicellulose and cellulose by saccharification / decomposition to C6 saccharide in the vessel, and the present invention was completed.
  • the present invention Cellulose biomass slurry adjusted to pH 1.0 or more and 3.5 or less by containing strong acid is hydrothermally treated in supercritical state or subcritical state, and hemicellulose contained in cellulosic biomass is saccharified into C5 saccharides A first saccharification / decomposition step to decompose A first solid-liquid separation step for solid-liquid separation of the slurry after the first saccharification and decomposition step; In a pressurized reactor, the dehydrated cake obtained in the first solid-liquid separation step is mixed with steam and pressurized until it reaches a supercritical state or a subcritical state.
  • a second saccharification step that saccharifies into C6 saccharides A second solid-liquid separation step for solid-liquid separation of the slurry after the second saccharification and decomposition step;
  • the present invention relates to an ethanol production method using cellulosic biomass as a raw material.
  • the saccharification / decomposition efficiency of hemicellulose in the first saccharification / decomposition step is improved.
  • the present invention is characterized in that the dehydrated cake obtained in the first solid-liquid separation step is transferred into a pressure reactor and the second saccharification / decomposition step is performed.
  • strong acid remains at a sufficient concentration, so by pressurizing this dehydrated cake in a pressurized reactor until it becomes supercritical or subcritical.
  • the saccharification / decomposition efficiency of cellulose can be improved by the catalytic effect of a strong acid.
  • the reaction time can be easily adjusted by performing the second saccharification / decomposition step in the hydraulic cylinder reactor. That is, in the present invention, the saccharification / decomposition efficiency of the second saccharification / decomposition step can be increased by the catalytic effect of the strong acid, and the by-product of the organic acid can be decreased.
  • strong acid used in the present invention are, for example, sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid, but other mineral acids or organic acids may be used.
  • a strong acid is added to the cellulosic biomass slurry to be subjected to the first saccharification / decomposition step so that the pH is 1.0 or more and 3.5 or less.
  • the second saccharification / decomposition step may be performed after further adding a strong acid to the dehydrated cake obtained in the first solid-liquid separation step and adjusting the pH to 1.0 to 3.5.
  • the pressure reactor is preferably a hydraulic cylinder reactor.
  • the second saccharification / decomposition step After adding a strong acid, the saccharification / decomposition efficiency in the second saccharification / decomposition process is improved, and the water content is adjusted by adjusting the water content of the slurry or adding a strong acid to the reactor. The heating efficiency in is improved.
  • a strong acid is recovered from the saccharified solution obtained in the first saccharification / decomposition process and the second saccharification / decomposition process, and the recovered strong acid is used in the first saccharification / decomposition process and / or the second saccharification / decomposition process. preferable.
  • strong acid remains in the saccharified solution, subsequent alcohol fermentation is inhibited. For this reason, the strong acid is usually neutralized or recovered before alcohol fermentation.
  • strong acid is recovered from the C6 saccharified solution and reused in the first saccharification / decomposition step and / or the second saccharification / decomposition step, thereby suppressing the consumption of strong acid. .
  • the production cost of ethanol can be suppressed by improving the saccharification / decomposition efficiency and suppressing the consumption of strong acid. It becomes possible.
  • FIG. 1 is a conceptual diagram illustrating Embodiment 1 of the present invention.
  • FIG. 2 is a conceptual diagram illustrating Embodiment 2 of the present invention.
  • FIG. 3 is a conceptual diagram illustrating Embodiment 3 of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a conventional technique for saccharifying and decomposing cellulosic biomass in a supercritical state or a subcritical state, in which a strong acid is recovered and reused.
  • FIG. 1 shows a schematic flow diagram illustrating Embodiment 1 of the present invention.
  • cellulosic biomass eg, plant biomass such as bagasse, sugar beet residue, or straw
  • the pulverized cellulosic biomass is supplied to the mixing tank 1, added with water and strong acid, and stirred to form a slurry.
  • the pH of the slurry is 1.0 or more and 3.5 or less.
  • the slurry is preheated as necessary and then supplied to the hemicellulose saccharification reactor 2.
  • a specific example of the hemicellulose saccharification reactor 2 is preferably an indirectly heated pressure vessel.
  • the slurry is hydrothermally treated at a temperature of 140 ° C. to 200 ° C. and a pressure of 1 MPa to 5 MPa.
  • hemicellulose in the cellulosic biomass is efficiently saccharified (hydrolyzed) into C5 saccharides by the catalytic action of a strong acid.
  • the slurry is supplied from the hemicellulose saccharification reactor 2 to the flash tank 3.
  • the slurry is rapidly cooled to a temperature below the subcritical state, and the saccharification / decomposition reaction (hydrolysis reaction) of hemicellulose is completed.
  • the slurry is supplied from the flash tank 3 to the solid-liquid separator 4 and separated into the C5 saccharified solution and the dehydrated cake 1.
  • the solid-liquid separator 4 are a drum filter, a belt filter, a disk filter, or a filter press.
  • the C5 saccharified solution is supplied to the subsequent alcohol fermentation process.
  • the dewatered cake (dehydrated cake 1) is supplied to the reaction chamber 6 of the hydraulic cylinder type pressure reactor 5. At this time, since the dehydrated cake 1 normally has a water content of about 70% by mass, the strong acid added to the slurry before the first saccharification / decomposition step remains.
  • the dehydrated cake 1 is heated and pressurized without adding water, so that strong acid remains at a sufficient concentration.
  • the ratio of strong acid to cellulose in the second saccharification / decomposition process may be less than the ratio of strong acid to hemicellulose in the first saccharification / decomposition process. Therefore, even if the ratio of strong acid is small, it can be efficiently hydrolyzed to C6 saccharide.
  • the treated slurry is supplied to the flash tank 8. At this time, the slurry contains a C6 saccharified solution. By flash evaporation, the slurry is rapidly cooled to a temperature below the subcritical state, and the hydrolysis reaction of cellulose is completed.
  • the slurry is supplied from the flash tank 8 to the solid-liquid separator 9 and separated into the C6 saccharified solution and the dehydrated cake 2.
  • a specific example of the solid-liquid separator 9 is the same as that of the solid-liquid separator 4.
  • the C6 saccharified solution is supplied to the subsequent alcohol fermentation process.
  • the dehydrated cake 2 is taken out of the system as appropriate, but it can be washed with water as needed to recover the C6 saccharide adhering to the surface.
  • the C5 saccharified solution and the C6 saccharified solution are converted into ethanol using yeast in the fermentation process.
  • a well-known fermentation method can be employ
  • C5 saccharide and C6 saccharide contained in the saccharified solution are converted into ethanol.
  • a known fermentation method in the brewing field can be employed.
  • distillation process Next, the alcohol fermentation liquid obtained by the fermentation process is distilled to concentrate ethanol. Components other than solids and ethanol are removed from the distillate obtained by the distillation step.
  • a known distillation method can be adopted as a method for producing distilled liquor.
  • FIG. 2 shows a schematic flow diagram illustrating Embodiment 2 of the present invention. Since the basic flow of the present embodiment is the same as that of the first embodiment, only differences from the first embodiment will be described here. The same terminology is used for the same configuration as in the first embodiment.
  • the dehydrated cake 1 taken out from the solid-liquid separator 4 is supplied to the mixing tank 10 before being supplied to the reaction chamber 6 of the hydraulic cylinder type pressurized reactor 5.
  • the dehydrated cake 1 usually has a water content of about 70% by mass, but depending on the type of biomass or dehydration conditions, the water content is lower than 70% by mass and the solid content increases. There is also. In this case, if the dehydrated cake 1 is supplied as it is to the reaction chamber 6 of the hydraulic cylinder type pressurization reactor 5, the heat conduction to the dehydrated cake 1 is reduced, and the hydrolysis of cellulose in the second saccharification and decomposition step is not performed. It will be enough.
  • water and strong acid are added to the dehydrated cake 1 to form a slurry again, and this slurry is supplied to the reaction chamber 6 of the hydraulic cylinder type pressure reactor 5.
  • the strong acid concentration and water content of the slurry at this time are preferably adjusted in the same manner as the slurry used for the first saccharification / decomposition step.
  • FIG. 3 shows a schematic flow diagram illustrating Embodiment 3 of the present invention. Since the basic flow of the present embodiment is the same as that of the first embodiment, only differences from the first embodiment will be described here. The same terminology is used for the same configuration as in the first embodiment.
  • the C5 saccharified liquid taken out from the solid-liquid separation device 4 is supplied to the acid recovery device 11, and a strong acid is recovered.
  • the C6 saccharified liquid taken out from the solid-liquid separation device 9 is supplied to the acid recovery device 12, and a strong acid is recovered.
  • the acid recovery apparatuses 11 and 12 are a reverse osmosis membrane apparatus or an electrodialysis apparatus.
  • the deacidified C5 saccharified solution and C6 saccharified solution are supplied to the alcohol fermentation process.
  • the recovered strong acid is supplied to the mixing tanks 1 and 10 and reused in the first saccharification and decomposition process. By recovering and reusing the strong acid, the consumption of the strong acid can be reduced.
  • FIG. 4 is a conceptual diagram illustrating a conventional technique for saccharifying and decomposing cellulosic biomass in a supercritical state or a subcritical state, in which a strong acid is recovered and reused.
  • the basic flow of the prior art shown in FIG. 4 is basically the same as that of the third embodiment except that a cellulose saccharification reactor 13 is used instead of the hydraulic cylinder type pressurization reactor 5. Only differences from the third embodiment will be described. The same terminology is used for the same configuration as in the third embodiment.
  • a specific example of the cellulose saccharification reactor 13 is the same as the hemicellulose saccharification reactor 2.
  • the dehydrated cake 1 taken out from the solid-liquid separator 4 is supplied to the mixing tank 10 and water and strong acid are added.
  • the second saccharification / decomposition process is performed in the cellulose saccharification reactor 13
  • the dehydrated cake 1 needs to be adjusted to a moisture content comparable to that of the slurry supplied to the hemicellulose saccharification reactor 2. For this reason, compared with Embodiment 3, the amount of strong acid added before a 2nd saccharification decomposition process increases.
  • the strong acid recovery rate in the acid recovery apparatuses 11 and 12 is the same as that in the third embodiment. However, since the amount of strong acid added to the dehydrated cake 1 in the mixing tank 10 is large, the amount of strong acid that cannot be recovered is greater than that in the third embodiment. There must be many. Since the second saccharification / decomposition step is a higher temperature and pressure condition than the first saccharification / decomposition step, the conventional technology using the cellulose saccharification reactor 13 in that the reaction can be stopped abruptly to suppress the production of by-products. Is inferior to the third embodiment in which the hydraulic cylinder type pressurized reactor 5 is used.
  • the ethanol production method of the present invention is useful in the bioenergy field as a method for decomposing cellulosic biomass and producing ethanol.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 本発明のエタノール製造方法は、強酸を含有させることによってpH1.0以上3.5以下に調整したセルロース系バイオマスのスラリーを、超臨界状態又は亜臨界状態で熱水処理することにより、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解工程と、前記第一糖化分解工程後のスラリーを固液分離する第一固液分離工程と、油圧シリンダ型反応器内で、第一固液分離工程で得られた脱水ケーキを超臨界状態又は亜臨界状態となるまで加圧することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解工程と、前記第二糖化分解工程後のスラリーを固液分離する第二固液分離工程と、前記第一固液分離工程及び前記第二固液分離工程で得られた糖化液をアルコール発酵させる発酵工程と、前記発酵工程によって得られた発酵液を蒸留してエタノールを濃縮する蒸留工程とを有する。

Description

セルロース系バイオマスを原料とするエタノール製造方法
 本発明は、セルロース系バイオマスを超臨界状態又は亜臨界状態で加水分解して糖類を製造し、その後、糖類をアルコール発酵させることによってエタノール(バイオエタノール)を製造するための方法に関する。
 バイオマスエネルギー利用の一環として、植物の主成分であるセルロース又はヘミセルロースを分解し、エタノールを得ようとする試みがある。そこでは、得られたエタノールを、燃料用として主として自動車燃料に一部混入させたり、ガソリンの代替燃料として利用したりすることが計画されている。
 植物の主な成分には、セルロース(炭素6個から構成されるC6糖類であるグルコースの重合物)、ヘミセルロース(炭素5個から構成されるC5糖類とC6糖類の重合物)、リグニン、デンプンが含まれるが、エタノールはC5糖類、C6糖類、それらの複合体であるオリゴ糖のような糖類を原料として、酵母菌のような微生物の発酵作用によって生成される。
 セルロース又はヘミセルロースのようなセルロース系バイオマスを糖類に分解するには、1)硫酸のような強酸の酸化力により加水分解する方法、2)酵素により分解する方法、3)超臨界水又は亜臨界水の酸化力を利用する方法、の3種類が工業的に利用されようとしている。しかし、1)の酸分解法は、添加した酸が酵母菌の発酵に対して阻害物質となることから、セルロース又はヘミセルロースを糖類に分解した後、糖類をアルコール発酵させる前に添加した酸の中和処理が必須であり、その処理費用の点で経済的に実用化困難な面がある。2)の酵素分解法は、常温定圧処理が可能ではあるが、有効な酵素が見出されておらず、発見されたとしても酵素の生産コストが高くなることが予想されており、経済性の面で未だ工業規模では実現の目処が立っていない。
 3)の超臨界水又は亜臨界水によってセルロース系バイオマスを加水分解して糖類とする方法として、特許文献1は、セルロース粉末を240~340℃の加圧熱水と接触させて加水分解することを特徴とする非水溶性多糖類の製造方法を開示している。特許文献2は、細片されたバイオマスを140~230℃で飽和水蒸気圧以上に加圧した熱水で所定時間加水分解してヘミセルロースを分解抽出し、その後セルロースの分解温度以上に加熱した加圧熱水で加水分解してセルロースを分解抽出する方法を開示している。特許文献3は、平均重合度100以上のセルロースを、温度250℃以上450℃以下、圧力15MPa以上450MPa以下の超臨界水又は亜臨界水と0.01秒以上5秒以下接触反応させ、その後冷却して温度250℃以上350℃以下、圧力15MPa以上450MPa以下の亜臨界水と1秒以上10分以下接触させて加水分解することを特徴とするグルコース及び/又は水溶性セロオリゴ糖の製造方法を開示している。
 特許文献4は、リグノセルロース系バイオマスから糖類を製造する方法であって、リグノセルロース系バイオマス、弱酸(リン酸等)、及び水を含む原料混合物を、窒素ガス雰囲気下、加温(373~453K)及び加圧(0.1~5MPa)条件下で処理する弱酸水熱処理工程を含む方法を開示している。特許文献4の方法は、弱酸水熱処理工程の後に未分解のセルロースを酵素糖化する酵素糖化処理工程がさらに含まれていてもよいとされる。
 特許文献5は、木本類を原料とする糖類の製造において、多糖類の加水分解に要するエネルギー及び水の使用量を低減し、安価かつ簡易に糖類を製造する方法として、加水分解処理に使用する処理水が、木本類の加水分解処理により得られた糖を含む加水分解抽出液から糖類を回収した後の酸性水を含むことを特徴とする糖類の製造方法を開示している。加水分解に使用する処理水のpHは、2.6~2.9であるのが好ましいとされる。
 超臨界水又は亜臨界水によってバイオマスのような有機物を加水分解又は酸化分解する場合、有機物を分散させた高圧水を急加熱し、一定時間超臨界又は亜臨界状態を維持して加水分解反応を起こさせる。反応終了後、反応系を急冷して、さらなる化学反応を停止させる場合がある。このような急加熱及び急冷却が可能な反応装置の一例として、特許文献6は、ボイラから供給された水蒸気をピストンで加圧して超臨界水又は亜臨界水とする反応機を開示している。
特開2000-186102号公報 特開2002-59118号公報 特開2003-212888号公報 特開2009-22239号公報 特開2008-43229号公報 特開2002-263465号公報
 バイオマスの主な構成成分であるセルロース及びヘミセルロースを、高温高圧の超臨界水又は亜臨界水で糖化分解(加水分解)する方法は、強酸を用いる加水分解法に比べ、酸の中和処理が不要なため処理コストも安く、環境にも優しい処理方法である。しかし、超臨界水又は亜臨界水を用いる方法であっても、セルロース及びヘミセルロースの分解効率を高めるためには、酸を加水分解反応の触媒として添加する場合がある。
 ここで、特許文献5に開示されている発明では、加水分解抽出時に副生される酸を回収することによって、中和を不要とすると共に、木本類に含有されるセルロースのような多糖類の加水分解効率を向上させることを目的としている。しかし、この発明で回収される酸は、弱酸である有機酸であり、その回収量も少ないため、多糖類の加水分解効率を向上させるには不十分である。
 一方、バイオマスの主な構成成分のセルロース及びヘミセルロースを、高温高圧の超臨界水又は亜臨界水で糖化分解する方法においては、まず、セルロース系バイオマス中のヘミセルロースがC5糖類に加水分解される。C5糖類を含有する糖化液は、加水分解後のスラリーを固液分離することによって回収される。次に、残渣となる固形分(脱水ケーキ)は、より高温高圧条件で熱水処理され、セルロース系バイオマス中のセルロースがC6糖類に加水分解される。C6糖類を含有する糖化液は、加水分解後のスラリーを固液分離することによって回収される。
 特許文献4には、弱酸水熱処理工程の後に未分解のセルロースを酵素糖化する酵素糖化処理工程を行い得ることが開示されているが、この酵素糖化処理工程では、弱酸水熱処理工程後、スラリーを固液分離することなくセルラーゼを添加し、セルラーゼが機能するような45~55℃の温度条件下、10~30時間かけて行われる(段落0043)。このように、特許文献4に開示されている酵素糖化処理工程では、セルロースのC6糖類への糖化分解には、酸は触媒として機能しておらず、高温高圧の超臨界水又は亜臨界水でセルロースを糖化分解する技術と比較して、セルロースの糖化分解に長時間を要する。
 本発明は、セルロース系バイオマスを高温高圧の超臨界状態又は亜臨界状態において糖化分解し、さらにアルコール発酵によってエタノールを製造する方法であって、セルロース系バイオマスの糖化分解効率を向上させるために外部から強酸を添加しつつ、添加する強酸を最大限有効利用して、処理コストの増大を避け得る方法の提供を目的とする。
 本発明者等は、上記課題を解決するべく鋭意検討した結果、セルロース系バイオマスのスラリーに強酸を添加してヘミセルロースをC5糖類に糖化分解させた後、固液分離した脱水ケーキを油圧シリンダ型反応器内でC6糖類に糖化分解させる構成とすれば、最初に添加した強酸をヘミセルロース及びセルロースの糖化分解に最大限有効利用し得ることを見出し、本発明を完成させるに至った。
 具体的に、本発明は、
 強酸を含有させることによってpH1.0以上3.5以下に調整したセルロース系バイオマスのスラリーを、超臨界状態又は亜臨界状態で熱水処理し、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解工程と、
 前記第一糖化分解工程後のスラリーを固液分離する第一固液分離工程と、
 加圧式反応器内で、第一固液分離工程で得られた脱水ケーキを蒸気と混合して超臨界状態又は亜臨界状態となるまで加圧することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解工程と、
 前記第二糖化分解工程後のスラリーを固液分離する第二固液分離工程と、
 前記第一固液分離工程及び前記第二固液分離工程で得られた糖化液をアルコール発酵させる発酵工程と、
 前記発酵工程によって得られた発酵液を蒸留してエタノールを濃縮する蒸留工程と、
を有する、セルロース系バイオマスを原料とするエタノール製造方法に関する。
 強酸を含有させることによって、第一糖化分解工程におけるヘミセルロースの糖化分解効率が向上する。また本発明では、第一固液分離工程で得られる脱水ケーキを加圧式反応器内へと移送し、第二糖化分解工程を行うことを特徴としている。第一固液分離工程で得られる脱水ケーキには、強酸が十分な濃度で残存しているため、この脱水ケーキを加圧式反応器内で超臨界状態又は亜臨界状態となるまで加圧することにより、セルロースの糖化分解効率が強酸の触媒効果によって向上し得る。
 第二糖化分解工程は、第一糖化分解工程よりも温度及び圧力が高いため、反応時間が長くなると、C6糖類が有機酸にまで酸化される割合が高くなってしまう。しかし、油圧シリンダ型反応器内で第二糖化分解工程を行うことにより、反応時間の調整が容易となる。すなわち、本発明では、強酸の触媒効果によって第二糖化分解工程の糖化分解効率を高くし、かつ、有機酸の副成を少なくし得る。
 本発明で使用する強酸の具体例は、例えば、硫酸、塩酸、硝酸又はリン酸であるが、これら以外の鉱酸又は有機酸であってもよい。第一糖化分解工程に供するセルロース系バイオマスのスラリーには、pH1.0以上3.5以下となるように強酸が添加される。
 前記第一固液分離工程で得られた脱水ケーキに強酸をさらに添加し、pH1.0以上3.5以下に調整した後で前記第二糖化分解工程が行われるようにしてもよい。
 前記加圧式反応器は、油圧シリンダ型反応器であることが好ましい。
 第二糖化分解工程前に強酸が消費されている場合には、第二糖化分解工程のセルロースの糖化分解効率を高めにくいため、強酸を添加した上で、第二糖化分解工程を行うことが好ましい。強酸を添加することにより、第二糖化分解工程における糖化分解効率が向上すると共に、スラリーの水分含有量の調整、又は反応器に強酸を添加することにより水分含有量が調整され、加圧式反応器における加熱効率が向上する。
 前記第一糖化分解工程及び前記第二糖化分解工程で得られた糖化液から強酸を回収し、回収された強酸を前記第一糖化分解工程及び/又は前記第二糖化分解工程において使用することが好ましい。
 糖化液中に強酸が残存していると、後続するアルコール発酵が阻害される。このため、通常、アルコール発酵前に、強酸は中和されるか、又は回収される。本発明では、第二固液分離工程後、C6糖化液から強酸を回収し、前記第一糖化分解工程及び/又は前記第二糖化分解工程に再利用することにより、強酸消費量を抑制し得る。
 本発明の上記目的、他の目的、特徴及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、セルロース系バイオマスを超臨界状態又は亜臨界状態で糖化分解する際に、糖化分解効率を向上させ、強酸の消費量も抑制することによって、エタノールの製造コストを抑制することが可能となる。
図1は、本発明の実施形態1を説明する概念図を示す。 図2は、本発明の実施形態2を説明する概念図を示す。 図3は、本発明の実施形態3を説明する概念図を示す。 図4は、セルロース系バイオマスを超臨界状態又は亜臨界状態で糖化分解する方法であって、強酸を回収して再利用する従来技術を説明する概念図である。
 本発明の実施の形態について、適宜図面を参酌しながら以下に説明する。本発明は、以下の記載に限定されない。
 <実施形態1>
 (スラリーの調製)
 図1は、本発明の実施形態1を説明する概略フロー図を示す。まず、セルロース系バイオマス(例えば、バガス、甜菜かす、又はわらのような草木系バイオマス)は、前処理として数mm以下に粉砕される。粉砕後のセルロース系バイオマスは、混合槽1に供給され、水及び強酸を加えて攪拌され、スラリー化される。スラリーのpHは、1.0以上3.5以下である。
 (第一糖化分解工程)
 次に、スラリーは、必要に応じて予熱された後、ヘミセルロース糖化反応器2へと供給される。ヘミセルロース糖化反応器2の具体例は、好ましくは間接加熱型圧力容器である。ヘミセルロース糖化反応器2内で、スラリーは、温度140℃以上200℃以下、圧力1MPa以上5MPa以下で熱水処理される。この熱水処理によって、セルロース系バイオマス中のヘミセルロースは、強酸の触媒作用によってC5糖類に効率よく糖化分解(加水分解)される。
 一定時間の熱水処理が行われた後、スラリーは、ヘミセルロース糖化反応器2からフラッシュタンク3へと供給される。フラッシュ蒸発によって、スラリーは、亜臨界状態以下の温度に急冷され、ヘミセルロースの糖化分解反応(加水分解反応)が終了する。
 (第一固液分離工程)
 次に、スラリーは、フラッシュタンク3から固液分離装置4へと供給され、C5糖化液と脱水ケーキ1とに分離される。固液分離装置4の具体例は、ドラムフィルター、ベルトフィルター、ディスクフィルター又はフィルタープレスである。C5糖化液は、後続するアルコール発酵工程へと供給される。一方、脱水ケーキ(脱水ケーキ1)は、油圧シリンダ型加圧式反応器5の反応室6へと供給される。このとき、脱水ケーキ1は、通常、水分含有量が70質量%程度であるため、第一糖化分解工程前にスラリーに添加された強酸が残存している。
 (第二糖化分解工程)
 脱水ケーキ1が供給された後、油圧シリンダ型加圧式反応器5の反応室6には、ボイラのような外部の蒸気発生装置(図示せず)から蒸気が供給される。蒸気発生装置から供給される水蒸気は、150~200℃、0.5~1.6MPaとすることが好ましい。その後、反応室6は、油圧シリンダ7によって、温度350℃以上400℃以下、圧力18MPa以上30MPa以下となるまで加圧される。第二糖化分解工程の処理時間は、バイオマスの種類にもよるが、0.1~30秒間とすることが一般的である。
 第二糖化分解工程では、脱水ケーキ1に水を添加することなく加熱及び加圧処理しているため、強酸が十分な濃度で残存している。第二糖化分解工程におけるセルロースに対する強酸の割合は、第一糖化分解工程におけるヘミセルロースに対する強酸の割合よりも少なくなる場合が考えられるが、第二糖化分解工程は、第一糖化分解工程よりも高温高圧であるため、強酸の割合が少なくても、C6糖類に効率よく加水分解され得る。
 一定時間の加熱及び加圧処理(糖化分解処理)が行われた後、処理後のスラリーは、フラッシュタンク8へと供給される。このとき、スラリーには、C6糖化液が含有されている。フラッシュ蒸発によって、スラリーは、亜臨界状態以下の温度に急冷され、セルロースの加水分解反応が終了する。
 (第二固液分離工程)
 次に、スラリーは、フラッシュタンク8から固液分離装置9へと供給され、C6糖化液と脱水ケーキ2とに分離される。固液分離装置9の具体例は、固液分離装置4と同じである。C6糖化液は、後続するアルコール発酵工程へと供給される。一方、脱水ケーキ2は、適宜系外に取り出されるが、必要に応じて水で洗浄し、表面に付着しているC6糖類を回収することも可能である。
 (発酵工程)
 次に、C5糖化液及びC6糖化液は、発酵工程において、酵母を利用してエタノールへと変換される。発酵工程は、公知の発酵方法を採用することができる。発酵工程によって、糖化液に含有されていたC5糖類及びC6糖類は、エタノールへと変換される。発酵工程は、醸造分野における公知の発酵方法を採用することができる。
 (蒸留工程)
 次に、発酵工程によって得られたアルコール発酵液は、蒸留され、エタノールが濃縮される。蒸留工程によって得られる蒸留液は、固形物及びエタノール以外の成分が除去されている。蒸留工程は、蒸留酒の製造方法として公知の蒸留方法を採用することができる。
 (洗浄工程)
 第一固液分離工程及び第二固液分離工程後、脱水ケーキ1及び脱水ケーキ2を少量の水を用いて洗浄し、再度第一固液分離工程及び第二固液分離工程を行い、C5糖類及びC6糖類を回収してもよい。
 <実施形態2>
 図2は、本発明の実施形態2を説明する概略フロー図を示す。本実施形態の基本的なフローは、実施形態1と同一であるため、ここでは実施形態1との相違点についてのみ説明する。実施形態1と同じ構成には、同じ用語を使用する。
 本実施形態においては、固液分離装置4から取り出された脱水ケーキ1は、油圧シリンダ型加圧式反応器5の反応室6へと供給される前に、混合槽10へと供給される。上述したように、脱水ケーキ1は、通常、水分含有量が70質量%程度であるが、バイオマスの種類又は脱水条件によっては、水分含有量が70質量%よりも低く、固形分が多くなる場合もある。この場合、脱水ケーキ1をそのまま、油圧シリンダ型加圧式反応器5の反応室6へと供給したのでは、脱水ケーキ1に対する熱伝導が低下し、第二糖化分解工程におけるセルロースの加水分解が不十分となる。
 そこで、本実施の形態においては、脱水ケーキ1に水及び強酸を添加して再びスラリー化し、このスラリーを油圧シリンダ型加圧式反応器5の反応室6へと供給する。このときのスラリーの強酸濃度及び水分含量は、第一糖化分解工程に供するスラリーと同様に調整されることが好ましい。
 <実施形態3>
 図3は、本発明の実施形態3を説明する概略フロー図を示す。本実施形態の基本的なフローは、実施形態1と同一であるため、ここでは実施形態1との相違点についてのみ説明する。実施形態1と同じ構成には、同じ用語を使用する。
 本実施形態においては、固液分離装置4から取り出されたC5糖化液は、酸回収装置11へと供給され、強酸が回収される。同様に、固液分離装置9から取り出されたC6糖化液は、酸回収装置12へと供給され、強酸が回収される。酸回収装置11及び12の具体例は、逆浸透膜装置又は電気透析装置である。脱酸されたC5糖化液及びC6糖化液は、アルコール発酵工程へと供給される。一方、回収された強酸は、混合槽1及び10へと供給され、第一糖化分解工程及び第二糖化分解工程に再利用される。強酸を回収して再利用することによって、強酸の消費量を少なくすることが可能となる。
 <従来技術>
 図4は、セルロース系バイオマスを超臨界状態又は亜臨界状態で糖化分解する方法であって、強酸を回収して再利用する従来技術を説明する概念図を示す。図4に示される従来技術の基本的なフローは、油圧シリンダ型加圧式反応器5の替わりに、セルロース糖化反応器13が使用される以外は、実施形態3と基本的に共通するため、ここでは実施形態3との相違点についてのみ説明する。実施形態3と同じ構成には、同じ用語を使用する。セルロース糖化反応器13の具体例は、ヘミセルロース糖化反応器2と同様である。
 図4に示される従来技術では、第一糖化分解工程終了後、固液分離装置4から取り出された脱水ケーキ1は混合槽10に供給され、水及び強酸が添加される。このとき、第二糖化分解工程がセルロース糖化反応器13内で行われるために、脱水ケーキ1は、ヘミセルロース糖化反応器2に供給されるスラリーと同程度の水分含量に調整される必要がある。このため、実施形態3と比較して、第二糖化分解工程前に添加される強酸量が多くなる。
 酸回収装置11及び12における強酸回収率は、実施形態3と同じであるが、混合槽10において脱水ケーキ1に添加される強酸量が多いため、回収しきれない強酸量は、実施形態3よりも多くならざるを得ない。第二糖化分解工程は、第一糖化分解工程よりも高温高圧の条件であるため、反応を急激に停止して副生物の生成を抑制し得る点で、セルロース糖化反応器13を使用する従来技術は、油圧シリンダ型加圧式反応器5を使用する実施形態3に劣る。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明のエタノール製造方法は、セルロース系バイオマスを分解し、エタノールを製造するための方法として、バイオエネルギー分野において有用である。
  1,10:混合槽
  2:ヘミセルロース糖化反応器
  3,8:フラッシュタンク
  4,9:固液分離装置
  5:油圧シリンダ型加圧式反応器
  6:反応室
  7:油圧シリンダ
 11,12:酸回収装置
 13:セルロース糖化反応器

Claims (4)

  1.  強酸を含有させることによってpH1.0以上3.5以下に調整したセルロース系バイオマスのスラリーを、超臨界状態又は亜臨界状態で熱水処理し、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解工程と、
     前記第一糖化分解工程後のスラリーを固液分離する第一固液分離工程と、
     加圧式反応器内で、第一固液分離工程で得られた脱水ケーキを蒸気と混合して超臨界状態又は亜臨界状態となるまで加圧することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解工程と、
     前記第二糖化分解工程後のスラリーを固液分離する第二固液分離工程と、
     前記第一固液分離工程及び前記第二固液分離工程で得られた糖化液をアルコール発酵させる発酵工程と、
     前記発酵工程によって得られた発酵液を蒸留してエタノールを濃縮する蒸留工程と、
    を有する、セルロース系バイオマスを原料とするエタノール製造方法。
  2.  前記第一固液分離工程で得られた脱水ケーキに強酸をさらに添加し、pH1.0以上3.5以下に調整した後で前記第二糖化分解工程が行われる、請求項1に記載のエタノール製造方法。
  3.  前記第一糖化分解工程及び前記第二糖化分解工程で得られた糖化液から強酸を回収し、回収された強酸を前記第一糖化分解工程及び/又は前記第二糖化分解工程において使用する、請求項2に記載のエタノール製造方法。
  4.  前記加圧式反応器が油圧シリンダ型反応器である、請求項1に記載のエタノール製造方法。
PCT/JP2012/006049 2011-09-30 2012-09-24 セルロース系バイオマスを原料とするエタノール製造方法 WO2013046623A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218035A JP2015015902A (ja) 2011-09-30 2011-09-30 セルロース系バイオマスを原料とするエタノール製造方法
JP2011-218035 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046623A1 true WO2013046623A1 (ja) 2013-04-04

Family

ID=47994707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006049 WO2013046623A1 (ja) 2011-09-30 2012-09-24 セルロース系バイオマスを原料とするエタノール製造方法

Country Status (2)

Country Link
JP (1) JP2015015902A (ja)
WO (1) WO2013046623A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122995A (ja) * 2013-12-26 2015-07-06 川崎重工業株式会社 新規糖化液製造方法
KR20160097264A (ko) * 2013-12-11 2016-08-17 베르살리스 에스.피.에이. 바이오매스로부터 당을 제조하는 방법
CN110368885A (zh) * 2019-07-23 2019-10-25 中国农业大学 一种生物质连续水热液化制备生物原油的装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370157B2 (ja) * 2019-03-29 2023-10-27 三菱重工業株式会社 廃棄物処理システム及び廃棄物処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263465A (ja) * 2001-03-07 2002-09-17 Saka Shiro 超臨界水又は亜臨界水による有機物質等の反応装置
JP2006075007A (ja) * 2004-09-07 2006-03-23 Tsukishima Kikai Co Ltd リグノセルロースの前処理方法及びエタノール製造方法
JP2009022239A (ja) * 2007-07-23 2009-02-05 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマスから糖類を製造する方法
JP2010166831A (ja) * 2009-01-20 2010-08-05 National Institute Of Advanced Industrial Science & Technology 単糖の製造方法
JP2010253348A (ja) * 2009-04-22 2010-11-11 Idemitsu Kosan Co Ltd バイオマスの加水分解方法、および、エタノールの製造方法
JP2010279255A (ja) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd バイオマスの糖化方法
JP2011032388A (ja) * 2009-08-03 2011-02-17 Nippon Steel Engineering Co Ltd 燃料製造システム及び燃料の製造方法
WO2011027389A1 (ja) * 2009-09-02 2011-03-10 川崎重工業株式会社 リグノセルロース系バイオマスからエタノールを製造する方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263465A (ja) * 2001-03-07 2002-09-17 Saka Shiro 超臨界水又は亜臨界水による有機物質等の反応装置
JP2006075007A (ja) * 2004-09-07 2006-03-23 Tsukishima Kikai Co Ltd リグノセルロースの前処理方法及びエタノール製造方法
JP2009022239A (ja) * 2007-07-23 2009-02-05 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマスから糖類を製造する方法
JP2010166831A (ja) * 2009-01-20 2010-08-05 National Institute Of Advanced Industrial Science & Technology 単糖の製造方法
JP2010253348A (ja) * 2009-04-22 2010-11-11 Idemitsu Kosan Co Ltd バイオマスの加水分解方法、および、エタノールの製造方法
JP2010279255A (ja) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd バイオマスの糖化方法
JP2011032388A (ja) * 2009-08-03 2011-02-17 Nippon Steel Engineering Co Ltd 燃料製造システム及び燃料の製造方法
WO2011027389A1 (ja) * 2009-09-02 2011-03-10 川崎重工業株式会社 リグノセルロース系バイオマスからエタノールを製造する方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160097264A (ko) * 2013-12-11 2016-08-17 베르살리스 에스.피.에이. 바이오매스로부터 당을 제조하는 방법
KR102397571B1 (ko) * 2013-12-11 2022-05-12 베르살리스 에스.피.에이. 바이오매스로부터 당을 제조하는 방법
JP2015122995A (ja) * 2013-12-26 2015-07-06 川崎重工業株式会社 新規糖化液製造方法
CN110368885A (zh) * 2019-07-23 2019-10-25 中国农业大学 一种生物质连续水热液化制备生物原油的装置及方法

Also Published As

Publication number Publication date
JP2015015902A (ja) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5771278B2 (ja) セルロース系バイオマスを原料とするエタノール製造方法
WO2013046622A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
JP7149332B2 (ja) 繊維系バイオマスからセルロース、低分散のヘミセルロース及びリグニン解離ポリフェノールを製造する方法
AU2005289333B2 (en) Continuous flowing pre-treatment system with steam recovery
EP2191061B1 (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
CN104411830B (zh) 生物质的超临界水解
JPWO2008050740A1 (ja) セルロース系バイオマスの糖化分解方法及び糖化分解装置
WO2012042840A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
JP5314917B2 (ja) セルロース系バイオマスの糖化分解方法及び糖化分解装置
JP2010253348A (ja) バイオマスの加水分解方法、および、エタノールの製造方法
JP5103260B2 (ja) セルロース系バイオマスの糖化分解方法及び糖化分解装置
US20200354891A1 (en) Low temperature sulfur dioxide pretreatment
Mussatto Biomass pretreatment with acids
WO2013046623A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
JP2011045277A (ja) セルロース系エタノール生産システムおよび生産方法
US20160060667A1 (en) Continuous countercurrent enzymatic hydrolysis of pretreated biomass at high solids concentrations
JP2014158437A (ja) リグノセルロース系バイオマスの糖化液、及びその製造方法と使用方法
WO2012056872A1 (ja) セルロース系バイオマスの糖液製造方法および装置
JP2015035973A (ja) 糖液製造方法、および、バイオマス由来物製造方法
WO2013103086A1 (ja) 単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置
US9850551B2 (en) Saccharified solution production method and saccharified solution production apparatus that use cellulosic biomass as starting material
JP2018099082A (ja) セルロース系バイオマスを原料とする糖化液製造方法
WO2019124143A1 (ja) セルロース系バイオマスを原料とする酵素法によるバイオエタノール製造方法
JP5130182B2 (ja) 空果房糖化の前処理方法及びその前処理方法を用いたエタノールの製造方法
WO2014024220A1 (ja) セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP