WO2014024220A1 - セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置 - Google Patents

セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置 Download PDF

Info

Publication number
WO2014024220A1
WO2014024220A1 PCT/JP2012/005012 JP2012005012W WO2014024220A1 WO 2014024220 A1 WO2014024220 A1 WO 2014024220A1 JP 2012005012 W JP2012005012 W JP 2012005012W WO 2014024220 A1 WO2014024220 A1 WO 2014024220A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
saccharified solution
saccharification
solid
concentration
Prior art date
Application number
PCT/JP2012/005012
Other languages
English (en)
French (fr)
Inventor
浩雅 楠田
憲明 和泉
浩範 田尻
西野 毅
津澤 正樹
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2012/005012 priority Critical patent/WO2014024220A1/ja
Publication of WO2014024220A1 publication Critical patent/WO2014024220A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/02Pretreatment of the finely-divided materials before digesting with water or steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing a saccharide by hydrolyzing cellulosic biomass in a supercritical state or a subcritical state, and an apparatus used in such a method.
  • ethanol As part of biomass energy utilization, there are attempts to obtain ethanol by decomposing cellulose or hemicellulose, which are the main components of plants. There, it is planned that the obtained ethanol is partly mixed in automobile fuel mainly for fuel or used as an alternative fuel for gasoline.
  • the main components of the plant are cellulose (polymer of glucose, a C6 monosaccharide composed of 6 carbons), hemicellulose (polymer of C5 and C6 monosaccharides composed of 5 carbons), lignin Starch is included, but ethanol is produced by fermentation of microorganisms such as yeast using saccharides such as C5 monosaccharides, C6 monosaccharides, and oligosaccharides that are complex thereof as raw materials.
  • Patent Document 1 discloses that in addition to obtaining saccharides from woody biomass with high yield and high efficiency, A method for producing a saccharide that can separate and recover a saccharide containing a saccharide and a C6 monosaccharide and a saccharide containing a C6 monosaccharide is disclosed.
  • the method for producing saccharides of Patent Document 1 includes a first slurry heating step (S1) in which a slurry obtained by adding high-temperature and high-pressure water to woody biomass, and the heat-treated slurry into a liquid component and a solid component.
  • a second separation step (S4) that separates into the solid component and a useful component acquisition step (S5) that removes water from the separated liquid component to obtain saccharides, and a useful component acquisition step (S5)
  • water is removed from the liquid component separated in the first separation step (S2) to obtain saccharides.
  • Patent Document 2 discloses a sugar that enables a cellulose-containing biomass-derived sugar solution to be filtered without clogging the membrane due to biomass-derived solid content when the sugar solution is concentrated or purified using a nanofiltration membrane or a reverse osmosis membrane.
  • a method for producing a liquid and an apparatus for producing a sugar liquid are disclosed.
  • the method for producing a sugar solution disclosed in Patent Document 2 includes steps (1) and (1) in which an enzyme saccharified solution is obtained by adding a saccharifying enzyme to a pretreated product obtained by pretreating cellulose-containing biomass.
  • the enzyme saccharified solution obtained in step 2) is subjected to cross flow filtration through a porous microfiltration membrane having an average pore size of 0.25 ⁇ m or less, and obtained in steps (2) and (2) to obtain a sugar solution as a membrane permeation fraction.
  • the sugar solution is subjected to alcohol fermentation using yeast to produce ethanol (bioethanol).
  • yeast yeast to produce ethanol
  • the concentration of the sugar solution is low, the concentration of ethanol obtained by alcohol fermentation is also low.
  • the energy load at the time of distilling and concentrating ethanol increases, and the total cost required to produce bioethanol increases.
  • the saccharified solution supplied to alcohol fermentation is generally concentrated by a concentration device such as a reverse osmosis membrane device, a distillation device or an electrodialysis device, as in the method disclosed in Patent Document 2. is there.
  • the C5 saccharified solution contains more organic components such as lignin and inorganic components than the C6 saccharified solution, so when using any of reverse osmosis membrane device, distillation device or electrodialyzer.
  • This scaling problem occurs both when the C5 saccharified solution is concentrated independently and when it is concentrated after mixing with the C6 saccharified solution.
  • the maintenance frequency increases for scale removal, and the operation rate decreases.
  • chemical cleaning using a chemical solution such as a strong acid is performed.
  • a saccharified solution is lost when the equipment is shut down and restarted before and after the chemical cleaning.
  • the equipment and cost for chemical processing after use are also required.
  • An object of the present invention is to provide a method for producing a saccharified solution having a small concentration load of the saccharified solution and a low total cost, and a saccharified solution producing apparatus used for such a method for producing a saccharified solution.
  • the present inventors omit the concentration of the C5 saccharified solution and concentrate the C6 saccharified solution.
  • the cellulosic biomass slurry to be used for the hydrolysis of hemicellulose can be prepared to reduce the concentration load of the saccharified solution and reduce the total cost. I came to let you.
  • the present invention A first saccharification / decomposition step of saccharifying and decomposing hemicellulose contained in cellulosic biomass into C5 saccharides by hydrothermal treatment of the cellulosic biomass slurry; A first solid-liquid separation step for solid-liquid separation of the slurry after the first saccharification and decomposition step; A reslurrying step of adding water to the dehydrated cake obtained in the first solid-liquid separation step to form a slurry; A second saccharification and decomposition step of saccharifying and decomposing cellulose contained in cellulosic biomass into C6 saccharides by hydrothermal treatment of the slurry obtained in the reslurry step; A second solid-liquid separation step for solid-liquid separation of the slurry after the second saccharification and decomposition step; A concentration step of concentrating the C6 saccharified solution obtained in the second solid-liquid separation step; Have The present invention relates to a method for producing a saccharified solution, wherein the concentrated C6 saccharified solution obtained in the cell
  • the solid concentration of the slurry used for the first saccharification / decomposition process and the second saccharification / decomposition process is preferably 15% by mass or more and 40% by mass or less.
  • the sugar concentration of the saccharified solution after the first saccharification / decomposition step and the second saccharification / decomposition step is increased, and the latter concentration
  • the concentration load of the process can be reduced.
  • the concentration step it is preferable to concentrate the C6 saccharified solution to a saccharide concentration of 10% by mass or more.
  • the concentration of saccharified solution may not exceed 10% by mass.
  • the C6 saccharified solution is concentrated by a concentrating device such as a reverse osmosis membrane device (RO membrane device) before alcohol fermentation, which is the latter stage, and the saccharide concentration in the saccharified solution (C5 saccharide and Concentration of C6 saccharides in the total saccharide) is 10% by mass or more, and even when mixed with non-concentrated C5 saccharified liquid, a suitable saccharide concentration is maintained in the subsequent fermentation step, Decrease in alcohol fermentation efficiency can be prevented.
  • a concentrating device such as a reverse osmosis membrane device (RO membrane device) before alcohol fermentation, which is the latter stage
  • an acid catalyst such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid or lactic acid to the slurry in the second saccharification and decomposition step.
  • the added acid catalyst can be recovered with the C6 saccharified solution and reused.
  • the amount of acid catalyst added is preferably adjusted so that the slurry has a pH of 1.0 to 3.5.
  • the present invention also provides A first slurry preparation device for preparing a slurry of cellulosic biomass; A first saccharification / decomposition device that saccharifies and decomposes hemicellulose contained in cellulosic biomass into C5 saccharides by hydrothermal treatment of the slurry prepared in the first slurry preparation device; A first solid-liquid separation device for solid-liquid separation of the slurry taken out from the first saccharification and decomposition device, A second slurry preparation device for adding water to the dehydrated cake taken out from the first solid-liquid separation device to form a slurry; A second saccharification / decomposition device that saccharifies and decomposes cellulose contained in cellulosic biomass into C6 saccharides by hydrothermal treatment of the slurry prepared in the second slurry preparation device; A second solid-liquid separation device for solid-liquid separation of the slurry taken out from the second saccharification and decomposition device, A concentrator for concentrating the C6 saccharified liquid taken out
  • the occurrence of scaling in the concentration process can be suppressed, and the load on the distillation process following the concentration process and the fermentation process can be reduced.
  • the schematic flowchart explaining the saccharified liquid manufacturing apparatus of an Example is shown.
  • the schematic flowchart explaining the saccharified liquid manufacturing apparatus of a comparative example is shown.
  • FIG. 1 is a schematic flow diagram illustrating a saccharified solution production apparatus according to an embodiment of the present invention.
  • cellulosic biomass for example, plant biomass such as bagasse, sugar beet or straw
  • the pulverized cellulosic biomass is supplied to the first slurry preparation tank 1, and after a steady operation, a concentrated C6 saccharified solution, which will be described later, is added and stirred to form a slurry.
  • the solid concentration of the slurry is preferably adjusted to 15 to 40% by mass.
  • water is added to the first slurry preparation tank 1 to prepare a slurry.
  • the slurry is preheated as necessary, and then supplied to the first saccharification / decomposition apparatus 2 (hemicellulose saccharification reactor).
  • a specific example of the first saccharification / decomposition apparatus 2 is preferably an indirectly heated pressure vessel.
  • the slurry is hydrothermally treated at a temperature of 140 ° C. to 200 ° C. and a pressure of 1 MPa to 5 MPa. By this hot water treatment, hemicellulose in the cellulosic biomass is saccharified (hydrolyzed) into C5 sugars.
  • the slurry is supplied from the first saccharification / decomposition device 2 to the flash tank 3.
  • the slurry is rapidly cooled to a temperature below the subcritical state, and the saccharification / decomposition reaction (hydrolysis reaction) of hemicellulose is completed.
  • the slurry is supplied from the flash tank 3 to the first solid-liquid separator 4 and separated into the C5 and C6 saccharified liquid and the dehydrated cake 1.
  • the solid-liquid separator 4 are a drum filter, a belt filter, a disk filter, or a filter press.
  • C5 and C6 saccharified solutions are supplied to the fermenter 5 (alcohol fermenter) without being concentrated.
  • the dehydrated cake (dehydrated cake 1) is supplied to the second slurry preparation tank 6. At this time, since the dehydrated cake 1 normally has a water content of about 60 to 70% by mass, water is supplied to the second slurry preparation tank 6 to prepare a slurry.
  • the solid concentration of the slurry is preferably adjusted to 15 to 40% by mass.
  • the prepared slurry is supplied to the second saccharification / decomposition device 7 (cellulose saccharification reactor).
  • a specific example of the second saccharification / decomposition apparatus 7 is preferably an indirectly heated pressure vessel.
  • an acid (acid catalyst) may be added to the slurry.
  • the amount of acid added is adjusted so that the slurry has a pH of 1.0 to 3.5.
  • the added acid functions as an acid catalyst in the second saccharification / decomposition step.
  • the added acid can be recovered from the C6 saccharified solution by an acid recovery device.
  • the slurry is hydrothermally treated at a temperature of 240 ° C. to 300 ° C. and a pressure of 4 MPa to 10 MPa.
  • the cellulose in the cellulosic biomass is saccharified (hydrolyzed) into C6 sugars.
  • the slurry After completion of the second saccharification / decomposition step, the slurry is supplied to the flash tank 8. At this time, the slurry contains a C6 saccharified solution. By flash evaporation, the slurry is rapidly cooled to a temperature below the subcritical state, and the hydrolysis reaction of cellulose is completed.
  • the slurry is supplied from the flash tank 8 to the second solid-liquid separator 9 and separated into the C6 saccharified solution and the dehydrated cake 2.
  • a specific example of the second solid-liquid separator 9 is the same as that of the first solid-liquid separator 4.
  • the C6 saccharified solution is supplied to the concentrating device 10.
  • the dehydrated cake 2 is appropriately discarded out of the system.
  • the C6 saccharified solution is concentrated to a saccharide concentration of 10% by mass or more using a concentration device 10 such as an RO membrane device, a distillation device or an electrodialysis device.
  • concentration device 10 such as an RO membrane device, a distillation device or an electrodialysis device.
  • the concentration of saccharide after concentration varies depending on the performance of the concentration device 10, but is preferably set to a higher concentration. It is practical that the saccharide concentration after concentration is about 10% by mass to 50% by mass.
  • the concentrated C6 saccharified liquid is returned to the first slurry preparation tank 1 through the concentrated saccharified liquid return path 11 to prepare a slurry of cellulosic biomass (cellulose biomass supplied to the first slurry preparation tank after the second time). Used for.
  • the pure water separated by the concentrating device 10 is appropriately drained or reused.
  • the C6 saccharified solution is removed from the solid using a solid-liquid separation device such as a filter device. It is preferable.
  • the saccharified liquid in the fermenter 5 (mixed liquid of C5 saccharified liquid and concentrated C6 saccharified liquid) is simultaneously converted into ethanol using yeast.
  • a well-known alcohol fermentation method can be employ
  • C5 saccharide and C6 saccharide contained in the saccharified solution are converted into ethanol.
  • distillation process The alcohol fermentation broth after the fermentation process is supplied to the distillation apparatus 15 and distilled to concentrate ethanol. Components other than solids and ethanol are removed from the distillate obtained by the distillation step.
  • a known distillation method can be adopted as a method for producing distilled liquor.
  • FIG. 2 shows a schematic flow chart for explaining a saccharified solution production apparatus (prior art) of a comparative example. Since the basic flow of the comparative example is common to the embodiment, only the differences from the embodiment will be described here. Moreover, the same term is used for the same structure as an Example.
  • water is supplied from the outside to the first slurry preparation tank 1 to prepare a cellulosic biomass slurry. Further, the C5 saccharified liquid taken out from the first solid-liquid separation device 4 is supplied to the concentration device 14 and concentrated.
  • a specific example of the concentration device 14 is the same as that of the concentration device 10. Permeated water is used when the RO membrane device is used as the concentrating device 14, condensed water is used when the distillation device is used as the concentrating device 14, and diluted water is used when the electrodialyzer is used as the concentrating device 14. Drain appropriately.
  • the concentrated C5 saccharified solution is supplied to the fermenter 5 and mixed with the concentrated C6 saccharified solution, and then the fermentation process is performed.
  • the C6 saccharified liquid taken out from the second solid-liquid separation device 9 is supplied to the concentration device 10 and concentrated.
  • Permeated water is used when the RO membrane device is used as the concentrating device 10
  • condensed water is used when the distillation device is used as the concentrating device 10
  • diluted water is used when the electrodialyzer is used as the concentrating device 10. Drain appropriately.
  • the concentrated C6 saccharified solution is supplied to the fermenter 5 and mixed with the concentrated C5 saccharified solution, and then the fermentation process is performed.
  • the flow of the comparative example water is supplied from the outside at two locations of the first slurry preparation tank 1 and the second slurry preparation tank 6. Then, water is removed from the saccharified solution at two locations of the concentration device 10 and the concentration device 14. For this reason, compared with the Example in which water is supplied from the outside in one place of the 2nd slurry preparation tank 6 at the time of steady operation, the flow of a comparative example has a large concentration load. Moreover, since the concentration apparatus 14 has many organic components and inorganic components contained in the C5 saccharified solution, scaling is likely to occur compared to the concentration apparatus 10.
  • the saccharified liquid production method and saccharified liquid production apparatus of the present invention are useful in the bioenergy field as a method and apparatus for decomposing cellulosic biomass and producing a saccharified liquid.
  • First slurry preparation tank 2 First saccharification / decomposition unit (hemicellulose saccharification reactor) 3: Flash tank 4: First solid-liquid separator 5: Fermenter (alcohol fermenter) 6: Second slurry preparation tank 7: Second saccharification / decomposition device (cellulose saccharification reactor) 8: Flash tank 9: Second solid-liquid separator 10: Concentrator 11: Concentrated saccharified solution return path 14: Concentrator 15: Distiller

Abstract

 本発明は、糖化液の濃縮負荷が小さく、トータルコストの低い糖化液製造方法、及びそのような糖化液製造方法に使用される糖化液製造装置の提供を目的とする。 本発明の糖化液製造方法は、ヘミセルロース及びセルロースを順次、超臨界水又は亜臨界水によって加水分解する糖化分解方法を採用する糖化液の製造方法において、C5糖化液の濃縮を省略し、C6糖化液の濃縮工程で得られる濃縮C6糖化液を用いて、ヘミセルロースの加水分解に供するセルロース系バイオマスのスラリーを調製することを特徴とする。C5糖化液の濃縮を省略し、C6糖化液だけを濃縮するため、濃縮装置にスケーリングが発生しにくい。また、C6糖化液の濃縮工程で得られる濃縮C6糖化液を用いてスラリーを調製するため、外部から添加する水量が少なく、C6糖化液の濃縮負荷が小さい。

Description

セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置
 本発明は、セルロース系バイオマスを超臨界状態又は亜臨界状態で加水分解して糖類を製造するための方法、及びそのような方法に使用される装置に関する。
 バイオマスエネルギー利用の一環として、植物の主成分であるセルロース又はヘミセルロースを分解し、エタノールを得ようとする試みがある。そこでは、得られたエタノールを、燃料用として主として自動車燃料に一部混入させたり、ガソリンの代替燃料として利用したりすることが計画されている。
 植物の主な成分には、セルロース(炭素6個から構成されるC6単糖であるグルコースの重合物)、ヘミセルロース(炭素5個から構成されるC5単糖とC6単糖の重合物)、リグニン、デンプンが含まれるが、エタノールはC5単糖、C6単糖、それらの複合体であるオリゴ糖のような糖類を原料として、酵母菌のような微生物の発酵作用によって生成される。
 セルロース又はヘミセルロースのようなセルロース系バイオマスを糖類に分解するには、1)硫酸のような強酸の酸化力により加水分解する方法、2)酵素により分解する方法、3)超臨界水又は亜臨界水の酸化力を利用する方法、の3種類が工業的に利用されようとしている。しかし、1)の酸分解法は、添加した酸が酵母菌の発酵に対して阻害物質となることから、セルロース又はヘミセルロースを糖類に分解した後、糖類をアルコール発酵させる前に添加した酸の中和処理が必須であり、その処理費用の点で経済的に実用化困難な面がある。2)の酵素分解法は、常温定圧処理が可能ではあるが、有効な酵素が見出されておらず、発見されたとしても酵素の生産コストが高くなることが予想されており、経済性の面で未だ工業規模では実現の目処が立っていない。
 3)の超臨界水又は亜臨界水によってセルロース系バイオマスを加水分解して糖類とする方法として、特許文献1は、木質バイオマスから、高収率、高効率で糖類を得ることに加え、C5単糖とC6単糖を含む糖類と、C6単糖を含む糖類を分離して回収することができる糖類の製造方法を開示している。特許文献1の糖類の製造方法は、木質バイオマスに、高温高圧水を加えたスラリーを加熱処理する第1スラリー加熱工程(S1)と、加熱処理されたスラリーを、液体成分と、固体成分とに分離する第1分離工程(S2)と、分離された固体成分に、水を加えてスラリーとし、当該スラリーを加熱処理する第2スラリー加熱工程(S3)と、加熱処理されたスラリーを、液体成分と、固体成分とに分離する第2分離工程(S4)と、分離された液体成分から水を除去して糖類を取得する有用成分取得工程(S5)と、を含み、有用成分取得工程(S5)において、糖類を取得することに加え、さらに、第1分離工程(S2)で分離された液体成分から水を除去して、糖類を取得することを特徴とする。
 特許文献2は、セルロース含有バイオマス由来の糖液をナノ濾過膜又は逆浸透膜を用いて濃縮又は精製するときに、バイオマス由来の固形分による膜の目詰まりなく濾過することを可能にする、糖液を製造する方法及び糖液を製造する装置を開示している。特許文献2に開示されている糖液を製造する方法は、セルロース含有バイオマスを前処理して得られた前処理物に糖化酵素を添加して酵素糖化液を得る工程(1)、工程(1)で得られる酵素糖化液を、平均細孔径が0.25μm以下の多孔性精密濾過膜に通じてクロスフロー濾過し、膜透過画分として糖溶液を得る工程(2)、工程(2)で得られる糖溶液をナノ濾過膜及び/又は逆浸透膜に通じて濾過し、膜非透過画分として精製された糖液を得る工程(3)、を含むことを特徴としている。
特開2010-81855号公報 特開2011-223975号公報
 セルロース系バイオマスを糖類に分解した後、糖液は酵母を用いてアルコール発酵され、エタノール(バイオエタノール)が生成される。糖液の濃度が低いと、アルコール発酵によって得られるエタノールの濃度も低くなる。その結果、エタノールを蒸留して濃縮する際のエネルギー負荷が大きくなり、バイオエタノールを製造するために要するトータルコストが増大する。このため、アルコール発酵に供給する糖化液は、特許文献2に開示されている方法のように、逆浸透膜装置、蒸留装置又は電気透析装置のような濃縮装置によって濃縮されることが一般的である。
 一方、特許文献1に開示されているような、超臨界水又は亜臨界水によってセルロース系バイオマスを加水分解して糖類とする方法では、ヘミセルロース及びセルロースは、異なる温度条件下で分解され、それぞれからC5糖化液及びC6糖化液が得られる。C5糖化液及びC6糖化液は、混合された後、同時にアルコール発酵されることが一般的であり、アルコール発酵前に濃縮装置によって濃縮される。
 しかし、C5糖化液は、C6糖化液と比較してリグニンのような有機成分、及び無機成分を多く含有しているため、逆浸透膜装置、蒸留装置又は電気透析装置のいずれを使用する場合にも、スケーリングが発生しやすく、薬液洗浄のコストが高いという問題があった。このスケーリングの問題は、C5糖化液を独立して濃縮する場合にも、C6糖化液と混合した後に濃縮する場合にも共通して発生する。スケーリングが発生した場合、スケール除去のためにメンテナンス頻度が増加し、操業率が低下する。スケール除去には強酸のような薬液を用いた薬液洗浄が行われるが、薬液洗浄の前後における設備の運転停止及び再操業に際して、糖化液の損失も起こる。また、使用後の薬液処理のための設備及びコストも必要となる。
 さらに、セルロース系バイオマスのスラリーを調製する際に添加される水は、C5糖化液及びC6糖化液を濃縮する際に除去しなければならないため、スラリーの取り扱いを良くするために水の添加量を増やせば、後続する濃縮工程の負荷が増加してしまうという問題もあった。
 本発明は、糖化液の濃縮負荷が小さく、トータルコストの低い糖化液製造方法、及びそのような糖化液製造方法に使用される糖化液製造装置の提供を目的とする。
 本発明者等は、ヘミセルロース及びセルロースを順次、超臨界水又は亜臨界水によって加水分解する糖化分解方法を採用する糖化液製造方法において、C5糖化液の濃縮を省略し、C6糖化液の濃縮工程で得られる濃縮C6糖化液を用いて、ヘミセルロースの加水分解に供するセルロース系バイオマスのスラリーを調製すれば、糖化液の濃縮負荷を小さくし、トータルコストを低くし得ることを見出し、本発明を完成させるに至った。
 具体的に、本発明は、
  セルロース系バイオマスのスラリーを熱水処理することにより、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解工程と、
 前記第一糖化分解工程後のスラリーを固液分離する第一固液分離工程と、
 前記第一固液分離工程で得られた脱水ケーキに水を添加してスラリー化する再スラリー化工程と、
 前記再スラリー化工程で得られたスラリーを熱水処理することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解工程と、
 前記第二糖化分解工程後のスラリーを固液分離する第二固液分離工程と、
 前記第二固液分離工程で得られたC6糖化液を濃縮する濃縮工程と、
を有し、
 前記濃縮工程で得られた濃縮C6糖化液を前記第一糖化分解工程に供するスラリーの調製に使用することを特徴とする糖化液製造方法に関する。
 C5糖化液の濃縮を省略し、リグニン含量の低いC6糖化液だけを濃縮するために、C6糖化液濃縮の際のスケーリングのみ対処すれば足りる。また、C6糖化液濃縮により得られる濃縮C6糖化液を用いて、ヘミセルロースの加水分解に供するセルロース系バイオマスのスラリーを調製することにより、外部から添加する水量を減少させ、糖化液の濃縮工程における濃縮負荷も軽減し得る。C5糖化液は濃縮されないが、濃縮C6糖化液と混合されて発酵工程に供されるため、アルコール発酵に供される混合糖化液の糖濃度は高くなり、エタノール濃度は高くなる。
 前記第一糖化分解工程及び前記第二糖化分解工程に供するスラリーの固形物濃度は、15質量%以上40質量%以下であることが好ましい。
 固形物濃度(セルロース系バイオマスの濃度)を15質量%以上40質量%以下に調整することにより、第一糖化分解工程及び第二糖化分解工程後の糖化液の糖濃度が高くなり、後段の濃縮工程の濃縮負荷を軽減し得る。
 前記濃縮工程においては、C6糖化液を糖類濃度10質量%以上に濃縮することが好ましい。
 第一糖化分解工程及び第二糖化分解工程におけるスラリー濃度(固形物濃度)を、それぞれ15質量%以上40質量%以下に調整するだけでは、第一糖化分解工程及び第二糖化分解工程によって得られる糖化液の濃度(糖濃度)は、10質量%以上にはならない場合がある。
 そこで、本発明の糖化液製造方法では、後段となるアルコール発酵前にC6糖化液を逆浸透膜装置(RO膜装置)のような濃縮装置によって濃縮し、糖化液中の糖類濃度(C5糖類及びC6糖類を合計した糖類全体の濃度)を10質量%以上になるように濃縮することにより、濃縮されていないC5糖化液と混合しても、後続する発酵工程において好適な糖類濃度を維持し、アルコール発酵効率の低下を防止し得る。
 前記再スラリー化工程において、スラリーに酸触媒を添加することが好ましい。
 セルロースはヘミセルロースと比較して加水分解されにくいため、第二糖化分解工程においてスラリーに硫酸、塩酸、硝酸、リン酸、蟻酸、酢酸又は乳酸のような酸触媒を添加することが好ましい。添加された酸触媒は、C6糖化液と共に回収され、再利用されることが可能である。
 酸触媒を使用する場合、酸触媒の添加量は、スラリーがpH1.0以上3.5以下となるような量に調整されることが好ましい。
 本発明はまた、
 セルロース系バイオマスのスラリーを調製する第一スラリー調製装置と、
 前記第一スラリー調製装置で調製されるスラリーを熱水処理することにより、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解装置と、
 前記第一糖化分解装置から取り出されたスラリーを固液分離する第一固液分離装置と、
 前記第一固液分離装置から取り出された脱水ケーキに水を添加してスラリー化する第二スラリー調製装置と、
 前記第二スラリー調製装置で調製されたスラリーを熱水処理することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解装置と、
 前記第二糖化分解装置から取り出されたスラリーを固液分離する第二固液分離装置と、
 前記第二固液分離装置から取り出されたC6糖化液を濃縮する濃縮装置と、
 前記濃縮装置から取り出される濃縮C6糖化液を前記第一スラリー調製装置に供給する濃縮糖化液返送経路と、
を備える、糖化液製造装置に関する。
 本発明によれば、濃縮工程におけるスケーリング発生を抑制し、濃縮工程及び発酵工程に後続する蒸留工程の負荷を軽減し得る。
実施例の糖化液製造装置を説明する概略フロー図を示す。 比較例の糖化液製造装置を説明する概略フロー図を示す。
 本発明の実施の形態について、図面を参照しながら説明する。本発明は、以下の記載に限定されない。
 [実施例]
 (スラリーの調製)
 図1は、本発明の実施例の糖化液製造装置を説明する概略フロー図を示す。まず、セルロース系バイオマス(例えば、バガス、甜菜かす、又はわらのような草木系バイオマス)は、前処理として粒径数mm以下に粉砕される。粉砕後のセルロース系バイオマスは第一スラリー調製槽1に供給され、定常運転後は、後述する濃縮されたC6糖化液を加えて攪拌され、スラリー化される。スラリーの固形物濃度は、15~40質量%に調整されることが好ましい。なお、運転開始時には、第一スラリー調製槽1に水を加えてスラリーを調製する。
 (第一糖化分解工程)
 次に、スラリーは、必要に応じて予熱された後、第一糖化分解装置2(ヘミセルロース糖化反応器)へと供給される。第一糖化分解装置2の具体例は、好ましくは間接加熱型圧力容器である。第一糖化分解装置2内で、スラリーは、温度140℃以上200℃以下、圧力1MPa以上5MPa以下で熱水処理される。この熱水処理によって、セルロース系バイオマス中のヘミセルロースは、C5糖類に糖化分解(加水分解)される。
 一定時間の熱水処理が行われた後、スラリーは、第一糖化分解装置2からフラッシュタンク3へと供給される。フラッシュ蒸発によって、スラリーは、亜臨界状態以下の温度に急冷され、ヘミセルロースの糖化分解反応(加水分解反応)が終了する。
 (第一固液分離工程)
 次に、スラリーは、フラッシュタンク3から第一固液分離装置4へと供給され、C5及びC6糖化液と脱水ケーキ1とに分離される。固液分離装置4の具体例は、ドラムフィルター、ベルトフィルター、ディスクフィルター又はフィルタープレスである。C5及びC6糖化液は、濃縮されずに発酵槽5(アルコール発酵槽)へと供給される。
 (再スラリー化工程)
 脱水ケーキ(脱水ケーキ1)は、第二スラリー調製槽6へと供給される。このとき、脱水ケーキ1は、通常、水分含有量が60~70質量%程度であるため、第二スラリー調製槽6へと水を供給してスラリーを調製する。スラリーの固形物濃度は、15~40質量%に調整されることが好ましい。調製されたスラリーは、第二糖化分解装置7(セルロース糖化反応器)へと供給される。第二糖化分解装置7の具体例は、好ましくは間接加熱型圧力容器である。
 再スラリー化工程では、スラリーに酸(酸触媒)を添加してもよい。酸の添加量は、スラリーがpH1.0以上3.5以下となるような量に調整される。添加された酸は、第二糖化分解工程において酸触媒として機能する。添加された酸は、酸回収装置によってC6糖化液から回収することが可能である。
 (第二糖化分解工程)
 第二糖化分解装置7内で、スラリーは、温度240℃以上300℃以下、圧力4MPa以上10MPa以下で熱水処理される。この熱水処理によって、セルロース系バイオマス中のセルロースは、C6糖類に糖化分解(加水分解)される。
 第二糖化分解工程終了後、スラリーは、フラッシュタンク8へと供給される。このとき、スラリーには、C6糖化液が含有されている。フラッシュ蒸発によって、スラリーは、亜臨界状態以下の温度に急冷され、セルロースの加水分解反応が終了する。
 (第二固液分離工程)
 次に、スラリーは、フラッシュタンク8から第二固液分離装置9へと供給され、C6糖化液と脱水ケーキ2とに分離される。第二固液分離装置9の具体例は、第一固液分離装置4と同じである。C6糖化液は、濃縮装置10へと供給される。一方、脱水ケーキ2は、適宜系外に廃棄される。
 (濃縮工程)
 C6糖化液は、RO膜装置、蒸留装置又は電気透析装置のような濃縮装置10を用いて糖類濃度10質量%以上に濃縮される。濃縮後の糖類濃度は、濃縮装置10の性能によって変動するが、より高い濃度とされることが好ましい。濃縮後の糖類濃度は、10質量%~50質量%程度とされることが実用的である。濃縮されたC6糖化液は、濃縮糖化液返送経路11によって第一スラリー調製槽1へと返送され、セルロース系バイオマス(2回目以降に第一スラリー調製槽に供給されるセルロール系バイオマス)のスラリー調製に用いられる。濃縮装置10で分離された純水は、適宜排水又は再利用される。
 なお、濃縮装置10としてRO膜装置が使用される場合、RO膜の目詰まりを防止するために、C6糖化液は、フィルター装置のような固液分離装置を用いて、固形物を除去されることが好ましい。
 (発酵工程)
 発酵槽5内の糖化液(C5糖化液と濃縮C6糖化液との混合液)は、酵母を利用してエタノールへと同時に変換される。発酵工程は、公知のアルコール発酵方法を採用することができる。発酵工程によって、糖化液に含有されていたC5糖類及びC6糖類は、エタノールへと変換される。
 (蒸留工程)
 発酵工程後のアルコール発酵液は、蒸留装置15に供給されて蒸留され、エタノールが濃縮される。蒸留工程によって得られる蒸留液は、固形物及びエタノール以外の成分が除去されている。蒸留工程は、蒸留酒の製造方法として公知の蒸留方法を採用することができる。
 [比較例]
 図2は、比較例の糖化液製造装置(従来技術)を説明する概略フロー図を示す。比較例の基本的なフローは、実施例と共通しているため、ここでは実施例との相違点についてのみ説明する。また、実施例と同じ構成には、同じ用語を使用する。
 比較例では、第一スラリー調製槽1に外部から水が供給され、セルロース系バイオマスのスラリーが調製される。また、第一固液分離装置4から取り出されたC5糖化液は、濃縮装置14へと供給され、濃縮される。濃縮装置14の具体例は、濃縮装置10と同じである。濃縮装置14としてRO膜装置が使用される場合には透過水、濃縮装置14として蒸留装置が使用される場合には凝縮水、濃縮装置14として電気透析装置が使用される場合には希釈水が適宜排水される。濃縮されたC5糖化液は、発酵槽5へと供給され、濃縮されたC6糖化液と混合された後、発酵工程が行われる。
 第二固液分離装置9から取り出されたC6糖化液は、濃縮装置10へと供給され、濃縮される。濃縮装置10としてRO膜装置が使用される場合には透過水、濃縮装置10として蒸留装置が使用される場合には凝縮水、濃縮装置10として電気透析装置が使用される場合には希釈水が適宜排水される。濃縮されたC6糖化液は、発酵槽5へと供給され、濃縮されたC5糖化液と混合された後、発酵工程が行われる。
 比較例のフローでは、第一スラリー調製槽1及び第二スラリー調製槽6の2箇所において水が外部から供給される。そして、濃縮装置10及び濃縮装置14の2箇所において糖化液から水が取り除かれる。このため、定常運転時に第二スラリー調製槽6の1箇所で水が外部から供給される実施例と比較して、比較例のフローは濃縮負荷が大きい。また、濃縮装置14は、C5糖化液に含有される有機成分及び無機成分が多いために、濃縮装置10と比較して、スケーリングが発生しやすい。
 本発明の糖化液製造方法及び糖化液製造装置は、セルロース系バイオマスを分解し、糖化液を製造するための方法及び装置として、バイオエネルギー分野において有用である。
  1:第一スラリー調製槽
  2:第一糖化分解装置(ヘミセルロース糖化反応器)
  3:フラッシュタンク
  4:第一固液分離装置
  5:発酵槽(アルコール発酵槽)
  6:第二スラリー調製槽
  7:第二糖化分解装置(セルロース糖化反応器)
  8:フラッシュタンク
  9:第二固液分離装置
 10:濃縮装置
 11:濃縮糖化液返送経路
 14:濃縮装置
 15:蒸留装置

Claims (5)

  1.  セルロース系バイオマスのスラリーを熱水処理することにより、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解工程と、
     前記第一糖化分解工程後のスラリーを固液分離する第一固液分離工程と、
     前記第一固液分離工程で得られた脱水ケーキに水を添加してスラリー化する再スラリー化工程と、
     前記再スラリー化工程で得られたスラリーを熱水処理することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解工程と、
     前記第二糖化分解工程後のスラリーを固液分離する第二固液分離工程と、
     前記第二固液分離工程で得られたC6糖化液を濃縮する濃縮工程と、
    を有し、
     前記濃縮工程で得られた濃縮C6糖化液を前記第一糖化分解工程に供するスラリーの調製に使用することを特徴とする糖化液製造方法。
  2.  前記第一糖化分解工程及び前記第二糖化分解工程に供するスラリーの固形物濃度が15質量%以上40質量%以下である、請求項1に記載の糖化液製造方法。
  3.  前記濃縮工程においてC6糖化液を糖類濃度10質量%以上に濃縮する、請求項1に記載の糖化液製造方法。
  4.  前記再スラリー化工程においてスラリーに酸触媒を添加する、請求項1に記載の糖化液製造方法。
  5.  セルロース系バイオマスのスラリーを調製する第一スラリー調製装置と、
     前記第一スラリー調製装置で調製されるスラリーを熱水処理することにより、セルロース系バイオマスに含有されているヘミセルロースをC5糖類へと糖化分解する第一糖化分解装置と、
     前記第一糖化分解装置から取り出されたスラリーを固液分離する第一固液分離装置と、
     前記第一固液分離装置から取り出された脱水ケーキに水を添加してスラリー化する第二スラリー調製装置と、
     前記第二スラリー調製装置で調製されたスラリーを熱水処理することにより、セルロース系バイオマスに含有されているセルロースをC6糖類へと糖化分解する第二糖化分解装置と、
     前記第二糖化分解装置から取り出されたスラリーを固液分離する第二固液分離装置と、
     前記第二固液分離装置から取り出されたC6糖化液を濃縮する濃縮装置と、
     前記濃縮装置から取り出される濃縮C6糖化液を前記第一スラリー調製装置に供給する濃縮糖化液返送経路と、
    を備える、バイオマス糖化装置。
PCT/JP2012/005012 2012-08-07 2012-08-07 セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置 WO2014024220A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/005012 WO2014024220A1 (ja) 2012-08-07 2012-08-07 セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/005012 WO2014024220A1 (ja) 2012-08-07 2012-08-07 セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置

Publications (1)

Publication Number Publication Date
WO2014024220A1 true WO2014024220A1 (ja) 2014-02-13

Family

ID=50067512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005012 WO2014024220A1 (ja) 2012-08-07 2012-08-07 セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置

Country Status (1)

Country Link
WO (1) WO2014024220A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040106A (ja) * 2003-07-25 2005-02-17 Jgc Corp 擬似移動層クロマト分離方法
JP2010081855A (ja) * 2008-09-30 2010-04-15 Kobe Steel Ltd 糖類の製造方法
JP2011223975A (ja) * 2010-03-30 2011-11-10 Toray Ind Inc 糖液の製造方法及び製造装置
WO2012095976A1 (ja) * 2011-01-13 2012-07-19 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040106A (ja) * 2003-07-25 2005-02-17 Jgc Corp 擬似移動層クロマト分離方法
JP2010081855A (ja) * 2008-09-30 2010-04-15 Kobe Steel Ltd 糖類の製造方法
JP2011223975A (ja) * 2010-03-30 2011-11-10 Toray Ind Inc 糖液の製造方法及び製造装置
WO2012095976A1 (ja) * 2011-01-13 2012-07-19 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法

Similar Documents

Publication Publication Date Title
JP5771278B2 (ja) セルロース系バイオマスを原料とするエタノール製造方法
WO2013046622A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
AU2012291169B2 (en) Method of manufacturing sugar solution
JP5757443B2 (ja) セルロース含有バイオマスからのアルコールの製造方法
WO2012077698A1 (ja) 濃縮糖水溶液の製造法
JPWO2012077697A1 (ja) 濃縮糖水溶液の製造方法
WO2014103185A1 (ja) 濃縮糖化液製造方法
WO2014065364A1 (ja) 有機酸またはその塩の製造方法
CN101787400A (zh) 一种固体酸水解植物纤维的方法
CA2806132A1 (en) Recycle of leachate during lignocellulosic conversion processes
WO2013046623A1 (ja) セルロース系バイオマスを原料とするエタノール製造方法
US9850550B2 (en) Method for recovering saccharide from saccharified slurry, and washing device for washing residue
WO2014024220A1 (ja) セルロース系バイオマスを原料とする糖化液製造方法及び糖化液製造装置
JP5901128B2 (ja) バイオマスを原料とする糖液製造装置
US9850551B2 (en) Saccharified solution production method and saccharified solution production apparatus that use cellulosic biomass as starting material
CN107406866B (zh) 糖液的制造方法
Ghazali et al. Enzymatic hydrolysis of oil palm empty fruit bunch using membrane reactor
AU2017201901B2 (en) Method of producing saccharified solution from biomass
WO2018042464A1 (en) Rapid enzymatic hydrolysis of substrates for production of fermentable sugars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP