WO2013103086A1 - 単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置 - Google Patents

単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置 Download PDF

Info

Publication number
WO2013103086A1
WO2013103086A1 PCT/JP2012/082888 JP2012082888W WO2013103086A1 WO 2013103086 A1 WO2013103086 A1 WO 2013103086A1 JP 2012082888 W JP2012082888 W JP 2012082888W WO 2013103086 A1 WO2013103086 A1 WO 2013103086A1
Authority
WO
WIPO (PCT)
Prior art keywords
monosaccharide
reaction
ethanol
hot water
fermentation
Prior art date
Application number
PCT/JP2012/082888
Other languages
English (en)
French (fr)
Inventor
典充 金子
佐藤 健治
健太郎 成相
北野 誠
遠藤 貴士
Original Assignee
株式会社Ihi
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 独立行政法人産業技術総合研究所 filed Critical 株式会社Ihi
Publication of WO2013103086A1 publication Critical patent/WO2013103086A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a production method and production apparatus for monosaccharides, and a production method and production apparatus for ethanol, and in particular, by saccharification of cellulosic materials and microbial fermentation using plant waste materials such as wood, wheat straw, and bagasse as biomass.
  • the present invention relates to a monosaccharide production method and production apparatus for producing monosaccharide and biomass ethanol, and an ethanol production method and production apparatus.
  • Non-Patent Document 1 discloses a process for producing ethanol by saccharifying cellulose in biomass into glucose using cellulase, which is widely known as a saccharifying enzyme, and fermenting the obtained glucose.
  • Patent Document 1 listed below describes a method for producing ethanol in which fine bark that has been subjected to treatment with an alkali solution of bark raw material and refined by mechanical treatment is prepared into a slurry having an appropriate pH and then subjected to concurrent saccharification and fermentation. .
  • the saccharifying enzyme used for the production of biomass ethanol is inactivated with the passage of time of use, supplementation of the saccharifying enzyme is necessary for sufficient saccharification.
  • ⁇ -glucosidase contained in a saccharification enzyme is inhibited by glucose that is finally produced in saccharification, so that there is a problem that the production rate decreases according to the production of glucose.
  • ⁇ -glucosidase Need to be added the quantity of the saccharifying enzyme used for manufacture of biomass ethanol increases, and production cost becomes high.
  • the saccharification by the enzyme reaction requires a processing time, it is also important to shorten the processing time in order to produce ethanol efficiently at a low cost.
  • An object of the present invention is to solve the above-mentioned problems and to produce a monosaccharide that can reduce the amount of saccharification enzyme used without reducing the yield in saccharification of lignocellulosic biomass, and to produce ethanol using the same. Is to provide a method.
  • Another subject of the present invention is a monosaccharide device capable of producing monosaccharides with high yield and reducing production costs, and ethanol production capable of producing biomass ethanol efficiently using the same. Is to provide a device.
  • the present inventors have conducted extensive research, and as a result, in a process of saccharifying biomass through pressurized hydrothermal treatment, saccharification enzyme treatment, and solid acid catalyst treatment, before performing saccharification enzyme treatment.
  • the reaction efficiency in the solid acid catalyst treatment was improved, and the present invention was completed.
  • a method for producing a monosaccharide includes a pressurized hot water reaction step of selectively decomposing hemicellulose contained in biomass by causing pressurized hot water to act on the biomass, and the pressurized hot water.
  • a beating treatment step for beating a solid residue after the reaction step a primary saccharification step for allowing a saccharifying enzyme to act on the solid residue after the beating treatment step, and a secondary saccharification for causing a solid acid catalyst to act on a product obtained by the primary saccharification step And having a process.
  • the gist of the ethanol production method includes a fermentation step of fermenting the monosaccharide obtained by the monosaccharide production method to produce ethanol.
  • the monosaccharide production apparatus includes a pressurized hot water reactor that selectively decomposes hemicellulose contained in biomass by causing pressurized hot water to act on the biomass, and the pressurized heat.
  • the gist of the present invention is to have a catalytic reaction device that causes a catalyst to act.
  • an ethanol production apparatus includes the above monosaccharide production apparatus and a fermentation apparatus that produces ethanol by fermenting a monosaccharide obtained by the monosaccharide production apparatus.
  • the gist is the above monosaccharide production apparatus and a fermentation apparatus that produces ethanol by fermenting a monosaccharide obtained by the monosaccharide production apparatus.
  • the present invention it is possible to reduce the amount of enzyme used and the processing time in the enzymatic decomposition by providing a beating apparatus for performing the beating treatment before performing the enzymatic decomposition of cellulose with a saccharifying enzyme, and the enzyme can be obtained by enzymatic decomposition.
  • a monosaccharide production method and a production apparatus for improving the reaction efficiency of secondary saccharification of a primary saccharified solution with a solid acid catalyst and obtaining a monosaccharide in a high yield As a result, a method for producing monosaccharides with high saccharification efficiency and reduced production costs can be implemented, and a low-cost and efficient ethanol production method and production apparatus using biomass are established. Therefore, it is economically advantageous, the use of plant waste as biomass is promoted, and it is useful for solving energy resource problems and waste disposal problems.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an ethanol production apparatus according to the present invention.
  • FIG. 2 is a bar graph for comparing the sugar yield in the saccharification process based on the presence or absence of the beating process, and (a) to (c) show the cases without the beating process and (d) to (f) Indicates a case of beating processing.
  • FIG. 3 is a graph for illustrating the function of the solid acid catalyst, where (a) shows the sugar concentration of the product resulting from the saccharification enzyme reaction and the solid acid catalyst reaction, and (b) shows the temperature in the solid acid catalyst reaction. And the relationship between the glucose production rate constant and the glucose degradation rate constant.
  • saccharified products obtained by hydrolysis of cellulose and hemicellulose are ethanol fermented.
  • saccharification of plant cellulose that is, hydrolysis
  • pressurized hot water reaction selective hydrolysis of hemicellulose proceeds
  • saccharification enzyme reaction hydrolysis of cellulose, which is a residue of pressurized hot water reaction, proceeds.
  • Partially decomposed polysaccharide is produced (primary saccharification), and part is monosaccharified.
  • the primary saccharified solution resulting from the hydrolysis reaction By subjecting the primary saccharified solution resulting from the hydrolysis reaction to a solid acid catalytic reaction, it is sufficiently saccharified to produce monosaccharides such as glucose and xylose (secondary saccharification). Monosaccharides obtained by such a saccharification process are fermented to produce ethanol.
  • the residue after the pressurized hydrothermal reaction is a fiber lump mainly composed of cellulose, but before the saccharification enzyme is allowed to act on this, beating using mechanical shearing force using a mill or the like. It has been found that when the treatment is carried out, the saccharifying enzyme reaction easily proceeds, and cellobiose and water-soluble oligosaccharide can be satisfactorily produced from cellulose even if the amount of saccharifying enzyme used is reduced. This is thought to be because slack and gaps between cellulose fibers are generated by shearing force due to beating, and the surface area is significantly increased to become a porous residue, so that the saccharifying enzyme is likely to act.
  • the beating treatment before the enzyme reaction not only makes the enzyme easy to act, but also affects the properties of the product resulting from the enzyme reaction. Therefore, the beating treatment is very useful for mono-saccharifying cellulose through a saccharifying enzyme reaction and a solid acid catalytic reaction.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an ethanol production apparatus according to the present invention.
  • the ethanol production apparatus A is a monosaccharide production apparatus that saccharifies biomass B to produce a monosaccharide, a fermentation apparatus that ferments a saccharification product to produce ethanol, and distills the fermentation product to purify ethanol E.
  • a distillation apparatus 9 The monosaccharide production apparatus includes a pressurized hot water reaction apparatus 1, a solid-liquid separator 2, a beater 3, an enzyme reaction apparatus 4, a first catalytic reaction apparatus 5, and a second catalytic reaction apparatus 7, and the first catalytic reaction.
  • the device 5 hydrolyzes (saccharifies) a partially saccharified product derived from cellulose
  • the second catalytic reaction device 7 hydrolyzes (saccharifies) a partially saccharified product derived from hemicellulose.
  • the fermentation apparatus includes a first fermentation apparatus 6 that ferments a saccharified product derived from cellulose to produce ethanol, and a second fermentation apparatus 8 that ferments a saccharified product derived from hemicellulose to produce ethanol, which are generated from each.
  • the fermentation products F1 and F2 are distilled by the distillation apparatus 9 to separate and purify ethanol.
  • the pressurized hot water reactor 1 includes a pump 1a, a heater 1b, a water amount adjusting valve 1c, a pressure-resistant reaction tank 1d, and a control device 1e.
  • the pump 1a pressurizes and heats water supplied from the outside.
  • the heater 1b heats the pressurized water flowing from the pump 1a to about 150 to 230 ° C. in response to a temperature control signal input from the control device 1e, and pressurizes hot water W ′ (with a pressure of about 0.4 to 12 MPa). This is supplied to the reaction tank 1d containing the biomass via the water amount adjusting valve 1c.
  • the water amount adjusting valve 1c is an electronic control valve whose opening degree can be adjusted in accordance with a flow rate control signal input from the control device 1e, and the flow rate of the pressurized hot water W ′ supplied from the heater 1b to the reaction tank 1d. Adjust appropriately.
  • the control device 1e adjusts the temperature and flow rate of the pressurized hot water W ′ supplied to the reaction tank 1d by the temperature control signal output to the heater 1b and the water amount control signal output to the water amount adjustment valve 1c.
  • the biomass hydrolysis conditions in the reaction tank 1d are controlled as described above.
  • the reaction tank 1d contains a certain amount of lignocellulosic biomass supplied as a raw material from the outside, and is added to and acted on pressurized hot water W ′ supplied through the water amount adjusting valve 1c to the biomass. Hemicellulose is selectively hydrolyzed and solubilized. Compared to the fact that cellulose requires a temperature of about 240 to 300 ° C. when hydrolyzed with pressurized hot water, hemicellulose is decomposed and solubilized at about 230 ° C. or lower, which is lower than that of cellulose. By treating the biomass at 150 to 230 ° C.
  • the hemicellulose contained in the biomass is selectively partially decomposed and solubilized to become a hydrous liquid of polysaccharides containing oligosaccharides, and the reaction product is derived from hemicellulose. It becomes a mixture of a water-containing liquid containing oligosaccharides and a solid residue containing cellulose and lignin that do not decompose.
  • the reaction mode of the reaction tank 1d may be a continuous water type or a batch type, but in the case of the continuous water type, it is configured such that pressurized hot water can stay in the tank for about 5 to 120 minutes.
  • the reaction product discharged from the pressurized hot water reactor 1 is supplied to the solid-liquid separator 2 and separated into a liquid saccharified product portion that is a hemicellulose-derived decomposition product and a solid residue S containing cellulose and lignin.
  • the solid residue S is supplied to the beater 3 and then processed by the enzyme reaction device 4 and the first catalytic reaction device 5.
  • the liquid portion is supplied to the second catalytic reactor value 7 as the primary saccharified solution H1 of hemicellulose.
  • the beating machine 3 applies a shearing force to the solid residue S supplied from the solid-liquid separator 2, thereby causing slack and gaps between the fibers of the solid residue to be processed into a flexible porous shape.
  • the resulting solid residue S ′ has a significant increase in surface area.
  • Examples of the beating machine 3 include refiners used for defibrating processing, dispersers, and mills such as ball mills used for crushing processing, but are not limited thereto, and shear force can be applied. Things can be used as appropriate.
  • the beating condition may be either dry or wet, but when beating in a hydrous state after the pressurized hot water reaction, the burden on the apparatus is small and the processing efficiency is good.
  • the beating conditions such as the beating time and the applied load may be appropriately set according to the state of the solid residue S so that the solid residue S ′ after the beating treatment has a suitable specific surface area.
  • the specific surface area of the solid residue is a value measured according to the BET method (N 2 gas adsorption method) after pre-treatment of the sample by vacuum heating and degassing (60 ° C., 6 hours) See example).
  • the solid residue S ′ beaten by the beater 3 is supplied to the enzyme reaction device 4.
  • the enzyme reaction apparatus 4 includes a stirrer and a temperature control mechanism, and adds and mixes cellulase, which is a saccharifying enzyme, to the solid residue S ′ whose water content has been adjusted so that stirring is possible as necessary.
  • the cellulose in the solid residue S ′ is hydrolyzed by the action of cellulase, and the decomposition product mainly consisting of cellobiose (a dimer of glucose), which is a partial saccharification of cellulose, is maintained by stirring the mixture. Obtained as liquid C1.
  • Cellulase is generally known as an assembly of a plurality of types of saccharifying enzymes, and contains ⁇ -glucanase as a main component.
  • ⁇ -glucanase is known as a saccharification enzyme that hydrolyzes cellulose into water-soluble oligosaccharides (glucose dimer to hexamer).
  • the primary saccharified liquid C1 contains a water-soluble oligosaccharide and a water-insoluble suspended polysaccharide, and is a fluid liquid in which the suspended polysaccharide is dispersed in a water-containing liquid of the water-soluble oligosaccharide.
  • Suspended polysaccharide is a partially decomposed product of cellulose, specifically, suspended particles containing cellohexaose crystals that are glucose polymer having a polymerization degree of 7 to 3000 and hexamer of glucose, and the subsequent solid It can be decomposed into glucose by an acid catalyzed reaction.
  • the temperature of the enzyme reaction apparatus 4 is appropriately adjusted in the range of about 40 to 90 ° C. so that an appropriate enzyme activity can be obtained according to the saccharifying enzyme used. In order to easily control the temperature of the enzyme reaction apparatus 4, it is preferable that the temperature of the solid residue S ′ introduced into the enzyme reaction apparatus 4 is about 50 to 100 ° C.
  • a cooler for lowering the temperature of the solid residue after the water reaction may be provided at the front stage or the rear stage of the beating machine 3.
  • the cooling capacity of the cooler can be reduced.
  • the amount of saccharifying enzyme used can be reduced, and the amount of enzyme as low as 0.25 g or less per gram of cellulose is used for about 12 hours. Within this range, the unreacted cellulose can be substantially disappeared to terminate the enzymatic decomposition.
  • the primary saccharified solution C1 of cellulose produced in the enzyme reaction apparatus 4 is supplied to the first catalytic reaction apparatus 5.
  • a separation device such as a belt press may be provided in front of the first catalytic reactor 5 as a means for removing solid residues (lignin and the like) that may remain in the primary saccharified liquid C1.
  • the first catalytic reaction device 5 includes a first mixing device 5a having a temperature control mechanism and a first solid-liquid separation device 5b, and the primary saccharified solution C1 is 90 ° C. or higher and lower than 120 ° C. in the first mixing device 5a. Mix and stir with solid acid catalyst X at temperature.
  • the oligosaccharide and the suspended polysaccharide of the primary saccharified liquid C1 are hydrolyzed by the action of the solid acid catalyst X to produce glucose (monosaccharide constituting cellulose), and the reaction product contains glucose as a main component.
  • a mixture of the secondary saccharified solution C2 and the solid acid catalyst X is obtained.
  • the reaction product that has finished hydrolysis in the first mixing device 5a is put into the first solid-liquid separation device 5b and is subjected to solid-liquid separation. Thereby, the secondary saccharified solution C2 containing glucose as a main component is separated as a supernatant and sent to the first fermentation apparatus 6.
  • the solid acid catalyst X that has settled and separated is recovered and then returned to the first mixing device 5a to be used again.
  • the 1st solid-liquid separation apparatus 5b should just be what can generally be used as a sedimentation tank.
  • the secondary saccharified solution C2 supplied from the first solid-liquid separation device 5b to the first fermentation device 6 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, and inoculated with fermenting microorganisms, and the fermentation stock solution
  • the glucose is converted into ethanol by the action of the fermentation microorganism.
  • known ethanol fermentation microorganisms such as yeast can be used. It is preferable to add a nutrient source necessary for the propagation and activity of fermenting microorganisms. If necessary, a temperature control mechanism for maintaining the temperature at which fermentation is likely to proceed may be provided.
  • the purified product F1 discharged from the first fermentation apparatus 5 is supplied to the distillation apparatus 9 and distilled to recover purified ethanol.
  • the fermentation product F1 contains a solid substance, and may be distilled as it is without removing it. If necessary, if a filtration device for removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F1 is provided, only the liquid product can be distilled.
  • the solid matter separated from the fermentation product F1 by filtration or the like may be introduced into the biomass saccharification step.
  • the hemicellulose-derived primary saccharified solution H1 separated by the solid-liquid separator 2 is supplied to the second catalytic reaction device 7.
  • the second catalytic reaction device 7 includes a second mixing device 7a having a temperature control mechanism and a second solid-liquid separation device 7b, and the primary saccharified solution H1 is 90 ° C. or higher and lower than 120 ° C. in the second mixing device 7a. Mix and stir with solid acid catalyst X at temperature.
  • the hemicellulose-derived oligosaccharides in the primary saccharified solution H1 are hydrolyzed by the action of the solid acid catalyst X to produce monosaccharides including xylose, arabinose (pentose sugar constituting hemicellulose), etc., and secondary saccharification including these Since the liquid H2 is obtained, the reaction product is a mixture of the secondary saccharified liquid H2 containing xylose and the solid acid catalyst X.
  • the solid acid catalyst X used in the second catalytic reactor 7 may be appropriately selected from the same or different from those usable in the first catalytic reactor 5.
  • the reaction product that has finished the hydrolysis reaction in the second mixing device 7a is charged into the second solid-liquid separation device 7b, and the solid acid catalyst X in the charged reaction product is allowed to settle, so that The secondary saccharified liquid H2 is separated and sent to the second fermentation apparatus 8.
  • the solid acid catalyst X that has settled and separated is recovered and then returned to the second mixing device 7a to be used again.
  • the second solid-liquid separator 7b may be anything that can generally be used as a precipitation tank.
  • the secondary saccharified solution H2 supplied from the second solid-liquid separation device 7b to the second fermentation device 8 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, inoculated with fermenting microorganisms, and the fermentation stock solution And xylose or the like is converted into ethanol by the action of the fermentation microorganism.
  • the fermentation microorganism used is a microorganism having xylose fermentation ability. It is preferable to add a nutrient source necessary for the propagation and activity of fermenting microorganisms. If necessary, a temperature control mechanism for maintaining the temperature at which fermentation is likely to proceed may be provided.
  • the fermentation product F2 discharged from the second fermentation apparatus 7 is supplied to the distillation apparatus 9 and distilled to recover purified ethanol.
  • Fermentation product F2 contains a solid substance and may be distilled as it is without removing it. If necessary, if a filtration device for removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F2 is provided, only the liquid product can be distilled.
  • the solid matter separated from the fermentation product F2 by filtration or the like may be introduced into the biomass saccharification step.
  • the distillation of the fermentation product F2 can be performed together with the fermentation product F1 obtained from the first fermentation apparatus 5 or individually.
  • Blow water is discharged from the reaction tank 1 d of the pressurized hot water reactor 1. Moreover, the water produced by revision of ethanol fermentation is discharged
  • FIG. The waste water D is supplied to the waste water treatment apparatus 10 and appropriately subjected to purification treatment, and then discharged to the outside.
  • Biomass B used as a raw material may be any lignocellulosic material, for example, wood materials such as wood, thinned wood, bark, herbs such as rice straw, wheat straw, rice husks, bagasse, pulp, waste paper, cotton cloth, etc.
  • fiber materials such as linen and artificial cellulose materials can be used, and in particular, plant materials such as wood materials containing hemicellulose can be efficiently saccharified and fermented. From the viewpoint of reaction efficiency, it is preferable to pulverize such biomass B in advance, and it is preferable to prepare particles having a particle size of about 10 mm or less, specifically about 5 to 10 mm.
  • the pressurized hot water reactor 1 a certain amount of biomass supplied as a raw material from the outside is accommodated in the reaction tank 1d, the heater 1b is adjusted by a temperature control signal input from the controller 1e, and the pump 1a Is heated to about 150 to 230 ° C. to form pressurized hot water W ′ (subcritical hot water having a pressure of about 0.4 to 12 MPa), and contains the biomass via the water amount adjustment valve 1c. It is supplied to the tank 1d.
  • the flow rate of the pressurized hot water W 'supplied from the heater 1b to the reaction tank 1d is adjusted appropriately by adjusting the opening of the water amount adjusting valve 1c by a flow rate control signal input from the control device 1e.
  • Biomass is a lignocellulosic material containing cellulose as a main component and containing hemicellulose and lignin.
  • cellulose When hydrolyzed with pressurized hot water, cellulose requires a temperature of about 240 to 300 ° C. Since it is decomposed and solubilized at a temperature lower than that of cellulose at about 150 to 230 ° C., the reaction product obtained by treating the biomass with a pressurized hot water reactor is a polysaccharide-containing hydrous liquid containing oligosaccharide partially decomposed and solubilized from hemicellulose.
  • Pressurized hot water may be supplied either continuously or batchwise. However, in the case of continuous water flow, the water flow rate should be set so that the residence time in the tank is 5 to 120 minutes. Adjust and react for about 10 to 120 minutes.
  • the reaction product of the pressurized hot water reactor 1 is supplied to the solid-liquid separator 2 and separated into a liquid saccharified portion of the hemicellulose decomposition product and a solid residue S containing cellulose and lignin.
  • the liquid part is supplied to the second catalytic reactor 7, and the solid residue S is supplied to the beating machine 3.
  • the solid residue S supplied from the solid-liquid separator 2 is beaten and a shearing force is applied.
  • the solid residue S may be beaten in either a dry or wet state, but if beaten in a water-containing state after the pressurized hot water reaction, the burden on the apparatus is small and the processing efficiency is good.
  • the beating conditions such as beating time and applied load are set so that the specific surface area of the solid residue S ′ after the beating treatment is preferably about 50 m 2 / g or more, more preferably about 80 to 300 m 2 / g. Set appropriately according to the situation.
  • the specific surface area of the solid residue used in the present invention is a value measured according to the BET method (N 2 gas adsorption method) after subjecting the sample to pretreatment by vacuum heating and degassing (60 ° C., 6 hours). See example).
  • the solid residue S 'beaten by the beater 3 is supplied to the enzyme reaction device 4, and an aqueous liquid containing cellulase, which is a saccharifying enzyme, is added and mixed to maintain the enzyme at an active temperature.
  • the cellulose in the solid residue S ′ is decomposed by the action of cellulase, and a degradation product mainly containing cellobiose (a dimer of glucose) which is a water-soluble oligosaccharide is obtained as the primary saccharified solution C1 of cellulose.
  • Cellulase is generally known as an assembly of a plurality of types of saccharifying enzymes, and contains ⁇ -glucanase as a main component.
  • ⁇ -glucanase is known as a saccharification enzyme that hydrolyzes cellulose into water-soluble oligosaccharides (glucose dimer to hexamer). A part of the water-soluble oligosaccharide is decomposed into glucose by ⁇ -glucosidase contained in cellulase.
  • the primary saccharified liquid C1 contains a water-soluble oligosaccharide and a water-insoluble suspended polysaccharide, and is a fluid liquid in which the suspended polysaccharide is dispersed in a water-containing liquid of the water-soluble oligosaccharide.
  • Suspended polysaccharide is a partial degradation product of cellulose, which is a hexamer or higher glucose polymer or a cellohexaose crystal that is a hexamer of glucose, which can be decomposed into glucose by the subsequent solid acid catalyzed reaction. It is.
  • the saccharifying enzyme used in the enzyme reaction apparatus 4 a commercially available saccharifying enzyme can be used, and a commercially available saccharifying enzyme can also be used.
  • the normal saccharifying enzyme has the maximum enzyme activity at about 40 to 50 ° C.
  • the thermostable enzyme has the maximum enzyme activity at about 70 to 90 ° C. Therefore, the temperature of the enzyme reaction apparatus 4 depends on the saccharifying enzyme used. Depending on the conditions, appropriate adjustments may be made to obtain an appropriate enzyme activity. In order to easily adjust the temperature of the enzyme reaction apparatus 4, it is preferable that the temperature of the solid residue S ′ introduced into the enzyme reaction apparatus 4 is about 90 to 100 ° C.
  • a cooler for lowering the temperature of the solid residue after the water reaction may be provided at the front stage or the rear stage of the beating machine 3.
  • the cooling capacity of the cooler can be reduced, and the temperature of the enzyme reaction device 4 and the temperature of the first mixing device 5a can be brought close to each other. Can improve.
  • the oligosaccharide and suspension of the primary saccharified liquid C1 are mixed.
  • the polysaccharide is hydrolyzed satisfactorily by the action of the solid acid catalyst X to produce glucose (a monosaccharide constituting cellulose), and a secondary saccharified solution C2 containing glucose as a main component is obtained.
  • the solid acid catalyst X to be used examples include inorganic solid acids such as zeolite, alumina and silica, and those in which acidic groups are introduced by sulfonation treatment of organic materials such as resins.
  • a powdered or particulate solid acid catalyst is used.
  • a sulfonated carbon type obtained by carbonizing an organic carbon material and then sulfonated is preferable.
  • the sulfonated carbon-based solid acid catalyst is a solution of an amorphous black solid (carbide) obtained by heat-treating organic carbon materials such as woods and / or herbs in an inert gas atmosphere such as nitrogen.
  • the amount of the solid acid catalyst X used is preferably 5 to 20% by mass with respect to the primary saccharified liquid C1.
  • the reaction time may generally be about 1 to 10 hours.
  • the reaction product that has finished the hydrolysis reaction in the first mixing device 5a is supplied to the first solid-liquid separation device 5b, and the solid acid catalyst X in the reaction product is precipitated.
  • the secondary saccharified solution C2 mainly composed of glucose is separated as a supernatant, sent to the first fermentation apparatus 6, and the solid acid catalyst X separated by settling is recovered and then returned to the first mixing apparatus 5a to be used again.
  • the secondary saccharified solution C2 supplied from the first solid-liquid separation device 5b to the first fermentation device 6 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, and inoculated with fermenting microorganisms, and the fermentation stock solution
  • the glucose is converted into ethanol by the action of the fermentation microorganism.
  • known ethanol fermentation microorganisms such as yeast can be used. Examples include Zymomonas mobilis and Kluyveromyces marxianus.
  • flocculent yeast is advantageous in solid-liquid separation after fermentation because of good sedimentation, and it is advantageous for yeast to use amino acids and the like degraded by hydrolyzing enzymes of surrounding microorganisms as nutrient sources. Since it is also a form, it is useful for improving fermentation efficiency.
  • a nutrient source necessary for the propagation and activity of the fermenting microorganisms and adjust to an optimum pH.
  • essential nutrients such as phosphorus, nitrogen and vitamins, and required trace elements such as Co, Ni, and Zn are necessary, and yeast used for the production of biomass ethanol is The ability to synthesize vitamins or amino acids may be low or lacking.
  • yeast extract, polypeptone and the like can be generally used as a nutrient source for fermentation microorganisms to which such necessary components are added from the outside.
  • plant waste such as tea husk and coffee husk and algal crushed material may be used, and components contained in these cell protoplasts can be used as the nutrient source.
  • the saccharified (glucose) concentration of the fermentation stock solution is adjusted to be about 1 to 20% by mass, preferably about 10% by mass.
  • the addition amount of the nutrient source for microorganisms (in terms of dry matter) is appropriately adjusted according to the type of fermenting microorganism, and is generally set to about 0.1 to 1% by mass, preferably about 0.2 to 0.5% by mass. Good.
  • the pH of the fermentation stock solution is adjusted to about 2.5 to 5.5, preferably about 3.0 to 5.5, inoculated with fermenting microorganisms at a rate of about 1 to 30 g / L, and a temperature of 30 to 37 ° C.
  • the fermentation proceeds by holding for about 2 to 48 hours.
  • ethanol can be produced at a rate of about 20 to 25 g-ethanol / (L ⁇ h) using a fermentation stock solution having a glucose concentration of about 10% by mass.
  • the fermentation product F1 that has undergone fermentation in the first fermentation apparatus 5 as described above is subjected to distillation apparatus 9 after removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F1 as necessary, by filtration or the like.
  • the ethanol is recovered by distillation at You may distill as it is, without removing solid content from fermentation product F1. You may introduce
  • the hemicellulose-derived primary saccharified liquid H1 separated by the solid-liquid separator 2 is supplied to the second catalytic reactor 7 and the solid acid catalyst X and the primary acid catalyst X at a temperature of 90 ° C. or higher and lower than 120 ° C. in the second mixing device 7a. Mix and stir.
  • the hemicellulose-derived oligosaccharides in the primary saccharified solution H1 are hydrolyzed by the action of the solid acid catalyst X to produce monosaccharides including xylose, arabinose (pentose sugar constituting hemicellulose), etc., and secondary saccharification including these Liquid H2 is obtained.
  • the solid acid catalyst X used in the second catalytic reactor 7 can be appropriately selected from the same or different from those usable in the first catalytic reactor 5, and is sulfonated after carbonization of wood and / or herbs.
  • the use of a sulfonated carbon material obtained by treatment is preferred.
  • the amount of the solid acid catalyst X used is preferably 5 to 20% by mass with respect to the primary saccharified liquid H1 as in the first catalytic reactor 5, and the reaction time may be about 1 to 10 hours in general.
  • the reaction product that has finished the hydrolysis reaction in the second mixing device 7a is charged into the second solid-liquid separation device 7b, where the solid acid catalyst X in the reaction product is allowed to settle, and the secondary saccharified solution H2 is used as a supernatant. To be separated. This is sent to the second fermentation apparatus 8. The solid acid catalyst X that has settled and separated is recovered and then returned to the second mixing device 7a to be used again.
  • the secondary saccharified solution H2 supplied from the second solid-liquid separation device 7b to the second fermentation device 8 is appropriately adjusted in water content and pH so as to be in a condition suitable for fermentation, inoculated with fermenting microorganisms, and the fermentation stock solution And xylose or the like is converted into ethanol by the action of the fermentation microorganism.
  • fermentation microorganisms used for ethanol fermentation include microorganisms having xylose fermentation ability, such as Saccharomyces yeast and Rhizopus zooryzae.
  • flocculent yeast is advantageous in solid-liquid separation after fermentation because of good sedimentation, and it is advantageous for yeast to use amino acids and the like degraded by hydrolyzing enzymes of surrounding microorganisms as nutrient sources. Since it is also a form, it is useful for improving fermentation efficiency.
  • the fermentation product F2 that has undergone fermentation in the second fermentation apparatus 7 as described above is subjected to distillation apparatus 9 after removing solids (lignin, fermentation microorganisms, etc.) from the fermentation product F2 as necessary, by filtration or the like. Purified ethanol is recovered by distillation in You may distill as it is, without removing solid content from fermentation product F2.
  • the solid separated from the fermentation product F2 may be introduced into the biomass saccharification step.
  • the distillation of the fermentation product F2 can be performed together with or separately from the fermentation product F1 obtained from the first fermentation apparatus 5.
  • the enzyme reaction device 4 can remove the solid residue S ′ from cellulose. Since the action efficiency of the saccharifying enzyme is improved, the decomposition rate of cellulose can be increased and the saccharification efficiency can be improved.
  • Solid acid catalysts include powders and pellets.
  • the solid acid catalyst may be made of a mesh or the like through which the liquid flows easily.
  • the solid acid catalyst can be held in the permeable container and fixed in the primary saccharified liquids H1 and C1, and the primary saccharified liquid can be flowed between the solid acid catalyst pellets by flowing the primary saccharified liquid. .
  • By adopting such a fixed bed type solid acid catalyst it is possible to simplify the apparatus configuration relating to solid-liquid separation in the first catalytic reaction apparatus and the second catalytic reaction apparatus.
  • FIG. 3 (b) shows the relationship between the glucose production rate constant k GP 0 and the glucose decomposition rate constant k CD 0 in the solid acid catalyzed reaction and the temperature. From this graph, the solid acid catalyzed reaction is observed at 90 ° C. or higher. It turns out that it progresses well. It is understood that a reaction temperature of 100 ° C. or higher and lower than 120 ° C. is preferable in order to suppress the decomposition of glucose.
  • the solid in the first mixing apparatus 5a The temperature of the acid catalyst reaction is set to a lower value of about 50 ° C. In this case, the speed of the solid acid catalyst reaction is reduced. To compensate for this, the solid acid catalyst used in the first mixing device 5a Increase X.
  • alcohol such as butanol is used as a fermentation microorganism by using microorganisms such as Clostridium acetobutylicum, Clostridium beigelinki, Clostridium auran butyricum, Clostridium tetanomorphum, etc. It is possible to change so that it may manufacture by fermentation, acetone, etc., and it can apply to manufacture of useful alcohols and ketones other than ethanol. Similarly, it can be applied to the production of hydroxymethylfurfural and furfural.
  • saccharifying enzyme reaction of solid residue S 1.3 g of solid residue S was put in a vial, 1.7 ml of demineralized water was added, and three types of samples (a) to (c) to which saccharifying enzyme (cellulase CTec2 manufactured by NOVOZYME) was added at different ratios were added. Three pieces were prepared. The ratio of saccharifying enzyme added to each sample was (a) 0.1 g-enzyme / g-cellulose, (b) 0.17 g-enzyme / g-cellulose, and (c) 0.25 g-enzyme / g-cellulose. It was.
  • saccharifying enzyme reaction of solid residue S ' 1.3 g of solid residue S is put in a vial, 1.7 ml of demineralized water is added, and three samples (d) to (f) to which saccharifying enzyme (cellulase CTec2 manufactured by NOVOZYME) is added at different ratios are added. Prepared one by one. The ratio of saccharifying enzyme added to each sample was (d) 0.1 g-enzyme / g-cellulose, (e) 0.17 g-enzyme / g-cellulose, and (f) 0.25 g-enzyme / g-cellulose. It was.
  • yield of suspended polysaccharide (PS) The sample was allowed to stand for 30 minutes, the supernatant was taken out using a pipette, and the total amount of sugar contained in the supernatant was measured according to the phenol-sulfuric acid method. From this total sugar amount, the amount of glucose and water-soluble cellooligosaccharide determined in the above-mentioned measurement of glucose and water-soluble oligosaccharide is subtracted to obtain the amount of suspended polysaccharide contained in the supernatant, and the amount of cellulose in the solid residue is The yield of suspended polysaccharide (PS) was calculated as a mass ratio.
  • the results of (a) to (c) in FIG. 2 show that when the saccharification enzyme reaction is performed without the beating treatment, the saccharification rate is clear if the amount of enzyme added is reduced. It becomes difficult to shorten the reaction time.
  • the results of (d) to (f) in FIG. 2 in which the saccharifying enzyme reaction was performed after the beating treatment generally increased the yield of glucose and reduced the amount of enzyme added. The sugar yield is difficult to decrease and the saccharification rate can be maintained considerably.
  • the yield of suspended polysaccharide (PS) is compared with (a) to (c) and (d) to (f) of FIG.
  • the suspension polysaccharide (PS) is likely to be generated by the beating process. It is obvious. This is because when the sample was allowed to stand in the yield measurement of the suspended polysaccharide, the presence of the precipitated solid residue found in the samples (a) to (c) was confirmed as (e), (f) and 24. It is also understood from the fact that it was hardly seen in the sample of (d) reacted for more than an hour.
  • the beating process that can promote the production of suspended polysaccharide in the saccharifying enzyme reaction is extremely useful for the process of mono-saccharifying cellulosic biomass by a combination of saccharifying enzyme reaction and solid acid catalyzed reaction. This is an extremely effective means that can shorten the saccharifying enzyme reaction time and the amount of added enzyme without lowering the pH.
  • T-Butanol was added to the sample after the dehydration treatment, the sample was immersed, and allowed to stand for 15 minutes. Thereafter, t-butanol was removed by decantation. After repeating this immersion and decantation 5 times, t-butanol was added again to immerse the sample, the container was covered with a lid, sealed, and allowed to stand in the refrigerator for 10 minutes. After confirming that t-butanol had solidified, the container taken out from the refrigerator was transferred into a vacuum desiccator, the lid was removed, and the desiccator was decompressed to distill off t-butanol.
  • the specific surface area of the solid residue S not subjected to the beating process was 45 m 2 / g, and the specific surface area of the solid residue S ′ subjected to the beating process was 91 m 2 / g.
  • sweet sorghum bagasse (water content 30% by mass) 300 g finely pulverized was prepared and charged into a batch-type pressurized hot water reactor (OML-5 manufactured by Om Labtech Co., Ltd.). 3 L of pressurized hot water was supplied to react for 20 minutes. The reaction product was taken out from the pressurized hot water reactor, and the saccharified solution derived from hemicellulose was removed by centrifuging for 15 minutes by applying a centrifugal force of 3000G. From the obtained solid residue 1382 g (water content 84.32% by mass), 127.55 g of the solid residue was fractionated and used as the solid residue S in the following operation.
  • the saccharification enzyme (cellulase CTec2 manufactured by NOVOZYME) was added to the solid residue S at a rate of 1.5 g / L, the temperature was kept at 50 ° C., and the mixture was stirred at a speed of 100 rpm using a stirrer. Proceeded. Samples of reaction products at reaction times of 12 hours and 40 hours were sampled, and the saccharifying enzyme reaction was completed in 40 hours.
  • the temperature is maintained at 90 to 100 ° C. in addition to the product of the saccharifying enzyme reaction described above, and stirring is performed at a speed of 200 rpm using a stirrer.
  • the solid acid catalyst reaction was carried out for 5 hours.
  • the content concentrations of glucose, water-soluble cellooligosaccharides and suspended polysaccharides were measured for samples with saccharifying enzyme reaction times of 12 hours and 40 hours and products after the solid acid catalyzed reaction. The results are shown in the bar graph of FIG.
  • a cellobiose aqueous solution with a concentration of 10% by mass was prepared, and the same solid acid catalyst as described above was added at a rate of 15% by mass with respect to the cellobiose aqueous solution, and the solid acid catalyst reaction was carried out at a constant reaction temperature for a certain time, By measuring the later composition, the glucose production rate constant K GP 0 and the glucose degradation rate constant K GD 0 were calculated. At that time, the reaction temperature was changed within the range of 25 to 130 ° C., and the temperature dependency was examined. The results are shown in FIG.
  • Example 3A shows that water-soluble oligosaccharides and suspension polysaccharides derived from cellulose are well hydrolyzed by a solid acid catalyst and are efficiently monosaccharideized. Therefore, it is possible to efficiently saccharify and shorten the treatment time by shifting to a solid acid catalyzed reaction in a partially saccharified state, rather than completely saccharifying by saccharifying enzyme reaction time. Considering this result, it is clear that the beating treatment shown in Example 1 is very significant in shortening the saccharifying enzyme reaction time and reducing the amount of enzyme.
  • the present invention can be economically and rationally processed using resources that do not cause a rise in food prices when producing biomass ethanol from plant waste as biomass. Therefore, it is highly useful and can contribute to the promotion of recycling and environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 植物廃棄物をバイオマスエタノールの原料として、糖化酵素反応及び発酵によってエタノールを製造する際に使用する酵素量及び処理時間を削減し、安価で効率のよい単糖及びエタノールの製造方法及び製造装置を提供する。バイオマスに加圧熱水を作用させてバイオマスに含まれるヘミセルロースを選択的に分解し、加圧熱水反応後の固体残渣を叩解し、叩解後の固体残渣に糖化酵素を作用させて一次糖化し、一次糖化工生成物に固体酸触媒を作用させて二次糖化することによって単糖を製造する。得られた単糖をエタノール発酵し、蒸留によって精製エタノールが提供される。

Description

単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置
 本発明は、単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置に関し、詳細には、木質や麦藁、バガス等の植物質廃材をバイオマスとして用いてセルロース系材料の糖化及び微生物発酵によって、単糖及びバイオマスエタノールを生成する単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置に関する。
 近年、石油資源の枯渇に対する解決策として、植物質を用いて微生物の発酵によってエタノールを製造するバイオマスエタノールが注目され、その生産技術として種々のプロセスが発表されている。例えば、下記非特許文献1には、糖化酵素として広く知られるセルラーゼを用いてバイオマス中のセルロースをグルコースに糖化し、得られたグルコースを発酵処理することによってエタノールを生産するプロセスが開示されている。また、下記特許文献1には、樹皮原料のアルカリ液による処理及び機械処理による微細化を経た微細樹皮を、適正なpHのスラリーに調製した後に併行糖化発酵するエタノールの製造方法が記載されている。
特開2011-152067号公報
是石真友子・今中洋行・今村維克・狩山昌弘・中西一弘、「酵素糖化と発酵を併用した小麦フスマからの効率的エタノール生産」、生物工学会 第87巻第5号 P216~223 2009
 バイオマスエタノールの製造に使用される糖化酵素は、使用時間の経過と共に失活するので、十分に単糖化するには糖化酵素の補充が必要である。特に、糖化酵素に含まれるβ-グルコシダーゼは、糖化において最終的に生成されるグルコースによって阻害を受けるので、グルコースの生成に従って生成速度が低下するという問題があり、これを解決するためにβ-グルコシダーゼを追加投入する必要がある。このため、バイオマスエタノールの製造に使用される糖化酵素の量は多くなり、生産コストが高くなる。生産コストを抑えて安価にエタノールを製造するには、糖化酵素の使用量の低減が重要である。又、酵素反応による単糖化には処理時間を要するため、安価で効率的にエタノールを製造するためには、処理時間の短縮も重要である。
 本発明の課題は、上述の問題を解決し、リグノセルロース系バイオマスの糖化における収率を低下させることなく、糖化酵素の使用量を削減可能な単糖の製造方法及びこれを用いたエタノールの製造方法を提供することである。
 また、本発明の他の課題は、高い収率で単糖を製造可能であり、生産コストを削減可能な単糖装置、及び、これを利用して効率的にバイオマスエタノールを製造可能なエタノール製造装置を提供することである。
 上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、バイオマスを加圧熱水処理、糖化酵素処理及び固体酸触媒処理を経て糖化するプロセスにおいて、糖化酵素処理を施す前に叩解処理を行うことによって、糖化酵素の使用量及び処理時間を削減できるだけでなく、固体酸触媒処理における反応効率が向上することを見出し、本発明を完成するに至った。
 本発明の一態様によれば、単糖の製造方法は、バイオマスに加圧熱水を作用させてバイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応工程と、前記加圧熱水反応工程後の固体残渣を叩解する叩解処理工程と、前記叩解処理工程後の固体残渣に糖化酵素を作用させる一次糖化工程と、前記一次糖化工程による生成物に固体酸触媒を作用させる二次糖化工程とを有することを要旨とする。
 又、本発明の一態様によれば、エタノールの製造方法は、上記の単糖の製造方法によって得られる単糖を発酵してエタノールを生成する発酵工程を有することを要旨とする。
 更に、本発明の一態様によれば、単糖製造装置は、バイオマスに加圧熱水を作用させてバイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応装置と、前記加圧熱水反応装置の反応生成物から得られる固体残渣を叩解する叩解機と、前記叩解機によって叩解された固体残渣に糖化酵素を作用させる酵素反応装置と、前記酵素反応装置の反応生成物に固体酸触媒を作用させる触媒反応装置とを有することを要旨とする。
 又、本発明の一態様によれば、エタノール製造装置は、上記の単糖製造装置と、前記単糖の製造装置によって得られる単糖を発酵してエタノールを生成する発酵装置とを有することを要旨とする。
 本発明によれば、糖化酵素によるセルロースの酵素分解を施す前に、叩解処理を施す叩解装置を設けることによって、酵素分解における酵素使用量及び処理時間を削減可能であると共に、酵素分解によって得られる一次糖化液を固体酸触媒によって二次糖化する際の反応効率が向上し、高収率で単糖が得られる単糖の製造方法及び製造装置が提供される。これにより、糖化効率が高く生産コストが削減された単糖の製造方法を実施可能であり、バイオマスを用いた低コストで効率がよいエタノールの製造方法及び製造装置が確立される。従って、経済的に有利であり、バイオマスとしての植物質廃棄物の利用が促進され、エネルギー資源問題及び廃棄物処理問題の解消に有用である。
図1は、本発明に係るエタノール製造装置の一実施形態を示す概略構成図である。 図2は、単糖化プロセスにおける糖収率を叩解処理の有無に基づいて比較するための棒グラフであり、(a)~(c)は、叩解処理がない場合を、(d)~(f)は、叩解処理がある場合を示す。 図3は、固体酸触媒の機能を示すためのグラフであり、(a)は、糖化酵素反応及び固体酸触媒反応による生成物の糖濃度を示し、(b)は、固体酸触媒反応における温度と、グルコース生成速度定数及びグルコース分解速度定数との関係を示す。
 植物質廃棄物(リグノセルロース系バイオマス)を利用するバイオマスエタノールの生産においては、セルロース及びヘミセルロースの加水分解による糖化物をエタノール発酵する。本発明では、植物セルロースの糖化、つまり、加水分解は、加圧熱水反応、糖化酵素反応及び固体酸触媒反応の3種の工程において行う。加圧熱水反応においては、ヘミセルロースの選択的加水分解が進行し、糖化酵素反応においては、加圧熱水反応残渣であるセルロースの加水分解が進行し、各々、多糖が部分分解してオリゴ糖~部分分解多糖が生成し(一次糖化)、一部は単糖化する。これらの加水分解反応による一次糖化液に固体酸触媒反応を施すことによって十分に糖化して、グルコース、キシロース等の単糖が生成する(二次糖化)。このような糖化プロセスで得られた単糖は、発酵することによってエタノールが生成する。
 上記の糖化プロセスにおいて、加圧熱水反応後の残渣は、セルロースを主とする繊維塊であるが、これに糖化酵素を作用させる前に、ミル等を用いて機械的剪断力を作用させる叩解処理を施すと、糖化酵素反応が進行し易くなり、糖化酵素の使用量を削減してもセルロースからセロビオースや水溶性オリゴ糖を良好に生成できることを見出した。これは、叩解による剪断力によってセルロース繊維間の弛みや隙間が生じ、表面積が著しく増加して多孔質な残渣となるために、糖化酵素が作用し易くなると考えられる。更に、これだけではなく、糖化酵素反応の後に行う固体酸触媒反応の効率が向上することも判明した。この原因について調べると、糖化酵素による反応生成物における部分分解多糖として、固体酸触媒反応において単糖化し易い分子量のものの生成量が増加し、その結果として単糖の収率が向上すると考えられる。つまり、酵素反応前の叩解処理は、単に酵素を作用し易くするだけでなく、酵素反応による生成物の性状に影響を及ぼす。従って、叩解処理は、セルロースを糖化酵素反応及び固体酸触媒反応を経て単糖化する上で非常に有用である。
 以下に、本発明について図面を参照して詳細に説明する。
 図1は、本発明に係るエタノール製造装置の一実施形態を示す概略構成図である。エタノール製造装置Aは、バイオマスBを糖化して単糖を製造する単糖製造装置と、糖化生成物を発酵してエタノールを生成する発酵装置と、発酵生成物を蒸留してエタノールEを精製する蒸留装置9とを有する。単糖製造装置は、加圧熱水反応装置1、固液分離器2、叩解機3、酵素反応装置4、第1触媒反応装置5及び第2触媒反応装置7を有し、第1触媒反応装置5は、セルロース由来の部分糖化物を加水分解(単糖化)し、第2触媒反応装置7はヘミセルロース由来の部分糖化物を加水分解(単糖化)する。発酵装置は、セルロース由来の糖化物を発酵してエタノールを生成する第1発酵装置6と、ヘミセルロース由来の糖化物を発酵してエタノールを生成する第2発酵装置8とからなり、各々から生成する発酵生成物F1,F2は、蒸留装置9によって蒸留してエタノールを分離精製する。
 加圧熱水反応装置1は、ポンプ1a、加熱器1b、水量調整弁1c、耐圧性の反応槽1d及び制御装置1eによって構成され、ポンプ1aは、外部から供給される水を加圧して加熱器1bに送出する。加熱器1bは、制御装置1eから入力される温度制御信号に応じて、ポンプ1aから流入する加圧水を150~230℃程度まで加熱して加圧熱水W’(圧力0.4~12MPa程度の亜臨界状態の熱水)とし、これは、水量調整弁1cを介してバイオマスを収容した反応槽1dに供給される。水量調整弁1cは、制御装置1eから入力される流量制御信号に応じて開度が調節可能な電子制御弁であり、加熱器1bから反応槽1dへ供給される加圧熱水W’の流量を適正に調整する。制御装置1eは、加熱器1bに出力する温度制御信号、及び、水量調整弁1cに出力する水量制御信号によって、反応槽1dに供給される加圧熱水W’の温度及び流量を調節し、反応槽1dにおけるバイオマスの加水分解条件を上述のように制御する。加水分解条件は、例えば、加圧熱水W’の供給量Q(ml)とバイオマス供給量V(g)との比率K(=Q/V)、加圧熱水W’の温度T(℃)として設定することができる。反応槽1dから排出される熱水の熱エネルギーを回収して、加熱器1bに供給される水に供給再利用する熱交換器を設けると、エネルギー効率を改善できる。
 反応槽1dは、外部から原料として供給される一定量のリグノセルロース系バイオマスを収容し、水量調整弁1cを通じて供給される加圧熱水W’をバイオマスに添加・作用させて、バイオマスに含まれるヘミセルロースが選択的に加水分解されて可溶化する。加圧熱水で加水分解する場合にセルロースは240~300℃程度の温度を必要とするのに比べ、ヘミセルロースは、セルロースより低温の230℃程度以下で分解可溶化するので、加圧熱水反応装置1においてバイオマスを150~230℃で処理することによって、バイオマスに含まれるヘミセルロースが選択的に部分分解・可溶化してオリゴ糖を含む多糖類の含水液体となり、反応生成物は、ヘミセルロース由来のオリゴ糖を含む含水液体と、分解しないセルロース及びリグニンを含む固体残渣との混合物となる。反応槽1dの反応様式は、連続通水式でも回分式でも良いが、連続通水式の場合では、加圧熱水が槽内に5~120分程度滞留可能となるように構成する。
 加圧熱水反応装置1から排出される反応生成物は、固液分離器2に供給され、ヘミセルロース由来分解物である液状糖化物の部分と、セルロース及びリグニンを含む固体残渣Sとに分離される。固体残渣Sは、叩解機3に供給された後に、酵素反応装置4及び第1触媒反応装置5によって処理される。液状部分は、ヘミセルロースの一次糖化液H1として第2触媒反応槽値7に供給される。
 叩解機3は、固液分離器2から供給される固体残渣Sに剪断力を加え、これによって固体残渣の繊維間に弛みや隙間を生じさせて柔軟な多孔質状に加工する。得られる固体残渣S’は、表面積が著しく増加する。叩解機3として、例えば、解繊処理等に使用されるレファイナー、ディスパージャーや、破砕処理等に使用されるボールミル等のミル類等が挙げられるが、これらに限ることなく、剪断力を加えられるものを適宜利用することができる。叩解条件は、乾式及び湿式の何れでも良いが、加圧熱水反応後の含水状態で叩解すると、装置の負担が少なく、処理効率もよい。叩解時間や加える負荷等の叩解条件は、叩解処理後の固体残渣S’が好適な比表面積となるように固体残渣Sの状況に応じて適宜設定すればよく、叩解によって、比表面積が好ましくは50m/g程度以上、より好ましくは80~300m/g程度の固体残渣S’を調製する。尚、本発明において、固体残渣の比表面積は、試料に真空加熱脱気(60℃、6時間)による前処理を施し、BET法(Nガス吸着法)に従って測定した値(詳細は、実施例参照)を用いる。
 叩解機3によって叩解された固体残渣S’は、酵素反応装置4に供給される。酵素反応装置4は、攪拌機及び温度制御機構を備え、必要に応じて攪拌が可能なように水分量を調節した固体残渣S’に糖化酵素であるセルラーゼを添加・混合し、酵素が活性な温度に維持して攪拌することによって、セルラーゼの作用により固体残渣S’中のセルロースが加水分解し、セルロースの部分糖化物であるセロビオース(グルコースの2量体)を主とする分解生成物が一次糖化液C1として得られる。セルラーゼは、複数種の糖化酵素の集合体として一般的に知られており、主成分としてβ-グルカナーゼを含んでいる。β-グルカナーゼは、セルロースを水溶性オリゴ糖(グルコースの2~6量体)に加水分解する糖化酵素として知られている。一次糖化液C1は、水溶性オリゴ糖及び水不溶性の懸濁態多糖を含んでおり、水溶性オリゴ糖の含水液体に懸濁態多糖が分散した流動液状である。懸濁態多糖は、セルロースの部分分解物で、具体的には、重合度7~3000のグルコース重合体やグルコースの6量体であるセロヘキサオース結晶を含む懸濁粒子であり、後続の固体酸触媒反応によってグルコースに分解可能である。酵素反応装置4の温度は、使用する糖化酵素に応じて適正な酵素活性が得られるように40~90℃程度の範囲で適宜調整する。酵素反応装置4の温度調節を容易にするためには、酵素反応装置4に導入される固体残渣S’の温度が50~100℃程度であると好適であり、必要に応じて、加圧熱水反応後の固体残渣の温度を低下させるための冷却器を叩解機3の前段又は後段に設けてもよい。耐熱性酵素を用いると、冷却器の冷却能を低減可能である。本発明においては、叩解処理によって固体残渣S’の糖化が進行し易くなるため、糖化酵素の使用量を削減することができ、セルロース1g当たり0.25g以下の少ない酵素量を用いて12時間程度以内に未反応セルロースを実質的に消失させて酵素分解を終了することができる。
 酵素反応装置4において生成するセルロースの一次糖化液C1は、第1触媒反応装置5に供給される。必要に応じて、一次糖化液C1に残存し得る固体残渣(リグニン等)を除去するための手段として、ベルトプレス等の分離装置を第1触媒反応装置5の前段に設けても良い。第1触媒反応装置5は、温度制御機構を有する第1混合装置5aと、第1固液分離装置5bとを備え、一次糖化液C1は、第1混合装置5aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌される。一次糖化液C1のオリゴ糖及び懸濁態多糖は、固体酸触媒Xの作用によって加水分解されてグルコース(セルロースを構成する単糖)が生成し、反応生成物として、グルコースを主成分とする二次糖化液C2と固体酸触媒Xとの混合物が得られる。
 第1混合装置5aでの加水分解を終えた反応生成物は、第1固液分離装置5bに投入され、固液分離される。これにより、グルコースを主成分とする二次糖化液C2が上澄みとして分離されて、第1発酵装置6に送出される。沈降分離した固体酸触媒Xは回収した後、第1混合装置5aに戻して再度使用される。第1固液分離装置5bは、一般的に沈殿槽として使用可能なものであればよい。
 第1固液分離装置5bから第1発酵装置6に供給された二次糖化液C2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってグルコースをエタノールに変換する。エタノール発酵に利用する発酵微生物としては、酵母等の公知のエタノール発酵微生物を用いることができる。発酵微生物の繁殖・活動に必要な栄養源を添加することが好ましい。必要に応じて、発酵が進行し易い温度に保持するための温度制御機構を付設するとよい。
 第1発酵装置5から排出される発酵生成物F1は、蒸留装置9に供給して蒸留することによって、精製エタノールが回収される。発酵生成物F1は固形物を含み、これを除去せずにそのまま蒸留しても良い。必要に応じて、発酵生成物F1から固形物(リグニン、発酵微生物等)を除去するための濾過装置を設けると、液状物のみを蒸留することができる。濾過等によって発酵生成物F1から分離される固形物は、バイオマスの糖化工程に導入しても良い。
 一方、固液分離器2によって分離されたヘミセルロース由来の一次糖化液H1は、第2触媒反応装置7に供給される。第2触媒反応装置7は、温度制御機構を有する第2混合装置7aと、第2固液分離装置7bとを備え、一次糖化液H1は、第2混合装置7aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌される。一次糖化液H1のヘミセルロース由来オリゴ糖は、固体酸触媒Xの作用によって加水分解されて、キシロースやアラビノース(ヘミセルロースを構成する五炭糖)等を含む単糖が生成し、これらを含む二次糖化液H2が得られるので、反応生成物は、キシロースを含む二次糖化液H2と固体酸触媒Xとの混合物となる。第2触媒反応装置7で使用する固体酸触媒Xは、第1触媒反応装置5で使用可能なものから同一又は異なるものを適宜選択して良い。
 第2混合装置7aでの加水分解反応を終えた反応生成物は、第2固液分離装置7bに投入され、投入された反応生成物中の固体酸触媒Xを沈降させることにより、上澄みとして二次糖化液H2が分離され、これは第2発酵装置8に送出される。沈降分離した固体酸触媒Xは回収した後、第2混合装置7aに戻して再度使用される。第2固液分離装置7bは、一般的に沈殿槽として使用可能なものであればよい。
 第2固液分離装置7bから第2発酵装置8に供給された二次糖化液H2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってキシロース等をエタノールに変換する。使用する発酵微生物は、キシロース発酵能を有する微生物である。発酵微生物の繁殖・活動に必要な栄養源を添加することが好ましい。必要に応じて、発酵が進行し易い温度に保持するための温度制御機構を付設するとよい。
 第2発酵装置7から排出される発酵生成物F2は、蒸留装置9に供給して蒸留することによって、精製エタノールが回収される。発酵生成物F2は固形物を含み、これを除去せずにそのまま蒸留しても良い。必要に応じて、発酵生成物F2から固形物(リグニン、発酵微生物等)を除去するための濾過装置を設けると、液状物のみを蒸留することができる。濾過等によって発酵生成物F2から分離される固形物は、バイオマスの糖化工程に導入しても良い。発酵生成物F2の蒸留は、第1発酵装置5から得られる発酵生成物F1と一緒に、又は、個別に行うことができる。
 加圧熱水反応装置1の反応槽1dからは、ブロー水が排出される。又、第1発酵装置6及び第2発酵装置8からは、エタノール発酵の改訂で生じる水が排出される。これらの排水Dは、排水処理装置10に供給されて適宜浄化処理を施した後に外部に排出される。
 上述のように構成されるエタノール製造装置において実施される、単糖及びエタノールの製造方法について以下に説明する。
 原料として使用するバイオマスBは、リグノセルロース系素材であれば良く、例えば、木材、間伐材、樹皮等の木質材や、稲藁、麦藁、籾殻、バガス等の草本類、パルプや廃棄紙、綿布、麻布、人工セルロース材等の繊維材が挙げられ、特に、ヘミセルロースを含む木質材等の植物性素材を効率的に糖化・発酵することができる。反応効率の観点から、このようなバイオマスBを予め粒状に粉砕しておくとよく、粒径10mm程度以下、具体的には5~10mm程度の粒子に調製すると好ましい。
 加圧熱水反応装置1において、反応槽1dに、外部から原料として供給される一定量のバイオマスを収容し、制御装置1eから入力される温度制御信号によって加熱器1bを調節して、ポンプ1aから流入する加圧水を150~230℃程度に加熱して加圧熱水W’(圧力0.4~12MPa程度の亜臨界状態の熱水)とし、水量調整弁1cを介してバイオマスを収容した反応槽1dに供給される。制御装置1eから入力される流量制御信号によって水量調整弁1cの開度を調節して、加熱器1bから反応槽1dへ供給される加圧熱水W’の流量を適正に調整する。加圧熱水をバイオマスに添加・作用させると、バイオマスに含まれるヘミセルロースが選択的に加水分解されて可溶化・液状化する。バイオマスは、セルロースを主成分とし、ヘミセルロース及びリグニンを含むリグノセルロース系素材であり、加圧熱水で加水分解する場合にセルロースは240~300℃程度の温度を必要とするのに比べ、ヘミセルロースは、セルロースより低温の150~230℃程度で分解可溶化するので、バイオマスを加圧熱水反応装置によって処理した反応生成物は、ヘミセルロースから部分分解・可溶化したオリゴ糖を含む多糖類の含水液体と、分解しないセルロース及びリグニンの固体残渣とを含む固液混合物となる。加圧熱水の供給形態は連続通水式でも回分式でも良いが、連続通水式の場合は、加圧熱水の槽内滞留時間が5~120分程度となるように通水速度を調節し、10~120分程度反応させる。
 加圧熱水反応装置1の反応生成物は、固液分離器2に供給されて、ヘミセルロース分解物の液状糖化物部分と、セルロース及びリグニンを含む固体残渣Sとに分離される。液状部分は、第2触媒反応装置7に供給され、固体残渣Sは、叩解機3に供給される。
 叩解機3において、固液分離器2から供給される固体残渣Sを叩解して剪断力を加え、これによって固体残渣の繊維間に弛みや隙間が生じて柔軟な多孔質状になり、表面積が著しく増加する。固体残渣Sは、乾式及び湿式の何れの状態で叩解しても良いが、加圧熱水反応後の含水状態で叩解すると、装置の負担が少なく、処理効率もよい。叩解処理後の固体残渣S’の比表面積が好ましくは50m/g程度以上、より好ましくは80~300m/g程度となるように、叩解時間や加える負荷等の叩解条件を、固体残渣Sの状況に応じて適宜設定する。本発明において用いる固体残渣の比表面積は、試料に真空加熱脱気(60℃、6時間)による前処理を施し、BET法(Nガス吸着法)に従って測定した値である(詳細は、実施例参照)。
 叩解機3によって叩解された固体残渣S’は、酵素反応装置4に供給されて、糖化酵素であるセルラーゼを含む水性液が添加・混合され、酵素が活性な温度に維持される。セルラーゼの作用によって固体残渣S’中のセルロースが分解し、セルロースの一次糖化液C1として、水溶性オリゴ糖であるセロビオース(グルコースの2量体)を主とする分解物が得られる。セルラーゼは、複数種の糖化酵素の集合体として一般的に知られており、主成分としてβ-グルカナーゼを含んでいる。β-グルカナーゼは、セルロースを水溶性オリゴ糖(グルコースの2~6量体)に加水分解する糖化酵素として知られている。又、水溶性オリゴ糖の一部は、セルラーゼに含まれるβ-グルコシダーゼによってグルコースに分解される。一次糖化液C1は、水溶性オリゴ糖及び水不溶性の懸濁態多糖を含んでおり、水溶性オリゴ糖の含水液体に懸濁態多糖が分散した流動液状である。懸濁態多糖は、セルロースの部分分解物であって、7量体以上のグルコース重合体やグルコースの6量体であるセロヘキサオースの結晶であり、後続の固体酸触媒反応によってグルコースに分解可能である。
 酵素反応装置4で用いる糖化酵素は、市販品として入手可能な一般的な糖化酵素を使用でき、耐熱性酵素として市販されているものも使用可能である。通常の糖化酵素は、40~50℃程度において酵素活性が最大になり、耐熱性酵素は、70~90℃程度において酵素活性が最大になるので、酵素反応装置4の温度は、使用する糖化酵素に応じて適正な酵素活性が得られるように適宜調整する。酵素反応装置4の温度調節を容易にするためには、酵素反応装置4に導入される固体残渣S’の温度が90~100℃程度であると好適であり、必要に応じて、加圧熱水反応後の固体残渣の温度を低下させるための冷却器を叩解機3の前段又は後段に設けてもよい。耐熱性酵素を用いると、冷却器の冷却能を低減可能であり、又、酵素反応装置4の温度と第1混合装置5aの温度とを近づけることができるので、温度調節におけるエネルギーの使用効率を改善できる。
 加圧熱水反応後の固体残渣Sを、叩解処理せずに糖化酵素反応を施すと、糖化酵素を削減することによって分解速度が減少し、分解率も低下する(図2の(a)~(c)参照)が、叩解処理を経た固体残渣S’を糖化酵素反応させると、糖化酵素を削減しても分解速度をある程度維持することが可能であるだけでなく、糖化酵素によって懸濁態多糖に分解される速度が高くなり、分解率も高くなる(図2の(d)~(f)参照)。この理由は定かではないが、セルロース表面に接触した糖化酵素は、接触部位で分解した後に移動することが分解反応を進行させる上で必要であり、叩解処理によって、糖化酵素が繊維間へ侵入したり反応部位を移動することが容易になるために、懸濁態多糖への分解が容易になると考えられる。この結果、糖化酵素の使用量を削減しても、酵素反応時間を延長せずにセルロースを消尽して一次糖化液C1に転換することができ、後続の固体酸触媒反応によって一次糖化液C1の懸濁態多糖から単糖化される量が増加して単糖回収率が高まる。従って、固体残渣の叩解処理は、酵素反応及び固体酸触媒反応によってセルロースを単糖化する方法において極めて有用である。
 酵素反応装置4において生成するセルロースの一次糖化液C1は、第1混合装置5aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌すると、一次糖化液C1のオリゴ糖及び懸濁態多糖は、固体酸触媒Xの作用によって良好に加水分解されてグルコース(セルロースを構成する単糖)が生成し、グルコースを主成分とする二次糖化液C2が得られる。使用する固体酸触媒Xとしては、ゼオライト、アルミナ、シリカ等の無機固体酸や、樹脂等の有機素材のスルホン化処理等によって酸性基を導入したもの等が挙げられ、接触表面積を多くするために粉末状又は粒子状の固体酸触媒が用いられる。本発明においては、有機炭素材を炭化処理した後にスルホン化処理したスルホン化カーボン系のものが好ましい。スルホン化カーボン系固体酸触媒は、木質類/又は草本類等の有機炭素材を窒素等の不活性ガス雰囲気下で加熱処理することにより得られるアモルファス状の黒色固体(炭化物)を濃硫酸または発煙硫酸中で加熱処理して炭化物の骨格にスルホン基を付加し、熱水洗浄することによって得られる。炭化及びスルホン化を同時に行ってもよく、炭化及びスルホン化の処理温度は、用いる有機物の種類によって適宜選択される。固体酸触媒Xの使用量は、一次糖化液C1に対して5~20質量%が好ましい。反応時間は、概して1~10時間程度であればよい。
 第1混合装置5aでの加水分解反応を終えた反応生成物は、第1固液分離装置5bに供給され、反応生成物中の固体酸触媒Xを沈降させる。上澄みとしてグルコースを主成分とする二次糖化液C2が分離されて、第1発酵装置6に送出され、沈降分離した固体酸触媒Xは回収した後、第1混合装置5aに戻して再度使用される。
 第1固液分離装置5bから第1発酵装置6に供給された二次糖化液C2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってグルコースをエタノールに変換する。エタノール発酵に利用する発酵微生物としては、酵母等の公知のエタノール発酵微生物を用いることができ、例えば、サッカロミセス・セルビシエ、シゾサッカロミセス・ポンベ、ブレタノミセス・クステルシィ、サルシナ・ベントリクリ、クリュイベロミセス・フラジリス、ザイモモナス・モビリス、クルイベロミセス・マルキシアヌス等が挙げられる。また、エタノールへの変換能を有する酵素遺伝子を遺伝子組換えにより導入した細菌を利用してもよい。凝集性酵母を用いると、沈降性がよいので、発酵後の固液分離において好都合であり、酵母が周囲の微生物群の加水分解酵素によって分解されたアミノ酸等を栄養源として利用する上で有利な形態でもあるので、発酵効率の向上にも有用である。発酵の際、発酵微生物の繁殖・活動に必要な栄養源を添加し、至適pHに調整することが好ましい。酵母が活動・増殖するためには、リン、窒素、ビタミン類等の必須栄養素や、Co,Ni,Zn等の要求微量元素が必要であり、また、バイオマスエタノールの生産に使用される酵母は、ビタミン又はアミノ酸等の合成能力が低いか、或いは、欠如している場合がある。このような必要成分を外部から添加する発酵微生物の栄養源として、酵母エキス、ポリペプトンなどが一般的に使用できる。或いは、茶殻やコーヒー殻等の植物性廃棄物や藻類の破砕物を利用しても良く、これらの細胞原形質に含まれる成分を上記栄養源として利用できる。
 発酵原液の糖化物(グルコース)濃度は、1~20質量%程度、好ましくは10質量%程度となるように調整する。微生物用栄養源の添加量(乾燥物換算)は、発酵微生物の種類等に応じて適宜調節され、概して0.1~1質量%程度、好ましくは0.2~0.5質量%程度に設定するとよい。発酵原液のpHは、2.5~5.5程度、好ましくは3.0~5.5程度に調整し、発酵微生物を1~30g/L程度の割合で接種して、温度30~37℃程度に2~48時間程度保持することによって発酵が進行する。例えば、グルコース濃度が10質量%程度の発酵原液を用いて、20~25g-エタノール/(L・h)程度の速度でエタノールを生産することができる。
 上述のようにして第1発酵装置5における発酵を経た発酵生成物F1は、必要に応じて、発酵生成物F1から固形物(リグニン、発酵微生物等)を濾過等によって除去した後に、蒸留装置9において蒸留することによってエタノールが回収される。発酵生成物F1から固形分を除去せずにそのまま蒸留しても良い。発酵生成物F1から分離される固形物は、バイオマスの糖化工程に導入しても良い。
 一方、固液分離器2によって分離されたヘミセルロース由来の一次糖化液H1は、第2触媒反応装置7に供給され、第2混合装置7aにおいて90℃以上120℃未満の温度で固体酸触媒Xと混合・攪拌される。一次糖化液H1のヘミセルロース由来オリゴ糖は、固体酸触媒Xの作用によって加水分解されて、キシロースやアラビノース(ヘミセルロースを構成する五炭糖)等を含む単糖が生成し、これらを含む二次糖化液H2が得られる。第2触媒反応装置7で使用する固体酸触媒Xは、第1触媒反応装置5で使用可能なものから同一又は異なるものを適宜選択でき、木質類及び/又は草本類を炭化処理した後にスルホン化処理によって得られるスルホン化炭素材の使用が好ましい。固体酸触媒Xの使用量についても、第1触媒反応装置5と同様に、一次糖化液H1に対して5~20質量%が好ましく、反応時間は、概して1~10時間程度であればよい。
 第2混合装置7aでの加水分解反応を終えた反応生成物は、第2固液分離装置7bに投入され、反応生成物中の固体酸触媒Xを沈降させ、上澄みとして二次糖化液H2が分離される。これは、第2発酵装置8に送出される。沈降分離した固体酸触媒Xは回収した後、第2混合装置7aに戻して再度使用される。
 第2固液分離装置7bから第2発酵装置8に供給された二次糖化液H2は、発酵に適した条件となるように適宜水分量及びpHを調整し、発酵微生物を接種して発酵原液に調製し、発酵微生物の作用によってキシロース等をエタノールに変換する。エタノール発酵に利用する発酵微生物としては、サッカロミセス属酵母、リゾプス属糸状菌(Rhizopus oryzae)等のキシロース発酵能を有する微生物が挙げられる。また、エタノールへの変換能を有する酵素遺伝子を遺伝子組換えにより導入した細菌を利用してもよい。凝集性酵母を用いると、沈降性がよいので、発酵後の固液分離において好都合であり、酵母が周囲の微生物群の加水分解酵素によって分解されたアミノ酸等を栄養源として利用する上で有利な形態でもあるので、発酵効率の向上にも有用である。
 上述のようにして第2発酵装置7における発酵を経た発酵生成物F2は、必要に応じて、発酵生成物F2から固形物(リグニン、発酵微生物等)を濾過等によって除去した後に、蒸留装置9において蒸留することによって精製エタノールが回収される。発酵生成物F2から固形分を除去せずにそのまま蒸留しても良い。発酵生成物F2から分離される固形物は、バイオマスの糖化工程に導入しても良い。発酵生成物F2の蒸留は、第1発酵装置5から得られる発酵生成物F1と一緒又は個別に行うことができる。
 図1のエタノール製造装置において、叩解後の固体残渣S’を酵素反応装置4に投入する前段に、リグニンを除去するための処理装置を備えると、酵素反応装置4において固体残渣S’のセルロースに対する糖化酵素の作用効率が向上するので、セルロースの分解速度を高め、糖化効率を向上させることができる。
 固体酸触媒には、粉末状やペレット状のものがあり、第1触媒反応装置5及び第2触媒反応装置7でペレット状のものを用いる場合には、液体が容易に流通するメッシュ製等の透過性容器内に固体酸触媒を保持して一次糖化液H1,C1中に浸漬固定し、一次糖化液を流動させて固体酸触媒ペレット間を一次糖化液が流通するように構成することができる。このような固定床型固体酸触媒を採用することで、第1触媒反応装置及び第2触媒反応装置における固液分離に関する装置構成を簡略化することができる。
 図3の(b)は、固体酸触媒反応におけるグルコース生成速度定数kGP 及びグルコース分解速度定数kCD と温度との関係を示すが、このグラフから、固体酸触媒反応は90℃以上において良好に進行することが分かる。又、グルコースの分解を抑制するために100℃以上120℃未満の反応温度が好ましいことが理解される。
 従って、酵素反応装置4において一般的な糖化酵素を使用する場合に、エネルギー効率の観点から酵素反応装置4の温度と第1混合装置5aの温度とを近づけるには、第1混合装置5aにおける固体酸触媒反応の温度を低めの50℃程度に設定することになるが、この場合、固体酸触媒反応の速度が低下するので、これを補うには、第1混合装置5aで使用する固体酸触媒Xを増量する。
 また、第1発酵装置及び/又は第2発酵装置6において、発酵微生物として、クロストリジウム・アセトブチリカム、クロストリジウム・ベイジェリンキ、クロストリジウム・オーランチブチリカム、クロストリジウム・テタノモーファム等の微生物を利用して、ブタノール等のアルコールやアセトン等を発酵によって製造するように変更することが可能であり、エタノール以外の有用アルコール類、ケトン類の製造に応用することができる。同様に、ヒドロキシメチルフルフラールやフルフラール等の生成にも応用可能である。
 <叩解処理を施さない場合の糖化>
 (木質バイオマスの加圧熱水反応)
 木質バイオマスとして、スイートソルガムバガス(含水率30質量%)300gを細かく粉砕したものを用意し、バッチ式の加圧熱水反応装置(オーエムラボテック社製OML-5)に充填して、200℃の加圧熱水3Lを供給して20分間反応させた。反応生成物を加圧熱水反応装置から取り出し、3000Gの遠心力を加えて15分間遠心分離することによってヘミセルロース由来の糖化液を除去し、固体残渣S(1382g-wet、含水率84.32質量%)を得た。
 (固体残渣Sの糖化酵素反応)
 1.3gの固体残渣Sをバイアル瓶に入れて、脱塩水1.7mlを加え、糖化酵素(NOVOZYME社製セルラーゼCTec2)を異なる割合で添加した3種の試料(a)~(c)を各3個ずつ用意した。各試料の糖化酵素の添加割合は、(a)0.1g-酵素/g-セルロース、(b)0.17g-酵素/g-セルロース、及び、(c)0.25g-酵素/g-セルロースとした。これらを試験管用混合攪拌機(ラビンコ社製ロックンローラーL201)に装着し、50℃の恒温槽内で速度10rpmで攪拌することにより酵素反応を進行させ、6時間、24時間又は48時間経過したところで反応を終了して、試料中のグルコース(図中、Gで表示)、水溶性セロオリゴ糖(OS)、及び、懸濁態多糖(PS、重合度7~3000のグルコース多糖)の収率を下記の操作に従って測定した。結果を図2の(a)~(c)のグラフに示す。
 <叩解処理を施した場合の糖化>
 (固体残渣の叩解処理)
 上述の木質バイオマスの加圧熱水反応に従って、同様に固体残渣Sを調製し、遊星型ボールミル(FRISCH社製P-5)のジルコニア製容器に127.55g-wet投入した。固体残渣Sに水を加えて総量を250gに調整し、φ20mmのジルコニア製ボール(FRISCH社製)25個を用いて、回転数250rpmで60分間叩解処理を行い、叩解後の固体残渣S’を得た。
 (固体残渣S’の糖化酵素反応)
 1.3gの固体残渣Sをバイアル瓶に入れて、脱塩水1.7mlを加え、糖化酵素(NOVOZYME社製セルラーゼCTec2)を異なる割合で添加した3種の試料(d)~(f)を3個ずつ用意した。各試料の糖化酵素の添加割合は、(d)0.1g-酵素/g-セルロース、(e)0.17g-酵素/g-セルロース、及び、(f)0.25g-酵素/g-セルロースとした。これらを試験管用混合攪拌機(ラビンコ社製ロックンローラーL201)に装着し、50℃の恒温槽内で速度10rpmで攪拌することにより酵素反応を進行させ、6時間、24時間又は48時間経過したところで反応を終了して、試料中のグルコース(G)、水溶性セロオリゴ糖(OS)、及び、懸濁態多糖(PS、重合度7~3000のグルコース多糖)の収率を下記の操作に従って測定した。結果を表2の(d)~(f)のグラフに示す。
 <糖収率の測定>
 (グルコース(G)及び水溶性セロオリゴ糖(OS)の収率)
 試料をガラス繊維濾紙(WHATMAN社製、型式:1821-047)を用いて濾過し、得られた濾液に含まれるグルコース及び重合度2~6のセロオリゴ糖を高速液体クロマトグラフ(HPLC)を用いて定量し、固体残渣中セルロース量に対する質量比としてグルコース(G)及び水溶性セロオリゴ糖(OS)の各収率を算出した。
 (懸濁態多糖(PS)の収率)
 試料を30分間静置し、ピペットを用いて上澄みを取り出して、上澄みに含まれる全糖量をフェノール硫酸法に従って測定した。この全糖量から、上述のグルコース及び水溶性オリゴ糖の測定で定量されたグルコース量及び水溶性セロオリゴ糖量を差し引いて、上澄みに含まれる懸濁態多糖量を得、固体残渣中セルロース量に対する質量比として懸濁態多糖(PS)の収率を算出した。
 <叩解処理の有無による比較>
 糖収率の測定結果において水溶性セロオリゴ糖(OS)が殆ど見られないことから、上記の糖化酵素反応においては、オリゴ糖の加水分解は容易に進行する。
 グルコース(G)の収率について図2の(a)~(c)の結果を見ると、叩解処理を施さずに糖化酵素反応を行った場合、酵素の添加量を削減すると、糖化速度が明らかに低下して反応時間の短縮が困難になる。これに比べ、叩解処理を施した後に糖化酵素反応を行った図2の(d)~(f)の結果では、全般的にグルコースの収率が増加し、酵素の添加量を削減しても糖収率は低下し難く、糖化速度はかなり維持できる。更に、懸濁態多糖(PS)の収率について図2の(a)~(c)と(d)~(f)とを比較すると、叩解処理を経た試料では懸濁態多糖(PS)の収率が高く、特に酵素の添加量が少ない(d)の場合や反応初期(6時間)の結果において顕著であることから、叩解処理によって懸濁態多糖(PS)が生成し易くなることが明らかである。この点は、懸濁態多糖の収率測定において試料を静置した際に、試料(a)~(c)の試料で見られた沈降固体残渣の存在が(e),(f)及び24時間以上反応させた(d)の試料で殆ど見られなかったことからも理解される。
 糖化酵素反応において、反応時間を伸長すれば全てをグルコースに分解可能であるが、糖化速度は次第に減衰するので、これは効率的ではない。これに対し、懸濁態多糖(PS)及び水溶性セロオリゴ糖(OS)は,固体酸触媒反応によって容易にグルコースに分解可能である(実施例2参照)ので、糖化酵素反応において少なくとも懸濁態多糖(PS)に分解すれば、固体酸触媒反応によって単糖化できる。つまり、(d)の試料では24時間、(e)及び(f)の試料では6時間の糖化酵素反応を施すことによって、固体酸触媒反応で十分に単糖化できる一次糖化液が得られる。従って、糖化酵素反応における懸濁態多糖の生成を促進可能である叩解処理は、糖化酵素反応と固体酸触媒反応との組み合わせによってセルロース系バイオマスを単糖化するプロセスにとって極めて有用であり、糖収率を低下させずに、糖化酵素反応時間の短縮及び添加酵素量の削減を実現可能な極めて有効な手段である。
 <固体残渣の比表面積>
 加圧熱水反応によって得られた固体残渣S、及び、叩解処理後の固体残渣S’について、以下の操作に従って比表面積の測定を行った。
 (脱水処理)
 濃度が30%、50%、70%、90%、95%及び99%の(含水)エタノールを各々20ml用意した。
 試料として固体残渣を10g分取して容器に入れ、低い濃度のエタノールから順に用いて、エタノール中への試料の浸漬(15分間)とデカンテーションによるエタノール除去とを繰り返すことによって試料から水を除去した。尚、浸漬の際には、容器に蓋をした。
 (固定化処理)
 脱水処理後の試料にt-ブタノールを加えて試料を浸漬し、15分間静置した。この後、デカンテーションによりt-ブタノールを除去した。この浸漬とデカンテーションを繰り返して5回行った後、再度t-ブタノールを加えて試料を浸漬し、容器に蓋をして封止し、冷蔵庫内で10分間静置した。t-ブタノールが凝固しているのを確認し、冷蔵庫から取り出した容器を真空デシケータ内に移して蓋を取り、デシケータを減圧してt-ブタノールを留去した。
 (比表面積測定)
 測定装置としてカンタクローム社製AUTO SORB-1MPを使用して、前処理として60℃での真空加熱脱気を6時間行った後に、試料の比表面積をBET法(N2ガス吸着法)による比表面積の測定を行った(JIS Z8830参照)。
 測定の結果、叩解処理を行わない固体残渣Sの比表面積は、45m/gであり、叩解処理を経た固体残渣S’の比表面積は、91m/gであった。
 木質バイオマスとして、スイートソルガムバガス(含水率30質量%)300gを細かく粉砕したものを用意し、バッチ式の加圧熱水反応装置(オーエムラボテック社製OML-5)に充填して、200℃の加圧熱水3Lを供給して20分間反応させた。反応生成物を加圧熱水反応装置から取り出し、3000Gの遠心力を加えて15分間遠心分離することによってヘミセルロース由来の糖化液を除去した。得られた固体残渣1382g(含水率84.32質量%)から、127.55gの固体残渣を分取して、以下の操作の固体残渣Sとして用いた。
 固体残渣Sに糖化酵素(NOVOZYME社製セルラーゼCTec2)を1.5g/Lとなる割合で添加して温度を50℃に保持し、攪拌装置を用いて速度100rpmで攪拌することにより、酵素反応を進行させた。反応時間が12時間及び40時間における反応生成物の試料をサンプリングし、40時間で糖化酵素反応を終了した。
 アモルファス状炭化物をスルホン化したカーボン系固体酸触媒75gを用意し、上述の糖化酵素反応の生成物に加えて温度を90~100℃に保持し、攪拌装置を用いて速度200rpmで攪拌することにより、固体酸触媒反応を5時間行った。
 糖化酵素反応時間が12時間及び40時間の試料、及び、固体酸触媒反応後の生成物について、グルコース、水溶性セロオリゴ糖及び懸濁態多糖の含有濃度を測定した。結果を図3(a)の棒グラフに示す。
 又、濃度10質量%のセロビオース水溶液を調製し、上述と同じ固体酸触媒をセロビオース水溶液に対して15質量%の割合で添加して、一定の反応温度で固体酸触媒反応を一定時間行い、反応後の組成を測定することによって、グルコース生成速度定数KGP 及びグルコース分解速度定数KGD を計算した。その際、反応温度を25~130℃の範囲内で変更して、温度依存性を調べた。結果を図3の(b)に示す。
 図3(a)のグラフによれば、セルロース由来の水溶性オリゴ糖及び懸濁態多糖は、固体酸触媒によって良好に加水分解されて効率よく単糖化されることが分かる。従って、糖化酵素反応時間によって完全に単糖化するよりも、部分単糖化状態において固体酸触媒反応に移行する方が、効率的に単糖化でき、処理時間を短縮できる。この結果を考慮すれば、実施例1に示される叩解処理が、糖化酵素反応時間の短縮及び酵素量の削減において極めて有意義であることが明らかである。
 本発明は、植物性廃棄物をバイオマスとしてバイオマスエタノールを生産する際に、食物価格の高騰の虞がない資源を利用して、経済的且つ合理的に処理することができ、廃棄物処理及び資源の生産に寄与するので、有用性が高く、リサイクルの促進及び環境保護にも貢献可能である。

Claims (15)

  1.  バイオマスに加圧熱水を作用させてバイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応工程と、
     前記加圧熱水反応工程後の固体残渣を叩解する叩解処理工程と、
     前記叩解処理工程後の固体残渣に糖化酵素を作用させる一次糖化工程と、
     前記一次糖化工程による生成物に固体酸触媒を作用させる二次糖化工程とを有する単糖の製造方法。
  2.  前記叩解処理工程によって、前記固体残渣の比表面積を50m/g以上に増加させる請求項1に記載の単糖の製造方法。
  3.  前記叩解処理工程は、湿式処理である請求項1又は2に記載の単糖の製造方法。
  4.  前記一次糖化工程によって、前記固体残渣のセルロースを分解して、重合度が7~3000の懸濁態多糖を含む液体を生成する請求項1~3の何れか1項に記載の単糖の製造方法。
  5.  前記二次糖化工程によって、前記懸濁態多糖を分解して単糖としてグルコースを生成する請求項4に記載の単糖の製造方法。
  6.  更に、前記叩解処理工程の前に、前記加圧熱水反応工程後の固体残渣をヘミセルロースの分解物から分離する分離工程を有する請求項1~5の何れか1項に記載の単糖の製造方法。
  7.  更に、前記加圧熱水反応工程において生成するヘミセルロースの分解物に固体酸触媒を作用させて単糖としてキシロースを生成するヘミセルロース系糖化工程を有する請求項1~6の何れか1項に記載の単糖の製造方法。
  8.  請求項1~7の何れか1項に記載の単糖の製造方法によって得られる単糖を発酵してエタノールを生成する発酵工程を有するエタノールの製造方法。
  9.  更に、前記発酵工程による生成物に含まれるエタノールを精製する精製工程を有する請求項8に記載のエタノールの製造方法。
  10.  バイオマスに加圧熱水を作用させてバイオマスに含まれるヘミセルロースを選択的に分解する加圧熱水反応装置と、
     前記加圧熱水反応装置の反応生成物から得られる固体残渣を叩解する叩解機と、
     前記叩解機によって叩解された固体残渣に糖化酵素を作用させる酵素反応装置と、
     前記酵素反応装置の反応生成物に固体酸触媒を作用させる触媒反応装置とを有する単糖製造装置。
  11.  更に、前記加圧熱水反応装置の反応生成物を、固体残渣とヘミセルロースの分解物とに分離する分離装置を有し、前記分離装置によって分離された固体残渣が前記叩解機に供給される請求項10に記載の単糖製造装置。
  12.  更に、前記触媒反応装置の反応生成物から前記固体酸触媒を分離回収する分離装置を有する請求項10又は11に記載の単糖製造装置。
  13.  更に、前記加圧熱水反応装置によって生成されるヘミセルロースの分解物に固体酸触媒を作用させて単糖としてキシロースを生成するヘミセルロース系触媒反応装置を有する請求項10~12の何れか1項に記載の単糖製造装置。
  14.  請求項10~13の何れか1項に記載の単糖製造装置と、
     前記単糖の製造装置によって得られる単糖を発酵してエタノールを生成する発酵装置とを有するエタノール製造装置。
  15.  更に、前記発酵装置の生成物に含まれるエタノールを精製する蒸留装置を有する請求項14に記載のエタノール製造装置。
PCT/JP2012/082888 2012-01-06 2012-12-19 単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置 WO2013103086A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012001522A JP2013141415A (ja) 2012-01-06 2012-01-06 単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置
JP2012-001522 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013103086A1 true WO2013103086A1 (ja) 2013-07-11

Family

ID=48745149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082888 WO2013103086A1 (ja) 2012-01-06 2012-12-19 単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置

Country Status (2)

Country Link
JP (1) JP2013141415A (ja)
WO (1) WO2013103086A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283712A (zh) * 2019-05-08 2019-09-27 厦门益力康生物科技有限公司 一种酵素处理工艺生产线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351216B2 (ja) 2013-07-05 2018-07-04 株式会社荏原製作所 水中ポンプ用ポンプ羽根及びこれを備えた水中ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136263A (ja) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマス処理方法
JP2007104983A (ja) * 2005-10-14 2007-04-26 Tsukishima Kikai Co Ltd リグノセルロースの前処理方法
JP2008271962A (ja) * 2007-04-04 2008-11-13 National Institute Of Advanced Industrial & Technology 糖の製造方法
WO2011087133A1 (ja) * 2010-01-18 2011-07-21 株式会社Ihi バイオマス処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136263A (ja) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマス処理方法
JP2007104983A (ja) * 2005-10-14 2007-04-26 Tsukishima Kikai Co Ltd リグノセルロースの前処理方法
JP2008271962A (ja) * 2007-04-04 2008-11-13 National Institute Of Advanced Industrial & Technology 糖の製造方法
WO2011087133A1 (ja) * 2010-01-18 2011-07-21 株式会社Ihi バイオマス処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283712A (zh) * 2019-05-08 2019-09-27 厦门益力康生物科技有限公司 一种酵素处理工艺生产线

Also Published As

Publication number Publication date
JP2013141415A (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
CA2694875C (en) Cellulase enzyme based method for the production of alcohol and glucose from pretreated lignocellulosic feedstock
US10738273B2 (en) System for hydrolyzing a cellulosic feedstock slurry using one or more unmixed and mixed reactors
US20230212471A1 (en) Cellulosic biofuel
CA2755981C (en) Method for producing ethanol and co-products from cellulosic biomass
EP2207888A1 (en) Enzymatic treatment under vacuum of lignocellulosic materials
CN102089435A (zh) 产生发酵产物的方法
WO2012155239A1 (en) Lignin removal after enzymatic treatment of lignocellulosic materials
WO2013103138A1 (ja) バイオマスの糖化方法及び糖化装置、糖の製造方法及び糖製造装置並びにエタノールの製造方法及びエタノール製造装置
JP5621528B2 (ja) リグノセルロース系原料の酵素糖化処理方法
JP2011045277A (ja) セルロース系エタノール生産システムおよび生産方法
KR101039792B1 (ko) 바이오 연료 및 바이오 화학물질 제조용 전처리 장치, 및 이를 이용한 전처리 공정과 바이오 연료 및 바이오 화학물질의 제조 공정
WO2013103086A1 (ja) 単糖の製造方法及び製造装置並びにエタノールの製造方法及び製造装置
JP2014036589A (ja) 単糖の製造方法及び製造装置、エタノールの製造方法及び製造装置、並びに、フルフラール及びプラスチックの製造方法
WO2012016180A2 (en) Liquefaction biomass processing with heat recovery
WO2013114962A1 (ja) バイオエタノールの製造方法及び製造システム
JP5910427B2 (ja) リグノセルロース含有バイオマスからのエタノール製造方法
WO2012155238A1 (en) Method of fermenting a sugar stream to produce an alcohol stream
WO2013103111A1 (ja) エタノールの製造方法及び製造装置
CN101613728A (zh) 一种使草浆类纤维高效糖化的方法
Triwahyuni et al. Conversion of cellulosic biomass through consolidated bioprocessing method using Clostridium thermocellum
CA2805881C (en) Biomass liquefaction processes, and uses of same
Gill et al. SEQUENTIAL FERMENTATION OF ORGANOSOLV PRETREATED CORN STOVER FOR IMPROVED CELLULOSE HYDROLYSIS AND BIOETHANOL YIELD.
JP2015008709A (ja) 糖液製造装置、糖液製造方法、および、バイオマス由来物製造方法
JP2013540437A (ja) セルロース糖化装置、バイオマス糖化装置、発酵装置及びセルロース糖化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864567

Country of ref document: EP

Kind code of ref document: A1