WO2008050669A1 - Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body - Google Patents

Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body Download PDF

Info

Publication number
WO2008050669A1
WO2008050669A1 PCT/JP2007/070342 JP2007070342W WO2008050669A1 WO 2008050669 A1 WO2008050669 A1 WO 2008050669A1 JP 2007070342 W JP2007070342 W JP 2007070342W WO 2008050669 A1 WO2008050669 A1 WO 2008050669A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
chemical
polycarbonate copolymer
copolymerized
Prior art date
Application number
PCT/JP2007/070342
Other languages
English (en)
French (fr)
Inventor
Takaaki Hikosaka
Yasushi Hamada
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP07830076.1A priority Critical patent/EP2075275B1/en
Priority to KR1020097001896A priority patent/KR101451444B1/ko
Priority to KR1020127015098A priority patent/KR101256333B1/ko
Priority to KR1020127015892A priority patent/KR101256336B1/ko
Priority to CN200780029341.XA priority patent/CN101501101B/zh
Priority to KR1020127015097A priority patent/KR101256334B1/ko
Priority to US12/375,451 priority patent/US7893185B2/en
Publication of WO2008050669A1 publication Critical patent/WO2008050669A1/ja
Priority to US12/853,727 priority patent/US7888455B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14756Polycarbonates

Definitions

  • the present invention relates to a polycarbonate copolymer, a process for producing the same, and a molded article comprising the copolymer.
  • the present invention relates to an optical material and an electrophotographic photosensitive member.
  • polycarbonate resin produced from 2,2 bis (4-hydroxyphenyl) propane (commonly known as bisphenol A) has a high transparency and excellent mechanical properties. Therefore, it is used for various applications such as optical materials and electronic materials.
  • bisphenol A 2,2 bis (4-hydroxyphenyl) propane
  • the required performance for PC resins has become stricter, and there is a demand for PC resins with superior performance.
  • electrophotographic photoreceptors it has not only mechanical properties but also transparency, stable electrostatic properties that can withstand repeated charge and discharge cycles, and good solubility in non-halogen solvents. Even more advanced things are required.
  • a technique for obtaining a polycarbonate copolymer having a YI of about 1.3 to 1.4 by melt copolycondensation for example, Patent Document 3
  • dissolved oxygen in a sodium bisphenolate solution during interfacial polycondensation A technique for obtaining a polycarbonate having a low yellowness (YI) with an amount of less than 150 ppb (for example, Patent Document 4) is also known.
  • Patent Document 1 Japanese Patent No. 1965051
  • Patent Document 2 Japanese Patent No. 2531852
  • Patent Document 3 Japanese Patent Laid-Open No. 5-117382
  • Patent Document 4 Japanese Translation of Special Publication 2002-533544
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-82677
  • Patent Document 3 a polycarbonate copolymer obtained by melt copolycondensation has a problem that it is difficult to remove impurities.
  • Patent Document 4 discloses a polycarbonate using bisphenol A alone as a biphenol, which is disclosed in a special system that performs copolycondensation! ! / Since the coloring behavior is completely different depending on the type of comonomer to be copolycondensed with bisphenol A, it is difficult to apply the technique disclosed in Patent Document 4 to the polymerization management of the polycarbonate copolymer described above.
  • an object of the present invention is to provide a polycarbonate copolymer that is less colored not only after polymerization but also after molding, and that is excellent in electrostatic properties, a molded body comprising the copolymer, an optical material, and an electrophotographic photoreceptor. There is.
  • the polycarbonate copolymer of the present invention comprises a monomer unit represented by the following formula (1): 0 .; A polycarbonate copolymer comprising 50 mol% and a monomer unit represented by the following formula (2), wherein the content of biphenols having a structure represented by the following formula (3) is 90%. It is characterized by mass ppm or less.
  • R 2 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom.
  • R 3 and R 4 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms or a halogen atom, and X represents —O— , —S—, —SO 1, —SO 2 —, —CO—, 9, 9 Fluorenylidene group, any bond represented by the following formulas (2a), (2b), (2c) and (2d) Group.
  • R 5, R 6 are each independently a hydrogen atom, carbon atoms;! Aliphatic hydrocarbon Motoma other to 6 6 carbon atoms;. Shows the Ariru group 12 also, R 5, R 6 may be bonded to each other to form a cycloalkylidene group having 4 to 12 carbon atoms.
  • R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Also, at least one of R is preferably an alkyl group having 1 to 3 carbon atoms.
  • the bonding position may be any of 0-, m-, and p-.
  • R 7 to R 12 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a linking group consisting of a single bond or an alkylene group, provided that two of R 7 to R 12 are bonded. And the remainder is hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom.
  • the content of the biphenols represented by the formula (3) is 90 mass ppm or less. Therefore, not only the initial coloration of the copolymer PC is reduced, but also the coloration during melt molding is reduced. Furthermore, when the content of biphenols is 90 mass ppm or less, when the copolymerized PC of the present invention is used as a molded product for an electrophotographic photosensitive member, the residual potential when the electrophotographic photosensitive member is repeatedly used is reduced. The rise can be suppressed.
  • the content of the biphenols represented by the formula (3) is an unreacted residual amount in the copolymerized PC after the polycondensation reaction, and more preferably 60 mass ppm or less. It is preferably 30 ppm by mass or less, and most preferably 10 ppm by mass or less.
  • the polycarbonate copolymer of the present invention comprises a monomer unit represented by the formula (1):
  • a polycarbonate copolymer comprising 50 mol% and a monomer unit represented by the above formula (2), which contains a biphenyl compound having three phenolic hydroxyl groups in one molecule.
  • the amount is 200 mass ppb or less.
  • the content of a biphenyl compound in which three phenolic hydroxyl groups exist in one molecule is 200 mass ppb. Therefore, not only the initial coloration of the copolymerized PC is small, but also the coloration at the time of melt forming is reduced. Furthermore, when the content of trihydroxybiphenyls is 200 mass ppb or less, the electrophotographic photoreceptor was repeatedly used when the copolymerized PC of the present invention was used as a molded article for an electrophotographic photoreceptor. The rise of the residual potential at the time can be suppressed.
  • the content of trihydroxybiphenyl in the copolymerized PC is more preferably 150 mass ppb or less, more preferably 100 mass ppb or less, and most preferably 50 mass ppb or less. .
  • the polycarbonate copolymer of the present invention comprises a solvent that can dissolve 5% by mass or more of the finally obtained polycarbonate copolymer and does not substantially mix with water, an alkali metal hydroxide, or an alkali.
  • the monomer unit represented by the formula (1) is 0.;! To 50 mol%, and YI (flaky powder of the polycarbonate copolymer is JIS (Measured in accordance with K 7105) is 3 or less, so it is suitable for optical material applications where importance is also placed on colorless and transparent in addition to heat resistance. In addition, the YI of the flaky powder is 3 or less. It also means that the amount of impurities that deteriorate the electrostatic properties is small, so that it is also useful as a raw material for molded articles used in electrophotographic photoreceptors.
  • the monomer unit represented by (1) is less than 0.1 mol%, no improvement in heat resistance is observed as a copolymerized PC, and in applications where it is used as the outermost layer of an electrophotographic photoreceptor, it is wear resistant. Insufficient durability and durability.
  • the monomer unit force shown in the above (1) exceeds 50 mol%, the biphenol skeleton is easily crystallized and the transparency is deteriorated. In addition, when such a crystal is formed in the photosensitive layer of the electrophotographic photosensitive member, the electrostatic characteristics are deteriorated.
  • the preferred range of monomeric units represented by the formula (1) is 1 40 mole%, more preferably from 5 to 30 mole 0/0.
  • the polycarbonate copolymer of the present invention is a polycarbonate copolymer constituted by a polycondensation reaction from the monomer represented by the above formula (3) and the monomer represented by the following formula (4).
  • the monomer represented by the above formula (3) (hereinafter also referred to as “biphenol monomer”) of a biphenyl compound (hereinafter also referred to as “trihydroxybiphenyls”) having three phenolic hydroxyl groups in one molecule. ) Is less than 300 ppm by mass.
  • R 3 R 4 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 16 carbon atoms, an aryl group having 6 12 carbon atoms, or a halogen atom, and X is —O— —S— —SO 2 —SO 2 — —CO— 9, 9 Fluorenylidene group, which is a linking group represented by the above formula (2a) (2b) (2c) or (2d).
  • the content of trihydroxybiphenyls, which are impurities contained in the biphenol monomer is 300 mass ppm or less, so that the copolymerized PC flakes themselves are colored. There is almost no. Therefore, in addition to heat resistance, colorless and transparent is also suitable for optical material applications where importance is attached. In addition, since the residual amount of trihydroxybiphenyls that deteriorates the electrostatic characteristics is reduced, the original of the molded body used for the electrophotographic photosensitive member is reduced. It is also useful as a fee.
  • the content of trihydroxybiphenyls in the biphenol monomer is preferably 150 ppm by mass or less, more preferably 20 ppm by mass or less, and most preferably 10 ppm by mass or less.
  • YI measured in accordance with JIS K 7105 for flaky powder
  • the value of YI in the copolymerized PC of the present invention may be used. If the copolymerized PC is obtained in a shape other than flakes, prepare a sample for YI measurement as follows.
  • the YI of the copolymerized PC is 3 or less, and the force is considered to be due to a small amount of coloring causative substances.
  • the YI of the copolymerized PC is preferably 2.3 or less, more preferably 1.8 or less, and even more preferably 1.2 or less.
  • the molded article of the present invention is preferably formed by melt-molding the above polycarbonate copolymer.
  • molded bodies having various shapes can be easily provided.
  • the molded product after melt molding is less colored and therefore suitable for optical materials.
  • the molded article of the present invention is preferably formed by wet-molding the above polycarbonate copolymer.
  • the content of biphenols is 90 ppm or less or the content of trihydroxybiphenyls is 200 ppb or less, deterioration due to light, heat, oxidizing substances, moisture, etc. is suppressed. Discoloration is suppressed, and as a result, quality degradation is small.
  • the increase in the residual potential during repeated use is particularly suppressed, which is very useful.
  • the YI of the copolymerized PC flakes is 3 or less, discoloration with time in the case of a molded product is similarly suppressed, and the increase in the residual potential when used repeatedly as an electrophotographic photosensitive member is particularly high. It is suppressed.
  • the reason for this is that by setting the YI of the copolymerized PC flakes to 3 or less, there are relatively few substances that change the copolymerized PC to yellow by the action of light, heat, oxidizing substances, moisture, etc. It is.
  • the optical material of the present invention is characterized by including the above-mentioned polycarbonate copolymer or a molded body comprising the same.
  • optical material of the present invention since it is configured to include the above-described polycarbonate copolymer, melt-molded body, or wet-molded body, there is almost no coloring and excellent transparency. Are better.
  • the electrophotographic photosensitive member of the present invention is characterized by including the above-described polycarbonate copolymer or a molded product made of the same.
  • the electrophotographic photoreceptor is, for example, an electrophotographic photoreceptor in which a photosensitive layer is provided on a conductive substrate, and the above-described copolymerized PC is preferably used as a binder resin, a surface coat resin, an adhesive resin, or the like. Can be used.
  • the above-mentioned copolymerized PC is used as a so-called binder resin, etc., so that it has excellent electrostatic characteristics, and the increase in the residual potential particularly during repeated use. It is extremely useful because it is small.
  • the method for producing the polycarbonate copolymer of the present invention includes a monomer represented by the formula (3). And a method for producing a polycarbonate copolymer in which a polycondensation reaction is performed using the monomer represented by the formula (4), wherein an antioxidant is added to 1 mol of the monomer represented by the formula (3). It is characterized by being added to the reaction system at a ratio of 0.001;
  • a copolymerized PC when a copolymerized PC is produced using a predetermined monomer, an antioxidant is added to 1 mol of the monomer represented by the formula (3). 0001 -0.1 Since it is added to the reaction system at a molar equivalent ratio, side reactions can be suppressed, and initial coloration of the resulting copolymerized PC can be suppressed. For example, it is easy to control the YI measured according to JIS K 710 5 to 3 or less. That is, the present invention is characterized in that a copolymerized PC having good characteristics can be obtained even under conditions where oxygen is substantially present.
  • the antioxidant is preferably a hydrosulfite salt.
  • the hydrosulfite salt is used as the antioxidant, side reactions during the polycondensation reaction can be suppressed at any time. Coloring can be suppressed more effectively.
  • the temperature during the polycondensation reaction is preferably 20 ° C or lower.
  • the temperature during the polycondensation reaction is set to 20 ° C. or less, so that it is easy to suppress initial coloring of the copolymerized PC obtained.
  • the polycondensation reaction is preferably performed in an atmosphere having an oxygen partial pressure of 5065 Pa or less.
  • the polycondensation reaction is performed in an atmosphere having an oxygen partial pressure of 5065 Pa or less, it is easy to suppress initial coloration of the resulting copolymerized PC.
  • the oxygen partial pressure is more preferably 1013 Pa or less.
  • the polycarbonate copolymer of the present invention is characterized by being produced by any one of the production methods described above.
  • the initial coloration of the obtained copolymer PC is very small. Therefore, it can be suitably used in the field of optical materials requiring transparency.
  • the copolymerization PC contains less impurities. Since it has excellent electrical characteristics, it can be suitably used, for example, in the field of electrophotographic photoreceptors.
  • Copolymerization PC of the present embodiment is a polycarbonate copolymer comprising monomer units represented by the following formula (1) 0.;! To 50 mol% and monomer units represented by the following formula (2) The content of biphenols having a structure represented by the following formula (3) is 90 mass ppm or less.
  • R 2 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom.
  • R 3 and R 4 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms or a halogen atom, and X represents —O— , —S—, —SO 1, —SO 2 —, —CO—, 9, 9 Fluorenylidene group, any bond represented by the following formulas (2a), (2b), (2c) and (2d) Group.
  • R 5 and R 6 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms; and R 5 , R 6 6 may be bonded to each other to form a cycloalkylidene group having 4 to 12 carbon atoms.
  • R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Also, at least one of R is preferably an alkyl group having 1 to 3 carbon atoms.
  • the bonding position may be any of 0-, m-, and p-.
  • R 7 to R 12 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a linking group consisting of a single bond or an alkylene group, provided that two of R 7 to R 12 are bonded. And the remainder is hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom.
  • the ratio of the monomer unit represented by the formula (1) is less than 0.1 mol%, the modification effect due to the biphenol skeleton cannot be obtained, the heat resistance is insufficient, or the coating liquid at the time of wet molding Whitens (gels). Further, when it is used as a molded body (binder resin) for an electrophotographic photosensitive member, it is difficult to achieve improvement in printing life if prevention of crystallization of the charge transport layer. On the other hand, when the proportion of the monomer unit exceeds 50 mol%, crystallization is likely to occur in a part of the copolymerized PC (biphenol skeleton) and the transparency is deteriorated. Is inappropriate. For example, when the amount of transmitted light decreases, the sensitivity of the electrophotographic photosensitive member decreases. Further, if the haze is large, image blurring occurs, which is not preferable.
  • the preferred range of monomeric units represented by the formula (1) is 1 to 40 mol%, and more favorable Mashiku is a 5 to 30 mole 0/0.
  • the content of biphenols represented by the formula (3) in the copolymerized PC is 90 mass ppm or less. Therefore, not only the so-called initial coloration is small, but also the coloration during melt molding is reduced. Furthermore, if the content of biphenols is 90 mass ppm or less, the residual potential increases when the electrophotographic photoreceptor is repeatedly used when the copolymer PC is used as a molded article for the electrophotographic photoreceptor. Can be suppressed.
  • the content of biphenols is the unreacted residual amount in the polycondensation reaction, more preferably 60 mass ppm or less, more preferably 30 mass ppm or less, and most preferably 10 mass ppm or less. is there.
  • the copolymerization PC of this embodiment has a reduced viscosity [7] / C] at 20 ° C of a solution having a concentration of 0.5 g / dl using methylene chloride as a solvent. preferably in the range of / g .
  • the reduced viscosity [] / C] is less than 0.2 dl / g, the mechanical strength of the copolymerized PC is low.
  • this copolymerized PC is used as, for example, a binder resin for a molded article for an electrophotographic photosensitive member, the surface hardness of the binder layer is insufficient, the photosensitive member is worn, and the printing life is shortened.
  • the reduced viscosity [7] / C] exceeds 5. Odl / g, the solution viscosity of the copolymerized PC increases, making it difficult to produce a photoconductor by the solution coating method.
  • the copolymerized PC of this embodiment may have other monomer units other than those described above as long as the object of the present invention is not hindered, and other polycarbonate components and additives are appropriately added and blended. Can also be used.
  • the copolymerized PC of the present embodiment is easily converted into a flaky powder by performing a polycondensation reaction using a monomer mixture of the monomer represented by the formula (3) and the monomer represented by the following formula (4).
  • R and R are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms,
  • Examples of the monomer (biphenols) represented by the above formula (3) include 4, 4, -biphenol, 3, 3, 1-dimethyl-1, 4, 4'-biphenol, 3, 3, 5, 5- Trimethinole 4, 4'—Bif Enol, 3—Propyl 4, 4′—Biphenol, 3, 3 ′, 5, 5′—Tetramethyl 1, 4, 4, —Biphenol, 3, 3, 1 Diphenol 2 , 4'-biphenol, 3, 3, 1-dibutyl-1, 4, 4'-biphenol, and the like.
  • 4,4′-biphenol is preferable in that it gives a copolymerized PC with less coloring.
  • durability is also improved. These may be used alone or in combination of two or more.
  • Examples of the monomer represented by the formula (4) include 1, 1 bis (3-methyl-4-hydride). Loxyphenenole) ethane, 9, 9-bis (3-phenyl-4-hydroxyphenole) fluorene, bis (4-hydroxyphenenole) methane, 1,1 bis (4-hydroxyphenenole) ethane, 1, 2 Bis (4-hydroxyphenenole) ethane, 2, 2 bis (4-hydroxyphenenole) propan, 2, 2 bis (3 methyl-4-hydroxyphenenole) butane, 2, 2 bis (4-hydroxyphenenole) butane, 2 , 2 Bis (4-hydroxyphenyl) octane, 4, 4 Bis (4-hydroxyphenyl) heptane, 1,1-bis (4-hydroxyphenyl) -1,1,1-diphenylmethane, 1,1-bis (4-Hydroxyphenyl) -1-1-phenylethane, 1,1-bis (4-hydroxyphenyl) -1-1-phenylme
  • the copolymerized PC of the present embodiment can be easily obtained by using the monomer of the formula (3) and the monomer of the formula (4) V and performing a polycondensation reaction such as interfacial polycondensation.
  • the carbonate bond is suitably formed.
  • dihalogenated carbonyls such as phosgene, haloformates such as chlorophenolate compounds, carbonate compounds, etc.
  • the carbonate bond is suitably formed.
  • These reactions are performed in the presence of a terminal terminator and / or a branching agent as necessary.
  • monovalent carboxylic acid and derivatives thereof, or monovalent phenol can be used.
  • Tetrafluoro-2-propanol or alcohol represented by the following formula is preferably used.
  • n is an integer between! and 12
  • the addition ratio of these terminal stoppers are, as a copolymerization composition ratio, 0.05 to 30 mol%, more preferably 0.5;! A ⁇ 10 mol 0/0, the proportion exceeds 30 mole 0/0 Mechanical strength may be reduced, and if it is less than 0.05 mol%, moldability may be reduced.
  • branching agent examples include phloroglysin, pyrogallol, 4,6 dimethyl-2,4,6 tris (4-hydroxyphenenole) -2 heptene, 2,6 dimethinole 2, 4,6 tris ( 4 hydroxyphenyl) 1 3 heptene, 2, 4 dimethyl 1 2, 4, 6 tris (4 hydroxyphenenole) heptane, 1, 3, 5 tris (2 hydroxyphenyl) benzene, 1, 3, 5 —Tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, Tris (4-hydroxyphenyl) phenylmethane, 2,2bis [4,4bis (4-h Droxyphenino) cyclohexyl] propane, 2,4 bis [2 bis (4-hydroxyphenyl) -2 propynole] phenol, 2,6 bis (2 hydroxy-5 methylbenzyl) —4 methylphenol, 2— (4 hydroxypheny
  • the addition amount of these branching agents is 30 mol% or less, preferably 5 mol% or less in terms of the copolymer composition ratio, and if this exceeds 30 mol%, moldability may be deteriorated.
  • examples of the acid binder include alkaline earth metal hydroxides such as sodium hydroxide, lithium hydroxide, magnesium hydroxide, and calcium hydroxide, lithium hydroxide, and hydroxide. It is possible to use alkali metal hydroxides such as cesium, alkali metal carbonates such as sodium carbonate and lithium carbonate, organic bases such as pyridine, or mixtures thereof.
  • the ratio of the acid binder used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, 1 equivalent or an excess amount, preferably;! To 10 equivalents of an acid binder may be used per 1 mol of hydroxyl group of the raw material divalent phenol.
  • Solvents used here include aromatic hydrocarbons such as toluene and xylene, methyl chloride, chlorophenol, 1.1-dichloroethane, 1,2-dichloroethane, 1, 1, 1 trichloroethane, 1, 1 , 2-trichloroethane, 1,1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, blackened benzene and other halogenated hydrocarbons, acetophenone, etc. It is mentioned as a suitable thing. These solvents may be used alone or in combination of two or more. Furthermore, interfacial polycondensation reaction may be performed using two kinds of solvents that do not mix with each other! /.
  • Examples of the catalyst include trimethylamine, triethylamine, tributylamine, tertiary amines such as N, N dimethylcyclohexylamine, pyridine, dimethylaniline, trimethylbenzyl ammonium chloride, triethyl.
  • Quaternary anions such as benzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetraptylammonium bromide
  • Quaternary phosphonium salts such as monium salt, tetrabutylphosphonium chloride, and tetrabutylphosphonium bromide are preferred.
  • antioxidants such as sodium sulfite and hydrosulfite salts
  • the method for producing the copolymerized PC can be specifically carried out in various modes.
  • bivalent phenols biphenols of the above formula (3) and / or bisphenols of the above formula (4) can be used.
  • phosgene are produced to produce a polycarbonate oligomer, and then the above-mentioned divalent phenol is reacted with this polycarbonate oligomer in the presence of a mixed solution of the above-mentioned solvent and an alkaline aqueous solution of an acid binder.
  • a method may be employed in which the divalent phenol and phosgene are reacted in a mixed solution of the solvent and an aqueous alkali solution.
  • the former method is preferred because it is efficient to produce polycarbonate oligomers in advance.
  • a polycarbonate oligomer To produce a polycarbonate oligomer, first, divalent phenol is dissolved in an alkaline aqueous solution to prepare an alkaline aqueous solution of divalent phenol. Next, phosgene is introduced into the mixed solution of the alkaline aqueous solution and an organic solvent such as methylene chloride and reacted to synthesize a polycarbonate oligomer of divalent phenol. Next, the reaction solution is separated into an aqueous phase and an organic phase to obtain an organic phase containing a polycarbonate oligomer.
  • the alkali concentration of the alkaline water solution is preferably in the range of 0.;! To 5N, and the volume ratio of the organic phase to the aqueous phase is 10:;! To 1:10, preferably 5 :; ! ⁇ 1: 5 range.
  • the reaction temperature is usually 0 to 70 ° C., preferably 5 to 65 ° C. under cooling, and the reaction time is about 15 minutes to 4 hours, preferably about 30 minutes to 3 hours.
  • the average molecular weight of the polycarbonate oligomer thus obtained is 6000 or less, and the degree of polymerization is usually 20 or less, preferably 2 to 10-mer.
  • the divalent phenol is added to the organic phase containing the polycarbonate oligomer thus obtained and reacted.
  • the reaction temperature is 0 to 150 ° C, preferably 5 to 40 ° C, more preferably 5 to 30 ° C, and particularly preferably 5 to 20 ° C.
  • the reaction pressure may be any of reduced pressure, normal pressure, and increased pressure. Usually, it can be suitably carried out at normal pressure or about the pressure of the reaction system. While the reaction time depends on the reaction temperature, it is generally 0.5 minute to 10 hours, preferably about 1 minute to 2 hours.
  • the divalent phenol is preferably added as an organic solvent solution and / or an alkaline water solution.
  • the catalyst, the terminal terminator, the branching agent, and the like may be used in the above production method, either as necessary during the production of the polycarbonate oligomer, during the subsequent high molecular weight reaction, or both. Can be used.
  • various methods can be applied as a method for reducing the residual concentration of biphenols (unreacted monomers) contained in the produced copolymerized PC to 90 mass ppm or less.
  • a method for optimizing the reaction equivalent at the time of polymerization and reducing the remaining amount of monomer (2) in the washing step after the polymerization, the washing conditions in the alkaline aqueous solution are optimized and the remaining unreacted monomer (3)
  • a method in which unreacted monomers are preferentially dissolved in the crystallization process, and the co-polymerized PC is treated with a solvent that can be crystallized.
  • washing with water is first performed to dilute the high-concentration solution at the time of polymerization to facilitate separation of the aqueous solution and the polymer solution.
  • an aqueous sodium hydroxide solution residual biphenols are back-extracted into the water tank and removed by alkali.
  • washing is performed to such an extent that impurities in the final polymer satisfy the constituent requirements of the present invention.
  • a suitable concentration range of the aqueous sodium hydroxide solution is 0.0;! To 1N, and residual biphenols are efficiently removed within this range. If it is less than 01N, the extraction efficiency of residual biphenols will decrease, and the residual amount may increase. On the other hand, if the concentration exceeds 1N, the polymer may be decomposed.
  • the product polymer After washing with an aqueous sodium hydroxide solution, if the alkaline component remains, the product polymer may be hydrolyzed.
  • a suitable concentration range of the HCI aqueous solution may be a concentration at which alkali is neutralized (for example, 0.001 to 0.1N).
  • concentration at which alkali is neutralized for example, 0.001 to 0.1N.
  • the copolymerized PC thus obtained comprises a repeating unit represented by the formula (1) and a repeating unit represented by the formula (2), and has a structure represented by the formula (3). It is a copolymer having a content of biphenols having a content of 90 mass ppm or less.
  • the copolymerized PC includes a polycarbonate unit having a structural unit other than the above formula (1) and the above formula (2), polyester, polyurethane, polyether, It may contain a unit having a polysiloxane structure.
  • biphenols usually contain a small amount of impurities, of which trihydroxybiphenyls (phenolic hydroxyl groups are contained in one molecule).
  • the YI of the copolymerized PC can be easily controlled to 3 or less by controlling the content of the existing biphenyl compound) to 300 mass ppm or less.
  • pellets and molded articles formed from this copolymerized PC are hardly colored.
  • the impurities can be reduced by optimizing the polymer washing conditions.
  • the low content of trihydroxybiphenyls that deteriorates electrostatic properties is also useful as a raw material for molded articles used in electrophotographic photoreceptors.
  • the content of trihydroxybiphenyls in the biphenols is preferably 150 ppm by mass or less, more preferably It is preferably 20 ppm by mass or less, and most preferably 10 ppm by mass or less.
  • the content of 3-tert-butyl-4,4'-dihydroxybiphenyl in biphenols is 370 ppm by mass or less, preferably 300 ppm by mass or less. It is also effective to use 30 mass ppm or less.
  • a method of removing bivalent phenols such as force techol from the raw material with high accuracy during the synthesis of biphenols, or the obtained biphenols with alcohols can be recrystallized with ketones (acetone, methyl ethyl ketone, etc.), or separation by column.
  • methanol ethanol,
  • isopropanol etc.
  • ketones acetone, methyl ethyl ketone, etc.
  • the above range can be achieved by various methods such as selection of the reaction conditions and adjustment of the amount of branching agent or molecular weight regulator used.
  • the obtained copolymerized PC is appropriately subjected to physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) to obtain a predetermined reduced viscosity [ 7] / C]
  • reaction product obtained reaction product (crude product) can be subjected to various post-treatments such as a known separation and purification method, and the ability to recover a product having a desired purity (purity) as a copolymerized PC can be obtained. .
  • the electrophotographic photosensitive member can be formed by including a molded body using the above-described copolymerized PC of the present embodiment as a binder resin.
  • the electrophotographic photosensitive member of the present embodiment may be any of various known types of electrophotographic photosensitive members as long as the above-described copolymerized PC is used as a binder resin in the photosensitive layer.
  • the photosensitive layer may be an organic electrophotographic photoreceptor having at least one charge generation layer and at least one charge transport layer, or an organic electrophotographic photoreceptor having a charge generation substance and a charge transport layer in one layer. I like it.
  • Copolymerized PC may be used in any part of the photosensitive layer. However, in order to fully exert the effects of the present invention, it is necessary to use a charge transfer material in the charge transport layer. Used as binder resin It is desirable to use it as a binder resin for a single photosensitive layer or as a surface protective layer! /. In the case of a multi-layer electrophotographic photosensitive member having two charge transport layers, it is preferable to use it for one of the charge transport layers! /.
  • the above-described copolymerized PC of this embodiment may be used alone or in combination of two or more. Moreover, you may contain binder resin components, such as another polycarbonate, in the range which does not inhibit the objective of this invention as desired. Furthermore, you may contain additives, such as antioxidant.
  • the electrophotographic photosensitive member of this embodiment has a photosensitive layer on a conductive substrate.
  • the charge transport layer may be stacked on the charge generation layer, or the charge generation layer may be stacked on the charge transport layer.
  • the charge generation material and the charge transport material may be included in one layer at the same time.
  • a conductive or insulating protective film may be formed on the surface layer as necessary.
  • an adhesive layer for improving the adhesion between the layers or an intermediate layer such as a blocking layer that serves to block charges may be formed.
  • the conductive substrate material used in the electrophotographic photosensitive member of the present embodiment various materials such as known materials can be used. Specifically, aluminum, nickel, chromium, noradium, titanium, and the like can be used. Plates and drums made of molybdenum, indium, gold, platinum, silver, copper, zinc, brass, stainless steel, lead oxide, tin oxide, indium oxide, ITO (indium tin oxide: tin-doped indium oxide) or graphite Sheets, and glass, cloth, paper or plastic films, sheets and seamless sieve belts that have been conductively treated by coating such as vapor deposition, sputtering, and coating, and metal drums that have been metal-oxidized by electrode oxidation, etc. Can be used.
  • the charge generation layer has at least a charge generation material, and the charge generation layer has a force for forming a layer of the charge generation material on the underlying substrate by vacuum deposition, sputtering, or the like, or It can be obtained by forming a layer formed by binding a charge generating material using a binder resin on the base substrate.
  • Various methods such as a known method can be used as a method for forming a charge generation layer using a nickel resin.
  • the charge generation material is dispersed with a binder resin in an appropriate solvent. Is preferably a method in which a dissolved coating solution is applied onto a substrate as a predetermined base and dried to obtain a wet molded body.
  • Various known materials can be used as the charge generation material in the charge generation layer.
  • the compound include amorphous selenium, selenium such as trigonal selenium, selenium alloys such as selenium tellurium, selenium compounds such as As Se or selenium-containing compositions, zinc oxide, and CdS-Se.
  • Inorganic materials consisting of Group 12 and Group 16 elements of the Periodic Table, oxide-based semiconductors such as titanium oxide, silicon-based materials such as amorphous silicon, metal-free phthalocyanine faces such as ⁇ -type metal-free phthalocyanine and% -type metal-free phthalocyanine , ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ - type copper phthalocyanine, ⁇ -type copper phthalocyanine, X-type copper phthalocyanine, ⁇ -type titanyl phthalocyanine, B-type titanyl phthalocyanine, C-type titanyl phthalocyanine, D-type titanyl phthalocyanine, E-type Titanyl phthalocyanine, F type titanyl phthalocyanine, G type titanyl phthalocyanine H-type titanyl phthalocyanine, K-type titanyl phthalocyanine, L-type titanyl phthalocyanine, M-
  • the charge transport layer can be obtained by forming a layer formed by binding a charge transport material with a binder resin on a base substrate.
  • the binder resin for the charge generation layer and charge transport layer is not particularly limited. Various known types can be used. Specific examples include polystyrene, poly (vinyl chloride), poly (vinyl acetate), butyl chloride / (vinyl acetate) copolymer, poly (vulcetal), alkyd resin, acrylic resin, polyacrylonitrile, polycarbonate, polyamide, petital resin, polyester, vinylidene chloride.
  • binder resin in the charge generation layer and the charge transport layer it is preferable to use the above-described copolymerized PC.
  • a method for forming the charge transport layer various known methods can be used. Usually, a coating in which a charge transport material is dispersed or dissolved in a suitable solvent together with the copolymerization PC of the present embodiment. A method in which the liquid is applied onto a substrate as a predetermined base and dried to obtain a wet molded body is preferable.
  • the mixing ratio of the charge transport material used for forming the charge transport layer and the copolymerized PC is preferably 20: 80-80: 20, more preferably 30: 70-70: 30, by mass ratio.
  • the copolymerized PC of this embodiment can be used alone or in combination of two or more. Further, other binder resins can be used in combination with the copolymerized PC of this embodiment as long as the object of the present invention is not impaired.
  • the thickness of the charge transport layer thus formed is usually about 5 to 100 ⁇ m, preferably 10-30 ⁇ m. If the thickness force is less than m, the initial potential may be lowered, and if it exceeds 100 m, the electrophotographic characteristics may be deteriorated.
  • Such compounds include force rubazole compounds, indole compounds, imidazole compounds, oxazole compounds, pyrazole compounds, oxaziazole compounds, pyrazoline compounds, thiadiazole compounds, aniline compounds, hydrazone compounds, aromatic amine compounds, aliphatic amine compounds, Stilbene compounds, fluorenone compounds, butadiene compounds, quinone compounds, quinodimethane compounds, thiazole compounds, triazole compounds, imidazolone compounds, imidazolidine compounds, bisimidazolidine compounds, oxazolone compounds, benzothiazole compounds, benzimidazole compounds, quinazoline compounds, benzofuran compounds , Atridine compounds, phenazine compounds, poly N burcarbazone, polyburpyrene, polyburan Spiral, polyvinyl two Ruakurijin, poly 9- Byuruf
  • charge transport materials the compounds specifically exemplified in JP-A-11 172003 are particularly preferably used.
  • the copolymerized PC of this embodiment is used as a binder resin in at least either the charge generation layer or the charge transport layer.
  • an undercoat layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • fine particles such as titanium oxide, aluminum oxide, zirconium oxide, titanic acid, zirconic acid, lanthanum lead, titanium black, silica, lead titanate, barium titanate, tin oxide, indium oxide, silicon oxide, etc.
  • Ingredients such as polyamide resin, phenol resin, casein, melamine resin, benzoguanamine resin, polyurethane resin, epoxy resin, cellulose, nitrocellulose, polybulal alcohol, polybulutyllar resin can be used.
  • the binder resin may be used, Copolymerization PC may be used.
  • These fine particles and resins can be used alone or in various mixtures. When used as a mixture of these, it is preferable to use inorganic fine particles and a resin together because a film having good smoothness is formed.
  • the thickness of the undercoat layer is from 0.01 to 10 m, preferably from 0.1 to 7 m. If the thickness is less than 0.01 m, it is difficult to form the undercoat layer uniformly, and if it exceeds 10 mm, the electrophotographic characteristics may be deteriorated.
  • a known blocking layer which is usually used can be provided between the conductive substrate and the photosensitive layer. As this blocking layer, the same kind of resin as the binder resin can be used. Further, the polycarbonate resin of this embodiment may be used.
  • the thickness of the blocking layer is 0.0;! To 20 mm 111, preferably (b. 0;; to 10 mm). When the thickness force is less than 0.01 mm, the blocking layer is uniformly formed. If it exceeds 20 inches, the characteristics of electrophotography may be degraded.
  • a protective layer may be laminated on the photosensitive layer.
  • the same kind of resin as the binder resin can be used.
  • the thickness of this protective layer is 0 ⁇ 0 ;! to 20 m, preferably 0.;! To 10 m.
  • the protective layer contains a conductive material such as the charge generation material, charge transport material, additive, metal or oxide thereof, nitride, salt, alloy, carbon black, or organic conductive compound. May be.
  • the charge generation layer and the charge transport layer include a binder, a plasticizer, a curing catalyst, a fluidity imparting agent, a pinhole control agent, a spectral sensitization.
  • Sensitizers may be added.
  • various chemical substances, antioxidants, surfactants, anti-curling agents, leveling agents, etc. are used for the purpose of preventing increase in residual potential, reduction in charging potential, and reduction in sensitivity due to repeated use Additives can be added.
  • binder examples include silicone resin, polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polystyrene resin, polymethacrylate resin, polyacrylamide resin, polybutadiene resin, polyisoprene resin, Melamine resin, benzoguanamine resin, polychloroprene resin, polyacrylonitrile resin, ethyl cellulose resin, nitrocellulose resin, urea resin, phenol resin, phenol Examples thereof include a xy resin, a polybutyl petital resin, a formal resin, an acetic acid bur resin, a vinyl acetate / butyl chloride copolymer resin, and a polyester carbonate resin. Also, heat and / or photocurable resins can be used. In any case, there is no particular limitation as long as it is an electrically insulating resin that can form a film in a normal state and does not impair the effects of the present invention.
  • plasticizer examples include biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethylnaphthalene, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethylene glycol phthalate, triphenyl phosphate, disobutynore
  • plasticizer examples include adipate, dimethinorecebacate, dibutinorecebacate, laurinolic acid butynole, methylphthaleyl dallicolate, dimethyl dallicol phthalate, methyl naphthalene, benzophenone, polypropylene, polystyrene, and fluorohydrocarbon.
  • curing catalyst examples include methanesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenedisulfonic acid and the like, and fluidity-imparting agents include modaflow and aclonal 4F, and pinhole control.
  • agent examples include benzoin and dimethylenophthalate.
  • a sensitizing dye for example, triphenylmethane dyes such as methyl violet, crystal violet, knight blue, and victoria blue, erythrosine cin, rhodamine B, Rhodamine 3R, Atharidin dyes such as atalidine orange and flaveosin, thiazine dyes such as methylene blue and methylene green, oxazine dyes such as capri blue and meldrable one, cyanine dyes, merocyanine dyes, styryl dyes, pyrylium salt dyes, thiopyrylium salt dyes, etc. Is suitable.
  • An electron-accepting substance can be added to the photosensitive layer for the purpose of improving sensitivity, reducing residual potential, and reducing fatigue during repeated use.
  • Specific examples include succinic anhydride, anhydrous maleic acid, dibromomaleic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, 3-ditrophthalic anhydride, 4-dihydrophthalic anhydride.
  • Acid, pyromellitic anhydride merit anhydride, tetracyanoethylene, tetracyanquinodimethane, o-dinitrobenzene, m-dinitrobenzene, 1,3,5-trinitrobenzene, p-nitrobenzotrinore , Picryl chloride, quinone chlorimide, chlorael, bromanyl, benzoquinone, 2,3-dichlorobenzoquinone, dichlorodisianoparabenzoquinone, naphthoquinone, diphenoquinone, tropoquinone, anthraquinone, 1-claw anthraquinone, dinitroanthraquinone, 4-12 Trobenzophenone, 4, 4'-dinitrobenzophenone, 4-12 Trobensalmalon dinitrile, a-cyanol ⁇ - ( ⁇ cyanophenyl) acrylate, 9-anthracenylmethyl normaron dinitrile, 1-cyanol
  • tetrafluoroethylene trifluoroethylene resin, tetrafluoroethylene hexafluoride propylene resin, butyl fluoride resin, vinylidene fluoride resin, difluoride dichloride.
  • Ethylene resins, copolymers thereof, and fluorine-based graft polymers may be used.
  • the blending ratio of these surface modifiers is 0.1 to 60% by mass, preferably 5 to 40% by mass with respect to the binder resin. If the blending ratio is less than 0.1% by mass, surface modification such as surface durability and surface energy reduction is insufficient, and if it exceeds 60% by mass, electrophotographic characteristics may be deteriorated.
  • Antioxidants added to the charge generation layer and the charge transport layer include hindered phenol antioxidants, aromatic amine amine antioxidants, hindered amine antioxidants, sulfide antioxidants, and organic phosphoric acid. Those having radical scavenging properties, radical chain inhibiting action, and / or peroxide decomposing action such as system antioxidants are preferred.
  • the mixing ratio of these antioxidants is usually from 0.01 to 10 mass%, preferably from 0.1 to 2 mass%, based on the charge transport material.
  • antioxidants are described in the specification of JP-A-11-1172003.
  • Compounds of the chemical formulas described [Chemical Formula 94] to [Chemical Formula 101] are preferred.
  • antioxidants may be used singly or as a mixture of two or more thereof.
  • these antioxidants are added to the surface protective layer, the undercoat layer, and the blocking layer. May be.
  • radicals can be captured and deterioration of the charge generation layer and the charge transport layer can be prevented.
  • Specific examples of the solvent used in the formation of the charge generation layer and the charge transport layer include, for example, aromatic solvents such as benzene, toluene, xylene, black benzene, acetone, and methyl ethyl ketone.
  • Ketones such as cyclohexanone, alcohols such as methanolol, ethanol, and isopropanol, esters such as ethyl acetate and ethyl acetate, and halogens such as carbon tetrachloride, carbon tetrabromide, chloroform, dichloromethane, and tetrachloroethane
  • ethers such as hydrogenated hydrocarbon, tetrahydrofuran and dioxane, dimethylformamide, dimethyl sulfoxide, and jetylformamide. These solvents may be used alone or in combination of two or more.
  • the photosensitive layer of the single-layer type electrophotographic photosensitive member can be easily obtained by applying the binder resin (copolymerized PC) of the present embodiment using the charge generation material, the charge transport material, and the additive-containing additive. Can be formed.
  • the charge transport material the hole transport material described above and
  • an electron transport material As the electron transport material, those exemplified in JP-A-2005-139339 can be preferably applied.
  • Each layer can be applied by using various kinds of application devices such as known ones. Specifically, for example, using an applicator, spray coater, bae coater, chip coater, rono coater, dip coater, doctor blade, etc. Can be done.
  • the thickness of the photosensitive layer in the electrophotographic photosensitive member is 5 to; 100 m, preferably 8 to 50 m. If the thickness is less than 5 in, the initial potential becomes low and soon exceeds lOO ⁇ m. Electrophotographic characteristics may be degraded.
  • the ratio of the charge generating material used in the production of the electrophotographic photosensitive member to the binder resin is 1:99 to 30:70, preferably 3:97 to 15:85 in terms of mass ratio. In addition, the ratio of the charge transport material to the binder resin is 10:90 to 80:20, preferably 30:70 to 70:30 in terms of mass ratio.
  • the electrophotographic photoreceptor of this embodiment uses the copolymerized PC of this embodiment, the coating solution does not whiten (gel) during the preparation of the photosensitive layer.
  • the photosensitive layer has the molded body (binder resin) made of the copolymerized PC of the present embodiment! /, So that it has excellent durability and a small increase in residual potential during repeated use.
  • It is a photoreceptor that has electrostatic characteristics and maintains excellent electrophotographic characteristics over a long period of time. It is a copier (monochrome, multicolor, full color: analog, digital), printer (laser, LED, liquid crystal shutter), facsimile, It is suitably used in various electrophotographic fields such as plate-making machines and devices having these multiple functions.
  • corona discharge corotron, scorotron
  • contact charging charging roll, charging brush
  • dry development methods such as cascade development, two-component magnetic brush development, one-component insulating toner development, and one-component conductive toner development are used.
  • electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer method, and adhesive transfer method are used.
  • styrene resin a styrene / ataryl copolymer resin, a polyester, an epoxy resin, a cyclic hydrocarbon polymer, or the like can be applied.
  • the toner can be applied to a toner whose shape is controlled to a certain shape (spheroid, potato, etc.), which may be spherical or irregular.
  • the toner may be any one of a pulverizing type, a suspension polymerization toner, an emulsion polymerization toner, a chemical granulation toner, and an ester extension toner.
  • Copolymerization PC of this embodiment is a monomer unit represented by the formula (1) 0. And a polycarbonate copolymer comprising the monomer unit represented by the formula (2), wherein the content of the biphenyl compound having three phenolic hydroxyl groups in one molecule is 200 mass ppb or less. It is.
  • the content of trihydroxybiphenyls in the copolymerized PC is 200 mass ppb or less, a molded product with less coloring when the copolymerized PC is melt-molded. Can be remarkably improved and is suitable for optical material applications.
  • the content of the trihydroxybiphenyls is 200 mass ppb or less, the residual potential when the electrophotographic photosensitive member is repeatedly used when the copolymerized PC is formed into a molded body for the electrophotographic photosensitive member. It is preferable because it can suppress the rise of the.
  • the content of these trihydroxybiphenyls is more preferably 150 mass ppb or less, more preferably 100 mass ppb or less, and most preferably 50 mass ppb or less.
  • the copolymerization PC of the present embodiment can be easily obtained by performing a polycondensation reaction such as interfacial polycondensation using the monomer of the formula (3) and the monomer of the formula (4). Can be obtained.
  • a method for reducing the residual concentration of trihydroxybiphenyls (triphenol) contained in the produced copolymerized PC to 200 mass ppb or less includes (1) during polymerization. (2) A method for reducing the remaining monomer amount by optimizing the reaction equivalent of (2) A method for optimizing the washing conditions in the alkaline aqueous solution and removing the remaining unreacted monomer in the washing step after polymerization, (3) A method in which unreacted monomers are preferentially dissolved in the crystallization process and the copolymerized PC is treated with a solvent that can be crystallized.
  • the copolymerized PC thus obtained comprises a repeating unit represented by the above formula (1) and a repeating unit represented by the above formula (2), and the content of trihydroxybiphenyls ( It is a copolymer having a remaining amount of 200 mass ppb or less.
  • the copolymerized PC includes a polycarbonate unit having a structural unit other than the above formula (1) and the above formula (2), polyester, polyurethane, polyether, It may contain a unit having a polysiloxane structure.
  • biphenols usually contain a small amount of impurities, of which the content of trihydroxybiphenyls is controlled to 300 mass ppm or less. This makes it easy to control the YI of the copolymerized PC to 3 or less. As a result, the pellets and compacts molded from this copolymerized PC (flaked powder) are hardly colored.
  • the content of trihydroxybiphenyls exceeds 300 ppm by mass, the impurities can be reduced by optimizing the polymer washing conditions.
  • the low content of trihydroxybiphenyls that deteriorate the electrostatic properties is also useful as a raw material for molded articles used in electrophotographic photoreceptors.
  • the content of trihydroxybiphenyls in the biphenols is preferably 150 ppm by mass or less, more preferably 20 ppm by mass or less, and most preferably 10 ppm by mass or less.
  • the content of 3-tert-butyl-4,4'-dihydroxybiphenyl in biphenols is 370 ppm by mass or less, preferably 300 ppm by mass or less. It is also effective to use 30 mass ppm or less.
  • the electrophotographic photosensitive member of this embodiment has the same configuration as that of the first embodiment except that the above-described copolymerized PC is used as a binder resin in the photosensitive layer.
  • the copolymer PC of the present embodiment is a polycarbonate copolymer comprising monomer units represented by the above formula (1) 0.;! To 50 mol% and monomer units represented by the above formula (2).
  • the polycarbonate copolymer has a YI (measured in accordance with JIS K 7105 of flaky powder) of 3 or less.
  • the copolymerized PC of this embodiment has a YI of 3 or less, and is so colorless and transparent.
  • the molding method for copolymerized PC is a wet molding type in which it is dissolved and applied in a known organic solvent.
  • wet molding suppresses discoloration of the molded body over time, resulting in little deterioration in quality.
  • the copolymerized PC has a YI of 3 or less, the effect is remarkable. This is probably because there are relatively few substances that change the copolymerized PC to yellow by the action of light, heat, oxidizing substances, and moisture.
  • the YI of the flaky powder that is the molding raw material is 3 or less means that there are few impurities that adversely affect the electrostatic properties, and when applied to an electrophotographic photoreceptor, it is repeated. The increase in residual potential during use is suppressed.
  • the coating solution may be whitened (gelled) or the crystallization of the charge transport layer may be prevented from printing. It is difficult to achieve an improvement in the service life.
  • the proportion of the monomer unit exceeds 50 mol%, crystallization is likely to occur in a part of the copolymer PC (biphenol skeleton) and the transparency deteriorates. Therefore, as a binder resin for an electrophotographic photoreceptor. Is inappropriate.
  • the preferred range of monomeric units in which the majorIncr shown by the formula (1) is 1 to 40 Monore 0/0, more preferably, 5 to 30 mol%.
  • the copolymerization PC of this embodiment can be easily obtained by performing interfacial polycondensation using the monomer of the formula (3) and the monomer of the formula (4), as in the first embodiment.
  • the copolymerized PC obtained in this embodiment is a copolymer comprising a repeating unit represented by the formula (1) and a repeating unit represented by the formula (2).
  • the copolymerized PC includes a polycarbonate unit having a structural unit other than the above formula (1) and the above formula (2), polyester, polyurethane, polyether, It may contain a unit having a polysiloxane structure.
  • biphenols are trihydroxybiphenyls (biphenyl compounds in which three phenolic hydroxyl groups exist in one molecule), which are impurities contained in the components.
  • the content By controlling the content to 300 mass ppm or less, it becomes easy to control the YI of the copolymerized PC to 3 or less.
  • the molded product formed from the copolymerized PC (flaked powder) is hardly colored.
  • the low content of trihydroxybiphenyls that deteriorate the electrostatic properties is also useful as a raw material for molded articles used in electrophotographic photoreceptors.
  • the content of trihydroxybiphenyls in the biphenol monomer is preferably 150 ppm by mass or less, more preferably 20 ppm by mass or less, and most preferably 10 ppm by mass or less.
  • the content of 3-tert-butyl-4,4'-dihydroxybiphenyl in the biphenol monomer is 370 ppm by mass or less, preferably 300 ppm by mass. In the following, it is also effective to set it to 30 mass ppm or less.
  • the electrophotographic photosensitive member of the present embodiment has the same configuration as that of the first and second embodiments except that the above-described copolymerized PC is used as a binder resin in the photosensitive layer.
  • the method for producing a copolymerized PC in the present embodiment can be specifically carried out in various modes.
  • bivalent phenols biphenols of the above formula (3) and / or bisphenols of the above formula (4) are used.
  • phosgene, etc. to produce a polycarbonate oligomer, and then the polycarbonate oligomer is reacted with the above divalent phenol in the presence of a mixture of the above solvent and an alkaline aqueous solution of an acid binder.
  • a method may be employed in which the divalent phenol and phosgene are reacted in a mixed solution of the solvent and an aqueous alkali solution.
  • the former method of producing a polycarbonate oligomer in advance is preferable because it is efficient.
  • a divalent phenol is dissolved in an alkaline aqueous solution to prepare an alkaline aqueous solution of a divalent phenol.
  • phosgene is introduced into the mixed solution of the alkaline aqueous solution and an organic solvent such as methylene chloride and reacted to synthesize a polycarbonate oligomer of divalent phenol.
  • the reaction solution is separated into an aqueous phase and an organic phase to obtain an organic phase containing a polycarbonate oligomer.
  • the alkali concentration of the alkaline water solution is preferably in the range of 0.;! To 5N, and the volume ratio of the organic phase to the aqueous phase is 10:;! To 1:10, preferably 5 :; ! ⁇ 1: 5 range.
  • the reaction temperature is usually 0 to 70 ° C., preferably 5 to 65 ° C. under cooling, and the reaction time is about 15 minutes to 4 hours, preferably about 30 minutes to 3 hours.
  • the average molecular weight of the thus obtained polycarbonate oligomer is 2000 or less, and the degree of polymerization is usually 20 or less, preferably 2 to 10-mer.
  • the divalent phenol is added to the organic phase containing the polycarbonate oligomer obtained in this manner and reacted.
  • the reaction temperature is preferably 0 to 20 ° C, particularly preferably 5 to 15 ° C. In particular, by reducing the reaction temperature to 20 ° C or less, it is possible to suppress the coloration (increase in YI) of the resulting copolymerized PC.
  • the reaction pressure can be any of reduced pressure, normal pressure, and increased pressure. Usually, it can be suitably performed at normal pressure or about the pressure of the reaction system.
  • the reaction time depends on the reaction temperature and the like, and is usually 0.5 minutes to 10 hours, preferably about 1 minute to 2 hours.
  • the polycondensation reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon. Yes.
  • an inert gas atmosphere such as nitrogen or argon.
  • the oxygen partial pressure is more preferably 1013 Pa (0.01 atm) or less.
  • an antioxidant is added to the reaction system at a ratio of 0.000; 1 to 1 molar equivalent with respect to 1 mole of the biphenols represented by the formula (3).
  • the molar equivalent means that when there are a plurality of structural units that exhibit an antioxidant function in one molecule, the structural units that perform each function are each 1 mole.
  • 1 mol of a bifunctional antioxidant of the type in which two hindered phenols are bonded in one molecule is 2 molar equivalents.
  • 0.0002 to 0.05 molar equivalent is more preferable, 0.001 to 0.1 molar equivalent is more preferable, and 0.002 to 0.05 molar equivalent is most preferable.
  • antioxidants examples include reducing antioxidants such as sodium sulfite hydrosulfite salt, but hydrosulfite salts (particularly sodium sulfite sodium salt, hydrosulfite potassium salt). ) Is preferred.
  • reducing antioxidants such as sodium sulfite hydrosulfite salt, but hydrosulfite salts (particularly sodium sulfite sodium salt, hydrosulfite potassium salt). ) Is preferred.
  • the divalent phenol is preferably added as an organic solvent solution and / or an alkaline water solution.
  • the catalyst, the terminal terminator, the branching agent, and the like may be used in the above production method, either as necessary during the production of the polycarbonate oligomer, during the subsequent high molecular weight reaction, or both. Can be used.
  • 4,4, -dihydroxybiphenyl (trihydroxybiphenyl content: 321 mass ppm, 3-tertbutyl 4,4, -dihydroxybiphenyl content: 349 mass ppm) 24 g of 8% strength by weight water It melt
  • 4,4′-dihydroxybiphenyl was used without purification from a commercially available product. The impurity content in 4,4 ′ dihydroxybiphenyl was measured using liquid chromatography.
  • PC 1-1 was dissolved in methylene chloride to make a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured. there were.
  • PC 1-1 (2.5 g) was placed in an Erlenmeyer flask with a stopper and dissolved in 25 ml of methylene chloride. Next, after adding an antioxidant (Cirbus Specialty Chemicals Irganox 1010, 30 mg), gradually stir the solution with a magnetic stirrer and gradually add 100 ml of acetone and 100 ml of hexane for about 1 minute each. While adding, the resin content was precipitated. After the precipitate was suction filtered, the filtrate was transferred to a concentrating container, and the solvent was volatilized and concentrated while blowing nitrogen gas in a 45 ° C. hot water bath.
  • an antioxidant Cirbus Specialty Chemicals Irganox 1010, 30 mg
  • the amount of 4, 4, 1 biphenol was measured by an absolute calibration curve method by HPLC (High performance liquid chromatography) (Agilent 100 series, column: manufactured by TOSOH) ODS system, inner diameter 4.6mm, length 25cm).
  • HPLC High performance liquid chromatography
  • the mobile phase at the time of measurement uses a mixed system of distilled water (0.1% by volume of formic acid added) and acetonitrile, and the grunge ent mode (acetonitrile concentration: 30 ⁇ ; 100% by volume—20111 ⁇ , flow rate : 1 ⁇ Oml / min) Measurement was performed with an ultraviolet detector (280 nm).
  • the 4,4'-biphenol concentration (mass ppm) remaining in PC-1-1 is the recovery rate (%) for a system in which 4, 4'-biphenol (pure product) is added to the resin at a specified concentration. ), And “corrected to be 4,4′-biphenol concentration (mass ppm) / (recovery (%) / 100) j measured by HPLC.
  • PC-1-1 flakes were pelletized by melt extrusion at a cylinder temperature of 280 ° C and a screw rotation speed of lOOrpm using a 50mm ⁇ short screw extruder.
  • the pellets were dried at 120 ° C for 5 hours and then injection-molded using a 20 X 50 X 3mm mold (S55C mirror # 1000) to test specimens for measuring physical properties (20 X 50 X 3mm) It was created.
  • the test piece (injection molded product) was measured according to YI JIS K 7105) and the total light transmittance (both compliant with JIS K 7105).
  • YI of injection molded product A (very good) for 2 or less, B (good) for 4 or less, and C (bad) for 4 or more.
  • a charge generating layer and a charge transport layer were sequentially laminated on the surface to produce an electrophotographic photoreceptor having a laminated photosensitive layer.
  • the charge generation layer and the charge transport layer were formed as follows.
  • oxotitanium phthalocyanine 0.5 parts by mass was used as a charge generation material, and 0.5 parts by mass of a petital resin was used as a binder resin. These were added to 19 parts by mass of methylene chloride as a solvent, dispersed with a ball mill, and this dispersion was applied to the surface of the conductive substrate film with a bar coater and dried to obtain a film thickness of about 0.5. 111 charge generation layers were formed.
  • the obtained electrophotographic photosensitive member was evaluated for electrophotographic characteristics using an electrostatic charge test apparatus EPA-8100 (manufactured by Kawaguchi Denki Seisakusho). Specifically, a 6 kV corona discharge is performed in the static mode, the initial surface potential (V), and the residual voltage after 5 seconds of light irradiation (10 Lux).
  • the surface potential of the photoconductor can be measured by modifying a printer (FS-600 manufactured by Kyocera), and the photoconductor was mounted on a drum to evaluate the charging characteristics. Specifically, evaluation of charging characteristics (repeated residual potential rise ( ⁇ V)) before and after repeated operation for 24 hours under conditions where toner and paper do not pass at high temperature and high humidity (35 ° C, 85% RH) Went.
  • a printer FS-600 manufactured by Kyocera
  • Example 1-1 Copolymerization of Example 1-1
  • PC 4,4,1-dihydroxybiphenyl dissolved in acetone in a polymer solution after washing with water (Honshu Chemical Co., Ltd., content of trihydroxybiphenyl: 321 mass ppm) 3-tert-butyl-4,4-dihydroxybiphenyl content: 49 mass ppm) was added in an amount that would be 90 mass ppm with respect to the total resin solid content. (The amount of elution into the solvent and the ratio of the remaining amount to the solid content was determined by experiment to determine the addition amount)
  • PC 1-2 A copolymerized PC (PC 1-2) was produced in the same manner as in Example 1-1, except for the above.
  • PC-1-2 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82dl / g. .
  • the chemical structure of PC-1-2 was analyzed by 1 H-NMR, it was confirmed that it had the same structure as PC-1-1.
  • PC-1-2 and this copolymerized PC were evaluated in the same manner as in Example 11 for an electrophotographic photosensitive member produced in the same manner as in Example 11.
  • Example 1 Copolymerization of PC (PC — 1-3) in the same manner as in Example 11 except that the number of washings of the reaction product with aqueous sodium hydroxide was changed to 3 in the production of PC.
  • PC-1-3 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. .
  • the chemical structure of PC-1-3 was analyzed by 1 H-NMR, it was confirmed that it had the same structure as PC-1-1.
  • PC-1-3 and this copolymerized PC were evaluated in the same manner as in Example 11 for an electrophotographic photosensitive member produced in the same manner as in Example 11.
  • Example 1-1 Copolymerization
  • 2,2 bis (4-vidoxyphenyl) propan bisphenolanol A
  • 74 g was converted to 87 g of 1,1-bis (4-vidoxyphenole) cyclohexane.
  • Copolymerized PC (PC-1-4) in the same manner as in Example 1-1 except that 550 ml of a 6% strength by weight aqueous sodium hydroxide solution was changed to 550 ml of a 1.5N aqueous solution of sodium hydroxide power. ) was manufactured.
  • PC-1-4 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83dl / g. . Also,
  • Example 1-1 Copolymerization of Example 1-1
  • PC 2,2 bis (4-bidroxyphenyl) propan (bisphenol nore A) was changed to 69 g of 1,1 bis (4 bidoxyphenenole) ethane
  • 6 Copolymerized PC (PC-1-5) was produced in the same manner as in Example 1-1, except that 550 ml of a sodium hydroxide aqueous solution having a concentration of mass% was changed to 550 ml of a 1.5 N aqueous potassium hydroxide solution.
  • PC-5 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83 dl / g. .
  • PC-1-5
  • Example 1 Copolymerization of 1 For the production of PC! /, 2,2-bis (4-bidroxyphenyl) puffed bread (bisfenolole A) 74 g Copolymerized PC (PC 1-6) in the same manner as in Example 1-1, except that 550 ml of 6% strength by weight sodium hydroxide aqueous solution was changed to 550 ml of 1.5 normal potassium hydroxide aqueous solution. ).
  • PC-1-6 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. .
  • Example 1 Copolymerization of 1 In the production of PC, after completion of the polycondensation reaction, the polymer solution diluted with methylene chloride was washed twice with 1.5 liters of water, with 0.01 N hydrochloric acid and 1 liter of 1 A copolymerized PC (PC-1-8) was produced in the same manner as in Example 1-1, except that it was changed in order of 1 time and 1 liter of water.
  • PC-1-8 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83dl / g. .
  • the chemical structure of PC-8 was analyzed by 1 H-NMR, it was confirmed that it had the same structure as PC-1-1.
  • Example 11 The same evaluation as in Example 11 was carried out on an electrophotographic photosensitive member produced from PC-18 and this copolymerized PC in the same manner as in Example 11.
  • Tables 1 and 2 show the evaluation results of Example 1 1 7 and Comparative Example 11. [0137] [Table 1]
  • 4,4′-dihydroxybiphenyl was used without purifying a commercial product.
  • the impurity content in 4,4′-dihydroxybiphenyl was measured using liquid chromatography.
  • a baffled container equipped with a stirring blade was prepared separately, and 2 liters of methanol was added thereto. While thoroughly stirring the methanol in the vessel with a stirring blade, 1 liter of the polymer solution described above was slowly added dropwise at a rate at which particles were formed, and flaking was performed by reprecipitation. After completion of the dropwise addition, the mixture was further stirred for 10 minutes while maintaining a sufficient stirring speed, and further 2 liters of methanol was added, and stirring was continued for another 5 minutes. The obtained flakes were filtered and dried to obtain a copolymerized PC for evaluation (PC-2-1).
  • PC-2-1 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured. Met.
  • PC-2 When the chemical structure of —1 was analyzed by 1 H—NMR, it was confirmed to be a copolymerized PC represented by the following formula (5).
  • PC-2-l (5.0 g) was placed in an Erlenmeyer flask with a stopper and dissolved in 50 ml of methylene chloride. Next, after adding an antioxidant (Cirbus Specialty Chemicals ILGANOX 1010, 60 mg), gradually stir the solution with a magnetic stirrer and gradually add 200 ml of acetone and 200 ml of hexane for about 2 minutes. While being added to the resin, the resin component was precipitated. After the precipitate was filtered off with suction, the filtrate was transferred to a concentrating container and concentrated by volatilizing the solvent while blowing nitrogen gas in a 45 ° C. hot water bath.
  • an antioxidant Cirbus Specialty Chemicals ILGANOX 1010, 60 mg
  • the resulting concentrate was dissolved in 5 ml of tetrahydrofuran, and then the amount of 3,4,4, monotrihydroxybiphenyl was measured by HPLC (High performance liquid chromatography) using an absolute calibration curve method (manufactured by Agilent). 1100 series, column: ODS system manufactured by TOSOH, inner diameter 4.6 mm, length 25 cm).
  • the mobile phase at the time of measurement uses a mixed system of distilled water (0.1% by volume of formic acid) and acetonitrile, and gradient mode (acetonitrile concentration: 32% by volume (0 to; 14 minutes) to 100 volumes). % (20 to 40 minutes, flow rate: 1.0 ml / min)) using an ultraviolet detector (260 nm).
  • the concentration of 3,4,4, -trihydroxybiphenyl remaining in PC-2-1 is determined according to 3,4,4'-trihydroxybiphenyl (pure product) in the resin.
  • the recovery rate (%) was determined separately for the system to which the concentration was added, and “3,4,4′-trihydroxybiphenyl concentration (mass ppb) / (recovery rate (%) / 100) measured by HPLC” Obtained by correcting
  • PC-2-1 flakes were pelletized by melt extrusion at a cylinder temperature of 280 ° C and a screw rotation speed of lOOrpm using a 50mm ⁇ short-axis extruder.
  • the pellets were dried at 120 ° C for 5 hours and then injection-molded using a 20 X 50 X 3mm mold (S55C mirror # 1000) to test specimens for measuring physical properties (20 X 50 X 3mm) It was created.
  • This specimen (injection molded product) is measured according to YI JIS K 7105) and total light transmittance. (All are compliant with JIS K 7105).
  • the electrophotographic photosensitive member in this example was evaluated by the same method as in Example 11 of the first embodiment. Therefore, explanation is omitted.
  • Example 2-1 Copolymerization
  • PC 3,4,4'-trihydroxybiphenyl dissolved in acetonitrile was added to the polymer solution that had been washed with water to 150 mass with respect to the total amount of resin solids.
  • the amount to be ppb was calculated and added. Specifically, the residual amount of 3,4,4'-trihydroxybiphenyl in the resin obtained by varying the addition amount was measured, and a 150 mass ppb sample was selected and used as an evaluation sample. .
  • PC-2-2-2 A copolymerized PC (PC-2-2-2) was produced in the same manner as in Example 2-1, except for the above.
  • PC-2-2 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. .
  • PC2-2 and the electrophotographic photosensitive member produced from this copolymerized PC in the same manner as in Example 21 were evaluated in the same manner as in Example 21.
  • Example 2-1 Copolymerization
  • PC 2,2-bis (4-bidroxyphenyl) propan (bisphenolanol A) 1,87-g of 1,1-bis (4-bidroxyphenyl) cyclohexane
  • PC PC-2— 3
  • PC-2-3 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83 dl / g. . Also,
  • Example 2-1 Copolymerization
  • PC 2,2-bis (4-bidroxyphenyl) puffed bread
  • 1,1-bis (4-bidroxyphenenole) ethane A copolymerized PC (PC-2-4) was prepared in the same manner as in Example 2-1, except that 550 ml of a 6% strength by weight aqueous sodium hydroxide solution was changed to 550 ml of a 1.5N aqueous potassium hydroxide solution. was manufactured.
  • PC-2-4 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83 dl / g. .
  • PC-2
  • Example 2-1 Copolymerization
  • 2,2 bis (4-vidoxyphenyl) propan (bisphenol A) 74 g was replaced with 2,2 bis (3 methyl 4-bidoxyphenyl) propane 83 g.
  • 550 ml of 6% strength by weight aqueous sodium hydroxide solution was changed to 550 ml of 1.5N aqueous potassium hydroxide solution.
  • PC-2-6 was dissolved in methylene chloride to prepare a 0.5 g / dl solution, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g.
  • PC-2-6 was analyzed by 1 H-NMR, it was confirmed to be a copolymerized PC represented by the following formula (10).
  • PC-2-6 and the electrophotographic photoreceptor produced from this copolymerized PC in the same manner as in Example 2-1 were evaluated in the same manner as in Example 2-1.
  • Example 2 Copolymerization PC 1 (PC —2— 7) ) was manufactured.
  • PC-2-7 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. .
  • PC-2-7 when the chemical structure of PC-2-7 was analyzed by 1 H-NMR, it was confirmed to be the same structure as PC-2-1.
  • Example 2-1 Copolymerization
  • PC copolymerized PC
  • PC-2-8 was produced in the same manner as in Example 2-1, except that the order was changed once and once with 1 liter of water.
  • PC-2-8 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • PC-2-8 and this copolymerized PC were evaluated in the same manner as in Example 2-1 using an electrophotographic photosensitive member produced in the same manner as in Example 2-1.
  • Tables 3 and 4 show the evaluation results of Examples 2— ;! to 2-7 and Comparative Example 2-1.
  • Vo Potential rise Potential
  • reaction product is diluted with 1 liter of methylene chloride, then washed twice with 1.5 liters of water, once with 1 liter of 0.01N hydrochloric acid, and twice with 1 liter of water. A polymer solution was obtained.
  • a baffled container equipped with a stirring blade was prepared separately, and 2 liters of methanol was added thereto. While thoroughly stirring the methanol in the vessel with a stirring blade, 1 liter of the polymer solution described above was slowly added dropwise at a rate at which particles were formed, and flaking was performed by reprecipitation. After completion of the dropwise addition, the mixture was further stirred for 10 minutes while maintaining a sufficient stirring speed, and further 2 liters of methanol was added, and stirring was continued for another 5 minutes. The obtained flakes were filtered and dried to obtain copolymer PC (PC-3-1) for evaluation.
  • PC-3-1 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured. Met. PC—3 sp
  • the electrophotographic photosensitive member in this example was evaluated by the same method as in Example 11 of the first embodiment. Therefore, explanation is omitted.
  • Example 3 Copolymerization of 1, 4,4 ′ dihydroxybiphenyl (containing trihydroxybiphenyl) obtained by synthesizing phenol as a raw material after recrystallization purification in methanol as a biphenyl compound for copolymerization monomers in the production of PC Amount: 276 mass ppm, 3-tert-butyl 4,4'-dihydroxybiphenyl content: 370 mass ppm) Copolymerized in the same manner as in Example 3-1, except that 24 g was used (PC 3-2 ) Was manufactured.
  • PC 3-2 was dissolved in methyl chloride to make a solution with a concentration of 0.5 g / dl, and reduced viscosity at 20 ° C [7] /
  • Example 31 The same evaluation as in Example 31 was performed on the electrophotographic photoconductor produced from PC 3-2 and this copolymerized PC in the same manner as in Example 3-1.
  • Example 3 Copolymerization of 1 4,4′-dihydroxybiphenyl (trihydroxybiphenyl content: 15) obtained by synthesizing phenol as a raw material after distillation purification as a biphenyl compound for copolymerization monomers in the production of PC Copolymerized in the same manner as in Example 3-1, except that 24 g of mass ppm, 3-tertbutyl-4,4,1 dihydroxybiphenyl content: 206 mass ppm) recrystallized from methanol was used. (PC-3-3) was produced.
  • PC-3-3 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. .
  • the true photoreceptor was evaluated in the same manner as in Example 3-1.
  • Example 3-1 Copolymerization
  • PC 4,4′-dihydroxybiphenyl (trihydroxybiphenyl content: obtained by synthesizing phenol as a raw material after distillation purification as a biphenyl compound for a copolymerization monomer: 10 mass ppm, 3-tert-butyl-4,4,1 dihydroxybiphenyl content: 266 mass ppm) Copolymerized in the same manner as Example 3-1 except that 24 g was used (PC-3-4) Manufactured.
  • PC-3-4 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • PC-3-4 and the electrophotographic photosensitive member produced from this copolymerized PC in the same manner as in Example 3-1 were evaluated in the same manner as in Example 3-1.
  • Example 3-1 Copolymerization
  • PC 4,4-dihydroxybiphenyl (trihydroxybiphenyl content: 8 mass ppm, 3-tert- Copolymer PC (PC-3-5) was prepared in the same manner as in Example 3-1, except that 24 g of butyl-4,4, -dihydroxybiphenyl content: 23 mass ppm) was recrystallized from acetone.
  • PC-5 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83 dl / g.
  • Example 3-1 Copolymerization
  • PC 4,4′-dihydroxybiphenyl as in Example 3-2 was used as the biphenyl compound for the copolymerization monomer, and 2,2-bis (4 ⁇ Changed 74 g of bidroxyphenenole) propane (bisphenolenole A) to 87 g of 1,1-bis (4-bidroxyphenyl) cyclohexane, 550 ml of 6% strength by weight aqueous sodium hydroxide solution 550 ml
  • PC-3-6 was produced in the same manner as in Example 3-1, except that the amount was changed to 550 ml of 1.5N potassium hydroxide aqueous solution.
  • PC-3-6 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • Example 3 1 Copolymerization of PC! /
  • the same 4,4′-dihydroxybiphenyl as in Example 3-2 was used as the biphenyl compound for the copolymerization monomer.
  • 74 g of 2-bis (4-bidroxyphenyl) propane (bisphenolenole A) was changed to 69 g of 1,1-bis (4-phenyloxyphenyl) ethane, and 550 ml of 6% strength by weight aqueous sodium hydroxide solution was changed to 1.5
  • a copolymerized PC (PC-3-7) was produced in the same manner as in Example 3-1, except that the aqueous potassium hydroxide solution was changed to 550 ml.
  • PC-3-7 was dissolved in methylene chloride to make a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • Example 3-8 Example 3 1 For the production of PC! /, The same 4,4′-dihydroxybiphenyl as in Example 3-2 was used as the biphenyl compound for the copolymerization monomer. 74 g of bis (4-doxyphenyl) propane (bisphenol A) was changed to 79 g of 2,2 bis (4-doxyphenyl) butane, and 550 ml of 6% strength by weight aqueous sodium hydroxide solution was added to 1.5 normal potassium hydroxide. A copolymerized PC (PC-3-8) was produced in the same manner as in Example 3-1, except that the aqueous solution was changed to 550 ml. PC-3-8 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • Example 3-1 Copolymerization
  • PC 4,4′-dihydroxybiphenyl as in Example 3-2 was used as a biphenyl compound for the copolymerization monomer, and 2,2 bis (4-bidroxyphenyl) was used.
  • Ninore) propane (Bisphenol) A 74g was changed to 83 g of 2,2 bis (3 methyl 4-bidoxyphenyl) propane, and 50 ml of 6% strength by weight sodium hydroxide aqueous solution 1.5
  • a copolymerized PC (PC-3-9) was produced in the same manner as in Example 3-1, except that the aqueous potassium solution was changed to 550 ml.
  • PC-3-9 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • PC-3-10 4,4'-dihydroxybiphenyl made by Honshu Chemical Co., Ltd. (trihydroxybiphenyl content: 321 mass ppm, 3-tert-butyl-4,4,1 dihydroxybiphenyl content: 49 mass ppm) )
  • a copolymerized PC (PC-3-10) was produced in the same manner as in Example 3-1, except that 24 g was used.
  • PC-3-10 was dissolved in methylene chloride to prepare a 0.5 g / dl solution, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • PC-3-10 and the electrophotographic photoreceptor produced from this copolymerized PC in the same manner as in Example 3-1 were evaluated in the same manner as in Example 3-1.
  • Tables 5 and 6 show the evaluation results of Example 3—;! To 3-9 and Comparative Example 3-1.
  • Vo Residual potential rise potential
  • Example 3-1 (PC-3-1) -720B -40 (B) 0.85 (B) 40 (B)
  • Example 3-3 (PC-3-3) -720B -30 (B) 0.84 (B) 30 (B)
  • Example 3-5 PC-3-5) -720B -10 (B) 0.82 (B) 10 (B)
  • Example 3-6 PC-3-6) -720B- 40 (B) 0.85 (B) 40 (B)
  • Comparative Example 3-1 (PC
  • the molecular weight regulator ⁇ tert-butylenophenol 3. Og was added (biphenol aqueous solution).
  • aqueous biphenol solution was added and mixed, and 2 ml of a 7% strength by weight triethylamine aqueous solution was added as a catalyst while stirring the mixture vigorously, and the mixture was stirred at 28 ° C.
  • the interfacial polycondensation reaction was continued for 1.5 hours. After completion of the reaction, the reaction product is diluted with 1 liter of methylene chloride, then washed twice with 1.5 liters of water, once with 1 liter of 0.1N hydrochloric acid, and twice with 1 liter of water. A polymer solution was obtained.
  • a baffled container equipped with a stirring blade was prepared separately, and 2 liters of methanol was added thereto. While thoroughly stirring the methanol in the vessel with a stirring blade, 1 liter of the polymer solution described above was slowly added dropwise at a rate at which particles were formed, and flaking was performed by reprecipitation. After completion of the dropwise addition, the mixture was further stirred for 10 minutes while maintaining a sufficient stirring speed, and further 2 liters of methanol was added, and stirring was continued for another 5 minutes. The obtained flakes were filtered and dried to obtain a copolymerized PC (PC-41) for evaluation.
  • PC-41 copolymerized PC
  • PC-4-1 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured. Met. PC—4 sp
  • PC-1 flakes were pelletized by melt extrusion at a cylinder temperature of 280 ° C and a screw rotation speed of lOOrpm using a 50mm ⁇ short screw extruder.
  • the pellets were dried at 120 ° C for 5 hours and then injection-molded using a 20 X 50 X 3mm mold (S55C mirror surface # 1000) to test specimens for measuring physical properties (20 X 50 X 3mm) It was created.
  • This test piece (injection molded product) was measured for YI (conforming to JIS K 7105) and total light transmittance (both conforming to JIS K 7105).
  • YI of injection molded products 2 or less A (very good), 4 or less B (good), 4 or more c (bad).
  • the electrophotographic photosensitive member in this example was evaluated by the same method as in Example 11 of the first embodiment. Therefore, explanation is omitted.
  • Example 4 Copolymerized PC (PC-4-2) was produced in the same manner as in Example 4-1, except that the temperature during the polycondensation reaction was 15 ° C in the production of the copolymerized PC. .
  • PC-4-2 was dissolved in methylene chloride to prepare a solution having a concentration of 0.5 g / dl, and the reduced viscosity [V / C] at 20 ° C was measured to be 0 ⁇ 82 dl / g. Further, 1 the chemical structure of the PC- 4- 2 H sp
  • PC-42 and the electrophotographic photosensitive member produced from this copolymerized PC in the same manner as in Example 41 were evaluated in the same manner as in Example 41.
  • PC-4-3 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. there were.
  • Example 41 The same evaluation as in Example 41 was performed on the electrophotographic photoconductor produced in the same manner as in Example 41 from PC-43 and this copolymerized PC.
  • Example 4 Copolymerization of 1 For the production of PC! /, Biphenyl compounds for copolymerization monomers 4,4,1-dihydroxybiphenyl (acetone recrystallized product, trihydroxybiphenyl content: 8 mass ppm, 3-tert-butyl-4,4-dihydroxybiphenyl content: 23 mass ppm) 24g
  • a copolymerized PC (PC-4-4) was produced in the same manner as in Example 41 except that the temperature during the polycondensation reaction was changed to 15 ° C.
  • PC-4-4 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured.
  • PC-44 and the electrophotographic photosensitive member produced from this copolymerized PC in the same manner as in Example 41 were evaluated in the same manner as in Example 41.
  • Example 4-1 Copolymerization
  • PC 2,2 bis (4-vidoxyphenyl) propan (bisphenolanol A) was converted to 87 g of 1,1-bis (4-vidoxyphenole) cyclohexane.
  • Copolymerized PC (PC-4-5) in the same manner as in Example 4-1, except that 550 ml of a 6% strength by weight aqueous sodium hydroxide solution was changed to 550 ml of a 1.5N aqueous solution of sodium hydroxide. ) was manufactured.
  • PC-4-5 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83 dl / g. . Also,
  • Example 4-1 Copolymerization
  • PC 2,2-bis (4-bidroxyphenyl) puff bread (bisfenolole A) was changed to 69 g of 1,1-bis (4-bidroxyphenenole) ethane.
  • Copolymerized PC (PC-4-6) in the same manner as in Example 4-1, except that 550 ml of a 6% strength by weight aqueous sodium hydroxide solution was changed to 550 ml of a 1.5N aqueous potassium hydroxide solution. Made Built.
  • PC-4-6 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.83 dl / g. .
  • PC-4-7 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. .
  • Example 4-1 Copolymerization
  • 2,2 bis (4-bidroxyphenyl) propan (bisphenol A) 74 g was replaced with 2,2 bis (3 methyl 4-bidroxyphenyl) propane 83 g.
  • PC-4-8 was dissolved in methylene chloride to prepare a solution with a concentration of 0.5 g / dl, and the reduced viscosity [7] / C] at 20 ° C was measured to be 0.82 dl / g. It was.
  • PC-4-8 When the chemical structure of PC-4-8 was analyzed by 1 H-NMR, it was confirmed that it was a copolymerized PC represented by the following formula (10).
  • PC-49 and the electrophotographic photosensitive member produced from this copolymerized PC in the same manner as in Example 41 were evaluated in the same manner as in Example 41.
  • Tables 7 and 8 show the evaluation results of Examples 41 to 48 and Comparative Example 41.
  • the polycarbonate copolymer of the present invention can be suitably used for electronic materials such as electrophotographic photoreceptor ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

明 細 書
ポリカーボネート共重合体、その製造方法、成形体、光学材料および電 子写真感光体
技術分野
[0001] 本発明は、ポリカーボネート共重合体、その製造方法、該共重合体からなる成形体
、光学材料および電子写真感光体に関する。
背景技術
[0002] 従来、 2,2 ビス(4ーヒドロキシフエニル)プロパン(通称ビスフエノール A)から製造 されるポリカーボネート樹脂(以下「PC樹脂」ともいう)は、透明性が高ぐ優れた機械 的性質を有することから、光学材料や電子材料など種々の用途に使用されている。し かし、用途の拡大に伴って PC樹脂に対する要求性能が厳しくなり、より優れた性能 を有する PC樹脂が要望されている。例えば、電子写真感光体用としては、機械的性 質だけではなぐ透明性や帯電 除電のサイクルの繰り返しに耐えうる安定した静電 気特性あるいは、非ハロゲン系溶媒に対しても良好な溶解性を有することなどについ てもより高度なものが求められる。
そこで、フエノール構造単位として、ビスフエノーノレ Aと特定のビフエノールとを混合 した原料を用いて重縮合を行!/ \透明性を損なうことなく耐熱性に優れたポリカーボ ネート共重合体(以下「共重合 PC」とも!/、う)を得る方法が開示されて!/、る (例えば、 特許文献 1)。また、この共重合体を電子写真感光体に適用する技術も知られている (例えば、特許文献 2)。
また、溶融共重縮合により、 YIが 1. 3〜; 1. 4程度のポリカーボネート共重合体を得 る技術 (例えば、特許文献 3)、界面重縮合時に、ナトリウムビスフエノラート溶液中の 溶存酸素量を 150ppb未満にして低黄色度 (YI)のポリカーボネートを得る技術 (例 えば、特許文献 4)も知られている。
さらに、実質的に酸素不存在下でフルオレン系ビスフエノールを用いることで色相 が良好なポリカーボネート共重合体を得る方法が知られている(例えば、特許文献 5) [0003] 特許文献 1 :特許第 1965051号公報
特許文献 2:特許第 2531852号公報
特許文献 3:特開平 5— 117382公報
特許文献 4:特表 2002— 533544号公報
特許文献 5:特開 2005— 82677号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、前記した特許文献 1、 2に記載された技術においては、ビフエノーノレ 骨格を有するために、ビスフエノール A型 PC樹脂と比較して、重合後さらには成形後 にポリカーボネート共重合体自体が着色してしまう問題があった。このような着色は、 透明性を重視する光学材料では問題となる。さらに、このような着色した共重合体は 静電気特性に影響を与えることも多い。特に、電子写真感光体として用いる場合は、 繰り返し使用した場合の残留電位が上昇するという問題があった。
また、特許文献 3のように、溶融共重縮合で得られたポリカーボネート共重合体は、 不純物の除去が困難であるという問題がある。さらに特許文献 4に開示されているの は、ビフエノール類としてビスフエノーノレ Aを単独で用いたポリカーボネートであって、 共重縮合を行うような特殊な系につレ、ては何ら開示されて!、な!/、。ビスフエノール Aと 共重縮合させるコモノマーの種類により着色の挙動は全く異なるため、特許文献 4に 開示された技術を前記したポリカーボネート共重合体の重合管理に適用することは 困難である。
さらに、特許文献 5の技術においても、酸素不存在下でポリカーボネート共重合体 を製造する場合は、気相および液相の酸素濃度を 0. 5質量 ppm以下にする必要が あり、設備対応などが必要となるため、簡便な方法ではな力、つた。
そこで、本発明の目的は、重合後だけでなく成形後にも着色が少なぐ静電気特性 にも優れたポリカーボネート共重合体、該共重合体からなる成形体、光学材料および 電子写真感光体を提供することにある。
課題を解決するための手段
[0005] 本発明のポリカーボネート共重合体は、下記式(1)で示されるモノマー単位 0.;!〜 50モル%と、下記式(2)で示されるモノマー単位とを含んで構成されるポリカーボネ ート共重合体であって、下記式(3)で示される構造を有するビフヱノール類の含有量 が 90質量 ppm以下であることを特徴とする。
[0006] [化 1]
Figure imgf000005_0001
(式中、
Figure imgf000005_0002
R2は、それぞれ独立に、水素原子,炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。 )
[0007] [化 2]
Figure imgf000005_0003
(式中、 R3、 R4は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜12のァリール基またはハロゲン原子を示し、 Xは、—O—、—S—、 - SO 一、—SO2—、—CO—、 9, 9 フルォレニリデン基、下記式(2a)、 (2b)、 (2c)およ び(2d)で示されるいずれかの結合基である。 )
[0008] [化 3]
R5
—(ノ― '… (2a;
6
(式中、 R5、 R6は、それぞれ独立に、水素原子、炭素数;!〜 6の脂肪族炭化水素基ま たは炭素数 6〜; 12のァリール基を示す。また、 R5、 R6は互いに結合して炭素数 4〜1 2のシクロアルキリデン基を構成していてもよい。 )
[0009] [化 4]
Figure imgf000005_0004
(式中、 Rは水素原子または炭素数 1〜3のアルキル基である。また、 Rのうち少なくと も一つ、好ましくは 3つが炭素数 1〜3のアルキル基である。 )
[0010] [化 5]
(
Figure imgf000006_0001
(式中、結合位置は、 0—、 m—、 p—のいずれでもよい。 )
[0011] [化 6]
Figure imgf000006_0002
(式中、 R7〜R12は、それぞれ独立に水素、炭素数 1〜4のアルキル基、あるいは単 結合またはアルキレン基からなる結合基を示す。ただし、 R7〜R12のうち 2つが結合基 であり、残りは水素または炭素数 1〜4のアルキル基である。 )
[0012] [化 7]
Figure imgf000006_0003
(式中、
Figure imgf000006_0004
R2は、それぞれ独立に、水素原子,炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。 )
[0013] このような本発明の共重合 PCによれば、前記式(3)で示されるビフエノール類(前 記式(1)のモノマー単位の出発物質)の含有量が 90質量 ppm以下であるので、共重 合 PCの初期着色が少ないだけでなぐさらに溶融成形時における着色も少なくなる 。さらにまた、ビフエノール類の含有量が 90質量 ppm以下であると、本発明の共重合 PCを電子写真感光体用の成形体としたときに、電子写真感光体を繰り返し使用した 際の残留電位の上昇を抑制できる。 本発明において、前記式(3)で示されるビフエノール類の含有量とは、重縮合反応 後における共重合 PC中の未反応残存量であり、 60質量 ppm以下であることがより好 ましぐさらに好ましくは 30質量 ppm以下であり、最も好ましくは 10質量 ppm以下で ある。
[0014] 本発明のポリカーボネート共重合体は、前記式(1)で示されるモノマー単位 0. ;!〜
50モル%と、前記式(2)で示されるモノマー単位とを含んで構成されるポリカーボネ ート共重合体であって、フエノール性水酸基が一分子中に 3つ存在するビフエニル化 合物の含有量が 200質量 ppb以下であることを特徴とする。
[0015] このような本発明の共重合 PCによれば、フエノール性水酸基が一分子中に 3っ存 在するビフエニル化合物(以下「トリヒドロキシビフエニル類」ともいう)の含有量が 200 質量 ppb以下であるので、共重合 PCの初期着色が少ないだけでなぐさらに溶融成 形時における着色も少なくなる。さらにまた、トリヒドロキシビフエニル類の含有量が 20 0質量 ppb以下であると、本発明の共重合 PCを電子写真感光体用の成形体としたと きに、電子写真感光体を繰り返し使用した際の残留電位の上昇を抑制できる。
本発明において、共重合 PCにおけるトリヒドロキシビフエニル類の含有量は、 150 質量 ppb以下であることがより好ましぐさらに好ましくは 100質量 ppb以下であり、最 も好ましくは 50質量 ppb以下である。
[0016] 本発明のポリカーボネート共重合体は、最終的に得られるポリカーボネート共重合 体を 5質量%以上溶解可能であって水と実質的に混じり合わない溶媒と、アルカリ金 属水酸化物またはアルカリ土類金属水酸化物が溶解した水溶液とからなる 2相系溶 媒中で、相間移動触媒の存在下に重合反応させて得られるポリカーボネート共重合 体であって、前記式(1)で示されるモノマー単位 0. ;!〜 50モル%と、前記式(2)で示 されるモノマー単位とを含んで構成され、該ポリカーボネート共重合体の YI (フレーク 状粉体を JIS K 7105に準拠して測定)が 3以下であることを特徴とする。
[0017] 本発明の共重合 PCによれば、前記式(1)で示されるモノマー単位が 0. ;!〜 50モ ル%であり、該ポリカーボネート共重合体の YI (フレーク状粉体を JIS K 7105に準 拠して測定)が 3以下であるので、耐熱性の他に無色透明であることも重視される光 学材料用途に好適である。また、フレーク状粉体の YIが 3以下であることは、同時に 静電気特性を悪化させる不純物の量が少なレ、ことも意味するので、電子写真感光体 に用いられる成形体の原料としても有用である。
ただし、(1)で示されるモノマー単位が 0· 1モル%未満であると、共重合 PCとして 耐熱性の向上が認められず、また、電子写真感光体の最外層に使用する用途では 耐摩耗性が不足し、耐久性が不十分となる。一方、前記(1)で示されるモノマー単位 力 50モル%を越えると、ビフエノール骨格が結晶化しやすくなり透明性が悪化する。 また、電子写真感光体における感光層中にこのような結晶が生成すると、静電気特 性が悪化する。前記式(1)で示されるモノマー単位の好ましい範囲は、 1 40モル %であり、より好ましくは、 5 30モル0 /0である。
[0018] また、本発明のポリカーボネート共重合体は、前記式(3)で示されるモノマーと、下 記式 (4)で示されるモノマーとから重縮合反応によって構成されるポリカーボネート共 重合体であって、フエノール性水酸基が一分子中に 3つ存在するビフエニル化合物( 以下「トリヒドロキシビフエニル類」ともレ、う)の前記式(3)で示されるモノマー(以下、「 ビフエノールモノマー」ともいう)における含有量が 300質量 ppm以下であることを特 徴とする。
[0019] [化 8]
Figure imgf000008_0001
(式中、 R3 R4は、それぞれ独立に、水素原子、炭素数 1 6の脂肪族炭化水素基、 炭素数 6 12のァリール基またはハロゲン原子を示し、 Xは、—O— —S— - SO —SO2— —CO— 9, 9 フルォレニリデン基、前記式(2a) (2b) (2c)およ び(2d)で示されるいずれかの結合基である。 )
[0020] このような本発明の共重合 PCによれば、ビフエノールモノマー中に含まれる不純物 であるトリヒドロキシビフエニル類の含有量が 300質量 ppm以下であるので、共重合 P Cフレーク自体の着色がほとんどない。それ故、耐熱性の他に無色透明であることも 重視される光学材料用途に好適である。また、静電気特性を悪化させるトリヒドロキシ ビフエニル類の残留量も少なくなるので、電子写真感光体に用いられる成形体の原 料としても有用である。ビフエノールモノマー中のトリヒドロキシビフエニル類の含有量 は、好ましくは、 150質量 ppm以下であり、より好ましくは 20質量 ppm以下であり、最 も好ましくは 10質量 ppm以下である。
[0021] 本発明のポリカーボネート共重合体においては、 YI (フレーク状粉体を JIS K 71 05に準拠して測定)が 3以下であることが好ましい。
ここで、本発明の共重合 PCにおける YIの値は、重合後に共重合 PCがフレーク状 粉体として得られる場合はそのまま測定したものを用いればよい。また、共重合 PCが フレーク以外の形状で得られる場合には、以下のようにして YI測定用の試料を調製 する。
塩化メチレン 1Lに対し、共重合 PCを 30〜70gの割合で溶解した溶液を、メタノー ノレ 2L中に十分撹拌しながらフレークが形成される速度で滴下し、全量滴下後メタノ ールを 2L追加し、再融着が起こらないように固形物を取り出し、十分乾燥した後のフ レークを YI測定用の試料とする。なお、共重合 PCの塩化メチレン溶液中の濃度は、 YI測定に適した形状のフレークが得られるように上記濃度範囲で調整する。
[0022] このような本発明によれば、共重合 PCの YIが 3以下であり、着色の原因物質が少 ないためと思われる力 例えば、この共重合 PCからなる成形体を電子写真感光体に 適用した場合に、繰り返し使用時の残留電位の上昇が抑制される。また、着色の原 因物質が少なレ、ことから、その後の成形工程でも着色がより進行することがな!/、ため 、透明性を重視する光学材料の原料としても有用である。共重合 PCの YIとしては、 好ましくは 2. 3以下であり、より好ましくは 1. 8以下、さらに好ましくは 1. 2以下である
[0023] 本発明の成形体は、前記したポリカーボネート共重合体を溶融成形してなることが 好ましい。
このような本発明の成形体によれば、共重合 PCを溶融成形してなるため、種々の 形状を持った成形体を容易に提供できる。
特に、フレークの YIが 3以下である共重合 PCを用いて溶融成形してなる成形体に おいては、溶融成形後の成形体の着色も少ないため、光学材料用としても好適であ [0024] 本発明の成形体は、前記したポリカーボネート共重合体を湿式成形してなることが 好ましい。
このような本発明の成形体によれば、湿式成形のため、成形体の経時的変色が抑 制され、結果として品質の劣化が少ない。
特に、ビフエノール類の含有量が 90ppm以下またはトリヒドロキシビフエニル類の含 有量が 200ppb以下であると、光、熱、酸化性物質、湿気などによる劣化が抑制され るため、成形体の経時的変色が抑制され、結果として品質の劣化が少ない。また、電 子写真感光体として用いた場合には、繰り返し使用時の残留電位の上昇が特に抑 制されるので非常に有用である。
また、共重合 PCのフレークの YIが 3以下であると、同様に成形体とした場合の経時 的変色が抑制され、電子写真感光体として用いた場合の繰り返し使用時の残留電位 の上昇が特に抑制される。これは、共重合 PCのフレークの YIを 3以下とすることで、 光、熱、酸化性物質、湿気などの作用で共重合 PCを黄色に変化させる物質が相対 的に少ないことが理由と思われる。
[0025] 本発明の光学材料は、前記したポリカーボネート共重合体、または、それからなる 成形体を含むことを特徴とする。
このような本発明の光学材料によれば、前記したポリカーボネート共重合体、溶融 成形体または湿式成形体を含んで構成されているため、着色がほとんどなく透明性 にも優れており、光学材料として優れている。
[0026] 本発明の電子写真感光体は、前記したポリカーボネート共重合体あるいはそれか らなる成形体を含むことを特徴とする。
ここで、電子写真感光体とは、例えば、導電性基板上に感光層を設けた電子写真 感光体であって、前記した共重合 PCをバインダー樹脂や表面コート樹脂、あるいは 接着樹脂等として好適に用いることができる。
このような本発明の電子写真感光体によれば、前記した共重合 PCをいわゆるバイ ンダ一樹脂等として用いているので、静電気特性に優れており、特に繰り返し使用時 の残留電位の上昇幅が小さいため極めて有用である。
[0027] 本発明のポリカーボネート共重合体の製造方法は、前記式(3)で示されるモノマー と、前記式 (4)で示されるモノマーとを用いて重縮合反応を行うポリカーボネート共重 合体の製造方法であって、前記式(3)で示されるモノマー 1モルに対して、酸化防止 剤を 0. 000;!〜 1モル当量の割合で反応系に添加することを特徴とする。
[0028] このような本発明の製造方法によれば、所定のモノマーを用いて共重合 PCを製造 する際に、前記式(3)で示されるモノマー 1モルに対して、酸化防止剤を 0. 0001 - 0. 1モル当量の割合で反応系に添加するので、副反応を抑えることができ、得られ た共重合 PCの初期着色を抑えることが可能となる。例えば、フレークを JIS K 710 5に準拠して測定した YIを 3以下に制御することが容易となる。すなわち、本発明に おいては、実質的に酸素が存在する条件下でも良好な特性を持った共重合 PCが得 られることが特徴である。
[0029] 本発明の製造方法では、前記酸化防止剤がハイドロサルファイト塩であることが好 ましい。
このような発明の製造方法によれば、酸化防止剤としてハイドロサルファイト塩を用 いているので、重縮合反応時の副反応をいつそう抑制することができ、得られた共重 合 PCの初期着色をより効果的に抑えることが可能となる。
[0030] 本発明の製造方法では、重縮合反応時の温度を 20°C以下とすることが好ましい。
このような本発明の製造方法によれば、重縮合反応時の温度を 20°C以下としてい るので、得られる共重合 PCの初期着色を抑制することが容易となる。
[0031] 本発明の製造方法では、重縮合反応を、酸素分圧が 5065Pa以下の雰囲気下で 行うことが好ましい。
このような本発明の製造方法によれば、重縮合反応を、酸素分圧が 5065Pa以下 の雰囲気下で行ってレ、るので、得られる共重合 PCの初期着色を抑制することが容易 となる。この酸素分圧は、 1013Pa以下であることがより好ましい。
[0032] 本発明のポリカーボネート共重合体は、前記したいずれかの製造方法により製造さ れたことを特徴とする。
このような本発明のポリカーボネート共重合体は、上述した方法により製造されるた め、得られた共重合 PCの初期着色が非常に少ない。それ故、透明性が要求される 光学材料分野に好適に使用できる。また、共重合 PCに含まれる不純物も少なぐ静 電気特性に優れるため、例えば、電子写真感光体分野に好適に使用できる。
発明を実施するための最良の形態
[0033] 以下に、本発明のポリカーボネート共重合体(共重合 PC)およびその製造方法に ついて具体的な実施形態を詳細に説明する。また、この共重合 PCをバインダー樹脂 として用いた成形体を含んで構成される電子写真感光体の実施形態についても説 明する。
[0034] <第 1実施形態〉
以下に、本発明の第 1実施形態について詳述する。
[共重合 PCの構造]
本実施形態の共重合 PCは、下記式(1)で示されるモノマー単位 0. ;!〜 50モル% と、下記式(2)で示されるモノマー単位とを含んで構成されるポリカーボネート共重合 体であって、下記式(3)で示される構造を有するビフエノール類の含有量が 90質量 p pm以下でめる。
[0035] [化 9]
Figure imgf000012_0001
(式中、
Figure imgf000012_0002
R2は、それぞれ独立に、水素原子,炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。 )
[化 10]
Figure imgf000012_0003
(式中、 R3、 R4は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜12のァリール基またはハロゲン原子を示し、 Xは、—O—、—S—、 - SO 一、—SO2—、—CO—、 9, 9 フルォレニリデン基、下記式(2a)、 (2b)、 (2c)およ び(2d)で示されるいずれかの結合基である。 )
[0037] [化 11] 一 C— … (2a)
R6
(式中、 R5、 R6は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基ま たは炭素数 6〜; 12のァリール基を示す。また、 R5、 R6は互いに結合して炭素数 4〜1 2のシクロアルキリデン基を構成していてもよい。 )
[0038] [化 12]
Figure imgf000013_0001
(式中、 Rは水素原子または炭素数 1〜3のアルキル基である。また、 Rのうち少なくと も一つ、好ましくは 3つが炭素数 1〜3のアルキル基である。 )
[0039] [化 13]
C -T 3 —
(:: · ' , ( )
(式中、結合位置は、 0—、 m—、 p—のいずれでもよい。 )
[0040] [化 14]
Figure imgf000013_0002
(式中、 R7〜R12は、それぞれ独立に水素、炭素数 1〜4のアルキル基、あるいは単 結合またはアルキレン基からなる結合基を示す。ただし、 R7〜R12のうち 2つが結合基 であり、残りは水素または炭素数 1〜4のアルキル基である。 )
[0041] [化 15] H0
Figure imgf000014_0001
(式中、
Figure imgf000014_0002
R2は、それぞれ独立に、水素原子,炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。 )
[0042] なお、
Figure imgf000014_0003
R4に相当する置換基は一つのベンゼン環に複数結合していて もよぐ、結合する置換基は同じでも異なって!/、てもよレ、。
前記式(1)で表されるモノマー単位の割合が 0· 1モル%未満であると、ビフエノー ル骨格による改質効果が得られず、耐熱性が不足したり、湿式成形時の塗工液が白 化 (ゲル化)する。また、電子写真感光体用の成形体 (バインダー樹脂)として用いた 場合に、電荷輸送層の結晶化の防止ゃ耐刷寿命の向上の達成が困難となる。一方 、このモノマー単位の割合が 50モル%を越えた場合には、共重合 PCの一部(ビフエ ノール骨格)に結晶化が起こりやすくなり透明性が悪化するので電子写真感光体用 バインダー樹脂としては不適当なものとなる。例えば、透過光量が低下すると電子写 真感光体の感度が低下する。また、ヘイズが大きいと、画像ぼけが発生して好ましく ない。
前記式(1)で示されるモノマー単位の好ましい範囲は、 1〜40モル%であり、より好 ましくは、 5〜30モル0 /0である。
[0043] このような本実施形態においては、共重合 PC中における前記式(3)で示されるビ フエノール類(前記式(1)のモノマー単位の出発物質)の含有量は 90質量 ppm以下 であるので、いわゆる初期着色が少ないだけでなぐさらに溶融成形時における着色 も少なくなる。さらにまた、ビフエノール類の含有量が 90質量 ppm以下であると、共重 合 PCを電子写真感光体用の成形体としたときに、電子写真感光体を繰り返し使用し た際の残留電位の上昇を抑制できる。
このビフヱノール類の含有量とは重縮合反応における未反応残存量であり、 60質 量 ppm以下であることがより好ましぐさらに好ましくは 30質量 ppm以下であり、最も 好ましくは 10質量 ppm以下である。
[0044] また、本実施形態の共重合 PCは、塩化メチレンを溶媒とする濃度 0. 5g/dlの溶液 の 20°Cにおける還元粘度 [ 7] /C]は、 0. 2〜5· Odl/gの範囲にあることが好ましい 。還元粘度 [ ] /C]が 0. 2dl/g未満では、共重合 PCの機械的強度が低い。特に、 sp
この共重合 PCを、例えば電子写真感光体用成形体のバインダー樹脂とした場合に バインダー層の表面硬度が不足し、感光体が摩耗して耐刷寿命が短くなり、実用上 不利となる。一方、還元粘度 [ 7] /C]が 5. Odl/gを越えると、共重合 PCの溶液粘度 が上昇し、溶液塗工法による場合の感光体製造が困難になる。
なお、本実施形態の共重合 PCは、本発明の目的に支障のない範囲で、前記以外 の他のモノマー単位を有していてもよぐまた、他のポリカーボネート成分や添加物を 適宜添加配合して使用することもできる。
[0045] [共重合 PCの製造方法]
本実施形態の共重合 PCは、前記式(3)示されるモノマーと、下記式 (4)で示される モノマーとの混合モノマーを用いて重縮合反応を行うことで容易にフレーク状の粉体 として得ること力 Sでさる。
[0046] [化 16]
Figure imgf000015_0001
(式中、 R 、 Rは、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基、
3 4
炭素数 6〜12のァリール基またはハロゲン原子を示し、 Xは、—O—、—S—、 - SO 一、—SO2—、—CO—、 9, 9 フルォレニリデン基、前記式(2a)、(2b)、(2c)およ び(2d)で示されるいずれかの結合基である。 )
[0047] 前記式(3)で示されるモノマー(ビフエノール類)としては、例えば、 4, 4,ービフエノ ール、 3, 3,一ジメチル一 4, 4'—ビフエノール、 3, 3,, 5—トリメチノレー 4, 4'—ビフ エノーノレ、 3—プロピル一 4, 4'—ビフエノール、 3, 3' , 5, 5'—テトラメチル一 4, 4, —ビフエノール、 3, 3,一ジフエ二ノレ一 4, 4'—ビフエノール、 3, 3,一ジブチル一 4, 4'ービフエノール等が挙げられる。中でも、 4, 4'ービフエノールが着色の少ない共 重合 PCを与えるという点で好ましい。また、電子写真感光体用の共重合 PCとして適 用した場合には、耐久性も向上する。これらは 1種単独で用いてもよいし、 2種以上を 併用してもよい。
[0048] 前記式(4)で示されるモノマーとしては、例えば、 1 , 1 ビス(3—メチルー 4ーヒド ロキシフエ二ノレ)ェタン、 9, 9—ビス(3—フエニル一 4—ヒドロキシフエ二ノレ)フルォレ ン、ビス(4ーヒドロキシフエ二ノレ)メタン、 1, 1 ビス(4ーヒドロキシフエ二ノレ)ェタン、 1 , 2 ビス(4ーヒドロキシフエ二ノレ)ェタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)プロパ ン、 2, 2 ビス(3 メチルー 4ーヒドロキシフエ二ノレ)ブタン、 2, 2 ビス(4ーヒドロキ シフエ二ノレ)ブタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)オクタン、 4, 4 ビス(4ーヒド ロキシフエ二ノレ)ヘプタン、 1, 1—ビス(4—ヒドロキシフエ二ル)一 1, 1—ジフエニルメ タン、 1, 1—ビス(4—ヒドロキシフエ二ル)一 1—フエニルェタン、 1, 1—ビス(4—ヒド ロキシフエ二ル)一 1—フエニルメタン、ビス(4—ヒドロキシフエ二ノレ)エーテル、ビス(4 —ヒドロキシフエ二ノレ)スルフイド、ビス(4—ヒドロキシフエ二ノレ)スルホン、 1, 1—ビス( 4—ヒドロキシフエ二ノレ)シクロペンタン、 1, 1—ビス(3—メチル 4—ヒドロキシフエ二 ノレ)シクロペンタン、 1, 1—ビス(4—ヒドロキシフエ二ノレ)シクロへキサン、 2, 2—ビス( 3 メチル 4 ヒドロキシフエ二ノレ)プロパン、 2, 2 ビス(3 フエ二ノレ一 4 ヒドロキ シフエニノレ)プロパン、 2, 2 ビス(4ーヒドロキシフエニノレ)ァダマンタン、 2, 2 ビス( 3—メチル 4—ヒドロキシフエ二ノレ)ァダマンタン、 1, 3—ビス(4—ヒドロキシフエニル )ァダマンタン、 1, 3 ビス(3 メチルー 4ーヒドロキシフエ二ノレ)ァダマンタン、 2—( 3—メチル 4—ヒドロキシフエニル) 2— (4—ヒドロキシフエ二ル)一 1—フエニルェ タン、ビス(3—メチル 4—ヒドロキシフエ二ノレ)スルフイド、ビス(3—メチル 4—ヒド ロキシフエ二ノレ)スルホン、ビス(3—メチル 4—ヒドロキシフエ二ノレ)メタン、 1, 1—ビ ス(3 メチル 4 ヒドロキシフエ二ノレ)シクロへキサン、 2, 7 ナフタレンジオール、 2, 6—ナフタレンジオール、 1, 4 ナフタレンジオール、 1, 5—ナフタレンジォーノレ 、 2, 2 ビス(2 メチル 4 ヒドロキシフエ二ノレ)プロパン、 1, 1—ビス(2 ブチノレ 4ーヒドロキシー 5—メチルフエ二ノレ)ブタン、 1, 1 ビス(2— tert ブチノレー 4ーヒ ドロキシ一 3—メチルフエ二ノレ)ェタン、 1, 1—ビス(2— tert ブチル 4—ヒドロキシ —5 メチルフエ二ノレ)プロパン、 1, 1—ビス(2— tert ブチル 4 ヒドロキシ一 5 メチルフエ二ノレ)ブタン、 1, 1 ビス(2— tert ブチルー 4ーヒドロキシー5—メチ ルフエ二ノレ)イソブタン、 1, 1—ビス(2— tert ブチル 4—ヒドロキシ一 5—メチルフ ェニノレ)ヘプタン、 1, 1—ビス(2— tert ブチル 4—ヒドロキシ一 5—メチルフエ二 ノレ)一 1—フエニルメタン、 1, 1—ビス(2— tert アミノレ一 4 ヒドロキシ一 5 メチル フエ二ノレ)ブタン、ビス(3—クロロー 4ーヒドロキシフエ二ノレ)メタン、ビス(3, 5—ジブ口 モー 4ーヒドロキシフエ二ノレ)メタン、 2, 2 ビス(3 クロロー 4ーヒドロキシフエ二ノレ) プロパン、 2, 2 ビス(3 フルォロ一 4 ヒドロキシフエ二ノレ)プロパン、 2, 2 ビス(
3 ブロモ 4 ヒドロキシフエ二ノレ)プロパン、 2, 2 ビス(3, 5 ジフノレオロー 4 ヒ ドロキシフエ二ノレ)プロパン、 2, 2 ビス(3, 5 ジクロロー 4ーヒドロキシフエ二ノレ)プ ロノ ン、 2, 2 ビス(3, 5 ジブ口モー 4 ヒドロキシフエ二ノレ)プロパン、 2, 2 ビス( 3 ブロモー 4ーヒドロキシー 5 クロ口フエ二ノレ)プロパン、 2, 2 ビス(3, 5 ジクロ ロー 4ーヒドロキシフエ二ノレ)ブタン、 2, 2 ビス(3, 5 ジブ口モー 4ーヒドロキシフエ ニル)ブタン、 1—フエ二ノレ一 1 , 1—ビス(3—フルォロ一 4—ヒドロキシフエ二ノレ)エタ ン、ビス(3—フルォロ一 4—ヒドロキシフエ二ノレ)エーテル、 3, 3,一ジフルォロ一 4, 4 ,一ジヒドロキシビフエニル、 1 , 1—ビス(3—シクロへキシル 4—ヒドロキシフエ二ノレ) シクロへキサン、 2, 2 ビス(4 ヒドロキシフエ二ノレ)へキサフルォロプロパン、 1 , 1 —ビス(3—フエニル一 4—ヒドロキシフエ二ノレ)シクロへキサン、ビス(3—フエ二ノレ一 4 ーヒドロキシフエ二ノレ)スルホン、 4, 4 '一(3, 3, 5—トリメチルシクロへキシリデン)ジ フエノール、 4, 4,一 [ 1 , 4—フエ二レンビス(1—メチルェチリデン)]ビスフエノール、 4, 4,一 [ 1 , 3 フエ二レンビス(1—メチルェチリデン)]ビスフエノール、 9, 9 ビス(
4—ヒドロキシフエ二ノレ)フルオレン、 9, 9—ビス(4—ヒドロキシ一 3—メチルフエニル) フルオレン、末端フエノールポリジメチルシロキサン、 α , ω—ビス(3— (4—ヒドロキ シー 3—メトキシフエ二ノレ)プロピノレ)ージメチノレシ口キシーポリジメチノレシロキサン、お よび α トリメチルシロキシ一 ω—ビス { 3— (2 ヒドロキシフエニル)プロピルジメチ ノレシロキシ}ーメチノレシ口キシー 2—ジメチノレシリノレエチノレーポリジメチノレシロキサンな どが挙げられる。これらのビスフエノール化合物は 1種を単独で用いても、 2種以上を 混合して用いてもよい。また、三価以上のフエノールを用いて分岐構造を持たせても よい。
これらのビスフエノール化合物の中で、 1 , 1 ビス(4ーヒドロキシフエ二ノレ)ェタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)ブタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)プロ パン、 1 , 1—ビス(4—ヒドロキシフエ二ル)一 1 , 1—ジフエ二ルメタン、 1 , 1—ビス(4 —ヒドロキシフエニノレ)一 1—フエニノレエタン、ビス(4—ヒドロキシフエニノレ)スノレホン、 1 , 1—ビス(4—ヒドロキシフエ二ノレ)シクロへキサン、 2, 2—ビス(3—メチル 4—ヒド ロキシフエ二ノレ)プロパン、 1 , 1—ビス(3—メチル 4—ヒドロキシフエ二ノレ)シクロへ キサン、 1 , 1—ビス(3 メチル 4 ヒドロキシフエ二ノレ)シクロペンタン、 2, 2 ビス (3—フエ二ルー 4—ヒドロキシフエ二ノレ)プロパン、 4, 4'— (3, 3, 5—トリメチルシクロ へキシリデン)ジフエノール、 4, 4, ー [1 , 4 フエ二レンビス(1ーメチルェチリデン)] ビスフエノール、 4, 4, 一 [1 , 3—フエ二レンビス(1—メチルェチリデン)]ビスフエノー ノレ、 9, 9—ビス(4—ヒドロキシフエ二ノレ)フルオレン、 9, 9—ビス(4—ヒドロキシ一 3— メチルフエニル)フルオレン、末端フエノールポリジメチルシロキサン、 α—トリメチルシ 口キシー ω ビス { 3—(2 ヒドロキシフエ二ノレ)プロピルジメチルシロキシ }ーメチノレ シロキシー 2—ジメチルシリルェチルーポリジメチルシロキサン、および α , ω ビス( 3—(4ーヒドロキシー 3—メトキシフエ二ノレ)プロピノレ)ージメチノレシ口キシーポリジメチ ルシロキサンが好ましい。
さらに好ましくは、 1 , 1 ビス(4ーヒドロキシフエ二ノレ)ェタン、 2, 2 ビス(4ーヒドロ キシフエ二ノレ)ブタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)プロパン、 1 , 1 ビス(4 ヒドロキシフエ二ル)一 1—フエニルェタン、 1 , 1—ビス(4—ヒドロキシフエ二ノレ)シクロ へキサン、 2, 2 ビス(3 メチル 4 ヒドロキシフエ二ノレ)プロパン、 1 , 1—ビス(3 —メチルー 4—ヒドロキシフエ二ノレ)シクロへキサン、 1 , 1—ビス(3—メチル 4—ヒド ロキシフエ二ノレ)シクロペンタン、 2, 2 ビス(3 フエ二ノレ一 4 ヒドロキシフエ二ノレ) プロパン、 4, 4'一(3, 3, 5—トリメチルシクロへキシリデン)ジフエノール、 9, 9一ビス (4—ヒドロキシ一 3—メチルフエニル)フルオレンである。
このようなビスフエノール化合物をモノマーとして製造された共重合 PCを電子写真 感光体に適用すると、クリーニング工程などにおいて他の部材との摩擦によっても摩 耗しに《なり、結果として耐久性が向上するため好ましい。
本実施形態の共重合 PCは、前記式(3)のモノマーと前記式(4)のモノマーとを用 V、て界面重縮合等の重縮合反応を行うことで容易に得られる。
例えば、ホスゲンをはじめとする各種のジハロゲン化カルボニル、あるいはクロロフ オルノート化合物等のハロホルメート類、炭酸エステル化合物などを用いて、酸結合 剤の存在下に界面重縮合を行うことで好適に炭酸エステル結合を形成することがで きる。あるいは、エステル交換反応を採用してもよい。これらの反応は、必要に応じて 末端停止剤および/または分岐剤の存在下で行われる。
[0051] 前記末端停止剤としては、一価のカルボン酸とその誘導体や、一価のフエノールを 用いること力できる。例えば、 p tert ブチル一フエノール、 p フエユルフェノーノレ 、 p クミノレフエノーノレ、 p パーフノレオロノニノレフエノーノレ、 p— (パーフノレオロノニノレ フエニノレ)フエノーノレ、 p— (ノ ーフノレオロキシノレフエニノレ)フエノーノレ、 p tert ノ ー フルォロブチルフエノール、 1一(P ヒドロキシベンジル)パーフルォロデカン、 p—〔
2- (lH, 1H—ノ ーフノレ才ロトリドデシノレ才キシ) 1 , 1 , 1 , 3, 3, 3—へキサフノレ才 口プロピノレ〕フエノール、 3, 5—ビス(パーフルォ口へキシルォキシカルボ二ノレ)フエノ ール、 p ヒドロキシ安息香酸パーフルォロドデシル、 p— (1H, 1H—パーフルォロ ォクチルォキシ)フエノール、 2H, 2H, 9H パーフルォロノナン酸、 1 , 1 , 1 , 3, 3,
3 テトラフロロ 2 プロパノール、あるいは、下記式で示されるアルコールなどが 好適に用いられる。
H (CF ) CH OH
2 n 2
(nは、;!〜 12の整数)
F (CF ) CH OH
2 m 2
(mは、;!〜 12の整数)
これら末端停止剤の添加割合は、共重合組成比として、 0. 05〜30モル%、さらに 好ましくは 0. ;!〜 10モル0 /0であり、この割合が 30モル0 /0を超えると機械的強度の低 下を招くことがあり、 0. 05モル%未満であると成形性の低下を招くことがある。
[0052] また、分岐剤の具体例としては、フロログリシン、ピロガロール、 4, 6 ジメチルー 2 , 4, 6 トリス(4ーヒドロキシフエ二ノレ)ー2 ヘプテン、 2, 6 ジメチノレー 2, 4, 6 ト リス(4 ヒドロキシフエ二ル)一 3 ヘプテン、 2, 4 ジメチル一 2, 4, 6 トリス(4 ヒ ドロキシフエ二ノレ)ヘプタン、 1 , 3, 5 トリス(2 ヒドロキシフエ二ノレ)ベンゼン、 1 , 3, 5—トリス(4—ヒドロキシフエ二ノレ)ベンゼン、 1 , 1 , 1—トリス(4—ヒドロキシフエニル) ェタン、トリス(4ーヒドロキシフエ二ノレ)フエニルメタン、 2, 2 ビス〔4, 4 ビス(4ーヒ ドロキシフエ二ノレ)シクロへキシル〕プロパン、 2, 4 ビス〔2 ビス(4ーヒドロキシフエ ニル)ー2 プロピノレ〕フエノール、 2, 6 ビス(2 ヒドロキシー5 メチルベンジル) —4 メチルフエノール、 2— (4 ヒドロキシフエニル) 2— (2, 4 ジヒドロキシフエ 二ノレ)プロパン、テトラキス(4ーヒドロキシフエ二ノレ)メタン、テトラキス〔4一(4ーヒドロキ シフエニルイソプロピル)フエノキシ〕メタン、 2, 4 ジヒドロキシ安息香酸、トリメシン酸 、シァヌル酸、 3, 3 ビス(3—メチル 4 ヒドロキシフエ二ル)一 2—ォキソ 2, 3 - ジヒドロインドーノレ、 3, 3—ビス(4—ヒドロキシァリーノレ)ォキシインドール、 5—クロ口 ィサチン、 5, 7—ジクロロイサチン、 5—ブロモイサチンなどが挙げられる。
これら分岐剤の添加量は、共重合組成比で 30モル%以下、好ましくは 5モル%以 下であり、これが 30モル%を超えると成形性の低下を招くことがある。
[0053] 界面重縮合を行う場合、酸結合剤としては、例えば水酸化ナトリウム、水酸化力リウ ム、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、水酸化 リチウム、水酸化セシウムなどのアルカリ金属水酸化物や、炭酸ナトリウム、炭酸力リウ ムなどのアルカリ金属炭酸塩、ピリジンなどの有機塩基、あるいはこれらの混合物を 用いること力 Sできる。この酸結合剤の使用割合も反応の化学量論比(当量)を考慮し て適宜調整すればよい。具体的には、原料の二価フエノールの水酸基 1モル当たり、 1当量もしくはそれより過剰量、好ましくは;!〜 10当量の酸結合剤を使用すればよい
[0054] ここで用いる溶媒としては、トルエン、キシレンなどの芳香族炭化水素や、塩化メチ レン、クロロホノレム、 1. 1ージクロロェタン、 1 , 2—ジクロロェタン、 1 , 1 , 1 トリクロ口 ェタン、 1 , 1 , 2—トリクロロェタン、 1 , 1 , 1 , 2—テトラクロロェタン、 1 , 1 , 2, 2—テト ラクロロェタン、ペンタクロロェタン、クロ口ベンゼンなどのハロゲン化炭化水素、ァセト フエノンなどが好適なものとして挙げられる。これら溶媒は、 1種単独で用いてもよいし 、 2種以上を組み合わせて用いてもよい。さらに、互いに混ざり合わない 2種の溶媒を 用いて界面重縮合反応を行ってもよ!/、。
[0055] また、前記触媒としては、トリメチルァミンや、トリェチルァミン、トリブチルァミン、 N, N ジメチルシクロへキシルァミン、ピリジン、ジメチルァニリンなどの三級ァミン、トリメ チルベンジルアンモニゥムクロライド、トリェチルベンジルアンモニゥムクロライド、トリ ブチルベンジルアンモニゥムクロライド、トリオクチルメチルアンモニゥムクロライド、テ トラブチルアンモニゥムクロライド、テトラプチルアンモニゥムブロマイドなどの四級アン モニゥム塩、テトラブチルホスホニゥムクロライド、テトラブチルホスホニゥムブロマイド などの四級ホスホニゥム塩などが好適である。
さらに、必要に応じて、この反応系に亜硫酸ナトリウムやハイドロサルファイト塩など の酸化防止剤を少量添加してもよレ、。
[0056] この共重合 PCの製造法は、具体的には様々な態様で実施可能であり、例えば二 価フエノール(前記式(3)のビフエノール類および/または前記式(4)のビスフエノー ル類)とホスゲンなどを反応させて、ポリカーボネートオリゴマーを製造し、ついでこの ポリカーボネートオリゴマーに、上記の二価フエノールを、前記溶媒および酸結合剤 のアルカリ水溶液の混合液の存在下に反応させる方法を採用してもよい。また、前記 の二価フエノールとホスゲンを、前記溶媒とアルカリ水溶液との混合液中で反応させ る方法を採用してもよい。通常は、前者の、予めポリカーボネートオリゴマーを製造す る方法が効率的であることから好ましレ、。
[0057] ポリカーボネートオリゴマーを製造するには、まず、アルカリ水溶液に二価フエノー ルを溶解し、二価フエノールのアルカリ水溶液を調製する。ついで、このアルカリ水溶 液と塩化メチレンなどの有機溶媒との混合液に、ホスゲンを導入して反応させ、二価 フエノールのポリカーボネートオリゴマーを合成する。ついで、反応溶液を水相と有機 相とに分離し、ポリカーボネートオリゴマーを含む有機相を得る。この際、アルカリ水 溶液のアルカリ濃度は、 0. ;!〜 5規定の範囲が好ましぐまた有機相と水相との容積 比は、 10 :;!〜 1 : 10、好ましくは 5 :;!〜 1 : 5の範囲である。
反応温度は、冷却下に通常 0〜70°C、好ましくは 5〜65°Cであり、反応時間は 15 分間〜 4時間、好ましくは 30分間〜 3時間程度である。このようにして得られるポリ力 ーボネートオリゴマーの平均分子量は 6000以下、重合度は,通常 20以下、好ましく は 2〜; 10量体のものである。
[0058] このようにして得られたポリカーボネートオリゴマーを含む有機相に、前記二価フエ ノールを加えて反応させる。反応温度は、 0〜; 150°C、好ましくは 5〜40°C、さらに好 ましくは 5〜30°C、特に好ましくは 5〜20°Cである。特に反応温度を 30°C以下、特に 20°C以下とすることで、生成する共重合 PCの着色 (YIの上昇)を抑制することができ 反応圧力は、減圧、常圧、加圧のいずれでもよいが、通常は、常圧もしくは反応系 の自圧程度で好適に行い得る。反応時間は、反応温度によって左右されるが、通常 0. 5分間〜 10時間、好ましくは 1分間〜 2時間程度である。
この反応にあたって、二価フエノールは、有機溶媒溶液および/またはアルカリ水 溶液として添加するのが望ましい。その添加順序については、特に制限はない。なお 、触媒、末端停止剤および分岐剤などは、上記の製造法において、必要に応じ、ポリ カーボネートオリゴマーの製造時、その後の高分子量化の反応時のいずれか、また はその両方にぉレ、て添加して用いることができる。
[0059] また、生成した共重合 PC中に含まれるビフヱノール類 (未反応モノマー)の残存濃 度を 90質量 ppm以下にする方法としては、種々の方法が適用可能である。例えば、 (1)重合時の反応当量を最適化し、モノマー残量を低減する方法、(2)重合後の洗 浄工程において、アルカリ水溶液における洗浄条件を最適化し、残存している未反 応モノマーを除去する方法、(3)晶析工程で未反応モノマーを優先的に溶解し、力、 つ共重合 PCを晶析可能な溶媒で処理する方法、(4)製造工程の途中で (アルカリ 洗浄工程、晶析工程に移る前の時点)、残留する未反応モノマー量を確認し、未反 応モノマー量に応じて、モノマー除去操作 (アルカリ洗浄工程、晶析工程において) を行う方法等が挙げられる。
[0060] 前記(2)重合後の洗浄工程にお!/、ては、以下のことが言える。
本実施形態においては、共重合 PCをフレーク化した後は、未反応モノマーや低分 子量不純物がポリマー固体内部に取り込まれるため、水などの液体で洗浄しても、フ レーク表面に付着したものしか除去されない。一方、ポリマー溶液の洗浄においては 、アルカリ可溶成分である残留モノマー等を逆抽出することにより不純物を低減する こと力 Sでさる。
[0061] ポリマー溶液の洗浄においては、最初に水洗いを行うことにより、重合時の高濃度 溶液を希釈して、水溶液とポリマー溶液の分離を容易にする。次に水酸化ナトリウム 水溶液で洗浄することにより、アルカリにより残留ビフエノール類が水槽に逆抽出され 除去される。本発明では、最終ポリマー中の不純物が本発明の構成要件を満たす程 度まで洗浄する。例えば、後述する本発明の実施例では;!〜 3回程度である。 [0062] 水酸化ナトリウム水溶液の好適な濃度範囲は、 0. 0;!〜 1Nであり、この範囲で残留 ビフエノール類が効率的に除去される。 0. 01N未満では、残留ビフエノール類の抽 出効率が低下し、残留量が増加する恐れがある。一方、 1Nを越える濃度の場合は、 ポリマーが分解する恐れがある。
[0063] 水酸化ナトリウム水溶液での洗浄の後、アルカリ性成分が残留すると製品ポリマー が加水分解される恐れがあるため、 HCI水溶液で洗浄する。
HCI水溶液の好適な濃度範囲は、アルカリが中和される濃度(例えば、 0. 001-0 . 1N)であればよい。 HCI水溶液での洗浄では、残存するアルカリ成分が、ポリマー の分解に影響しない程度まで洗浄する。例えば、後述する本発明の実施例では;!〜 3回程度である。
[0064] HCI水溶液での洗浄の後、イオン性不純物を除去するため、最後に水洗!/、を行う。
[0065] このようにして得られる共重合 PCは、前記式(1)で表される繰返し単位および前記 式(2)で表される繰返し単位とからなり、前記式(3)で示される構造を有するビフエノ ール類の含有量が 90質量 ppm以下である共重合体である。
なお、この共重合 PCには、本発明の目的達成を阻害しない範囲で、前記式(1)お よび前記式(2)以外の構造単位を有するポリカーボネート単位や、ポリエステル、ポリ ウレタン、ポリエーテル、ポリシロキサン構造を有する単位を含有しているものであつ てもよい。
[0066] また、モノマーとして使用される二価フエノールのうちビフエノール類には通常、微 量の不純物が含まれており、そのうち、トリヒドロキシビフエニル類(フエノール性水酸 基が一分子中に 3つ存在するビフエニル化合物)の含有量を 300質量 ppm以下に管 理することで共重合 PCの YIを 3以下に制御することが容易となる。結果的に、この共 重合 PC (フレーク状粉体)から成形されるペレットや成形体もほとんど着色することが なくなる。トリヒドロキシビフエニル類の含有量が 300質量 ppmを超える場合には、ポリ マーの洗浄条件の最適化により不純物を低減することができる。
[0067] また、静電気特性を悪化させるトリヒドロキシビフエニル類の含有量が少な!/、ことは、 電子写真感光体に用いられる成形体の原料としても有用である。ビフエノール類中の トリヒドロキシビフエニル類の含有量は、好ましくは、 150質量 ppm以下であり、より好 ましくは 20質量 ppm以下であり、最も好ましくは 10質量 ppm以下である。
さらにまた、共重合 PCの YIを 3以下に制御するには、ビフエノール類中の 3— tert ーブチルー 4,4'ージヒドロキシビフエニルの含有量を 370質量 ppm以下、好ましくは 300質量 ppm以下、より好ましくは 30質量 ppm以下とすることも有効である。
[0068] このような不純物の含有量を低減するには、ビフエノール類の合成時に原料から力 テコールなどの二価フエノールを高精度で除去する方法や、得られたビフエノール類 をアルコール類(メタノール、エタノール、イソプロパノール等)ゃケトン類(アセトン、メ チルェチルケトン等)で再結晶する方法、あるいは、カラムによる分離などの方法があ る。特に、得られたビフエノール類を再結晶する方法は、工業規模で高純度品を得る ことができるため好ましい。
[0069] なお、得られる共重合 PCの還元粘度 [ 7] /C] (粘度平均分子量と相関のある値)
sp
を前記の範囲にするには、例えば、前記反応条件の選択、分岐剤や分子量調節剤 の使用量の調節など各種の方法によってなすことができる。また、場合により、得られ た共重合 PCに適宜物理的処理 (混合、分画など)および/または化学的処理 (ポリ マー反応、架橋処理、部分分解処理など)を施して所定の還元粘度 [ 7] /C]の共重
sp
合 PCとして取得することあでさる。
また、得られた反応生成物(粗生成物)は、公知の分離精製法等の各種の後処理 を施して、所望の純度(精製度)のものを共重合 PCとして回収すること力 sできる。
[0070] [電子写真感光体の構成]
前述した本実施形態の共重合 PCをバインダー樹脂として用いた成形体を含んで 電子写真感光体を構成することができる。
本実施形態の電子写真感光体は、上述の共重合 PCを感光層中のバインダー樹 脂として利用する限り、公知の種々の形式の電子写真感光体はもとより、どのようなも のとしてもよいが、感光層が、少なくとも 1層の電荷発生層と少なくとも 1層の電荷輸送 層を有する有機電子写真感光体、または、一層に電荷発生物質と電荷輸送物質を 有する有機電子写真感光体とすることが好ましレ、。
[0071] 共重合 PCは、感光層中のどの部分にも使用してもよいが、本発明の効果を十分に 発揮するためには、電荷輸送層中にお!/、て電荷移動物質のバインダー樹脂として使 用するか、単一の感光層のバインダー樹脂として使用するか、表面保護層として使 用することが望まし!/、。電荷輸送層を 2層有する多層型の電子写真感光体の場合に は、その!/、ずれかの電荷輸送層に使用することが好まし!/、。
本実施形態の電子写真感光体において、前記した本実施形態の共重合 PCは、 1 種単独で使用してもよいし、 2種以上を組合せて用いてもよい。また、所望に応じて 本発明の目的を阻害しない範囲で、他のポリカーボネート等のバインダー樹脂成分 を含有させてもよい。さらに、酸化防止剤等の添加物を含有させてもよい。
[0072] 本実施形態の電子写真感光体は、感光層を導電性基板上に有するものである。感 光層が電荷発生層と電荷輸送層とを有する場合、電荷発生層上に電荷輸送層が積 層されていてもよぐまた電荷輸送層上に電荷発生層が積層されていてもよい。また 、一層中に電荷発生物質と電荷輸送物質を同時に含むものであってもよい。さらにま た、必要に応じて表面層に導電性又は絶縁性の保護膜が形成されていてもよい。さ らに、各層間の接着性を向上させるための接着層あるいは電荷のブロッキングの役 目を果すブロッキング層等の中間層などが形成されているものであってもよい。
[0073] 本実施形態の電子写真感光体に用いられる導電性基板材料としては、公知のもの など各種のものを使用することができ、具体的には、アルミニウムやニッケル、クロム、 ノ ラジウム、チタン、モリブデン、インジウム、金、白金、銀、銅、亜鉛、真鍮、ステンレ ス鋼、酸化鉛、酸化錫、酸化インジウム、 ITO (インジウムチンオキサイド:錫ドープ酸 化インジウム)もしくはグラフアイトからなる板やドラム、シート、ならびに蒸着、スパッタ リング、塗布などによりコーティングするなどして導電処理したガラス、布、紙もしくは プラスチックのフィルム、シートおよびシームレスシーベルト、ならびに電極酸化等に より金属酸化処理した金属ドラムなどを使用することができる。
[0074] 前記電荷発生層は少なくとも電荷発生材料を有するものであり、この電荷発生層は その下地となる基板上に真空蒸着、スパッタ法等により電荷発生材料の層を形成せ しめる力、、又はその下地となる基板上に電荷発生材料をバインダー樹脂を用いて結 着してなる層を形成せしめることによって得ることができる。ノ^ンダ一樹脂を用いる 電荷発生層の形成方法としては公知の方法等各種の方法を使用することができるが 、通常、例えば、電荷発生材料をバインダー樹脂と共に適当な溶媒により分散若しく は溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥せしめて湿式成形体 として得る方法が好適である。
[0075] 前記電荷発生層における電荷発生材料としては、公知の各種のものを使用するこ と力できる。具体的な化合物としては、非晶質セレンや、三方晶セレン等のセレン単 体、セレン テルル等のセレン合金、 As Se等のセレン化合物もしくはセレン含有組 成物、酸化亜鉛、 CdS— Se等の周期律表第 12族および第 16族元素からなる無機 材料、酸化チタン等の酸化物系半導体、アモルファスシリコン等のシリコン系材料、 τ型無金属フタロシアニン、 %型無金属フタロシアニン等の無金属フタロシアニン顔 料、 α型銅フタロシアニン、 β型銅フタロシアニン、 Ί型銅フタロシアニン、 ε型銅フ タロシアニン、 X型銅フタロシアニン、 Α型チタニルフタロシアニン、 B型チタニルフタ ロシアニン、 C型チタニルフタロシアニン、 D型チタニルフタロシアニン、 E型チタニル フタロシアニン、 F型チタニルフタロシアニン、 G型チタニルフタロシアニン、 H型チタ ニルフタロシアニン、 K型チタニルフタロシアニン、 L型チタニルフタロシアニン、 M型 チタニルフタロシアニン、 N型チタニルフタロシアニン、 Y型チタニルフタロシアニン、 ォキソチタニルフタロシアニン、 X線回折図におけるブラック角 2 Θ力 ¾ 7. 3 ± 0. 2度 に強い回折ピークを示すチタニルフタロシアニン、ガリウムフタロシアニン等の金属フ タロシアニン顔料、シァニン染料、アントラセン顔料、ビスァゾ顔料、ピレン顔料、多環 キノン顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、ピリリウム染料、スクェアリ ゥム顔料、アントアントロン顔料、ベンズイミダゾール顔料、ァゾ顔料、チォインジゴ顔 料、キノリン顔料、レーキ顔料、ォキサジン顔料、ジォキサジン顔料、トリフエニルメタ ン顔料、ァズレニウム染料、トリアリールメタン染料、キサンチン染料、チアジン染料、 チアピリリウム染料、ポリビュルカルバゾール、ビスべンゾイミダゾール顔料などが挙 げられる。これら化合物は、 1種を単独であるいは 2種以上のものを混合して、電荷発 生物質として用いることができる。これら電荷発生物質の中でも、好適なものとしては 、特開平 1 1— 1 72003号公報に具体的に記載のものが挙げられる。
[0076] 前記電荷輸送層は、下地となる基板上に、電荷輸送物質をバインダー樹脂で結着 してなる層を形成することによって得ることができる。
前記した電荷発生層や電荷輸送層のバインダー樹脂としては、特に制限はなぐ 公知の各種のものを使用できる。具体的には、ポリスチレン、ポリ塩化ビュル、ポリ酢 酸ビュル、塩化ビュル 酢酸ビュル共重合体、ポリビュルァセタール、アルキッド樹 脂、アクリル樹脂、ポリアクリロニトリル、ポリカーボネート、ポリアミド、プチラール樹脂 、ポリエステル、塩化ビニリデン一塩化ビュル共重合体、メタクリル樹脂、スチレン ブタジエン共重合体、塩化ビニリデンーアクリロニトリル共重合体、塩化ビュル 酢酸 ビュル 無水マレイン酸共重合体、シリコーン樹脂、シリコーン アルキッド樹脂、フ エノールーホルムアルデヒド樹脂、スチレン アルキッド樹脂、メラミン樹脂、ポリエー テル樹脂、ベンゾグアナミン樹脂、エポキシアタリレート樹脂、ウレタンアタリレート樹 脂、ポリ N ビュルカルバゾール、ポリビュルブチラール、ポリビュルホルマール、 ポリスノレホン、カゼイン、ゼラチン、ポリビニノレアノレコーノレ、ェチノレセノレロース、ニトロセ ノレロース、カルボキシメチルセルロース、塩化ビニリデン系ポリマーラテックス、アタリ ロニトリル ブタジエン共重合体、ビュルトルエン スチレン共重合体、大豆油変性 アルキッド樹脂、ニトロ化ポリスチレン、ポリメチルスチレン、ポイソプレン、ポリチォカ ーボネート、ポリアリレート、ポリハロアリレート、ポリアリルエーテル、ポリビュルアタリレ ート、ポリエステルアタリレートなどが挙げられる。
これらは、 1種を単独で用いることもできるし、また、 2種以上を混合して用いることも できる。なお、電荷発生層や電荷輸送層におけるバインダー樹脂としては、前記した 共重合 PCを使用することが好適である。
[0077] 電荷輸送層の形成方法としては、公知の各種の方式を使用することができる力 通 常、電荷輸送物質を本実施形態の共重合 PCとともに適当な溶媒に分散若しくは溶 解した塗工液を、所定の下地となる基板上に塗布し、乾燥して湿式成形体として得る 方法が好適である。電荷輸送層形成に用いられる電荷輸送物質と共重合 PCとの配 合割合は、好ましくは質量比で 20: 80—80: 20、さらに好ましくは 30: 70—70: 30 である。
この電荷輸送層において、本実施形態の共重合 PCは 1種単独で用いることもでき 、また 2種以上混合して用いることもできる。また、本発明の目的を阻害しない範囲で 、他のバインダー樹脂を本実施形態の共重合 PCと併用することも可能である。
[0078] このようにして形成される電荷輸送層の厚さは、通常 5〜100 μ m程度、好ましくは 10-30 μ mである。この厚さ力 m未満であると初期電位が低くなるおそれがあり 、 100 mを超えると電子写真特性の低下を招くおそれがある。
本実施形態の共重合 PCと共に使用できる電荷輸送物質としては、公知の各種の 化合物を使用することができる。このような化合物としては、力ルバゾール化合物、ィ ンドール化合物、イミダゾール化合物、ォキサゾール化合物、ピラゾール化合物、ォ キサジァゾール化合物、ピラゾリン化合物、チアジアゾール化合物、ァニリン化合物、 ヒドラゾン化合物、芳香族ァミン化合物、脂肪族ァミン化合物、スチルベン化合物、フ ルォレノン化合物、ブタジエン化合物、キノン化合物、キノジメタン化合物、チアゾー ル化合物、トリァゾール化合物、イミダゾロン化合物、イミダゾリジン化合物、ビスイミダ ゾリジン化合物、ォキサゾロン化合物、ベンゾチアゾール化合物、ベンズイミダゾール 化合物、キナゾリン化合物、ベンゾフラン化合物、アタリジン化合物、フヱナジン化合 物、ポリ N ビュルカルバゾーノレ、ポリビュルピレン、ポリビュルアントラセン、ポリビ 二ルァクリジン、ポリ 9—ビュルフエ二ルアントラセン、ピレン一ホルムアルデヒド樹 脂、ェチルカルバゾール樹脂、あるいはこれらの構造を主鎖や側鎖に有する重合体 などが好適に用いられる。これら化合物は、 1種を単独で使用してもよいし、 2種以上 を組み合わせて使用してもょレ、。
これら電荷輸送物質の中でも、特開平 11 172003公報において具体的に例示さ れて!/、る化合物が特に好適に用いられる。
なお、本実施形態の電子写真感光体においては、電荷発生層か電荷輸送層の少 なくともいずれかに本実施形態の共重合 PCをバインダー樹脂として用いる。
本実施形態の電子写真感光体においては、前記導電性基板と感光層との間に、 通常使用されるような下引き層を設けることができる。この下引き層としては、酸化チ タンや酸化アルミニウム、ジルコユア、チタン酸、ジルコン酸、ランタン鉛、チタンブラ ック、シリカ、チタン酸鉛、チタン酸バリウム、酸化錫、酸化インジウム、酸化珪素など の微粒子、ポリアミド樹脂、フエノール樹脂、カゼイン、メラミン樹脂、ベンゾグアナミン 樹脂、ポリウレタン樹脂、エポキシ樹脂、セルロース、ニトロセルロース、ポリビュルァ ルコール、ポリビュルプチラール樹脂などの成分を使用することができる。また、この 下引き層に用いる樹脂として、前記バインダー樹脂を用いてもよいし、本実施形態の 共重合 PCを用いてもよい。これら微粒子や樹脂は単独または種々混合して用いるこ と力 Sできる。これらの混合物として用いる場合には、無機質微粒子と樹脂を併用する と、平滑性のよい皮膜が形成されることから好適である。
[0080] この下引き層の厚みは、 0· 01〜; 10 m、好ましくは 0. 1〜7 mである。この厚み が 0. 01 m未満であると、下引き層を均一に形成することが困難であり、また 10〃 mを超えると電子写真特性が低下することがある。また、前記導電性基体と感光層と の間には、通常使用されるような公知のブロッキング層を設けることができる。このブ ロッキング層としては、前記のバインダー樹脂と同種の樹脂を用いることができる。ま た本実施形態のポリカーボネート樹脂を用いてもよい。このブロッキング層の厚みは、 0. 0;!〜 20〃111、好ましく (ま 0. ;!〜 10〃 mである。この厚み力 0. 01〃m未満である と、ブロッキング層を均一に形成することが困難であり、また 20 inを超えると電子写 真特性が低下することがある。
[0081] さらに、本実施形態の電子写真感光体には、感光層の上に、保護層を積層しても よい。この保護層には、前記のバインダー樹脂と同種の樹脂を用いることができる。ま た、本実施形態のポリカーボネート樹脂を用いることが特に好ましい。この保護層の 厚みは、 0· 0;!〜 20 m、好ましくは 0. ;!〜 10 mである。そして、この保護層には 、前記電荷発生物質、電荷輸送物質、添加剤、金属やその酸化物、窒化物、塩、合 金、カーボンブラック、有機導電性化合物などの導電性材料を含有していてもよい。
[0082] さらに、この電子写真感光体の性能向上のために、前記電荷発生層および電荷輸 送層には、結合剤、可塑剤、硬化触媒、流動性付与剤、ピンホール制御剤、分光感 度増感剤(増感染料)を添加してもよい。また、繰返し使用に対しての残留電位の増 カロ、帯電電位の低下、感度の低下を防止する目的で種々の化学物質、酸化防止剤 、界面活性剤、カール防止剤、レべリング剤などの添加剤を添加することができる。
[0083] 前記結合剤としては、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステ ル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポ リメタクリレート樹脂、ポリアクリルアミド樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂 、メラミン樹脂、ベンゾグアナミン樹脂、ポリクロ口プレン樹脂、ポリアクリロニトリル樹脂 、ェチルセルロース樹脂、ニトロセルロース樹脂、尿素樹脂、フエノール樹脂、フエノ キシ樹脂、ポリビュルプチラール樹脂、ホルマール樹脂、酢酸ビュル樹脂、酢酸ビニ ル/塩化ビュル共重合樹脂、ポリエステルカーボネート樹脂などが挙げられる。また 、熱および/または光硬化性樹脂も使用できる。いずれにしても、電気絶縁性で通 常の状態で皮膜を形成し得る樹脂であり、本発明の効果を損なわない範囲であれば 、特に制限はない。
前記可塑剤の具体例としては、ビフエニル、塩化ビフエニル、 o—ターフェニル、ノヽ ロゲン化パラフィン、ジメチルナフタレン、ジメチルフタレート、ジブチルフタレート、ジ ォクチルフタレート、ジエチレングリコールフタレート、トリフエニルフォスフェート、ジィ ソブチノレアジペート、ジメチノレセバケート、ジブチノレセバケート、ラウリノレ酸ブチノレ、メ チルフタリールェチルダリコレート、ジメチルダリコールフタレート、メチルナフタレン、 ベンゾフエノン、ポリプロピレン、ポリスチレン、フルォロ炭化水素などが挙げられる。
[0084] 前記硬化触媒の具体例としては、メタンスルホン酸、ドデシルベンゼンスルホン酸、 ジノニルナフタレンジスルホン酸などが挙げられ、流動性付与剤としては、モダフロー 、ァクロナール 4Fなどが挙げられ、ピンホール制御剤としては、ベンゾイン、ジメチノレ フタレートが挙げられる。これら可塑剤や硬化触媒、流動付与剤、ピンホール制御剤 は、前記電荷輸送物質に対して、 5質量%以下で用いることが好ましい。
[0085] また、分光感度増感剤としては、増感染料を用いる場合には,例えばメチルバイオ レット、クリスタルバイオレット、ナイトブルー、ビクトリアブルーなどのトリフエニルメタン 系染料、エリス口シン、ローダミン B、ローダミン 3R、アタリジンオレンジ、フラベオシン などのアタリジン染料、メチレンブルー、メチレングリーンなどのチアジン染料、カプリ ブルー、メルドラブル一などのォキサジン染料、シァニン染料、メロシアニン染料、ス チリル染料、ピリリュウム塩染料、チォピリリュウム塩染料などが適している。
[0086] 感光層には、感度の向上、残留電位の減少、反復使用時の疲労低減などの目的 で、電子受容性物質を添加することができる。その具体例としては、無水コハク酸、無 水マレイン酸、ジブロモ無水マレイン酸、無水フタル酸、テトラクロ口無水フタル酸、テ トラブロモ無水フタル酸、 3—二トロ無水フタル酸、 4一二トロ無水フタル酸、無水ピロメ リット酸、無水メリット酸、テトラシァノエチレン、テトラシァノキノジメタン、 o—ジニトロべ ンゼン、 m—ジニトロベンゼン、 1 , 3, 5—トリニトロベンゼン、 p—二トロべンゾニトリノレ 、ピクリルクロライド、キノンクロルイミド、クロラエル、ブロマニル、ベンゾキノン、 2, 3— ジクロロべンゾキノン、ジクロロジシァノパラべンゾキノン、ナフトキノン、ジフエノキノン 、トロポキノン、アントラキノン、 1 クロ口アントラキノン、ジニトロアントラキノン、 4一二 トロべンゾフエノン、 4, 4 'ージニトロべンゾフエノン、 4一二トロベンザルマロンジ二トリ ル、 a—シァノー β - (ρ シァノフエニル)アクリル酸ェチル、 9—アントラセニルメチ ノレマロンジ二トリル、 1—シァノー(ρ ニトロフエニル) 2— (ρ クロ口フエ二ノレ)ェチ レン、 2, 7 ジニ卜ロフノレ才レノン、 2, 4, 7 卜リニ卜ロフノレ才レノン、 2, 4, 5, 7 テ卜 ラニトロフルォレノン、 9 フルォレニリデン (ジシァノメチレンマロノ二トリル)、ポリ二 トロ一 9—フルォレニリデン一(ジシァノメチレンマロノジニトリル)、ピクリン酸、 ο ニト 口安息香酸、 ρ 二トロ安息香酸、 3, 5—ジニトロ安息香酸、ペンタフルォロ安息香酸 、 5—二トロサリチル酸、 3, 5—ジニトロサリチル酸、フタル酸、メリット酸などの電子親 和力の大きい化合物が好ましい。これら化合物は電荷発生層、電荷輸送層のいずれ に加えてもよぐその配合割合は、電荷発生物質または電荷輸送物質の量を 100質 量部としたときに、 0. 0;!〜 200質量部、好ましくは 0.;!〜 50質量部である。
[0087] また、表面性の改良のため、四フッ化工チレン樹脂、三フッ化塩化エチレン樹脂、四 フッ化工チレン六フッ化プロピレン樹脂、フッ化ビュル樹脂、フッ化ビニリデン樹脂、 二フッ化二塩化エチレン樹脂およびそれらの共重合体、フッ素系グラフトポリマーを 用いてもよい。これら表面改質剤の配合割合は、前記バインダー樹脂に対して、 0. 1 〜60質量%、好ましくは 5〜40質量%である。この配合割合が 0. 1質量%より少な いと、表面耐久性、表面エネルギー低下などの表面改質が充分でなぐ 60質量%よ り多いと、電子写真特性の低下を招くことがある。
[0088] 電荷発生層、電荷輸送層に添加する酸化防止剤としては、ヒンダードフエノール系 酸化防止剤、芳香族ァミン系酸化防止剤、ヒンダードアミン系酸化防止剤、スルフイド 系酸化防止剤、有機リン酸系酸化防止剤などラジカル補足性、ラジカル連鎖禁止作 用、及び/又は過酸化物分解作用を有するものが好ましい。これら酸化防止剤の配 合割合は、前記電荷輸送物質に対して、通常、 0. 01〜; 10質量%、好ましくは 0. 1 〜2質量%である。
このような酸化防止剤の具体例としては、特開平 1 1一 172003号公報の明細書に 記載された化学式([化 94]〜[化 101] )の化合物が好適である。
これら酸化防止剤は、 1種単独で用いてもよぐ 2種以上を混合して用いてもよい、 そして、これらは前記感光層のほか、表面保護層や下引き層、ブロッキング層に添カロ してもよい。
このような酸化防止剤を添加することにより、ラジカルを補足し、電荷発生層や電荷 輸送層の劣化を防ぐことができる。
[0089] 前記電荷発生層、電荷輸送層の形成の際に使用する前記溶媒の具体例としては、 例えば、ベンゼン、トルエン、キシレン、クロ口ベンゼン等の芳香族系溶媒、アセトン、 メチルェチルケトン、シクロへキサノン等のケトン、メタノーノレ、エタノーノレ、イソプロパ ノール等のアルコール、酢酸ェチル、ェチルセ口ソルブ等のエステル、四塩化炭素、 四臭化炭素、クロ口ホルム、ジクロロメタン、テトラクロロェタン等のハロゲン化炭化水 素、テトラヒドロフラン、ジォキサン等のエーテル、ジメチルホルムアミド、ジメチルスル ホキシド、ジェチルホルムアミド等を挙げることができる。これらの溶媒は、 1種単独で 使用してもよく、あるいは、 2種以上を混合溶媒として使用してもよい。
[0090] 単層型電子写真感光体の感光層は、前記の電荷発生物質、電荷輸送物質、添カロ 剤を用いて、本実施形態のバインダー樹脂(共重合 PC)を適用することで容易に形 成することができる。また、電荷輸送物質としては前述したホール輸送性物質および
/または電子輸送物質を添加することが好ましい。電子輸送物質としては、特開 200 5— 139339号公報に例示されるものが好ましく適用できる。
各層の塗布は公知のものなど各種の塗布装置を用いて行なうことができ、具体的に は、例えば、アプリケータ、スプレーコーター、ベーコーター、チップコーター、ローノレ コーター、ディップコーター、ドクタブレード等を用いて行なうことができる。
[0091] 電子写真感光体における感光層の厚さは、 5〜; 100 m、好ましくは 8〜50 mで あり、これが 5 in未満であると初期電位が低くなりやすぐ lOO ^ mを超えると電子 写真特性が低下することがある。電子写真感光体の製造に用いられる電荷発生物質 :バインダー樹脂の比率は、質量比で1 : 99〜30 : 70、好ましくは 3 : 97〜; 15 : 85であ る。また、電荷輸送物質:バインダー樹脂の比率は、質量比で10 : 90〜80 : 20、好ま しくは 30: 70—70: 30である。 [0092] このようにして得られる本実施形態の電子写真感光体は、本実施形態の共重合 PC を用いるため、感光層作製時に塗工液が白化(ゲル化)することがない。また、感光 層中に本実施形態の共重合 PCからなる成形体 (バインダー樹脂)を有して!/、るため 、耐久性に優れるとともに繰り返し使用時の残留電位の上昇幅が小さいという優れた 静電気特性を有しており、長期間にわたって優れた電子写真特性を維持する感光体 であり、複写機(モノクロ、マルチカラー、フルカラー;アナログ、デジタル)プリンター( レーザー、 LED,液晶シャッター)、ファクシミリ、製版機、およびこれら複数の機能を 有する機器など各種の電子写真分野に好適に用いられる。
[0093] なお、本実施形態の電子写真感光体を使用するにあたっては、帯電には、コロナ 放電(コロトロン、スコロトロン)、接触帯電(帯電ロール、帯電ブラシ)などが用いられ る。また、露光には、ハロゲンランプや蛍光ランプ、レーザー(半導体、 He— Ne)、 L ED、感光体内部露光方式のいずれを採用してもよい。現像には、カスケード現像、 二成分磁気ブラシ現像、一成分絶縁トナー現像、一成分導電トナー現像などの乾式 現像方式や湿式現像方式が用いられる。転写には、コロナ転写、ローラ転写、ベルト 転写などの静電転写法や、圧力転写法、粘着転写法が用いられる。定着には、熱口 ーラ定着、ラジアントフラッシュ定着、オープン定着、圧力定着などが用いられる。さら に、クリーニング'除電には、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシタリ ーナ一、磁気ローラクリーナー、ブレードクリーナーおよびクリーナーを省略したもの などが用いられる。また、トナー用の樹脂としては、スチレン系樹脂、スチレン一アタリ ル系共重合樹脂、ポリエステル、エポキシ樹脂、環状炭化水素の重合体などが適用 できる。トナーの形状は、球形でも不定形でもよぐ一定の形状(回転楕円体状、ポテ ト状等)に制御したものでも適用できる。トナーは、粉砕型、懸濁重合トナー、乳化重 合トナー、ケミカル造粒トナー、あるいはエステル伸長トナーのいずれでもよい。
[0094] <第 2実施形態〉
以下に、本発明の第 2実施形態について詳述する。
また、本実施形態では、前述した第 1実施形態と重複する説明は省略する。
[共重合 PCの構造]
本実施形態の共重合 PCは、前記式(1)で示されるモノマー単位 0. ;!〜 50モル% と、前記式(2)で示されるモノマー単位とを含んで構成されるポリカーボネート共重合 体であって、フエノール性水酸基が一分子中に 3つ存在するビフヱニル化合物の含 有量が 200質量 ppb以下である。
[0095] このような本実施形態においては、共重合 PC中におけるトリヒドロキシビフエニル類 の含有量は 200質量 ppb以下であるので、共重合 PCを溶融成形したときに、着色が 少なぐ成形体の色相を著しく改善することができ、光学材料用途に好適である。ま た、このトリヒドロキシビフエニル類の含有量が 200質量 ppb以下であると、共重合 PC を電子写真感光体用の成形体としたときに、電子写真感光体を繰り返し使用した際 の残留電位の上昇を抑制できるため好ましレ、。
このトリヒドロキシビフエニル類の含有量は、 150質量 ppb以下であることがより好ま しぐさらに好ましくは 100質量 ppb以下であり、最も好ましくは 50質量 ppb以下であ
[0096] [共重合 PCの製造方法]
本実施形態の共重合 PCは、前記第 1実施形態と同様に、前記式 (3)のモノマーと 前記式 (4)のモノマーとを用いて界面重縮合等の重縮合反応を行うことで容易に得 られる。
[0097] ここで、本実施形態において、生成した共重合 PC中に含まれるトリヒドロキシビフエ ニル類(トリフエノール)の残存濃度を 200質量 ppb以下にする方法としては、(1)重 合時の反応当量を最適化し、モノマー残量を低減する方法、(2)重合後の洗浄工程 において、アルカリ水溶液における洗浄条件を最適化し、残存している未反応モノマ 一を除去する方法、(3)晶析工程で未反応モノマーを優先的に溶解し、かつ共重合 PCを晶析可能な溶媒で処理する方法、(4)製造工程の途中で(アルカリ洗浄工程、 晶析工程に移る前の時点)、残留する未反応モノマー量を確認し、未反応モノマー 量に応じて、モノマー除去操作 (アルカリ洗浄工程、晶析工程において)を行う方法 等が挙げられる。
また、本実施形態においては、共重合 PCをフレーク化した後は、未反応モノマー や低分子量不純物がポリマー固体内部に取り込まれるため、水などの液体で洗浄し ても、フレーク表面に付着したものしか除去されない。一方、ポリマー溶液の洗浄に おいては、アルカリ可溶成分である残留モノマー等を逆抽出することにより不純物を 低減すること力 Sでさる。
なお、前記(2)重合後の洗浄工程においては、前記第 1実施形態と同様のことが言 えるため、説明は省略する。
[0098] このようにして得られる共重合 PCは、前記式(1)で表される繰返し単位および前記 式(2)で表される繰返し単位とからなり、トリヒドロキシビフエニル類の含有量 (残量)が 200質量 ppb以下である共重合体である。
また、この共重合 PCには、本発明の目的達成を阻害しない範囲で、前記式(1)お よび前記式(2)以外の構造単位を有するポリカーボネート単位や、ポリエステル、ポリ ウレタン、ポリエーテル、ポリシロキサン構造を有する単位を含有しているものであつ てもよい。
[0099] また、モノマーとして使用される二価フエノールのうちビフエノール類には通常、微 量の不純物が含まれており、そのうち、トリヒドロキシビフエニル類の含有量を 300質 量 ppm以下に管理することで共重合 PCの YIを 3以下に制御することが容易となる。 結果的に、この共重合 PC (フレーク状粉体)から成形されるペレットや成形体もほとん ど着色することがなくなる。トリヒドロキシビフエニル類の含有量が 300質量 ppmを超 える場合には、ポリマーの洗浄条件の最適化により不純物を低減することができる。 また、静電気特性を悪化させるトリヒドロキシビフエニル類の含有量が少な!/、ことは、 電子写真感光体に用いられる成形体の原料としても有用である。ビフエノール類中の トリヒドロキシビフエニル類の含有量は、好ましくは、 150質量 ppm以下であり、より好 ましくは 20質量 ppm以下であり、最も好ましくは 10質量 ppm以下である。
さらにまた、共重合 PCの YIを 3以下に制御するには、ビフエノール類中の 3— tert ーブチルー 4,4'ージヒドロキシビフエニルの含有量を 370質量 ppm以下、好ましくは 300質量 ppm以下、より好ましくは 30質量 ppm以下とすることも有効である。
[0100] [電子写真感光体の構成]
本実施形態の電子写真感光体は、上述の共重合 PCを感光層中のバインダー樹 脂として利用する以外は、前記第 1実施形態と同様の構成である。
[0101] <第 3実施形態〉 以下に、本発明の第 3実施形態について詳述する。
また、本実施形態では、前述した第 1及び第 2実施形態と重複する説明は省略する
[共重合 PCの構造]
本実施形態の共重合 PCは、前記式(1)で示されるモノマー単位 0. ;!〜 50モル% と、前記式(2)で示されるモノマー単位とを含んで構成されるポリカーボネート共重合 体であって、該ポリカーボネート共重合体の YI (フレーク状粉体を JIS K 7105に準 拠して測定)が 3以下である。
[0102] このような本実施形態の共重合 PCは、 YIが 3以下であるので、いわば無色透明で ある。また共重合 PCの成形方法としては、通常知られた適当な有機溶剤に溶解して 塗布するタイプの湿式成形でよ!/、。
また、湿式成形では、成形体の経時的変色が抑制され、結果として品質の劣化が 少ない。特に、共重合 PCの YIが 3以下のものは、その効果が著しい。これは、光、熱 、酸化性物質、湿気などの作用で共重合 PCを黄色に変化させる物質が相対的に少 ないことが理由と思われる。
[0103] また、成形原料であるフレーク状粉体の YIが 3以下であることは、静電気特性に悪 影響を与える不純物が少ないことも意味し、電子写真感光体に適用した場合に、繰り 返し使用時の残留電位の上昇が抑制される。
ここで、前記式(1)で表されるモノマー単位の割合が 0. 1モル%未満であると、塗 ェ液が白化(ゲル化)したり、電荷輸送層の結晶化の防止ゃ耐刷寿命の向上の達成 が困難となる。一方、このモノマー単位の割合が 50モル%を越えた場合には、共重 合 PCの一部(ビフエノール骨格)に結晶化が起こりやすくなり透明性が悪化するので 電子写真感光体用バインダー樹脂としては不適当なものとなる。前記式(1)で示され るモノマー単位の好ましい範囲は、 1〜40モノレ0 /0であり、より好ましくは、 5〜30モル %である。
[0104] [共重合 PCの製造方法]
本実施形態の共重合 PCは、前記第 1実施形態と同様に、前記式 (3)のモノマーと 前記式 (4)のモノマーとを用いて界面重縮合を行うことで容易に得られる。 [0105] 本実施形態で得た共重合 PCは、前記式(1)で表される繰返し単位および前記式( 2)で表される繰返し単位とからなる共重合体である。
また、この共重合 PCには、本発明の目的達成を阻害しない範囲で、前記式(1)お よび前記式(2)以外の構造単位を有するポリカーボネート単位や、ポリエステル、ポリ ウレタン、ポリエーテル、ポリシロキサン構造を有する単位を含有しているものであつ てもよい。
[0106] また、モノマーとして使用される二価フエノールのうちビフエノール類は、その成分 中に含まれる不純物であるトリヒドロキシビフエニル類(フエノール性水酸基が一分子 中に 3つ存在するビフエニル化合物)の含有量を 300質量 ppm以下に管理すること で共重合 PCの YIを 3以下に制御することが容易となる。結果的に、この共重合 PC ( フレーク状粉体)から成形される成形体もほとんど着色することがなくなる。
また、静電気特性を悪化させるトリヒドロキシビフエニル類の含有量が少な!/、ことは、 電子写真感光体に用いられる成形体の原料としても有用である。ビフエノールモノマ 一中のトリヒドロキシビフエニル類の含有量は、好ましくは、 150質量 ppm以下であり、 より好ましくは 20質量 ppm以下であり、最も好ましくは 10質量 ppm以下である。
さらにまた、共重合 PCの YIを 3以下に制御するには、ビフエノールモノマー中の 3 — tert—ブチルー 4,4'ージヒドロキシビフエニルの含有量を 370質量 ppm以下、好ま しくは 300質量 ppm以下、より好ましくは 30質量 ppm以下とすることも有効である。
[0107] [電子写真感光体の構成]
本実施形態の電子写真感光体は、上述の共重合 PCを感光層中のバインダー樹 脂として利用する以外は、前記第 1及び第 2実施形態と同様の構成である。
[0108] <第 4実施形態〉
以下に、本発明の第 4実施形態について詳述する。
また、本実施形態では、前述した第 1ないし第 3実施形態と重複する説明は省略す
[0109] [共重合 PCの構造]
本実施形態の共重合 PCの構造は、前記第 1実施形態と同様であるため、説明は 省略する。 [0110] [共重合 PCの製造方法]
本実施形態における共重合 PCの製造法は、具体的には様々な態様で実施可能 であり、例えば二価フエノール(前記式(3)のビフエノール類および/または前記式( 4)のビスフエノール類)とホスゲンなどを反応させて、ポリカーボネートオリゴマーを製 造し、ついでこのポリカーボネートオリゴマーに、上記の二価フエノールを、前記溶媒 および酸結合剤のアルカリ水溶液の混合液の存在下に反応させる方法を採用しても よい。また、前記の二価フエノールとホスゲンを、前記溶媒とアルカリ水溶液との混合 液中で反応させる方法を採用してもよい。通常は、前者の、予めポリカーボネートオリ ゴマーを製造する方法が効率的であることから好ましい。
[0111] ポリカーボネートオリゴマーを製造するには、まず、アルカリ水溶液に二価フエノー ルを溶解し、二価フエノールのアルカリ水溶液を調製する。ついで、このアルカリ水溶 液と塩化メチレンなどの有機溶媒との混合液に、ホスゲンを導入して反応させ、二価 フエノールのポリカーボネートオリゴマーを合成する。ついで、反応溶液を水相と有機 相とに分離し、ポリカーボネートオリゴマーを含む有機相を得る。この際、アルカリ水 溶液のアルカリ濃度は、 0. ;!〜 5規定の範囲が好ましぐまた有機相と水相との容積 比は、 10 :;!〜 1 : 10、好ましくは 5 :;!〜 1 : 5の範囲である。
反応温度は、冷却下に通常 0〜70°C、好ましくは 5〜65°Cであり、反応時間は 15 分間〜 4時間、好ましくは 30分間〜 3時間程度である。このようにして得られるポリ力 ーボネートオリゴマーの平均分子量は 2000以下、重合度は,通常 20以下、好ましく は 2〜; 10量体のものである。
[0112] このようにして得られたポリカーボネートオリゴマーを含む有機相に、前記二価フエ ノールを加えて反応させる。反応温度は、好ましくは 0〜20°C、特に好ましくは 5〜; 15 °Cである。特に反応温度を 20°C以下とすることで、生成する共重合 PCの着色 (YIの 上昇)を抑制すること力 Sできる。
反応圧力は、減圧、常圧、加圧のいずれでも可能である力 通常は、常圧若しくは 反応系の自圧程度で好適に行ない得る。反応時間は、反応温度等によって左右さ れるカ 通常 0. 5分間〜 10時間、好ましくは 1分間〜 2時間程度である。
また、重縮合反応は窒素やアルゴンなどの不活性ガス雰囲気下で行うことが好まし い。酸素分圧を 5065Pa (0. 05気圧)以下とすることで、得られる共重合 PCの着色( YIの上昇)を抑制することができる。この酸素分圧は、 1013Pa (0. 01気圧)以下で あることがより好ましい。
[0113] 本実施形態では、前記式(3)で示されるビフエノール類 1モルに対して、酸化防止 剤を 0. 000;!〜 1モル当量の割合で反応系に添加する。ここで、モル当量とは、酸化 防止機能を発揮する構造単位が一分子中に複数存在する場合には、各機能を発揮 する構造単位をそれぞれ 1モルとすることを意味する。例えば、一分子中にヒンダード フエノールが 2つ結合したタイプの 2官能型酸化防止剤 1モルは、 2モル当量である。 酸化防止剤の添加量としては、 0. 0002—0. 5モル当量がより好ましぐ 0. 001—0 . 1モル当量がさらに好ましぐ 0. 002—0. 05モル当量が最も好ましい。
このような酸化防止剤としては、還元性を有する酸化防止剤、例えば、亜硫酸ナトリ ゥムゃハイドロサルファイト塩などがあるが特にハイドロサルファイト塩 (ノ、イド口サルフ アイトナトリウム、ハイドロサルファイトカリウム)が好ましい。ハイドロサルファイト塩を添 加することにより、得られる共重合 PCの着色 (YIの上昇)を抑制することができる。ま た、モノマーの酸化を防止したり、酸化されたモノマーを還元して反応性を回復させ ること力 Sでき、重合の効率化に寄与する。
この反応にあたって、二価フエノールは、有機溶媒溶液および/またはアルカリ水 溶液として添加するのが望ましい。その添加順序については、特に制限はない。なお 、触媒、末端停止剤および分岐剤などは、上記の製造法において、必要に応じ、ポリ カーボネートオリゴマーの製造時、その後の高分子量化の反応時のいずれか、また はその両方にぉレ、て添加して用いることができる。
[0114] [電子写真感光体の構成]
本実施形態の電子写真感光体の構成は、前記第 1実施形態と同様であるため、説 明は省略する。
実施例
[0115] 次に、本発明の第 1ないし第 4実施形態を実施例及び比較例によって更に詳細に 説明するが、本発明はこれらの実施例に限定されるものではなぐ本発明の思想を逸 脱しなレ、範囲で種々の変形及び応用が可能である。 具体的には、所定のビスフエノール化合物モノマーとビフエノール化合物モノマーと を用いて重縮合反応を行って共重合 PCを製造し、さらにこれを用いて電子写真感 光体を製造した後各種の評価を行った。
[0116] <第 1実施形態の実施例〉
[実施例 1 1 ]
(共重合 PCの製造)
2,2 ビス(4ービドロキシフエニル)プロパン(ビスフエノーノレ A) 74gを 6質量0 /0濃度 の水酸化ナトリウム水溶液 550mlに溶解した溶液と、塩化メチレン 250mlとを混合し て撹拌しながら、冷却下、液中にホスゲンガスを 950ml/分の割合で 15分間吹き込 んだ。次いで、この反応液を静置分離し、有機層に重合度が 2〜4であり、分子末端 にクロ口ホルメート基を有するオリゴマーの塩化メチレン溶液を得た。得られたオリゴ マー溶液に塩化メチレンを加えて全量を 450mlとした。
次に、 4,4,ージヒドロキシビフエニル(トリヒドロキシビフエニル含有量: 321質量 ppm 、 3— tert ブチル 4,4,—ジヒドロキシビフエニル含有量: 349質量 ppm) 24gを 8 質量%濃度の水酸化ナトリウム水溶液 150mlに溶解し、これに分子量調節剤である p tert ブチルフエノール 3. 0gを加えた(ビフエノール水溶液)。本実施例におい ては、 4,4 'ージヒドロキシビフエニルは、市販品を精製せずに用いた。また、 4,4 ' ジヒドロキシビフエニル中の不純物含有量は、液体クロマトグラフィーを用いて測定し た。
[0117] 前記したオリゴマー溶液に、ビフエノール水溶液を加えて混合し、この混合液を激し く撹拌しながら触媒として 7質量%濃度のトリェチルァミン水溶液を 2ml加え、 28°Cに 保った状態で撹拌を続けながら界面重縮合反応を 1. 5時間行った。反応終了後、反 応生成物を塩化メチレン 1リットルで希釈し、次いで水 1. 5リットルで 1回、 0. 05規定 水酸化ナトリウム水溶液で 1回洗浄を行い、この時点で水層中に原料モノマーのアル カリ金属塩が存在しないことを確認した。この確認は、水層を pH3以下として析出物 の有無により行った。引き続き 0. 01規定塩酸 1リットルで 1回、水 1リットルで 2回の順 で洗浄してポリマー溶液を得た。
次に、撹拌羽根を装着したバッフル付き容器を別途用意し、これにメタノール 2リット ルを投入した。容器中のメタノールを撹拌羽根で十分撹拌しながら、前記したポリマ 一溶液のうち 1リットルを、粒子が形成される速度でゆっくり滴下し、再沈によるフレー ク化処理を行った。滴下終了後、撹拌速度を十分保ちながらさらに 10分間撹拌した 後、さらにメタノールを 2リットル追加投入し、撹拌をさらに 5分間継続した。得られたフ レークを濾過'乾燥して評価用の共重合 PC (PC— 1 1)とした。
[0118] (共重合 PCの評価)
PC— 1について、その状態(フレーク状粉体)のままで YIの測定を行った (JIS K 7105に準拠)。
次に、 PC 1—1を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。なお、 PC 1 sp
— 1の化学構造を1 H— NMRにより分析したところ、下記式(5)で示される共重合 PC であることが確認された。
[0119] [化 17]
Figure imgf000041_0001
[0120] 得られた PC— 1—1の内部に残存する 4,4'ージヒドロキシビフエニル(4, 4'ービフ ェノール)の濃度は、以下のようにして測定した。
PC 1— 1 (2· 5g)を、共栓付三角フラスコに入れ、塩化メチレン 25mlで溶解した 。次に、酸化防止剤(チバスぺシャリティケミカルズ製 ィルガノックス 1010、 30mg) を添加した後、溶液をマグネチックスターラーで強撹拌しながら、アセトン 100ml、へ キサン 100mlを順次約 1分間づつかけて徐々に添加しながら樹脂分を析出させた。 析出物を吸引濾過した後、濾液を濃縮用容器に移し、 45°Cの湯浴に付けた状態で 窒素ガスを吹き込みながら溶剤を揮発させて濃縮した。得られた濃縮物をテトラヒドロ フラン 10mlに溶解後、 4, 4,一ビフエノールの量を HPLC (High performance liquid c hromatography)により絶対検量線法で測定した(Agilent社製 100シリーズ、カラム: TOSOH社製 ODS系、内径 4. 6mm、長さ 25cm)。ここで、測定時の移動相は、 蒸留水(蟻酸を 0. 1容量%添加)とァセトニトリルの混合系を使用し、グランジエントモ ード(ァセトニトリル濃度: 30〜; 100容量%— 20111^、流量: 1 · Oml/min)を用いて 紫外検出器(280nm)により測定した。
なお、 PC— 1—1中に残存する 4, 4'—ビフエノール濃度(質量 ppm)は、 4, 4'— ビフエノール (純品)を樹脂中に所定濃度添加した系について、別途回収率(%)を 求めておき、「HPLCにより測定した 4, 4'ービフエノール濃度(質量 ppm) / (回収率 (%) /100) jとする補正を行って求めた。
[0121] また、 PC— 1—1のフレークを 50mm φ短軸押出機により、シリンダー温度 280°C、 スクリュー回転数 lOOrpmで溶融押出を行ってペレット化した。このペレットを 120°C で 5時間乾燥処理した後、 20 X 50 X 3mmの金型(S55C鏡面 # 1000)を使用して 射出成形を行い、物性測定用の試験片(20 X 50 X 3mm)を作成した。この試験片( 射出成形品)について YI JIS K 7105に準拠)および全光線透過率の測定を行つ た(いずれも JIS K 7105に準拠)。これらの評価結果は、以下の基準で判断した。
射出成形品の YI : 2以下を A (非常に良い)、 4以下を B (良い)、 4を越えるものを C (悪い)とした。
全光線透過率 : 89%以上を B (良!/、)、 89%未満を C (悪!/、)とした。
[0122] (電子写真感光体の製造)
導電性基体としてアルミニウム金属を蒸着したポリエチレンテレフタレート樹脂フィ ルムを用い、その表面に、電荷発生層と電荷輸送層を順次積層して積層型感光層を 形成する電子写真感光体を製造した。具体的には、電荷発生層と電荷輸送層を以 下のようにして形成した。
電荷発生物質としてォキソチタニウムフタロシアニン 0. 5質量部を用い、バインダー 樹脂としてプチラール樹脂 0. 5質量部を用いた。これらを溶媒の塩化メチレン 19質 量部に加え、ボールミルにて分散し、この分散液をバーコ一ターにより、上記導電性 基体フィルム表面に塗工し、乾燥させることにより、膜厚約 0. 5 111の電荷発生層を 形成した。
次に、電荷輸送物質として、下記式 ½)で示される化合物(CTM— 1) 0. 5gと、 PC — 1— 1のフレーク 0· 5gとを 10mlのテトラヒドロフランに分散し、塗工液を調製した。 この塗工液をアプリケータにより上記の電荷発生層の上に塗布して乾燥し、膜厚約 2 0 ,1 mの電荷輸送層を形成した。 [0123] [化 18]
Figure imgf000043_0001
[0124] (電子写真感光体の評価)
得られた電子写真感光体について、静電気帯電試験装置 EPA— 8100 (川口電 機製作所製)を用いて電子写真特性を評価した。具体的には、スタティックモードで 6kVのコロナ放電を行い、初期表面電位 (V )、光照射(10Lux) 5秒後の残留電
0
位 (初期残留電位 V )、半減露光量 (初期感度、 E )を測定した。また、市販のプリ
R 1/2
ンター(京セラ製 FS— 600)を改造して感光体の表面電位を測定可能とした上で、 前記感光体をドラム上に装着し、帯電特性の評価を行った。具体的には、高温'高湿 下(35°C、 85%RH)において、トナーおよび紙を通さない条件で、 24時間繰り返し 運転前後の帯電特性 (繰返し残留電位上昇( Δ V ) )の評価を行った。
R
前記した各項目は、以下のような評価基準により判断した。
初期表面電位 (V ):—700V以下を B (良い)、この値を越えたものを C (悪い)とし
0
た。
初期残留電位 (V ):— 40V以上 (絶対値としては 40V以下の値)を B (良い)、この
R
値を下回ったもの(絶対値力 0Vを越えるもの)を C (悪!/、)とした。
初期感度(E ) : 0· 85Lux' sec以下を B (良い)、この値を越えたものを C (悪
1/2
い)とした。
繰返し残留電位上昇 ( Δν ) :繰り返しによる残留電位の絶対値の上昇幅が 40V
R
以内を Β (良!/、)、その値を越えたものを C (悪!/、)とした。
[0125] [実施例 1 2]
実施例 1—1の共重合 PCの製造において、水洗が終了したポリマー溶液に、ァセト ンに溶解した 4,4, 一ジヒドロキシビフエニル (本州化学製、トリヒドロキシビフエニル含 有量: 321質量 ppm、 3— tert ブチルー 4,4,ージヒドロキシビフエニル含有量: 49 質量 ppm)を、樹脂固形分全量に対して、 90質量 ppmとなる量を計算して添加した。 (溶剤への溶出量と、固形分への残存量の比率を実験により求め添加量を決定した)
前記した以外は、実施例 1—1と同様にして共重合 PC (PC 1— 2)を製造した。 P C— 1—2を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける 還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。また、 PC— 1—2の化学 構造を1 H— NMRにより分析したところ、 PC— 1— 1と同一の構造であることが確認さ れ 。
PC- 1 - 2および、この共重合 PCから実施例 1 1と同様にして製造された電子写 真感光体につ!/、て、実施例 1 1と同様の評価を行った。
[0126] [実施例 1 3]
実施例 1 1の共重合 PCの製造において、反応生成物の水酸化ナトリウム水溶液 による洗浄回数を 3回に変更した以外は、実施例 1 1と同様にして共重合 PC (PC — 1— 3)を製造した。 PC— 1—3を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液 を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。 また、 PC— 1—3の化学構造を1 H— NMRにより分析したところ、 PC— 1—1と同一 の構造であることが確認された。
PC- 1 - 3および、この共重合 PCから実施例 1 1と同様にして製造された電子写 真感光体につ!/、て、実施例 1 1と同様の評価を行った。
[0127] [実施例 1 4]
実施例 1—1の共重合 PCの製造において、 2,2 ビス(4ービドロキシフエニル)プロ パン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシフエ二ノレ)シクロへキサン 87g に変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化力リウ ム水溶液 550mlに変更した以外は、実施例 1— 1と同様にして共重合 PC (PC— 1— 4)を製造した。 PC— 1—4を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成 し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであった。また、
PC 1—4の化学構造を1 H— NMRにより分析したところ、下記式(7)で示される共 重合 PCであることが確認された。 PC— 1—4および、この共重合 PCから実施例 1 1と同様にして製造された電子写真感光体について、実施例 1—1と同様の評価を行 つ
[0128] [化 19]
Figure imgf000045_0001
[0129] [実施例 1 5]
実施例 1—1の共重合 PCの製造において、 2,2 ビス(4ービドロキシフエニル)プロ パン(ビスフエノーノレ A) 74gを 1,1 ビス(4 ビドロキシフエ二ノレ)ェタン 69gに変更し 、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶液 550mlに変更した以外は、実施例 1— 1と同様にして共重合 PC (PC— 1— 5)を製造 した。 PC— 5を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにお ける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであった。また、 PC— 1—5の
sp
化学構造を1 H— NMRにより分析したところ、下記式(8)で示される共重合 PCである ことが確認された。 PC— 1—5および、この共重合 PCから実施例 1—1と同様にして 製造された電子写真感光体について、実施例 1—1と同様の評価を行った。
[0130] [化 20]
Figure imgf000045_0002
[0131] [実施例 1 6]
実施例 1 1の共重合 PCの製造にお!/、て、 2,2—ビス(4ービドロキシフエニル)プ 口パン(ビスフエノーノレ A) 74gを 2,2 ビス(4ービドロキシフエ二ノレ)ブタン 79gに変更 し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶 液 550mlに変更した以外は、実施例 1— 1と同様にして共重合 PC (PC 1— 6)を製 造した。 PC— 1—6を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。また、 PC 1 sp
—6の化学構造を1 H— NMRにより分析したところ、下記式(9)で示される共重合 PC であることが確認された。 PC— 1—6および、この共重合 PCから実施例 1—1と同様 にして製造された電子写真感光体について、実施例 1—1と同様の評価を行った。
[0132] [化 21]
Figure imgf000046_0001
[0133] [実施例 1 7]
実施例 1 1の共重合 PCの製造にお!/、て、 2,2—ビス(4ービドロキシフエニル)プ 口パン(ビスフエノール A) 74gを 2, 2 -ビス(3 メチル 4 -ビドロキシフエ二ノレ)プロ パン 83gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水 酸化カリウム水溶液 550mlに変更した以外は、実施例 1— 1と同様にして共重合 PC ( PC— 1— 7)を製造した。 PC— 1—7を塩化メチレンに溶解して、濃度 0. 5g/dlの溶 液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであつ た。また、 PC— 1—7の化学構造を1 H— NMRにより分析したところ、下記式(10)で 示される共重合 PCであることが確認された。 PC— 1 7および、この共重合 PCから 実施例 1— 1と同様にして製造された電子写真感光体につ!/、て、実施例 1— 1と同様 の評価を行った。
[0134] [化 22]
Figure imgf000046_0002
[0135] [比較例 1 1]
実施例 1 1の共重合 PCの製造において、重縮合反応終了後、塩化メチレンで希 釈されたポリマー溶液の洗浄方法を、水 1. 5リットルで 2回、 0. 01規定塩酸 1リットノレ で 1回、水 1リットルで 2回の順に変更した以外は、実施例 1—1と同様にして共重合 P C (PC— 1— 8)を製造した。 PC— 1—8を塩化メチレンに溶解して、濃度 0· 5g/dl の溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gで あった。また、 PC— 8の化学構造を1 H— NMRにより分析したところ、 PC— 1—1と同 一の構造であることが確認された。
PC— 1 8および、この共重合 PCから実施例 1 1と同様にして製造された電子写 真感光体につ!/、て、実施例 1 1と同様の評価を行った。
[0136] [評価結果]
表 1及び表 2に、実施例 1 1 7および比較例 1 1の評価結果を示す。 [0137] [表 1]
Figure imgf000047_0001
[0138] [表 2]
Figure imgf000047_0002
<第 2実施形態の実施例 >
次に、本発明の第 2実施形態を実施例及び比較例によって更に詳細に説明する。
[実施例 2— 1]
(共重合 PCの製造)
2,2—ビス(4—ビドロキシフエニル)プロパン(ビスフエノール A) 74gを 6質量%濃度 の水酸化ナトリウム水溶液 550mlに溶解した溶液と、塩化メチレン 250mlとを混合し て撹拌しながら、冷却下、液中にホスゲンガスを 950ml/分の割合で 15分間吹き込 んだ。次いで、この反応液を静置分離し、有機層に重合度が 2〜4であり、分子末端 にクロ口ホルメート基を有するオリゴマーの塩化メチレン溶液を得た。得られたオリゴ マー溶液に塩化メチレンを加えて全量を 450mlとした。
次に、 4,4,ージヒドロキシビフエニル(トリヒドロキシビフエニル含有量: 321質量 ppm 、 3— tert ブチルー 4,4,ージヒドロキシビフエニル含有量: 49質量 ppm) 24gを 8質 量%濃度の水酸化ナトリウム水溶液 150mlに溶解し、これに分子量調節剤である p tert ブチルフエノール 3· 0gをカロえた(ビフエノール水溶液)。
本実施例においては、 4,4'ージヒドロキシビフエニルは、市販品を精製せずに用い た。また、 4,4'ージヒドロキシビフエニル中の不純物含有量は、液体クロマトグラフィ 一を用いて測定した。
[0140] 前記したオリゴマー溶液に、ビフエノール水溶液を加えて混合し、この混合液を激し く撹拌しながら触媒として 7質量%濃度のトリェチルァミン水溶液を 2ml加え、 28°Cに 保った状態で撹拌を続けながら界面重縮合反応を 1. 5時間行った。反応終了後、反 応生成物を塩化メチレン 1リットルで希釈し、次いで水 1. 5リットルで 1回、 0. 05規定 水酸化ナトリウム水溶液 1リットルで 2回、 0. 01規定塩酸 1リットノレで 1回、水 1リットル で 2回の順で洗浄してポリマー溶液を得た。
次に、撹拌羽根を装着したバッフル付き容器を別途用意し、これにメタノール 2リット ルを投入した。容器中のメタノールを撹拌羽根で十分撹拌しながら、前記したポリマ 一溶液のうち 1リットルを、粒子が形成される速度でゆっくり滴下し、再沈によるフレー ク化処理を行った。滴下終了後、撹拌速度を十分保ちながらさらに 10分間撹拌した 後、さらにメタノールを 2リットル追加投入し、撹拌をさらに 5分間継続した。得られたフ レークを濾過 ·乾燥して評価用の共重合 PC (PC— 2— 1)とした。
[0141] (共重合 PCの評価)
PC— 2 1につ!/、て、その状態(フレーク状粉体)のままで YIの測定を行った (JIS K 7105に準拠)。
次に、 PC— 2—1を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。なお、 PC— 2 — 1の化学構造を1 H— NMRにより分析したところ、下記式(5)で示される共重合 PC であることが確認された。
[0142] [化 23]
Figure imgf000049_0001
[0143] 得られた PC— 2—1の内部に残存する 3,4,4 '—トリヒドロキシビフエニルの濃度は、 以下のようにして測定した。
PC— 2— l (5.0g)を、共栓付三角フラスコに入れ、塩化メチレン 50mlで溶解した。 次に、酸化防止剤(チバスぺシャリティケミカルズ製 ィルガノックス 1010、 60mg)を 添加した後、溶液をマグネチックスターラーで強撹拌しながら、アセトン 200ml、へキ サン 200mlを順次約 2分間づつかけて徐々に添加しながら樹脂分を析出させた。析 出物を吸引濾過した後、濾液を濃縮用容器に移し、 45°Cの湯浴に付けた状態で窒 素ガスを吹き込みながら溶剤を揮発させて濃縮した。得られた濃縮物をテトラヒドロフ ラン 5mlに溶解後、 3,4,4,一トリヒドロキシビフエ二ルの量を HPLC (High performanc e liquid chromatography)により絶対検量線法で測定した(Agilent社製 1100シリーズ、 カラム: TOSOH社製 ODS系、内径 4. 6mm、長さ 25cm)。ここで、測定時の移動 相は、蒸留水(蟻酸を 0. 1容量%添加)とァセトニトリルの混合系を使用し、グラジェ ントモード(ァセトニトリル濃度: 32容量% (0〜; 14分間)〜 100容量% (20〜40分間 、流量: 1. 0ml/分))を用いて紫外検出器(260nm)により測定した。
なお、 PC— 2—1中に残存する 3,4,4,—トリヒドロキシビフエニルの濃度(質量 ppb) は、 3,4,4'—トリヒドロキシビフエニル (純品)を樹脂中に所定濃度添加した系につい て、別途回収率(%)を求めておき、「HPLCにより測定した 3,4,4'—トリヒドロキシビ フエニル濃度 (質量 ppb) / (回収率(%) /100)」とする補正を行って求めた
[0144] また、 PC— 2—1のフレークを 50mm φ短軸押出機により、シリンダー温度 280°C、 スクリュー回転数 lOOrpmで溶融押出を行ってペレット化した。このペレットを 120°C で 5時間乾燥処理した後、 20 X 50 X 3mmの金型(S55C鏡面 # 1000)を使用して 射出成形を行い、物性測定用の試験片(20 X 50 X 3mm)を作成した。この試験片( 射出成形品)について YI JIS K 7105に準拠)および全光線透過率の測定を行つ た(いずれも JIS K 7105に準拠)。これらの評価結果は、以下の基準で判断した。 射出成形品の ΥΙ : 2以下を Α (非常に良い)、 4以下を Β (良い)、 4を越えるものを C (悪い)とした。
全光線透過率 : 89%以上を B (良!/、)、 89%未満を C (悪!/、)とした。
[0145] (電子写真感光体の製造)
本実施例における電子写真感光体の製造は、前記第 1実施形態の実施例 1 1と 同様に行った。そのため、説明は省略する。
[0146] (電子写真感光体の評価)
本実施例における電子写真感光体の評価は、前記第 1実施形態の実施例 1 1と 同様の方法で行った。そのため、説明は省略する。
[0147] [実施例 2— 2]
実施例 2—1の共重合 PCの製造において、水洗が終了したポリマー溶液に、ァセト ンに溶解した 3,4,4'—トリヒドロキシビフエニルを、樹脂固形分全量に対して、 150質 量 ppbとなる量を計算して添加した。具体的には、添加量を数点振って得られた樹脂 中の 3,4,4'—トリヒドロキシビフエニル残存量を測定し、 150質量 ppbのものを選び出 し、評価用試料とした。
前記した以外は、実施例 2—1と同様にして共重合 PC (PC— 2— 2)を製造した。 P C— 2— 2を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける 還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。また、 PC— 2— 2の化学
sp
構造を1 H— NMRにより分析したところ、 PC— 2—1と同一の構造であることが確認さ れ 。
PC— 2— 2および、この共重合 PCから実施例 2 1と同様にして製造された電子写 真感光体について、実施例 2 1と同様の評価を行った。
[0148] [実施例 2— 3]
実施例 2—1の共重合 PCの製造において、 2,2—ビス(4ービドロキシフエニル)プロ パン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシフエ二ノレ)シクロへキサン 87g に変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化力リウ ム水溶液 550mlに変更した以外は、実施例 2—1と同様にして共重合 PC (PC— 2— 3)を製造した。 PC— 2— 3を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成 し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであった。また、
PC— 2— 3の化学構造を1 H— NMRにより分析したところ、下記式(7)で示される共 重合 PCであることが確認された。 PC— 2— 3および、この共重合 PCから実施例 2— 1と同様にして製造された電子写真感光体について、実施例 2—1と同様の評価を行 つた。
[0149] [化 24]
Figure imgf000051_0001
[0150] [実施例 2— 4]
実施例 2—1の共重合 PCの製造において、 2,2—ビス(4ービドロキシフエニル)プ 口パン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシフエ二ノレ)ェタン 69gに変更 し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶 液 550mlに変更した以外は、実施例 2—1と同様にして共重合 PC (PC— 2— 4)を製 造した。 PC— 2— 4を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであった。また、 PC— 2
—4の化学構造を1 H— NMRにより分析したところ、下記式(8)で示される共重合 PC であることが確認された。 PC— 2— 4および、この共重合 PCから実施例 2—1と同様 にして製造された電子写真感光体について、実施例 2—1と同様の評価を行った。
[0151] [化 25]
Figure imgf000051_0002
[0152] [実施例 2— 5]
実施例 2—1の共重合 PCの製造において、 2,2—ビス(4ービドロキシフエニル)プ 口パン(ビスフエノーノレ A) 74gを 2,2—ビス(4ービドロキシフエ二ノレ)ブタン 79gに変更 し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶 液 550mlに変更した以外は、実施例 2—1と同様にして共重合 PC (PC— 2— 5)を製 造した。 PC— 2— 5を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ ] /C]を測定したところ、 0. 82dl/gであった。また、 PC— 2 sp
—5の化学構造を1 H— NMRにより分析したところ、下記式(9)で示される共重合 PC であることが確認された。 PC 2— 5および、この共重合 PCから実施例 2— 1と同様 にして製造された電子写真感光体について、実施例 2—1と同様の評価を行った。
[0153] [化 26]
Figure imgf000052_0001
[0154] [実施例 2— 6]
実施例 2—1の共重合 PCの製造において、 2,2 ビス(4ービドロキシフエニル)プロ パン(ビスフエノール A) 74gを 2,2 ビス(3 メチル 4 -ビドロキシフエ二ノレ)プロパ ン 83gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸 化カリウム水溶液 550mlに変更した以外は、実施例 2—1と同様にして共重合 PC (P C— 2— 6)を製造した。 PC— 2— 6を塩化メチレンに溶解して、濃度 0. 5g/dlの溶 液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであつ
sp
た。また、 PC— 2— 6の化学構造を1 H— NMRにより分析したところ、下記式(10)で 示される共重合 PCであることが確認された。 PC— 2— 6および、この共重合 PCから 実施例 2—1と同様にして製造された電子写真感光体について、実施例 2—1と同様 の評価を行った。
[0155] [化 27]
Figure imgf000052_0002
[0156] [実施例 2— 7]
実施例 2 1の共重合 PCの製造において、反応生成物の水酸化ナトリウム水溶液 による洗浄回数を 3回に変更した以外は、実施例 2— 1と同様にして共重合 PC (PC —2— 7)を製造した。 PC— 2— 7を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液 を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。
sp
また、 PC— 2— 7の化学構造を1 H— NMRにより分析したところ、 PC— 2—1と同一 の構造であることが確認された。 PC— 2— 7および、この共重合 PCから実施例 2— 1と同様にして製造された電子写 真感光体にっレ、て、実施例 2— 1と同様の評価を行った。
[0157] [比較例 2— 1 ]
実施例 2— 1の共重合 PCの製造において、重縮合反応終了後、塩化メチレンで希 釈されたポリマー溶液の洗浄方法を、水 1. 5リットルで 2回、 0. 01規定塩酸 1リットル で 1回、水 1リットルで 2回の順に変更した以外は、実施例 2— 1と同様にして共重合 P C (PC— 2— 8)を製造した。 PC— 2— 8を塩化メチレンに溶解して、濃度 0. 5g/dl の溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gで sp
あった。また、 PC— 2— 8の化学構造を1 H— NMRにより分析したところ、 PC— 2—1 と同一の構造であることが確認された。
PC— 2— 8および、この共重合 PCから実施例 2— 1と同様にして製造された電子写 真感光体にっレ、て、実施例 2— 1と同様の評価を行った。
[0158] [評価結果]
表 3及び表 4に、実施例 2— ;!〜 2— 7および比較例 2— 1の評価結果を示す。
[0159] [表 3]
Figure imgf000053_0001
[0160] [表 4] 電子^:真感光体
繰り返し残留 初期表面 初期残留 初期感度
電位上昇 電位 (Vo) 電位 (VR) (E,/2)
(△vR)
(V) (V) (Lux - sec)
(V)
実施例 2-1 (PC- 2-1 ) -720B -30(B) 0.84(B) 40(B) 実施例 2- 2(PG- 2 - 2) -720B - 30(B) 0.84(B) 40(B) 実施例 2- 3(PC_2-3) -720B -30(B) 0.84(B) 40(B) 実施例 2-4(PC- 2-4) -720B - 30(B) 0.84(B) 40(B) 実施例 2- 5(PC-2 - 5) -720B -30(B) 0.84(B) 40(B) 実施例 2-6(PG- 2-6) -720B -30(B) 0.84(B) 40(B) 実施例 2-7(PC- 2- 7) -720B -20(B) 0.82(B) 30(B) 比較例 2-1 (PC- 2-1 ) -720B -40(B) 0.84(B) 90(C)
<第 3実施形態の実施例〉
次に、本発明の第 3実施形態を実施例及び比較例によって更に詳細に説明する。
[実施例 3— 1 ]
(共重合 PCの製造)
2,2—ビス(4—ビドロキシフエニル)プロパン(ビスフエノール A) 74gを 6質量%濃度 の水酸化ナトリウム水溶液 550mlに溶解した溶液と、塩化メチレン 250mlとを混合し て撹拌しながら、冷却下、液中にホスゲンガスを 950ml/分の割合で 15分間吹き込 んだ。次いで、この反応液を静置分離し、有機層に重合度が 2〜4であり、分子末端 にクロ口ホルメート基を有するオリゴマーの塩化メチレン溶液を得た。得られたオリゴ マー溶液に塩化メチレンを加えて全量を 450mlとした。
次に、 44,ージヒドロキシビフエニル(トリヒドロキシビフエニル含有量: 131質量 ppm 、 3— tert—ブチルー 4,4,—ジヒドロキシビフエニル含有量: 347質量 ppm) 24gを 8 質量%濃度の水酸化ナトリウム水溶液 150mlに溶解した(ビフエノール水溶液)。 本実施例で用いる 4,4 'ージヒドロキシビフエュルは、原料であるフエノールをメタノ 一ルで再結晶させて精製したもの力、ら 4,4 'ージヒドロキシビフエニル(トリヒドロキシビ フエニル含有量: 276質量 ppm、 3— tert—ブチルー 4,4 'ージヒドロキシビフエニル含 有量: 370質量 ppm)を合成し、これを更にメタノール再結晶させることで得られるも のである。 [0162] 前記したオリゴマー溶液に、分子量調節剤である p— tert—ブチルフエノール 3. Og を添加した後、前記ビフエノール水溶液を加えて混合し、この混合液を激しく撹拌し ながら触媒として 7質量%濃度のトリェチルァミン水溶液を 2ml加え、 28°Cに保った 状態で撹拌を続けながら界面重縮合反応を 1. 5時間行った。反応終了後、反応生 成物を塩化メチレン 1リットルで希釈し、次いで水 1. 5リットルで 2回、 0. 01規定塩酸 1リットルで 1回、水 1リツトルで 2回の順で洗浄してポリマー溶液を得た。
次に、撹拌羽根を装着したバッフル付き容器を別途用意し、これにメタノール 2リット ルを投入した。容器中のメタノールを撹拌羽根で十分撹拌しながら、前記したポリマ 一溶液のうち 1リットルを、粒子が形成される速度でゆっくり滴下し、再沈によるフレー ク化処理を行った。滴下終了後、撹拌速度を十分保ちながらさらに 10分間撹拌した 後、さらにメタノールを 2リットル追加投入し、撹拌をさらに 5分間継続した。得られたフ レークを濾過 ·乾燥して評価用の共重合 PC (PC— 3— 1)とした。
[0163] (共重合 PCの評価)
PC— 3— 1につ!/、て、その状態(フレーク状粉体)のままで YIの測定を行った (JIS K 7105に準拠)。
次に、 PC— 3—1を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。なお、 PC— 3 sp
— 1の化学構造を1 H— NMRにより分析したところ、下記式(5)で示される共重合 PC であることが確認された。
[0164] [化 28]
Figure imgf000055_0001
また、 PC— 3—1のフレークを THFを溶媒として湿式キャスト成形を行い、厚み 0. 1 mmのフィルムを得た。このフィルムについて全光線透過率の測定を行った (JIS K 7105に準拠)。全光線透過率においては 89%以上を B (良い)、 89%未満を C (悪い )とした。これは、 89%未満のものは、光学部材として用いる場合に、透過光量の低下 が問題となるためである。 [0166] (電子写真感光体の製造)
本実施例における電子写真感光体の製造は、前記第 1実施形態の実施例 1 1と 同様に行った。そのため、説明は省略する。
[0167] (電子写真感光体の評価)
本実施例における電子写真感光体の評価は、前記第 1実施形態の実施例 1 1と 同様の方法で行った。そのため、説明は省略する。
[0168] [実施例 3— 2]
実施例 3 1の共重合 PCの製造において、共重合モノマー用のビフヱニル化合物 として、原料であるフエノールをメタノール再結晶精製後に合成して得られた 4,4' ジヒドロキシビフエニル(トリヒドロキシビフエニル含有量: 276質量 ppm、 3— tert ブ チルー 4,4'ージヒドロキシビフエニル含有量: 370質量 ppm) 24gを用いた以外は、 実施例 3— 1と同様にして共重合 PC (PC 3— 2)を製造した。 PC 3— 2を塩化メ チレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /
sp
C]を測定したところ、 0. 82dl/gであった。また、 PC— 3— 2の化学構造を1 H— NM Rにより分析したところ、 PC— 3—1と同一の構造であることが確認された。
PC 3— 2および、この共重合 PCから実施例 3— 1と同様にして製造された電子写 真感光体について、実施例 3 1と同様の評価を行った。
[0169] [実施例 3— 3]
実施例 3 1の共重合 PCの製造において、共重合モノマー用のビフヱニル化合物 として、原料であるフエノールを蒸留精製後に合成して得られた 4,4'ージヒドロキシビ フエニル(トリヒドロキシビフエニル含有量: 15質量 ppm、 3— tert ブチルー 4,4, 一 ジヒドロキシビフエニル含有量: 206質量 ppm)を更にメタノールで再結晶したもの 24 gを用いた以外は、実施例 3—1と同様にして共重合 PC (PC— 3— 3)を製造した。 P C— 3— 3を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける 還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。また、 PC— 3— 3の化学
sp
構造を1 H— NMRにより分析したところ、 PC— 3—1と同一の構造であることが確認さ れ 。
PC— 3 3および、この共重合 PCから実施例 3 1と同様にして製造された電子写 真感光体について、実施例 3— 1と同様の評価を行った。
[0170] [実施例 3— 4]
実施例 3— 1の共重合 PCの製造において、共重合モノマー用のビフヱニル化合物 として、原料であるフエノールを蒸留精製後に合成して得られた 4,4'ージヒドロキシビ フエニル(トリヒドロキシビフエニル含有量: 10質量 ppm、 3— tert—ブチルー 4,4, 一 ジヒドロキシビフエニル含有量: 266質量 ppm) 24gを用いた以外は、実施例 3—1と 同様にして共重合 PC (PC - 3-4)を製造した。 PC— 3— 4を塩化メチレンに溶解し て、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したと
sp
ころ、 0. 82dl/gであった。また、 PC— 3— 4の化学構造を1 H— NMRにより分析し たところ、 PC— 3—1と同一の構造であることが確認された。
PC— 3— 4および、この共重合 PCから実施例 3— 1と同様にして製造された電子写 真感光体について、実施例 3— 1と同様の評価を行った。
[0171] [実施例 3— 5]
実施例 3— 1の共重合 PCの製造において、共重合モノマー用のビフヱニル化合物 として、本州化学製の 4,4,ージヒドロキシビフエニル(トリヒドロキシビフエニル含有量: 8質量 ppm、 3— tert—ブチルー 4,4,ージヒドロキシビフエニル含有量: 23質量 ppm) をアセトンで再結晶したもの 24gを用いた以外は、実施例 3—1と同様にして共重合 P C (PC— 3— 5)を製造した。 PC— 5を塩化メチレンに溶解して、濃度 0. 5g/dlの溶 液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであつ
sp
た。また、 PC— 3— 5の化学構造を1 H— NMRにより分析したところ、 PC— 3—1と同 一の構造であることが確認された。
PC— 5および、この共重合 PCから実施例 3— 1と同様にして製造された電子写真 感光体について、実施例 3— 1と同様の評価を行った。
[0172] [実施例 3— 6]
実施例 3— 1の共重合 PCの製造において、共重合モノマー用のビフヱニル化合物 として、前記実施例 3— 2と同じ 4,4'ージヒドロキシビフエニルを使用し、 2,2—ビス(4 -ビドロキシフエ二ノレ)プロパン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシフ ェニル)シクロへキサン 87gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 550ml を 1. 5規定の水酸化カリウム水溶液 550mlに変更した以外は、実施例 3—1と同様 にして共重合 PC (PC— 3— 6)を製造した。 PC— 3— 6を塩化メチレンに溶解して、 濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、
sp
0. 83dl/gであった。また、 PC— 3— 6の化学構造を1 H— NMRにより分析したとこ ろ、下記式(7)で示される共重合 PCであることが確認された。 PC— 3— 6および、こ の共重合 PCから実施例 3—1と同様にして製造された電子写真感光体について、実 施例 3— 1と同様の評価を行った。
[0173] [化 29]
Figure imgf000058_0001
[0174] [実施例 3— 7]
実施例 3— 1の共重合 PCの製造にお!/、て、共重合モノマー用のビフエニル化合 物として、前記実施例 3— 2と同じ 4,4'—ジヒドロキシビフエニルを使用し、 2,2—ビス (4 -ビドロキシフエ二ノレ)プロパン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシ フエニル)ェタン 69gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶液 550mlに変更した以外は、実施例 3—1と同様にして 共重合 PC (PC— 3— 7)を製造した。 PC— 3— 7を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83d sp
1/gであった。また、 PC— 3— 7の化学構造を1 H— NMRにより分析したところ、下記 式(8)で示される共重合 PCであることが確認された。 PC— 3— 7および、この共重合 PCから実施例 3—1と同様にして製造された電子写真感光体について、実施例 3— 1と同様の評価を行った。
[0175] [化 30]
Figure imgf000058_0002
[0176] [実施例 3— 8] 実施例 3 1の共重合 PCの製造にお!/、て、共重合モノマー用のビフエニル化合 物として、前記実施例 3— 2と同じ 4,4'—ジヒドロキシビフエニルを使用し、 2,2 ビス (4 -ビドロキシフエ二ノレ)プロパン(ビスフエノーノレ A) 74gを 2,2 ビス(4 -ビドロキシ フエニル)ブタン 79gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶液 550mlに変更した以外は、実施例 3—1と同様にして 共重合 PC (PC— 3— 8)を製造した。 PC— 3— 8を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82d sp
1/gであった。また、 PC— 3— 8の化学構造を1 H— NMRにより分析したところ、下記 式(9)で示される共重合 PCであることが確認された。 PC— 3— 8および、この共重合 PCから実施例 3—1と同様にして製造された電子写真感光体について、実施例 3— 1と同様の評価を行った。
[0177] [化 31]
Figure imgf000059_0001
[0178] [実施例 3— 9]
実施例 3— 1の共重合 PCの製造において、共重合モノマー用のビフヱニル化合物 として、前記実施例 3— 2と同じ 4,4'ージヒドロキシビフエニルを使用し、 2,2 ビス(4 —ビドロキシフエ二ノレ)プロパン(ビスフエノーノレ A) 74gを 2,2 ビス(3 メチル 4— ビドロキシフヱニル)プロパン 83gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 5 50mlを 1. 5規定の水酸化カリウム水溶液 550mlに変更した以外は、実施例 3— 1と 同様にして共重合 PC (PC— 3— 9)を製造した。 PC— 3— 9を塩化メチレンに溶解し て、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したと
sp
ころ、 0. 83dl/gであった。また、 PC— 3— 9の化学構造を1 H— NMRにより分析し たところ、下記式(10)で示される共重合 PCであることが確認された。 PC— 3— 9およ び、この共重合 PCから実施例 3 1と同様にして製造された電子写真感光体につい て、実施例 3 1と同様の評価を行った。
[0179] [化 32] " - (10)
Figure imgf000060_0001
[0180] [比較例 3— 1]
共重合モノマー用のビフエニル化合物として、本州化学製の 4,4'ージヒドロキシビ フエニル(トリヒドロキシビフエニル含有量: 321質量 ppm、 3— tert—ブチルー 4,4, 一 ジヒドロキシビフエニル含有量: 49質量 ppm) 24gを用いた以外は、実施例 3—1と同 様にして共重合 PC (PC— 3— 10)を製造した。 PC— 3— 10を塩化メチレンに溶解し て、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したと
sp
ころ、 0. 83dl/gであった。また、 PC— 3— 10の化学構造を1 H— NMRにより分析し たところ、 PC— 3—1と同一の構造であることが確認された。
PC— 3— 10および、この共重合 PCから実施例 3— 1と同様にして製造された電子 写真感光体について、実施例 3— 1と同様の評価を行った。
[0181] [評価結果]
表 5及び表 6に、実施例 3—;!〜 3— 9および比較例 3— 1の評価結果を示す。
[0182] [表 5]
Figure imgf000060_0002
[0183] [表 6] 電子写真感光体
繰り返し残 初期表面 初期残留 初期感度
留電位上昇 電位 (Vo) 電位 (VR) (E,/2)
( A VR)
(V) (V) (Lux- sec)
(V)
実施例 3-1 (PC- 3 - 1 ) -720B -40(B) 0.85(B) 40(B) 実施例 3-2(PC- 3-2) -720B -40(B) 0.85(B) 40(B) 実施例 3-3(PC- 3-3) -720B -30(B) 0.84(B) 30(B) 実施例 3- 4(PC- 3 - 4) -720B -30(B) 0.84(B) 30(B) 実施例 3-5(PC-3-5) -720B -10(B) 0.82(B) 10(B) 実施例 3-6(PC-3-6) -720B -40(B) 0.85(B) 40(B) 実施例 3- 7(PG- 3-7) -720B -40(B) 0.85(B) 40(B) 実施例 3-8(PC-3-6) -720B -40(B) 0.85(B) 40(B) 実施例 3-9CPC-3-7) -720B -40(B) 0.85(B) 40(B) 比較例 3-1 (PC- 3 - 1 ) -720B -40(B) 0.85(B) 90(C)
<第 4実施形態の実施例〉
次に、本発明の第 4実施形態を実施例及び比較例によって更に詳細に説明する。
[実施例 4 1 ]
(共重合 PCの製造)
2,2 ビス(4 ビドロキシフエニル)プロパン(ビスフエノーノレ A) 74gを 6%濃度の水 酸化ナトリウム水溶液 550mlに溶解した溶液と、塩化メチレン 250mlとを混合して撹 拌しながら、冷却下、液中にホスゲンガスを 950ml/分の割合で 15分間吹き込んだ。 次いで、この反応液を静置分離し、有機層に重合度が 2〜4であり、分子末端にクロ 口ホルメート基を有するオリゴマーの塩化メチレン溶液を得た。得られたオリゴマー溶 液に塩化メチレンを加えて全量を 450mlとした。
次に、 4,4,ージヒドロキシビフエニル(トリヒドロキシビフエニル含有量: 321質量 ppm 、 3— tert ブチルー 4,4,ージヒドロキシビフエニル含有量: 49質量 ppm) 24gを 8質 量%濃度の水酸化ナトリウム水溶液 150ml (酸化防止剤として、ハイドロサルファイト ナトリウム Na S Oを 100mg (0. 57ミリモノレ、原料のビフエノーノレ モノレ ίこ対して 0·
2 2 4
0044モル)添加)に溶解した溶液と混合し、これに分子量調節剤である ρ tert ブ チノレフエノーノレ 3. Ogを加えた(ビフエノール水溶液)。 [0185] 前記したオリゴマー溶液に、ビフエノール水溶液を加えて混合し、この混合液を激し く撹拌しながら触媒として 7質量%濃度のトリェチルァミン水溶液を 2ml加え、 28°Cに 保った状態で撹拌を続けながら界面重縮合反応を 1. 5時間行った。反応終了後、反 応生成物を塩化メチレン 1リットルで希釈し、次いで水 1. 5リットルで 2回、 0. 01規定 塩酸 1リットルで 1回、水 1リツトルで 2回の順で洗浄してポリマー溶液を得た。
次に、撹拌羽根を装着したバッフル付き容器を別途用意し、これにメタノール 2リット ルを投入した。容器中のメタノールを撹拌羽根で十分撹拌しながら、前記したポリマ 一溶液のうち 1リットルを、粒子が形成される速度でゆっくり滴下し、再沈によるフレー ク化処理を行った。滴下終了後、撹拌速度を十分保ちながらさらに 10分間撹拌した 後、さらにメタノールを 2リットル追加投入し、撹拌をさらに 5分間継続した。得られたフ レークを濾過 '乾燥して評価用の共重合 PC (PC— 4 1)とした。
[0186] (共重合 PCの評価)
PC— 4—1について、その状態(粉体)のままで YIの測定を行った (JIS K 7105 に準拠)。
次に、 PC— 4—1を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。なお、 PC— 4 sp
— 1の化学構造を1 H— NMRにより分析したところ、下記式(5)で示される共重合 PC であることが確認された。
[0187] [化 33]
Figure imgf000062_0001
[0188] また、 PC— 1のフレークを 50mm φ短軸押出機により、シリンダー温度 280°C、スク リュー回転数 lOOrpmで溶融押出を行ってペレット化した。このペレットを 120°Cで 5 時間乾燥処理した後、 20 X 50 X 3mmの金型(S55C鏡面 # 1000)を使用して射出 成形を行い、物性測定用の試験片(20 X 50 X 3mm)を作成した。この試験片(射出 成形品)につ!/、て YI (JIS K 7105に準拠)および全光線透過率の測定を行った( いずれも JIS K 7105に準拠)。これらの評価結果は、以下の基準で判断した。
射出成形品の YI : 2以下を A (非常に良い)、 4以下を B (良い)、 4を越えるものを c (悪い)とした。
全光線透過率 :89%以上を B (良い)、 89%未満を C (悪い)とした。
[0189] (電子写真感光体の製造)
本実施例における電子写真感光体の製造は、前記第 1実施形態の実施例 1 1と 同様に行った。そのため、説明は省略する。
[0190] (電子写真感光体の評価)
本実施例における電子写真感光体の評価は、前記第 1実施形態の実施例 1 1と 同様の方法で行った。そのため、説明は省略する。
[0191] [実施例 4 2]
実施例 4 1の共重合 PCの製造において、重縮合反応時の温度を 15°Cとした以 外は、実施例 4—1と同様にして共重合 PC (PC— 4— 2)を製造した。 PC— 4— 2を 塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ V /C]を測定したところ、 0· 82dl/gであった。また、 PC— 4— 2の化学構造を1 H sp
— NMRにより分析したところ、 PC— 4— 1と同一の構造であることが確認された。
PC— 4 2および、この共重合 PCから実施例 4 1と同様にして製造された電子写 真感光体について、実施例 4 1と同様の評価を行った。
[0192] [実施例 4 3]
実施例 4 1の共重合 PCの製造において、重縮合反応を行う前に、反応容器を窒 素ガスで置換し、酸素分圧を 5000Paとした後に、重縮合反応を行った。それ以外は 実施例 4 1と同様にして共重合 PC (PC— 4 3)を製造した。
PC— 4— 3を塩化メチレンに溶解して、濃度 0· 5g/dlの溶液を作成し、 20°Cにお ける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。また、 PC— 4— 3の
sp
化学構造を1 H— NMRにより分析したところ、 PC— 4—1と同一の構造であることが 確認された。
PC— 4 3および、この共重合 PCから実施例 4 1と同様にして製造された電子写 真感光体について、実施例 4 1と同様の評価を行った。
[0193] [実施例 4 4]
実施例 4 1の共重合 PCの製造にお!/、て、共重合モノマー用のビフヱニル化合物 として、 4,4,一ジヒドロキシビフエニル(アセトン再結晶処理品、トリヒドロキシビフエ二 ル含有量: 8質量 ppm、 3— tert ブチルー 4,4,ージヒドロキシビフエニル含有量: 23 質量 ppm) 24gを用い、重縮合反応時の温度を 15°Cとした以外は、実施例 4 1と同 様にして共重合 PC (PC— 4— 4)を製造した。 PC— 4— 4を塩化メチレンに溶解して 、濃度 0. 5g/dlの溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ
sp
、 0. 83dl/gであった。また、 PC— 4の化学構造を1 H— NMRにより分析したところ、 PC— 4— 1と同一の構造であることが確認された。
PC— 4 4および、この共重合 PCから実施例 4 1と同様にして製造された電子写 真感光体について、実施例 4 1と同様の評価を行った。
[0194] [実施例 4 5]
実施例 4—1の共重合 PCの製造において、 2,2 ビス(4ービドロキシフエニル)プロ パン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシフエ二ノレ)シクロへキサン 87g に変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化力リウ ム水溶液 550mlに変更した以外は、実施例 4—1と同様にして共重合 PC (PC— 4— 5)を製造した。 PC— 4— 5を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成 し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであった。また、
sp
PC— 4— 5の化学構造を1 H— NMRにより分析したところ、下記式(7)で示される共 重合 PCであることが確認された。 PC— 4 5および、この共重合 PCから実施例 4 1と同様にして製造された電子写真感光体について、実施例 4—1と同様の評価を行 つた。
[0195] [化 34]
Figure imgf000064_0001
[0196] [実施例 4 6]
実施例 4—1の共重合 PCの製造において、 2,2—ビス(4ービドロキシフエニル)プ 口パン(ビスフエノーノレ A) 74gを 1, 1 -ビス(4 -ビドロキシフエ二ノレ)ェタン 69gに変更 し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶 液 550mlに変更した以外は、実施例 4—1と同様にして共重合 PC (PC— 4— 6)を製 造した。 PC— 4— 6を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 83dl/gであった。また、 PC— 4 sp
—6の化学構造を1 H— NMRにより分析したところ、下記式(8)で示される共重合 PC であることが確認された。 PC— 4— 6および、この共重合 PCから実施例 4—1と同様 にして製造された電子写真感光体について、実施例 4—1と同様の評価を行った。
[0197] [化 35]
Figure imgf000065_0001
[0198] [実施例 4 7]
実施例 4—1の共重合 PCの製造において、 2,2 ビス(4ービドロキシフエニル)プ 口パン(ビスフエノーノレ A) 74gを 2,2 ビス(4ービドロキシフエ二ノレ)ブタン 79gに変更 し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸化カリウム水溶 液 550mlに変更した以外は、実施例 4—1と同様にして共重合 PC (PC— 4— 7)を製 造した。 PC— 4— 7を塩化メチレンに溶解して、濃度 0. 5g/dlの溶液を作成し、 20 °Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであった。また、 PC— 4 sp
—7の化学構造を1 H— NMRにより分析したところ、下記式(9)で示される共重合 PC であることが確認された。 PC— 4— 7および、この共重合 PCから実施例 4—1と同様 にして製造された電子写真感光体について、実施例 4—1と同様の評価を行った。
[0199] [化 36]
, ■、 , GH:! ■、
~~ o~ p) ~~ - o - cA一 -"" ί- ο -<θ)- -{p>- o - c -― ' ' , (9)
\ Ο / 0. 2 C4 Ό 0. 8
[0200] [実施例 4 8]
実施例 4—1の共重合 PCの製造において、 2,2 ビス(4ービドロキシフエニル)プロ パン(ビスフエノール A) 74gを 2,2 ビス(3 メチル 4 -ビドロキシフエ二ノレ)プロパ ン 83gに変更し、 6質量%濃度の水酸化ナトリウム水溶液 550mlを 1. 5規定の水酸 化カリウム水溶液 550mlに変更した以外は、実施例 4—1と同様にして共重合 PC (P C— 4— 8)を製造した。 PC— 4— 8を塩化メチレンに溶解して、濃度 0. 5g/dlの溶 液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gであつ た。また、 PC— 4— 8の化学構造を1 H— NMRにより分析したところ、下記式(10)で 示される共重合 PCであることが確認された。 PC— 4 8および、この共重合 PCから 実施例 4—1と同様にして製造された電子写真感光体について、実施例 4—1と同様 の評価を行った。
[0201] [化 37]
Figure imgf000066_0001
[0202] [比較例 4 1]
共重合モノマー用のビフエニル化合物として、 4,4 'ージヒドロキシビフエニル(トリヒド 口キシビフエニル含有量: 321質量 ppm、 3— tert ブチルー 4,4,ージヒドロキシビフ ェニル含有量: 49質量 ppm) 24gを用いた以外は、実施例 4— 1と同様にして共重合 PC (PC 4— 9)を製造した。 PC 4— 9を塩化メチレンに溶解して、濃度 0. 5g/dl の溶液を作成し、 20°Cにおける還元粘度 [ 7] /C]を測定したところ、 0. 82dl/gで sp
あった。また、 PC— 4 9の化学構造を1H— NMRにょり分析したところ、 PC— 4 1 と同一の構造であることが確認された。
PC— 4 9および、この共重合 PCから実施例 4 1と同様にして製造された電子写 真感光体について、実施例 4 1と同様の評価を行った。
[0203] [評価結果]
表 7及び表 8に、実施例 4 1〜4 8および比較例 4 1の評価結果を示す。
[0204] [表 7]
射出成形品 全允線
フレークの Y1
の Y1 透過率
実施例 4_1 (PC-4_1 ) 1.7 3(B) B
実施例 4-2(PC- 4 - 2) 1.5 2(A) B
実施例 4-3(PC-4-3) 1.5 2(A) B
実施例 4-4(PC-4-4) 0.5 KA) B
実施例 4-5(PC- 4-5) 0.7 1 (A) B
実施例 4- 6(PC- 4-6) 0.7 1(A) B
実施例 4- 7(PC-4-7) 0.8 1 (A) B
実施例 4-8(PC-4 - 8) 1.2 2(A) B
比較例 4-1 (PC- 4 - 1 ) 4.1 7(C) C
[0205] [表 8]
Figure imgf000067_0001
[0206] 本発明のポリカーボネート共重合体は、光学材料用途あるいは、電子写真感光体 等電子材料分野に好適に使用できる η

Claims

請求の範囲 下記式(1)で示されるモノマー単位 0. ;!〜 50モル0 /0と、下記式(2)で示されるモノ マー単位とを含んで構成されるポリカーボネート共重合体であって、下記式(3)で示 される構造を有するビフエノール類の含有量が 90質量 ppm以下であることを特徴と するポリカーボネート共重合体。
[化 1]
Figure imgf000068_0001
(式中、
Figure imgf000068_0002
R2は、それぞれ独立に、水素原子,炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。)
[化 2]
Figure imgf000068_0003
(式中、 R3、 R4は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜12のァリール基またはハロゲン原子を示し、 Xは、—O—、—S—、 - SO 一、—SO2—、—CO—、 9, 9 フルォレニリデン基、下記式(2a)、 (2b)、 (2c)およ び(2d)で示されるいずれかの結合基である。 )
[化 3コ
R6
1
- C - … (2a)
I
Rfi
(式中、 R5、 R6は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基ま たは炭素数 6〜; 12のァリール基を示す。また、 R5、 R6は互いに結合して炭素数 4〜1 2のシクロアルキリデン基を構成していてもよい。 )
[化 4]
Figure imgf000069_0001
(式中、 Rは水素原子または炭素数 1〜3のアルキル基である。また、 Rのうち少なくと も一つ、好ましくは 3つが炭素数 1〜3のアルキル基である。 )
[化 5]
Figure imgf000069_0002
(式中、結合位置は、 0—、 m—、 p—のレ
[化 6]
Figure imgf000069_0003
(式中、 R7〜R12は、それぞれ独立に水素、炭素数 1〜4のアルキル基、あるいは単 結合またはアルキレン基からなる結合基を示す。ただし、 R7〜R12のうち 2つが結合基 であり、残りは水素または炭素数 1〜4のアルキル基である。 )
[化 7]
Figure imgf000069_0004
(式中、
Figure imgf000069_0005
R2は、それぞれ独立に、水素原子,炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。 )
[2] 下記式(1)で示されるモノマー単位 0. ;!〜 50モル%と、下記式(2)で示されるモノ マー単位とを含んで構成されるポリカーボネート共重合体であって、フエノール性水 酸基が一分子中に 3つ存在するビフヱニル化合物の含有量が 200質量 ppb以下で あることを特徴とするポリカーボネート共重合体。
[化 8]
Figure imgf000070_0001
(式中、
Figure imgf000070_0002
R2は、それぞれ独立に、水素原子、炭素数 1 6の脂肪族炭化水素基、 炭素数 6〜; 12のァリール基またはハロゲン原子を示す。 )
[化 9]
Figure imgf000070_0003
(式中、 R3 R4は、それぞれ独立に、水素原子、炭素数 1 6の脂肪族炭化水素基、 炭素数 6 12のァリール基またはハロゲン原子を示し、 Xは、—O— —S— - SO —SO2— —CO— 9, 9 フルォレニリデン基、下記式(2a) (2b) (2c)およ び(2d)で示されるいずれかの結合基である。 )
[化 10]
― C― (2a)
(式中、 R5 R6は、それぞれ独立に、水素原子、炭素数 1 6の脂肪族炭化水素基ま たは炭素数 6〜; 12のァリール基を示す。また、 R5 R6は互いに結合して炭素数 4 1 2のシクロアルキリデン基を構成していてもよい。 )
[化 11]
Figure imgf000070_0004
(式中、 Rは水素原子または炭素数 1 3のアルキル基である。また、 Rのうち少なくと も一つ、好ましくは 3つが炭素数 1〜3のアルキル基である。 )
[化 12]
C¾ CH3 (2e)
(式中、結合位置は、 0—、 m—、 p—のい
[化 13]
Figure imgf000071_0001
(式中、 R7〜R12は、それぞれ独立に水素、炭素数 1〜4のアルキル基、あるいは単 結合またはアルキレン基からなる結合基を示す。ただし、 R7〜R12のうち 2つが結合基 であり、残りは水素または炭素数 1〜4のアルキル基である。 )
最終的に得られるポリカーボネート共重合体を 5質量%以上溶解可能であって水と 実質的に混じり合わない溶媒と、アルカリ金属水酸化物またはアルカリ土類金属水酸 化物が溶解した水溶液とからなる 2相系溶媒中で、相間移動触媒の存在下に重合反 応させて得られるポリカーボネート共重合体であって
下記式(1)で示されるモノマー単位 0. ;!〜 50モル%と、下記式(2)で示されるモノ マー単位とを含んで構成され、
該ポリカーボネート共重合体の YI (フレーク状粉体を JIS K 7105に準拠して測 定)が 3以下であることを特徴とするポリカーボネート共重合体。
[化 14]
Figure imgf000071_0002
(式中、
Figure imgf000071_0003
R2は、それぞれ独立に、水素原子または炭素数 1〜3のアルキル基を示 す。)
[化 15]
Figure imgf000072_0001
(式中、 R3、 R4は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜12のァリール基またはハロゲン原子を示し、 Xは、—O—、—S—、 - SO 一、—SO2—、—CO—、 9, 9 フルォレニリデン基、下記式(2a)、 (2b)、 (2c)およ び(2d)で示されるいずれかの結合基である。 )
[化 16] 5
―し― *■ * * (2a)
f
R6
(式中、 R5、 R6は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基ま たは炭素数 6〜; 12のァリール基を示す。また、 R5、 R6は互いに結合して炭素数 4〜1 基を構成していてもよい。 )
[化 17]
(2b)
Figure imgf000072_0002
(式中、 Rは水素原子または炭素数 1〜3のアルキル基である。また、 Rのうち少なくと も一つ、好ましくは 3つが炭素数 1〜3のアルキル基である。 )
[化 18]
(2c)
Figure imgf000072_0003
(式中、結合位置は、 0— m p のいずれでもよい。 )
[化 19]
Figure imgf000073_0001
(式中、 R7 R12は、それぞれ独立に水素、炭素数 1 4のアルキル基、あるいは単 結合またはアルキレン基からなる結合基を示す。ただし、 R7 R12のうち 2つが結合基 であり、残りは水素または炭素数 1 4のアルキル基である。 )
下記式(3)で示されるモノマーと、下記式 (4)で示されるモノマーとから重縮合反応 によって構成されるポリカーボネート共重合体であって、
フエノール性水酸基が一分子中に 3つ存在するビフエニル化合物の前記式(3)で 示されるモノマーにおける含有量が 300質量 ppm以下であることを特徴とするポリ力 ーボネート共重合体。
[化 20]
Figure imgf000073_0002
(式中、
Figure imgf000073_0003
R2は、それぞれ独立に、水素原子または炭素数 1 3のアルキル基を示 す。)
[化 21]
Figure imgf000073_0004
(式中、 R3 R4は、それぞれ独立に、水素原子、炭素数 1 6の脂肪族炭化水素基、 炭素数 6 12のァリール基またはハロゲン原子を示し、 Xは、—O— —S— - SO —SO2— —CO— 9, 9 フルォレニリデン基、前記式(2a) (2b) (2c)およ び(2d)で示されるいずれかの結合基である。 ) [5] 請求項 4に記載のポリカーボネート共重合体において、
該ポリカーボネート共重合体の YI (フレークを JIS K 7105に準拠して測定)が 3 以下であることを特徴とするポリカーボネート共重合体。
[6] 請求項 1または請求項 2に記載のポリカーボネート共重合体を溶融成形してなるこ とを特徴とする成形体。
[7] 請求項 1〜請求項 5のいずれかに記載のポリカーボネート共重合体を湿式成形し てなることを特徴とする成形体。
[8] 請求項 1〜請求項 5のいずれかに記載のポリカーボネート共重合体を含むことを特 徴とする光学材料。
[9] 請求項 6または請求項 7に記載の成形体を含むことを特徴とする光学材料。
[10] 請求項 1〜請求項 5のいずれかに記載のポリカーボネート共重合体を含むことを特 徴とする電子写真感光体。
[11] 請求項 6または請求項 7に記載の成形体を含むことを特徴とする電子写真感光体。
[12] 下記式(3)で示されるモノマーと、下記式 (4)で示されるモノマーとを用いて重縮合 反応を行うポリカーボネート共重合体の製造方法であって、前記式(3)で示されるモ ノマー 1モルに対して、酸化防止剤を 0. 000;!〜 1モル当量の割合で反応系に添加 することを特徴とするポリカーボネート共重合体の製造方法。
[化 22]
Figure imgf000074_0001
(式中、
Figure imgf000074_0002
R2は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素、炭 素数 6〜12のァリール基またはハロゲン原子を示す。 )
[化 23]
Figure imgf000074_0003
(式中、 R3、 R4は、それぞれ独立に、水素原子、炭素数 1〜6の脂肪族炭化水素基、 炭素数 6〜12のァリール基またはハロゲン原子を示し、 Xは、—O—、—S—、 - SO —SO2— —CO— 9, 9 フルォレニリデン基、下記式(2a) (2b) (2c)およ び(2d)で示されるいずれかの結合基である。 )
[化 24]
Rリ
• G (2a)
R6
(式中、 R5、 は、それぞれ独立に、水素原子、炭素数;!〜 6の脂肪族炭化水素基ま たは炭素数 6〜; 12のァリール基を示す。また、 R5 R6は互いに結合して炭素数 4〜1
基を構成していてもよい。 )
[化 25]
Figure imgf000075_0001
(式中、 Rは水素原子または炭素数 1〜3のアルキル基である。また、 Rのうち少なくと も一つ、好ましくは 3つが炭素数 1〜3のアルキル基である。 )
[化 26]
Figure imgf000075_0002
(式中、結合位置は、 0— m p のレ
[化 27]
Figure imgf000075_0003
(式中、 R7〜R12は、それぞれ独立に水素、炭素数 1〜4のアルキル基、あるいは単 結合またはアルキレン基からなる結合基を示す。ただし、 R7〜R12のうち 2つが結合基 であり、残りは水素または炭素数 1〜4のアルキル基である。 )
[13] 請求項 12に記載のポリカーボネート共重合体の製造方法において、
前記酸化防止剤がハイドロサルファイト塩であることを特徴とするポリカーボネート 共重合体の製造方法。
[14] 請求項 12または請求項 13に記載のポリカーボネート共重合体の製造方法におい て、
重縮合反応時の温度を 20°C以下とすることを特徴とするポリカーボネート共重合体 の製造方法。
[15] 請求項 12〜請求項 14のいずれかに記載のポリカーボネート共重合体の製造方法 において、
重縮合反応を、酸素分圧が 5065Pa以下の雰囲気下で行うことを特徴とするポリ力 ーボネート共重合体の製造方法。
[16] 請求項 12〜請求項 15のいずれかに記載のポリカーボネート共重合体の製造方法 により製造されたことを特徴とするポリカーボネート共重合体。
[17] 請求項 16に記載のポリカーボネート共重合体を含むことを特徴とする電子写真感 光体。
PCT/JP2007/070342 2006-10-18 2007-10-18 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body WO2008050669A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07830076.1A EP2075275B1 (en) 2006-10-18 2007-10-18 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
KR1020097001896A KR101451444B1 (ko) 2006-10-18 2007-10-18 폴리카보네이트 공중합체, 그 제조 방법, 성형체, 광학 재료 및 전자 사진 감광체
KR1020127015098A KR101256333B1 (ko) 2006-10-18 2007-10-18 폴리카보네이트 공중합체, 그 제조 방법, 성형체, 광학 재료 및 전자 사진 감광체
KR1020127015892A KR101256336B1 (ko) 2006-10-18 2007-10-18 폴리카보네이트 공중합체, 그 제조 방법, 성형체, 광학 재료 및 전자 사진 감광체
CN200780029341.XA CN101501101B (zh) 2006-10-18 2007-10-18 聚碳酸酯共聚物、其制造方法、成形体,光学材料及电子照相感光体
KR1020127015097A KR101256334B1 (ko) 2006-10-18 2007-10-18 폴리카보네이트 공중합체, 그 제조 방법, 성형체, 광학 재료 및 전자 사진 감광체
US12/375,451 US7893185B2 (en) 2006-10-18 2007-10-18 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
US12/853,727 US7888455B2 (en) 2006-10-18 2010-08-10 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006284378 2006-10-18
JP2006-284377 2006-10-18
JP2006-284379 2006-10-18
JP2006284377 2006-10-18
JP2006284380 2006-10-18
JP2006284379 2006-10-18
JP2006-284380 2006-10-18
JP2006-284378 2006-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/853,727 Division US7888455B2 (en) 2006-10-18 2010-08-10 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body

Publications (1)

Publication Number Publication Date
WO2008050669A1 true WO2008050669A1 (en) 2008-05-02

Family

ID=39324467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070342 WO2008050669A1 (en) 2006-10-18 2007-10-18 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body

Country Status (6)

Country Link
US (2) US7893185B2 (ja)
EP (4) EP2570446B1 (ja)
KR (4) KR101451444B1 (ja)
CN (3) CN102276820A (ja)
TW (4) TWI409285B (ja)
WO (1) WO2008050669A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888455B2 (en) 2006-10-18 2011-02-15 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
EP2447299A1 (en) * 2009-06-26 2012-05-02 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, coating liquid using same, and electrophotographic photosensitive body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712697B1 (ko) 2011-02-24 2017-03-06 이데미쓰 고산 가부시키가이샤 폴리카보네이트 공중합체, 그것을 사용한 도포액, 전자 사진 감광체, 및 폴리카보네이트 공중합체의 제조 방법
US8617712B2 (en) * 2011-08-02 2013-12-31 Xerox Corporation Biaryl polycarbonate intermediate transfer members
KR101459130B1 (ko) * 2011-12-30 2014-11-10 제일모직주식회사 플라스틱 글레이징 및 그 제조방법
JP6015264B2 (ja) 2012-09-12 2016-10-26 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6003669B2 (ja) * 2013-01-21 2016-10-05 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP5762450B2 (ja) * 2013-01-30 2015-08-12 京セラドキュメントソリューションズ株式会社 積層型電子写真感光体、画像形成装置、及び積層型電子写真感光体の製造方法
US20150261105A1 (en) * 2014-03-12 2015-09-17 Xerox Corporation Biphenyl polycarbonate containing photoconductors
US9310702B2 (en) * 2014-03-26 2016-04-12 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US11555093B2 (en) * 2017-07-07 2023-01-17 Tosoh Corporation Halogen-containing polymer and production method for same

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227927A (ja) 1986-03-31 1987-10-06 Idemitsu Kosan Co Ltd ポリカ−ボネ−ト系共重合体およびその製造方法
JPH01226841A (ja) * 1988-03-04 1989-09-11 Mitsui Petrochem Ind Ltd p,p´‐ビフェノール類の精製方法
JPH0248543A (ja) * 1988-08-09 1990-02-19 Dainippon Ink & Chem Inc P,p´−ビフェノールの精製方法
JPH02225433A (ja) * 1989-02-28 1990-09-07 Mitsubishi Petrochem Co Ltd 4、4’―ビフェノールの精製方法
JPH0570582A (ja) * 1991-09-17 1993-03-23 Furukawa Electric Co Ltd:The 変性ポリカーボネート
JPH0570583A (ja) * 1991-09-17 1993-03-23 Nippon Soda Co Ltd 変性ポリカーボネートの製造方法
JPH0572424A (ja) * 1991-09-17 1993-03-26 Furukawa Electric Co Ltd:The プラスチツク光フアイバ
JPH05117382A (ja) 1991-10-29 1993-05-14 Nippon G Ii Plast Kk 共重合ポリカーボネート、その製造方法およびそれからなる組成物
JPH0632884A (ja) * 1992-07-17 1994-02-08 Idemitsu Kosan Co Ltd ポリカーボネート重合体、その製造法及びそれを用いた電子写真感光体
JPH06248066A (ja) * 1993-02-24 1994-09-06 Idemitsu Kosan Co Ltd ビフェノール共重合ポリカーボネート及びこれを用いた電子写真感光体
JP2531852B2 (ja) 1990-11-15 1996-09-04 出光興産株式会社 電子写真感光体
JPH09204053A (ja) * 1996-01-26 1997-08-05 Fuji Electric Co Ltd 電子写真用感光体
JPH11172003A (ja) 1997-12-12 1999-06-29 Idemitsu Kosan Co Ltd 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP2002533544A (ja) 1998-12-23 2002-10-08 バイエル アクチェンゲゼルシャフト 黄色度が低いポリカーボネート
JP2005082677A (ja) 2003-09-08 2005-03-31 Teijin Chem Ltd ポリカーボネート樹脂の製造方法
JP2005139339A (ja) 2003-11-07 2005-06-02 Kyocera Mita Corp ポリカーボネート樹脂、電子写真感光体および画像形成装置
JP2006039482A (ja) * 2004-07-30 2006-02-09 Kyocera Mita Corp 湿式現像用電子写真感光体およびそれを備えた湿式現像用画像形成装置
JP2006505652A (ja) * 2002-11-04 2006-02-16 ゼネラル・エレクトリック・カンパニイ 安定な均質溶融液の製造方法
WO2007123162A1 (ja) * 2006-04-20 2007-11-01 Mitsubishi Chemical Corporation ポリカーボネート樹脂

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410823A (en) * 1964-10-15 1968-11-12 Mobay Chemical Corp Method of removing contaminants from polycarbonates
JPS5117382B2 (ja) * 1972-05-29 1976-06-02
US4880896A (en) * 1987-05-30 1989-11-14 Idemitsu Petrochemical Co., Ltd. Polycarbonate for disc substrate having low bisphenol content
US4891453A (en) * 1987-09-22 1990-01-02 Mitsui Petrochemical Industries, Ltd. Process for producing p,p'-biphenol
US4985326A (en) * 1989-07-27 1991-01-15 Idemitsu Kosan Co., Ltd. Electrophotographic photoreceptor
JP3264976B2 (ja) * 1992-05-29 2002-03-11 三菱化学株式会社 4,4’−ビフェノールの製造方法
JPH0692480A (ja) 1992-09-16 1994-04-05 Mita Ind Co Ltd 給紙装置
JP3262860B2 (ja) 1992-10-22 2002-03-04 日本ジーイープラスチックス株式会社 共重合ポリカーボネートの製造方法
JP3023279B2 (ja) 1994-07-28 2000-03-21 鐘紡株式会社 光学材料用樹脂組成物および光学材料ならびに光学材料の製造法
JP3777189B2 (ja) 1994-12-20 2006-05-24 出光興産株式会社 ポリカーボネート系の重合体、それを用いた樹脂塗工液及びそれを用いた電子写真感光体
US5717055A (en) * 1995-06-20 1998-02-10 Mitsubishi Gas Chemical Company, Ltd. Production method of polycarbonate resin pellets
JP3765322B2 (ja) * 1995-10-11 2006-04-12 三菱瓦斯化学株式会社 電子写真感光体バインダー用ポリカーボネート樹脂の製造方法
EP0866083B1 (en) * 1995-12-04 2003-05-28 Idemitsu Kosan Company Limited Polycarbonate resin, crosslinked polycarbonate resin and electrophotographic photoreceptor
JP3760044B2 (ja) * 1997-01-30 2006-03-29 本州化学工業株式会社 3,3’,5,5’−テトラ−t− ブチルビフェノールの製造方法
EP0856504B1 (en) * 1997-01-30 2001-11-07 Honshu Chemical Industry Co. Ltd. Process for producing 3,3',5,5'-tetra-t-butylbiphenol
JP3763310B2 (ja) 1998-06-25 2006-04-05 富士ゼロックス株式会社 高分子量ポリカーボネートおよびその製造方法
JP2001337466A (ja) * 2000-01-14 2001-12-07 Ricoh Co Ltd 電子写真感光体、電子写真方法、電子写真装置及び電子写真装置用プロセスカートリッジ
JP4525881B2 (ja) * 2000-03-29 2010-08-18 三菱瓦斯化学株式会社 ポリカーボネート樹脂および光学部材
JP2002249577A (ja) 2001-02-26 2002-09-06 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネートの製造方法
JP4039938B2 (ja) 2002-01-10 2008-01-30 三菱化学株式会社 電子写真感光体及び電子写真感光体用塗布液用ポリカーボネート樹脂の製造方法
JP4051549B2 (ja) 2002-08-14 2008-02-27 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物
WO2004044033A1 (ja) 2002-11-14 2004-05-27 Teijin Chemicals, Ltd. ポリカーボネート共重合体、樹脂組成物および成形品
CN101624442B (zh) * 2004-05-20 2020-06-30 出光兴产株式会社 聚碳酸酯树脂及使用它的电子照相感光体
JP2006267886A (ja) 2005-03-25 2006-10-05 Mitsubishi Gas Chem Co Inc 電子写真感光体
US8119228B2 (en) * 2006-05-01 2012-02-21 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition, optical molded body using the same, and illumination unit
JP5073226B2 (ja) * 2006-05-11 2012-11-14 出光興産株式会社 光拡散性樹脂組成物及びそれを用いた光拡散板
US8049006B2 (en) * 2006-05-31 2011-11-01 Daiichi Sankyo Company, Limited 7-membered ring compound and method of production and pharmaceutical application thereof
EP2489691B1 (en) * 2006-06-19 2013-09-04 Mitsubishi Chemical Corporation Polycarbonate copolymer and method of producing the same
TWI395767B (zh) * 2006-08-02 2013-05-11 Mitsubishi Gas Chemical Co 聚碳酸酯樹脂及使用該聚碳酸酯樹脂的電子照像感光體
KR101451444B1 (ko) 2006-10-18 2014-10-15 이데미쓰 고산 가부시키가이샤 폴리카보네이트 공중합체, 그 제조 방법, 성형체, 광학 재료 및 전자 사진 감광체
US20090018620A1 (en) 2007-07-12 2009-01-15 Pelvipharm Method for restoring an ejaculatory failure

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227927A (ja) 1986-03-31 1987-10-06 Idemitsu Kosan Co Ltd ポリカ−ボネ−ト系共重合体およびその製造方法
JPH01226841A (ja) * 1988-03-04 1989-09-11 Mitsui Petrochem Ind Ltd p,p´‐ビフェノール類の精製方法
JPH0248543A (ja) * 1988-08-09 1990-02-19 Dainippon Ink & Chem Inc P,p´−ビフェノールの精製方法
JPH02225433A (ja) * 1989-02-28 1990-09-07 Mitsubishi Petrochem Co Ltd 4、4’―ビフェノールの精製方法
JP2531852B2 (ja) 1990-11-15 1996-09-04 出光興産株式会社 電子写真感光体
JPH0570582A (ja) * 1991-09-17 1993-03-23 Furukawa Electric Co Ltd:The 変性ポリカーボネート
JPH0570583A (ja) * 1991-09-17 1993-03-23 Nippon Soda Co Ltd 変性ポリカーボネートの製造方法
JPH0572424A (ja) * 1991-09-17 1993-03-26 Furukawa Electric Co Ltd:The プラスチツク光フアイバ
JPH05117382A (ja) 1991-10-29 1993-05-14 Nippon G Ii Plast Kk 共重合ポリカーボネート、その製造方法およびそれからなる組成物
JPH0632884A (ja) * 1992-07-17 1994-02-08 Idemitsu Kosan Co Ltd ポリカーボネート重合体、その製造法及びそれを用いた電子写真感光体
JPH06248066A (ja) * 1993-02-24 1994-09-06 Idemitsu Kosan Co Ltd ビフェノール共重合ポリカーボネート及びこれを用いた電子写真感光体
JPH09204053A (ja) * 1996-01-26 1997-08-05 Fuji Electric Co Ltd 電子写真用感光体
JPH11172003A (ja) 1997-12-12 1999-06-29 Idemitsu Kosan Co Ltd 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP2002533544A (ja) 1998-12-23 2002-10-08 バイエル アクチェンゲゼルシャフト 黄色度が低いポリカーボネート
JP2006505652A (ja) * 2002-11-04 2006-02-16 ゼネラル・エレクトリック・カンパニイ 安定な均質溶融液の製造方法
JP2005082677A (ja) 2003-09-08 2005-03-31 Teijin Chem Ltd ポリカーボネート樹脂の製造方法
JP2005139339A (ja) 2003-11-07 2005-06-02 Kyocera Mita Corp ポリカーボネート樹脂、電子写真感光体および画像形成装置
JP2006039482A (ja) * 2004-07-30 2006-02-09 Kyocera Mita Corp 湿式現像用電子写真感光体およびそれを備えた湿式現像用画像形成装置
WO2007123162A1 (ja) * 2006-04-20 2007-11-01 Mitsubishi Chemical Corporation ポリカーボネート樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075275A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888455B2 (en) 2006-10-18 2011-02-15 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
US7893185B2 (en) 2006-10-18 2011-02-22 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
EP2447299A1 (en) * 2009-06-26 2012-05-02 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, coating liquid using same, and electrophotographic photosensitive body
EP2447299A4 (en) * 2009-06-26 2013-12-25 Idemitsu Kosan Co POLYCARBONATE COPOLYMER, COATING LIQUID USING THE SAME, AND ELECTROPHOTOGRAPHIC PHOTOSENSITIVE BODY
CN104017197A (zh) * 2009-06-26 2014-09-03 出光兴产株式会社 聚碳酸酯共聚物、使用其的涂布液以及电子照相感光体

Also Published As

Publication number Publication date
EP2570447B1 (en) 2016-04-06
US20090326184A1 (en) 2009-12-31
TW201305240A (zh) 2013-02-01
TWI512002B (zh) 2015-12-11
CN102276819A (zh) 2011-12-14
EP2075275A1 (en) 2009-07-01
CN102352028A (zh) 2012-02-15
KR20120074332A (ko) 2012-07-05
EP2570446A1 (en) 2013-03-20
KR101256334B1 (ko) 2013-04-18
TWI409286B (zh) 2013-09-21
EP2075275A4 (en) 2010-10-20
US7888455B2 (en) 2011-02-15
TW201305241A (zh) 2013-02-01
EP2570447A1 (en) 2013-03-20
TWI409285B (zh) 2013-09-21
US7893185B2 (en) 2011-02-22
EP2570446B1 (en) 2016-01-20
EP2075275B1 (en) 2015-04-29
KR20120074333A (ko) 2012-07-05
US20100324209A1 (en) 2010-12-23
EP2570445A1 (en) 2013-03-20
TWI498352B (zh) 2015-09-01
KR101256336B1 (ko) 2013-04-18
KR101256333B1 (ko) 2013-04-18
EP2570445B1 (en) 2015-10-07
KR20120080664A (ko) 2012-07-17
TW201305242A (zh) 2013-02-01
TW200838899A (en) 2008-10-01
CN102276820A (zh) 2011-12-14
KR101451444B1 (ko) 2014-10-15
KR20090068318A (ko) 2009-06-26

Similar Documents

Publication Publication Date Title
WO2008050669A1 (en) Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
JP6441793B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体
JP5680887B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2017204339A1 (ja) 樹脂組成物、電子写真感光体、および電子写真装置
JP2017214584A (ja) ポリカーボネート共重合体の製造方法
JP5014390B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
JP5349709B1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP4521022B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
JP6634011B2 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、および電気機器
CN108779238B (zh) 聚碳酸酯树脂、聚碳酸酯树脂的制造方法、涂敷液、电子照相感光体和电子照相装置
JP4473904B2 (ja) 電子写真感光体
JP4473903B2 (ja) 電子写真感光体用ポリカーボネート共重合体を含む電子写真感光体
JP5680886B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP4521023B2 (ja) ポリカーボネート共重合体、その製造方法および電子写真感光体
JP5405288B2 (ja) ポリカーボネート共重合体、該共重合体からなる成形体および光学材料
JP5277191B2 (ja) ポリカーボネート共重合体、その製造方法および電子写真感光体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029341.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007830076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12375451

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097001896

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020127015097

Country of ref document: KR

Ref document number: 1020127015098

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020127015892

Country of ref document: KR