WO2008047823A1 - Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice - Google Patents

Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice Download PDF

Info

Publication number
WO2008047823A1
WO2008047823A1 PCT/JP2007/070230 JP2007070230W WO2008047823A1 WO 2008047823 A1 WO2008047823 A1 WO 2008047823A1 JP 2007070230 W JP2007070230 W JP 2007070230W WO 2008047823 A1 WO2008047823 A1 WO 2008047823A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
pattern forming
conductive
film
pressure
Prior art date
Application number
PCT/JP2007/070230
Other languages
English (en)
French (fr)
Inventor
Toshihide Kamata
Manabu Yoshida
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to EP07829964.1A priority Critical patent/EP2075802B1/en
Priority to US12/443,482 priority patent/US8278561B2/en
Publication of WO2008047823A1 publication Critical patent/WO2008047823A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Definitions

  • the present invention relates to a conductive pattern forming film capable of producing a flexible electronic device at low cost, and a conductive pattern forming method and a conductive pattern forming apparatus therefor, and in particular, a conductive pattern is formed on a flexible film substrate at a low temperature.
  • the present invention relates to a method and apparatus for simple and easy production.
  • Wiring technology by printing enables high-speed production of a large number of products at low cost, so that high-conductivity wiring is produced by the force printing already used for practical electronic device fabrication.
  • baking at a high temperature was indispensable in order to remove one component of the binder contained in the formed conductive ink pattern (see Patent Document 1).
  • Patent Document 1 Since many flexible plastic films are softened and melted at high temperatures, it is difficult to produce a printing device on the plastic film. For this reason, printed devices are mostly made on heat-resistant hard substrates such as glass.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2001-243836
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-259848
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-273205
  • Patent Document 4 Special Table 2006—517606
  • An object of the present invention is to form a conductive pattern on a general plastic substrate having flexibility by a simple process, and use a device that performs a simple process of orientation and pressurization at a low temperature.
  • a conductive pattern forming film for easily creating a pattern, and a conductive pattern forming method and a conductive pattern forming apparatus therefor are provided.
  • the present invention employs the following specific solutions.
  • the conductive pattern forming film is provided with a pattern formed by heating and pressurizing a film in which conductive fine particles are dispersed and filled in an adhesive substance on a flexible film substrate.
  • the conductive fine particles are metal or semiconductor fine particles.
  • conductive fine particles are aggregated or aggregated to form a powder.
  • the shape of the powder has a difference between a major axis and a minor axis that are not isotropic, and the major axis is oriented parallel to the substrate surface so that it contacts the adjacent powder.
  • Conductive fine particles or conductive fine particles constituting the powder are those containing any kind of silver, gold, copper and aluminum, or aluminum mixed with particle additives
  • the particle additive is zinc particles.
  • Semiconductor fine particles constituting the conductive fine particles or conductive fine particles forming the powder Any kind of zinc oxide, indium oxide, titanium oxide, tin oxide and nickel oxide or a compound containing them.
  • the adhesive substance is a conductive paste containing an adhesive substance, and the density change in the direction perpendicular to the substrate surface of the adhesive substance is higher in the vicinity of the surface in contact with the substrate than in the vicinity of the surface opposite to the surface in contact with the substrate.
  • the film substrate is resistant to the solvent contained in the adhesive substance, has a glass transition point higher than the boiling point of those solvents, has an electrical insulating property with good adhesion to the adhesive substance, and has a low dielectric constant.
  • the substrate is a PET film.
  • the arithmetic roughness (Ra) is 0.2 111 or less.
  • the conductive pattern forming device has a flat mounting surface and is configured to be movable in the horizontal direction, and a pressure application drive that is disposed so as to be movable at an arbitrary speed with respect to the mounting surface.
  • the surface of the pressure applying drive body that faces the mounting surface and contacts the sample is a curved surface or a spherical surface.
  • the pressure applying driver is composed of a metal flat plate having a metal sphere on its lower surface.
  • the metal sphere should have an arbitrary value within the range of 0.1 mm to 5 mm in diameter.
  • the pressure application drive body is moved in the vertical direction with respect to the sample mounting table and applied with pressure, and is driven in the horizontal direction at a speed different from the moving speed of the sample, so that both the vertical direction and the horizontal direction are driven. It is comprised so that a pressure may be applied to.
  • the pressure application drive body is provided with one metal sphere on the side of the sample mounting base of the metal plate.
  • a magnet is provided on the metal flat plate, and the metal sphere is attracted and held via the metal flat plate.
  • a mesh sheet can be arranged between the pressure application driver and the sample, and pressure can be applied via the mesh sheet.
  • a plurality of pressure application driving bodies are provided in parallel with each other and in parallel with the flat mounting surface of the sample mounting table, and a plurality of pressure applying drivers are continuously applied to the sample on the mounting surface by a plurality of times. Can be done.
  • control device provided on the sample setting table enables each heating temperature to be independently controlled by the heating means provided on the sample setting table and the pressure application driving body. Also putter It is also possible to provide means for measuring the resistivity.
  • the energization heating is locally performed between the pressure applying driver and the pattern.
  • the conductive pattern forming apparatus is an apparatus for reducing the resistivity of a pattern formed by applying a metal film or a semiconductor particle dispersed in an adhesive substance on a flexible film substrate. Place the installed film substrate with the pattern coating surface facing up, and apply a pressure to the surface where the surface is smooth and the surface that is placed above the surface and faces the sample surface is parallel to the projection.
  • the pressure application drive body is applied to the film placed on the plane of the heated sample mounting table in contact with the film surface and in the lead straight direction.
  • the conductivity of the coating pattern formed on the film is improved by applying a sliding stress generated by scanning the film in any direction parallel to the film surface.
  • the heating temperature is set to be not lower than the boiling point of the solvent contained in the conductive paste or the adhesive substance and not higher than the glass transition point of the plastic substrate.
  • the pressurizing pressure is applied to one contact point between the metal ball and the pattern, and the applied pressure is any value from 0. IMPa to 10 OMPa.
  • the control device controls the heating temperature and pressurizing pressure so that the pattern deformation rate before and after heating and pressing is within ⁇ 1% in the plane direction and within ⁇ 10% in the film thickness direction.
  • the present invention is a pattern on a plastic film formed by metal or semiconductor fine particles uniformly dispersed in a viscoelastic medium, or formed by metal or semiconductor fine particles adsorbed and immobilized on an adhesive substance. It is characterized by an apparatus that can form a conductive pattern with high conductivity by applying pressure while controlling the temperature of the pattern on the plastic film.
  • a conductive pattern can be easily formed on a substrate by a simple operation at a low temperature using a manufacturing apparatus having a simple structure.
  • the conductive pattern forming film of the present invention, a conductive pattern forming method therefor, and The conductive pattern forming device uses a device that performs a simple process of applying pressure at a low temperature in order to produce a large number of conductive patterns on a flexible plastic substrate at low cost.
  • V the ability to easily create highly conductive patterns.
  • an active element can be manufactured on a flexible film by a low-temperature coating process.
  • the present invention can be applied to flexible batteries, electochromic display elements, electoluminescence elements, diode elements, and the like because metal electrodes having various work functions can be formed on a flexible film.
  • FIG. 1 is a schematic view of a conductive pattern manufacturing apparatus of the present invention.
  • FIG. 2 is a schematic view of a fine particle pattern of the present invention.
  • FIG.3 Wiring diagram of 13.56MHz, RF—ID antenna.
  • FIG. 4 is a scanning electron micrograph of the surface of the antenna wiring pattern before and after pressurization.
  • FIG. 5 shows the arithmetic mean roughness Ra of the pattern of the present invention.
  • FIG. 7 is a characteristic diagram around the resonance frequency of the antenna wiring pattern before and after pressurization.
  • FIG. 8 is a cross-sectional view of a coating type field effect transistor (FET) using zinc oxide (ZnO) manufactured by this apparatus.
  • FET coating type field effect transistor
  • ZnO zinc oxide
  • FIG. 11 is a diagram for explaining the degree of orientation of the present invention.
  • FIG. 12 is a view showing the orientation degree characteristic of the present invention.
  • FIG. 13 is an optical micrograph of a cross section of the conductive paste of the present invention.
  • fine particles mean fine solid particles, those dispersed individually in gas or chimney exhaust gas, etc.
  • powder usually means loose aggregates or aggregates of small solid particles.
  • the conductive fine particles include metal fine particles and semiconductor fine particles.
  • the metal fine particles constitute a powder (loose / agglomerated aggregate or aggregate) made of metal fine particles.
  • Semiconductor fine particles constitute a powder (loose aggregate or aggregate) made of semiconductor fine particles.
  • the adhesive material is also a resin binder, printing, dispensing method, inkjet method It is necessary to be able to form a pattern by the above, not to alter the substrate, and not to affect the electrical properties of the conductive pattern after heating.
  • Suitable materials include polybulal alcohol (PVA) aqueous solution, polystyrene (PS) toluene solution, polymethyl methacrylate (PMMA) toluene solution, and conductive substances in pastes such as conductive paste and insulating paste! /, It is also a material.
  • PVA polybulal alcohol
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • the conductive paste means a substance obtained by adding a conductive substance to an adhesive substance.
  • the film on which the conductive pattern is formed is configured by applying a paste in which fine particles or powder of a metal or semiconductor material are dispersed in an adhesive substance in a predetermined pattern shape on a substrate.
  • the pressurization control includes a heating 'pressurization process.
  • Orientation pressurization which is pressurization, has (1) the pressurization surface is not a flat surface because it is a metal sphere, etc., and (2) there is a speed difference between the sample mounting table and the metal sphere feeding the sample As a result, shear stress is generated in the sample.
  • control the temperature This control allows the heater temperature T and substrate temperature T to be adjusted independently and
  • electromagnetic wave heating means such as infrared rays can be used. If electromagnetic wave heating means is used, rapid heating and rapid cooling become possible.
  • the pressurizing means is a multipoint pressurizing means, it includes a multi-microsphere pressurizing means.
  • the mesh pressurizing means among the multipoint pressurizing means there is room for adopting an energizing pressurizing means that conducts and heats while measuring resistance.
  • Two types of pressure are used: vertical and traveling.
  • the application efficiency is improved by minimizing the pressure tip area, and high voltage can be applied even in small machines.
  • Conductive ink which is a kind of conductive paste, is separated into a separation type and a dispersion depending on the behavior of the conductor.
  • the dispersion type constitutes a conductor material, a semiconductor material, and an electrode material according to the content of the final conductor.
  • Various electronic devices can be configured according to this mode.
  • the ink conditions include the following.
  • Binder-containing type (A) Binder-containing type.
  • the solvent should be volatilized at a low temperature (100 ° C or less).
  • the wiring is constituted by a pattern
  • gold, silver, copper, aluminum, or carbon can be used.
  • the type of semiconductor material is not limited, but ZnO, SnO, In 2 O 3 and NiO can be used for general purposes.
  • the electrode material is a mixture of the above materials.
  • the distribution of angles formed by the major axes of all the powders in the substrate plane direction is generally an average value of 20 degrees or less and a distribution width (standard deviation) of 20 degrees or less.
  • the average value is preferably 15 degrees or less and the distribution width (standard deviation) is 15 degrees or less.
  • the adhesive substance used to disperse the fine particles or powder remains, and the density of the adhesive substance is
  • the inclined surface structure should be higher in the vicinity of the surface in contact with the substrate than in the vicinity of the surface facing the substrate (the surface opposite to the surface in contact with the substrate).
  • the ratio of the adhesive substance density in the vicinity of the surface in contact with the substrate to the adhesive substance density in the vicinity of the surface opposite to the substrate is 2:;! ⁇ 1 0 in order to secure the adhesive strength and maintain the low resistivity. : 1 is desirable.
  • the film on which the conductive pattern is formed is not limited to a material as long as it is a plastic film, but it is preferably a PET film from the viewpoint of cost, mechanical strength, and heat resistance.
  • the PET film is made of a polyester derivative, the substituent, degree of polymerization, purity, size, thickness, density, surface treatment method, stretching method, hue, transparency, etc. are not limited.
  • polyimide ( ⁇ ) polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polystyrene (PS), polymethylmetatalylate (PMMA), Polycarbonate (PC), polyamide (PA), polypropylene (PP), polyphenylene oxide (PPO), and liquid crystal polymer film.
  • these plastic surfaces are treated with chemical and physical treatments.
  • metal or semiconductor fine particles or powder dispersed in the adhesive substance are composed of a plurality of different shapes, a sufficient pressure orientation effect is obtained, and the contact probability between the particles.
  • at least one type is a powder having a difference between the major axis and the minor axis, and at least one other type is a sphere.
  • the diameter of the metal or semiconductor particles or powder dispersed in the adhesive substance is so large that the quantum size effect is not affected, and is small enough to ensure a printing resolution of about ⁇ ⁇ ⁇ . Must-have. Therefore, it is desirable to set the value within the range of 101 111 to 10 111.
  • the type of metal dispersed in the adhesive substance is not limited, it is desired to use silver, gold, copper, aluminum alone, carbon, or an alloy containing at least one of them as a general purpose. Better!/,.
  • the adhesive substance is aluminum
  • the adhesive It is effective to mix a particle additive in the substance.
  • the particle additive is preferably 20 wt% or more and 50 wt% or less with respect to aluminum.
  • the particle additive mixed in the aluminum paste is zinc particles that are not easily affected by oxides on the particle surface that have a work function relatively close to that of aluminum.
  • the conductive pattern forming apparatus includes a sample mounting table having a flat mounting surface and being movable in the horizontal direction, and a pressure applying driver disposed so as to be movably opposed to the mounting surface.
  • the sample mounting table and the pressure application driver can be moved independently at an arbitrary speed, and the pressure application driver preferably has a curved surface or a spherical surface in contact with the sample.
  • the pressure application unit has a support base made of a metal flat plate having a metal sphere on its lower surface.
  • the higher the contact density with the sample the more uniform the flat surface after the treatment can be, but in order to concentrate the pressure, it is better to have fewer contacts. Therefore, it is desirable to set the diameter to an arbitrary value within the range of 0.1 mm to 5 mm.
  • the pressure applying drive body applies a vertical pressure to the sample mounting table and simultaneously drives the sample mounting table at a speed different from the moving speed of the sample in the horizontal direction. Operate to apply pressure in both horizontal directions.
  • the pressure application drive body is made up of one stage by bringing a plurality of metal spheres into contact with the metal plate sample mounting table side.
  • the metal sphere is attracted and held on the support base by a magnet provided on the side opposite to the metal sphere of the metal flat plate.
  • a mesh sheet may be disposed between the pressure application driver and the sample, and the pressure may be applied via the mesh sheet.
  • the mesh sheet is not particularly limited with regard to the material and fineness of the eyes, but from the viewpoint of pressure efficiency, the mesh sheet is made of stainless steel and finer!
  • Multiple pressure application drive bodies are installed in parallel so that multiple times of pressure application can be performed continuously. To do.
  • each driver may have a different function.
  • the heating temperature of the sample mounting table and the pressure application driver can be controlled independently of each other.
  • An infrared lamp can also be used for heating the pressure applying head.
  • a pressure may be adjusted by placing a heavy stone on the head.
  • the resistance of the pattern can be monitored by energizing between the microspheres in contact with the sample.
  • the microspheres for pressing the sample can be attracted and held with a magnet.
  • a means for measuring the resistivity of the pattern may be provided during the pressure application process by the pressure application driver.
  • Example 1 It is also possible to locally energize and heat between the pressure applying driver and the pattern.
  • Example 1 It is also possible to locally energize and heat between the pressure applying driver and the pattern.
  • the conductive pattern manufacturing apparatus of the present invention includes a pressure applying driver 10 and a sample mounting base 30 as shown in FIG.
  • Fig. 1 (a) is a cross-sectional view of the pressure application drive body (cross-sectional view of B-B in Fig. 1 (c)), and
  • Fig. 1 (b) is a cross-sectional view of the sample mounting base (Fig. 1 (c)).
  • Fig. 1 (c) is a top view of a cross section obtained by rotating the AA line in Fig. 1 (a) about the central axis.
  • the pressure applying driver 10 is provided with a cylindrical magnet 2 on the upper surface of the metal flat plate 1, a rectangular frame 3 on the lower surface of the metal flat plate 1, and a plurality of lower surfaces of the metal flat plate 1 in the rectangular frame 3.
  • the metal sphere 20 is provided in a single stage with no gaps. The metal sphere 20 is attracted to the metal flat plate 1 by the magnet 2! /.
  • the material of the metal spheres 20 used in the present invention is iron, carbon steel, and stainless steel (SUS410, SUS430) because they must have both magnetism and strength.
  • the diameter of the metal sphere 20 is 0.1 mm to 5. Omm, and is adjusted so that the pressure applied per contact at the time of pressurization is in the range of 0.1 lMpa to 100 MPa.
  • the sample mount 30 is a rectangular metal flat plate. The temperature of the sample mount 30 can be adjusted.
  • the pressure application driver 10 and the sample mounting table 30 constitute a conductive pattern manufacturing apparatus.
  • the sample flexible substrate 50 is made of a general plastic substrate having flexibility, for example, a plastic film.
  • the fine particle pattern 40 is obtained by adsorbing and fixing metal or semiconductor powder or fine particles on the surface of an adhesive substance, or by dispersing metal or semiconductor powder or fine particles in an adhesive substance. It is coated on the top (provided by the coating means).
  • the pressure applying driver 10 is used to adsorb and fix on the fine particle pattern 40 in which fine particles of metal or semiconductor coated on a flexible substrate are dispersed or on an adhesive substance. While applying heat to the fine particle pattern 40 formed of the formed metal or semiconductor fine particles, pressurizing the metal spheres 20 perpendicularly to the substrate surface while pressing the pressure applying driver 10 along the substrate surface in the plane of the fine particle pattern 40 Then, a conductive pattern having high conductivity and high electrical characteristics is produced by applying a sliding stress by scanning in an arbitrary direction and efficiently pressing the entire surface of the fine particle pattern 40.
  • the fine particle pattern 40 changes from the initial state shown in FIG. 2 (a) to the state shown in FIG. 2 (b) after the processing.
  • FIG. 2 (a) shows an initial state in which metal powder is dispersed in the resin binder 60.
  • FIG. 2 (b) shows the result of pressing the fine particle pattern with the pressure applying driver 10.
  • Figure 2 (b) shows a state in which the metal powder is aligned on the surface and arranged without gaps.
  • the metal powder 42 is arranged in a single step on the surface with no gap.
  • the condition of the resin binder used in the present invention is that it has viscoelasticity capable of forming a pattern by printing, dispensing method, ink jet method, and has the same characteristics as the adhesive substance.
  • the surface of the sample mounting table on which the film substrate is mounted is measured with a resistance thermometer, and the detected temperature is controlled to an arbitrarily set temperature. Thereby, evaporation of the binder in the conductive paste is controlled.
  • a current is applied between the pressure applying driver and a pattern (for example, a conductive paste formed on the pattern), and the resistivity of the pattern is increased during the pressure applying process. measure. This controls the finished resistance of the pattern to a desired value.
  • a pressure applying driver and a pattern (for example, a pattern) Conductive heating is locally performed between the conductive paste and the conductive paste formed in the turn. This controls the evaporation of the binder in the conductive paste.
  • a screen mask is attached to the screen printing machine, and an antenna wiring pattern 81 of silver ink 80 for screen printing as shown in Fig. 3 is formed on the antenna substrate 90 (polyarylate-based liquid crystal polymer substrate). They were left on the sample mounting table 30 at about 100 ° C. for 1 hour to evaporate the organic solvent component contained in the silver ink 80 for screen printing. Thereafter, the antenna wiring pattern 81 is sandwiched between the pressure applying driver 10 and the sample mounting table 30. In this state, the pressure applying drive body 10 is powered in parallel along the substrate surface, and the metal spheres 20 are sequentially slid and brought into contact with the entire surface of the antenna wiring pattern 81 in a pressed state, so that the antenna wiring pattern 81 is made uniform.
  • the pressure applying driver 10 is swept back and forth and left and right along a plane parallel to the plane of the sample setting table 30 so as to be pressed.
  • a scanning electron micrograph of the surface of the antenna wiring pattern 81 before and after pressurization is shown in Fig. 4, and a cross-sectional view of the antenna wiring pattern 81 is shown in Fig. 2.
  • Fig. 5 shows the arithmetic average roughness Ra obtained by sweep measurement of a surface shape of 100 m by the stylus method in the pattern of the present invention.
  • the vertical axis shows the unevenness / m in the film thickness direction, and the horizontal axis shows the sweep distance / in of the observation needle.
  • the Q value calculated from the impedance frequency characteristics measured for the antenna after pressurization was 6.9 from the impedance characteristics near the resonance frequency as shown in Fig. 7.
  • RF—ID antenna Q value 5.6 exceeded.
  • no peak showing resonance was observed in the frequency characteristics of impedance, and the Q value could not be calculated. It was shown that high-quality printed antennas can be produced by applying pressure.
  • a screen mask is attached to a screen printing machine on a field effect transistor substrate 100 (polyarylate-based liquid crystal polymer substrate), and a 20 wt% aqueous solution of polybulal alcohol (PVA) is applied.
  • PVA adhesive layer 110 is formed by setting. While the moisture in PVA adhesive layer 110 remains and remains sticky, zinc oxide semiconductor powder ZnO having a particle size of 200 mesh or less is adsorbed onto PVA adhesive layer 110, and then they are placed on the sample mounting table 30 It is allowed to stand at about 100 ° C. for 1 hour to evaporate water remaining in the PVA adhesive layer 110 and fix the ZnO powder to form the ZnO layer 120.
  • the substrate 100 force and the ZnO layer 120 are sandwiched between the pressure applying driver 10 and the sample mounting table 30.
  • the pressure application driver 10 is swept back and forth and horizontally horizontally with respect to the plane of the sample mounting table 30 so that the metal spheres 20 of the pressure application driver 10 are in contact with the entire surface of the ZnO layer 120 and pressed uniformly.
  • a drain-source electrode 140 is applied to the ZnO layer 120 using Ag paste.
  • the channel width is 5000 ⁇ m, and the channel length is 1000 ⁇ m.
  • a gate insulating film 130 was applied from a 10 wt% PVA aqueous solution, and finally a gate electrode 150 was applied using Ag paste to produce a coating type field effect transistor.
  • Keithley 2400 source meter as gate voltage source
  • Keithley 6 as drain-source voltage source and ammeter 6
  • the transistor system was measured by connecting a measurement system linked to a 430 femtoampere meter to a vacuum processor.
  • the gate voltage modulation of the drain current was observed, and the transfer characteristics shown in Fig. 10 showed that it functions as a typical N-type field effect transistor.
  • the ZnO layer 120 can function as an N-type semiconductor by increasing the density by pressurization because the field effect transistor does not work at all using the ZnO layer 120 before pressurization.
  • the transistor characteristics can be obtained.
  • FAC-1 vibration capacity type work function measuring instrument
  • the distribution becomes an average orientation angle of about 12 degrees and a width of about 10 degrees, with the major axis greatly oriented in the direction parallel to the film surface It has a structure. From this, it was confirmed that the pressure alignment effect was sufficiently obtained.
  • FIG. 13 which is a cross-sectional view of the conductor pattern formed on the substrate, the density of the fine particles in the conductor pattern before and after the treatment (orientation pressure treatment) and after the treatment (orientation and pressure treatment) was evaluated.
  • the density of the fine particles in the paste in the vicinity of the interface with the substrate is about half the density of the fine particles in the paste in the vicinity of the interface facing the substrate, indicating that there are more binder components near the substrate interface. It was done.
  • FIG. 13 is a cross-sectional view of the substrate and conductive pattern before processing (orientation pressure treatment) in the upper stage, and a cross-sectional view of the substrate and conductive pattern after treatment (orientation pressure treatment).
  • a blade is attached to the blade type coater for the printed wiring produced in the same manner as in Example 3, and the distance between the blade and the substrate is set to 8 in which is smaller than the thickness of the printed wiring, and printing is performed.
  • the blade was scanned over the wiring and heat-pressed at 80 ° C.
  • the PET substrate was fixed on the sample table of the blade coater.
  • the film thickness decreased to about 8111, and metallic luster was observed on the surface.
  • Digital multimeter using a result of the electrical resistance was measured, the resistivity was obtained 1. 5 X 10- 5 ⁇ 'cm .
  • a long axis obtained by dissolving an organic solvent-soluble amorphous polyester resin in a 1: 1 mixed solvent of methyl ethyl ketone and toluene to a weight concentration of 30 wt% and using it as a binder resin.
  • Aluminum paste having a difference in the length of the minor axis was mixed with 30 wt% to obtain an aluminum paste.
  • Spherical zinc fine particles were dispersed in the aluminum paste so as to have a weight concentration of 10 wt% with respect to the binder resin.
  • This aluminum paste was applied to a PET substrate having a thickness of 50 am by a blade coating method.
  • An aluminum patch having a thickness of about 100 m and a 1 cm square was prepared by heating at 00 ° C for 30 minutes to volatilize the solvent component.
  • the sheet resistance was about 1 M ⁇ / mouth.
  • this aluminum patch was subjected to pressure orientation using a roller press and measured for electrical resistance, a sheet resistance of about 20 ⁇ / mouth was obtained.
  • a vibration capacity type work function measuring instrument Raken Keiki Co., Ltd. FAC-1
  • Aluminum paste having a difference between the major axis and minor axis length produced in the same manner as described above was dispersed at 30 wt% with respect to the amorphous polyester binder resin to produce an aluminum paste.
  • This aluminum paste was applied to a 50 ⁇ m thick PET substrate by a blade coating method, and heated at 100 ° C. for 30 minutes to evaporate the solvent component, thereby producing an aluminum patch of about 100 m thickness and 1 cm square.
  • the electrical resistance was measured using a digital multimeter (PC500 manufactured by Sanwa Denki Keiki Co., Ltd.), it was not measurable (40 M ⁇ or more).
  • PC500 digital multimeter manufactured by Sanwa Denki Keiki Co., Ltd.
  • a lcm square adhesive patch was produced by a screen printer.
  • This patch was put into a sealed container without being dried, and kept in a sealed container, and then silver particles (Aldrich nanopowder purity 99.5% average particle size lOOnm or less) or gold particles (Aldrich nanopowder purity 99. 9% average particle size 50-130 nm) was adsorbed on the adhesive patch. Particles adsorbed other than the patches were removed by a blower. Thereafter, the patch on which the metal fine particles were adsorbed was cured by heating at 150 ° C. for 30 minutes to immobilize the metal fine particles.
  • the patch that adsorbed gold particles was brown, the patch that adsorbed silver particles was gray, and no metallic luster was observed.
  • the sheet resistance of the patch was measured with a digital multimeter, Measurement was impossible (40M ⁇ / mouth or more).
  • the patch on which these fine metal particles were adsorbed was subjected to pressure treatment with a roller press.
  • the patches showed gold and silver metallic luster, and the sheet resistance of both gold and silver patches was 0.01 ⁇ / mouth (lower limit of measurement). It was impossible to measure the film thickness of only the metal thin film portion.
  • the work function of the patch surface was measured using a vibration capacity type work function measuring instrument (Riken Keiki Co., Ltd. FAC-1)
  • the gold patch was 4.8 eV and the silver patch was 4.6 eV, which is close to the Balta state. Got the value.

Description

明 細 書
導電パターン形成フィルムと、そのための導電パターン形成方法及び導 電パターン形成装置
技術分野
[0001] 本発明は、フレキシブルな電子デバイスを低コストで作製できる導電パターン形成 フィルムと、そのための導電パターン形成方法及び導電パターン形成装置に関し、 特に可撓性を有するフィルム基板上に導電パターンを低温で簡便に作製する方法 および装置に関する。
背景技術
[0002] 近年、ユーザーフレンドリーな電子デバイスとして、フレキシブルシートディスプレイ やフレキシブル RF— ID (ラジオ周波数認識)システム等の急速な普及が期待されて いる。これらを実現するには可撓性を持つプラスチックフィルム上に電子デバイスバタ ーンを形成しなければならないが、これらを安価に大量に作成するために印刷プロセ スの適応が考えられている。
[0003] 従来、微細な配線パターンを作製する技術としては、加熱蒸着法やスパッタリング 法で作製した金属薄膜をフォトリソグラフィ一法によりパターユングする手法が主流で あつたが、加熱蒸着法やスパッタリング法は真空環境が不可欠であり、プロセスコスト を低減させることが困難であった。また、フォトリソグラフィ一法は多量の溶剤を必要と するため、環境に対する負荷も問題点として挙げられている。
[0004] 印刷による配線技術は、低コストで多量の製品を高速に作製することが可能である ため、既に実用的な電子デバイス作製に用いられている力 印刷により高い伝導性 を持つ配線を作製するためには、形成した導電性インクパターンに含まれるバインダ 一成分等を除去するために高温でベーキングすることが不可欠であった(特許文献 1 参照)。しかしながら、可撓性をもつプラスチックフィルムの多くは、高温で軟化'溶融 してしまうためプラスチックフィルム上にプリントデバイスを作製することは困難である 。このため、プリントデバイスはガラス等の耐熱性硬質基板上に作製されることが殆ど であった。 [0005] インクジェット法などで、金属ナノ粒子を分散させたインクを塗布し、比較的低温で 伝導性を持つ配線パターンを作製する技術は既に存在するが(特許文献 2〜4参照 )、金属ナノ粒子インクは高価であるため、安価に大量に作製するという目的を達成 することは困難である。
特許文献 1:特開 2001— 243836号公報
特許文献 2:特開 2005— 259848号公報
特許文献 3:特開 2004— 273205号公報
特許文献 4:特表 2006— 517606号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、可撓性を持つ一般的なプラスチック基板上に、導電パターンを 簡単な処理により形成すると供に、低温で配向加圧する簡単な処理を行う装置を用 いて導電性パターンを容易に作成する導電パターン形成フィルムと、そのための導 電パターン形成方法及び導電パターン形成装置を提供するものである。
課題を解決するための手段
[0007] 本発明は、上記目的を達成するために、以下の具体的な解決手段を採用する。
導電パターン形成フィルムは、可撓性を有するフィルム基板上に、導電性微粒子が 粘着物質に分散して充填されたものを加熱しながら加圧して形成したパターンを設 ける。
導電性微粒子を金属又は半導体の微粒子とする。また、導電性微粒子を集合又は 凝集して粉体とする。粉体の形状は、等方的ではなぐ長軸と短軸とに差を有するも のであって、その長軸が基板面に平行に配向して、隣接する粉体と接触するようにす 導電性微粒子又は粉体を構成する導電性微粒子を、銀、金、銅及びアルミニウム の内の任意種類を含むもの、または、粒子添加物が混入しているアルミニウムとする
粒子添加物を亜鉛粒子とする。
[0008] 導電性微粒子又は粉体を形成する導電性微粒子を構成する半導体の微粒子を、 酸化亜鉛、酸化インジウム、酸化チタン、酸化スズ及び酸化ニッケル又はそれらを含 む化合物の内の任意種類とする。
粘着物質は、粘着物質を含む導電性ペーストとし、粘着物質の基板面と垂直方向 の密度変化は、基板と接触する面近傍の方が、基板と接触する面と反対側の面近傍 よりも高くなる傾斜構造を有するようにする。
フィルム基板は、粘着物質に含まれる溶剤に対して耐性を持ち、それらの溶剤の沸 点以上のガラス転移点を持ち、粘着物質と密着性が良ぐ電気絶縁性を持ち且つ低 誘電率であるようにする。たとえば、基板を PETフィルムとする。
ノ ターンの表面平滑性を、粗さ曲線を断面の光学顕微鏡像の算出幅 100 mから 求めたとき、算術粗さ(Ra)で、 0. 2 111以下とする。
導電パターン形成装置は、平らな載置面を有し、水平方向に移動自在に構成され ている試料設置台と、載置面に対し任意の速度で移動自在に対向配置された圧力 印加用駆動体とし、圧力印加用駆動体は、載置面と対抗し且つ試料と接触する面を 、曲面又は球面とする。
[0009] 圧力印加用駆動体を、下面に金属球体を設けた金属平板から構成する。
金属球体は、その直径が 0. 1mmから 5mmの範囲内の任意の値をとるようにする。 圧力印加用駆動体は、試料設置台に対して、鉛直方向に移動されて圧力を印加 すると供に、水平方向に試料の移動速度とは異なる速度で駆動され、鉛直方向と水 平方向の両方に圧力を加えるように構成されている。
圧力印加駆動体は、金属球体を複数個金属平板の試料設置台側に 1段設ける。 金属平板に磁石を設け、金属平板を介して金属球体を吸着保持する。 また、圧力印加駆動体と試料との間にメッシュシートを配置し、メッシュシートを介し て圧力を印加させることもできる。
圧力印加駆動体は、試料設置台の平らな載置面と平行に且つ互いに並列に複数 個設けられ、載置面上の試料に対し並列に設けた複数個により連続的に複数回の 圧力印加を行なえるようにする。
[0010] 試料設置台に設けた制御装置は、試料設置台と圧力印加駆動体に設けた加熱手 段によりそれぞれの加熱温度をそれぞれ独立に制御できるようにする。また、パター ンの抵抗率を計測する手段を設けることもできる。
圧力印加用駆動体とパターンとの間を局所的に通電加熱する。
導電パターン形成装置は、可撓性を有するフィルム基板上に、金属や半導体の微 粒子が粘着物質中に分散されたものの塗布により形成されたパターンの抵抗率を低 下させる装置であり、パターン塗設されたフィルム基板をパターン塗設面を上に向け て設置する表面が平滑な試料設置台と、その上方に配置され、試料設置台に平行 に面している面が突起状を有する圧力印加用駆動体から構成し、圧力印加用駆動 体を、加熱状態の試料設置台の平面上に設置したフィルムに対して、フィルム面と鉛 直方向から接触加圧すると供に、圧力印加用駆動体をフィルム面と平行な任意の方 向に走査させることにより発生する摺り応力を加えることでフィルム上に形成した塗設 パターンの導電率を向上させる。
[0011] 加熱の温度を、導電性ペーストまたは粘着物質に含まれる溶剤の沸点以上、プラス チック基板のガラス転移点以下とする。
加圧の圧力を、金属球とパターンとの一つの接点に力、かる圧力が 0. IMPaから 10 OMPaの内の任意の値とする。
制御装置は、加熱の温度および加圧の圧力を、加熱、加圧前後のパターン変形率 が平面方向で ± 1 %以内、膜厚方向で ± 10 %以内となるように制御する。
[0012] 本発明は、粘弾性媒質に均一に分散された金属または半導体微粒子により形成さ れたプラスチックフィルム上のパターン、もしくは、粘着物質上に吸着、固定化された 金属または半導体微粒子により形成されたプラスチックフィルム上のパターンに対し 温度制御しつつ加圧することにより高伝導度を持つ導電パターンを形成させることが できる装置に特徴を有する。
発明の効果
[0013] 本発明は、簡単な構造の製造装置を用い、低温で、簡単な操作により基板上に導 電性パターンを容易に形成することができる。
一般的な印刷用導電インクを用いても低!/、温度で、伝導度の高レ、配線パターンや 、高性能な半導体薄膜をフレキシブル基板上に作製できる。
また、本発明の導電パターン形成フィルムと、そのための導電パターン形成方法及 び導電パターン形成装置は、可撓性を持つ一般的なプラスチック基板上に、大量に 安価に導電パターンを作製するために、低温で加圧する簡単な処理を行う装置を用
V、て高伝導性パターンを容易に作成すること力 sできる。
本発明では、 150°C以下の低温焼成技術を用いるので、比較的処理温度の低い プラスチックにも適用できるようになる。
また、本発明は半導体ペーストにも適応可能であるため、塗布低温プロセスで可撓 性をもつフィルム上に能動素子を作製することができる。
本発明は、様々な仕事関数を持つ金属電極を可撓性をもつフィルム上に作製でき るため、フレキシブル電池、エレクト口クロミック表示素子、エレクト口ルミネッセンス素 子、ダイオード素子等にも応用できる。
図面の簡単な説明
[図 1]本発明の導電性パターン作製装置の概略図である。
[図 2]本発明の微粒子パターンの概略図である。
[図 3]13. 56MHz, RF— ID用アンテナの配線図である。
[図 4]加圧前後のアンテナ配線パターン表面の走査型電子顕微鏡写真である。
[図 5]本発明のパターンの算術平均粗さ Raを示す。
[図 6]加圧前後のアンテナ配線パターンのインピーダンスの周波数特性である。
[図 7]加圧前後のアンテナ配線パターンの共振周波数付近の特性図である。
[図 8]本装置により作製した酸化亜鉛 (ZnO)を用いた塗布型電界効果トランジスタ(F ET)の断面図である。
[図 9]ゲート電圧を ± 100Vにしたときの本装置で製造した塗布型 FETの出力特性で ある。
[図 10]ドレイン電圧を 100Vにしたときの本装置で製造した塗布型 FETの伝達特性 である。
[図 11]本発明の配向度を説明する図である。
[図 12]本発明の配向度特性を示す図である。
[図 13]本発明の導電性ペースト断面の光学顕微鏡写真である。
符号の説明 [0015] 1 金属平板
2 マグネット
3 枠
10 圧力印加用駆動体
20 金属球体
30 試料設置台
40 微粒子パターン
50 可撓性基板
60 樹脂バインダー
70 金属,半導体微粒子
80 スクリーン印刷用銀インク
81 アンテナ配泉パターン
90 アンテナ用基板
100 電界効果トランジスタ用基板
110 PVA接着層
120 ZnO
130 ゲート絶縁膜
140 レイン-ソース電極
150 ゲート電極
発明を実施するための最良の形態
[0016] 以下、本発明を図に基づいて詳細に説明する。
以下の説明において、以下の用語は以下の意味に用いられる。即ち、微粒子は、 微細な固体粒子、ガスまたは煙突の排ガス中などに個々に分散しているものを意味 し、粉末は、通常、小さい固体粒子のゆるい集合体または凝集体を意味する。 導電性微粒子は、金属の微粒子及び半導体の微粒子を含む。金属の微粒子は、 金属の微粒子からなる粉体(ゆる!/ヽ集合体または凝集体)を構成する。半導体の微 粒子は、半導体の微粒子からなる粉体(ゆるい集合体または凝集体)を構成する。 粘着物質は、樹脂バインダーでもあり、印刷、デイスペンシング法、インクジェット法 によりパターン形成可能であるもの、基板を変質させないもの、また、加熱後、導電性 ノ ターンの電気物性に影響を与えないことが条件となる。好適な材料は、ポリビュル アルコール(PVA)水溶液、ポリスチレン(PS)トルエン溶液、ポリメチルメタクリレート( PMMA)トルエン溶液、および、導電性ペーストや絶縁性ペースト等のペースト中の 導電性物質を除!/、た物質でもある。
従って、導電性ペーストは、粘着物質に導電性物質を加えた物を意味する。
[0017] 導電パターンを形成したフィルムは、金属又は半導体材料の微粒子または粉体が 粘着物質中に分散状態に充填されたペーストを、基板上に所定のパターン形状に塗 設して構成する。
[0018] 上記加圧の制御は、加熱'加圧プロセスを含む。加圧である配向加圧は、(1)加圧 面が金属球体等のため平面ではなく Rがついていることと、(2)試料を挟む試料設置 台と金属球体の送りに速度差を設けることにより、試料にずり応力を発生させる。同時 に、温度制御する。この制御は、加熱器温度 Tと基板温度 Tが独立に調節でき且
R S
つ τ >τであるようにする。
R S
この加熱は、赤外線等をはじめとした電磁波加熱手段を用いることもできる。電磁波 加熱手段を用いれば、急速加熱、急速冷却できるようになる。
[0019] 加圧手段は、多点加圧手段の場合、マルチ微小球加圧手段を含む。また、多点加 圧手段のうちの網目加圧手段の場合、抵抗計測を行いながら通電加熱する通電加 圧手段を採用する余地がある。
[0020] 試料に圧力を印加する手段として以下の手段がある。
(1)ローラー型
鉛直方向と進行方向の 2種類の圧力を利用する。
(2)ブレード型
圧力先端面積の極小化による印加効率の向上を図り、小型機でも高圧印加が可能 にする。
(3)微小球型
ΧΥΖの 3軸方向の圧力を利用する。
[0021] 導電性ペーストの 1種となる導電性インクは、導電体の挙動により分離タイプと分散 タイプがある。分散タイプは、最終的な導電体の含有量に応じて、導体材料、半導体 材料および電極材料を構成する。この態様に応じて各種電子デバイスを構成するこ と力 Sできる。
インクの条件としては、以下のようなものがある。
( 1 )バインダー含有タイプであること。
(2)長軸と短軸に差を有する板状タイプに粒状タイプを混合するとより効果がある場 合がある。
(3)加工温度を低下するために、溶剤が低温(100°C以下)で揮発すること。
(4)インクの開発を不用とするために、バインダー上の導体粉付着パターンにも有効 に利用する。
[0022] ノ ターンにより配線を構成する場合、金、銀、銅、アルミニウム、カーボンが使用可 能である。半導体材料としては、その種類を限定するものではないが、汎用的には Z nO、 SnO、 In O , NiOが使用可能である。電極材料は、上記各材料の混合により
2 2 3
仕事関数を調節して使用する。
[0023] また、配向したペースト内では、全粉体の長軸が基板平面方向と作る角度の分布 は一般的に平均値 20度以下、分布幅 (標準偏差) 20度以下であるが、微粒子間の 接触面積を大きくし接触抵抗を低下させるために望ましくは平均値 15度以下、分布 幅 (標準偏差) 15度以下である。
[0024] 基板上に塗設された金属もしくは半導体の微粒子又は粉体のペーストパターン中 に、それら微粒子または粉体を分散させるのに用いた粘着物質が残留しており、その 粘着物質の密度が基板と接触する面近傍の方が、基板と対向する面 (基板と接触す る面と反対側の面)近傍よりも高くなる傾斜構造を有するようにする。
基板と接触する面近傍における粘着物質密度と上記基板と対向する面近傍におけ る粘着物質密度の比は、接着強度を担保し、低抵抗率を保持するためには 2 :;!〜 1 0 : 1となることが望ましい。
[0025] 基板上に塗設された金属もしくは半導体の微粒子または粉体のパターンにおいて 、パターン上に新たな膜を積層する際に上部の膜の連続性を保持する観点から、そ の表面平滑性を表す算術粗さ (Ra) (粗さ曲線を断面の光学顕微鏡像の算出エリア 1 00 μ mから求めたもの)、が小さ!/、ほど望まし!/、。
[0026] 導電パターンを形成したフィルムは、プラスチックフィルムであればその材質を限定 するものではないが、価格、機械強度、耐熱性の観点から PETフィルムであることが 望ましい。 PETフィルムはポリエステル誘導体からできていれば良ぐ置換基、重合 度、純度、大きさ、厚さ、密度、表面処理法、延伸法、色合い、透明度等は問わない
本発明のフィルム基板に用いるプラスチックフィルムは、導電性ペーストや粘着物 質に含まれる溶剤に対して耐性を持つこと、また、それらの溶剤の沸点以上のガラス 転移点 (軟化点)を持つこと、導電性ペーストや粘着物質と密着性が良いこと、電気 絶縁性を持ち且つ低誘電率( ε = 2. 0〜3. 0)であることが必要条件とされる。一般 に好適に用いられるものは、ポリイミド(ΡΙ)、ポリエチレンテレフタレート(PET)、ポリ エチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリスチレン(PS)、 ポリメチルメタタリレート(PMMA)、ポリカーボネート(PC)、ポリアミド(PA)、ポリプロ ピレン(PP)、ポリフエ二レンオキサイド(PPO)、液晶ポリマーフィルムである。また、密 着性向上のためこれらのプラスチック表面を化学処理、物理処理を施したものを用い るこど ある。
[0027] 前記粘着物質中に分散されている金属もしくは半導体の微粒子もしくは粉体が、複 数の異なる形状で構成される場合、十分な加圧配向効果を得るという観点と、粒子 間の接触確率を高めるという観点から、少なくとも 1種は長軸と短軸の長さに差がある 粉体とし、別の少なくとも 1種は球体であることが望ましい。
[0028] 前記粘着物質中に分散されている金属もしくは半導体の粒子もしくは粉体の直径 は、量子サイズ効果の影響が出ない程度に大きぐ Ι Ο πι程度の印刷分解能を確 保できる程度に小さくなくてはならない。故に、 101 111から10 111の範囲内の値とす ることが望ましい。
[0029] 前記粘着物質中に分散されている金属の種類は限定されないが、汎用として用い られるのは銀、金、銅、及びアルミニウム単独、カーボンあるいはそれらの少なくとも 一種を含む合金からなるものが望まし!/、。
[0030] 前記粘着物質中に分散されている金属がアルミニウムである場合には、前記粘着 物質中に粒子添加物を混入することが有効である。
アルミニウムの表面電子物性を担保するため添加物濃度は低いほうが望ましいが、 粒子添加物による接触抵抗の低減効果がでる程度の濃度が必要である。故に粒子 添加物はアルミニウムに対して 20wt%以上 50wt%以下が望ましい。
[0031] 前記アルミニウムペースト中に混入する粒子添加物は、アルミニウムと比較的仕事 関数が近ぐ粒子表面の酸化物の影響を受けにくい亜鉛粒子とすることが望ましい。 導電パターン形成装置は、平らな載置面を有し、水平方向への移動自在性を有す る試料設置台と、その設置面に対して移動自在に対向され配置された圧力印加用 駆動体からなり、試料設置台と圧力印加用駆動体は、独立に任意の速度で移動させ ること力 Sでき、圧力印加用駆動体は、試料と接触する面を曲面又は球面とすることが 望ましい。
[0032] 圧力印加用駆動体は、圧力印加部が、下面に金属球体を設けた金属平板からなる 支持台を有することが望ましレ、。
金属球体は、試料との接点密度が高い方が処理後の平面の均一さが得られるが、 圧力を集中させるためには接点が少ないほうが良い。故にその直径を 0. 1mmから 5 mmの範囲内の任意の値とすることが望ましい。
[0033] 圧力印加用駆動体は、前記試料設置台に対して、鉛直方向の圧力を印加すると同 時に、水平方向に対して試料の移動速度とは異なる速度で駆動させることで、鉛直 方向と水平方向の両方に圧力が加わるように動作させる。
圧力印加駆動体は、複数個の金属球体を金属平板の試料設置台側に接触させて 1段とすることが望ましい。
金属球体は、金属平板のこの金属球体と反対側に設けた磁石により支持台に吸着 保持する。
[0034] 圧力印加駆動体と試料との間にメッシュシートを配置し、メッシュシートを介して圧 力を印カロさせることもできる。
メッシュシートは、その材質、 目の細かさに関し特に制限は無いが、加圧効率の観 点からステンレス製で目が細か!/、方が望ましレ、。
圧力印加駆動体を並列に複数設置し、連続的に複数回の圧力印加を行えるように する。
圧力印加駆動体の数、直径、接触部の曲率半径に制限は無ぐそれぞれが同一材 質でもよいし、又、異なる材質でもよい。また、それぞれの駆動体が異なる機能を持つ てもよい。
[0035] 試料設置台と、圧力印加駆動体の加熱温度は、それぞれ独立に制御可能である。
圧力印加ヘッドの加熱には赤外線ランプを用いることもできる。
ヘッド上には、重石を載せて圧力の調整を行うようにしてもよい。また、試料に当接 する微小球体間に通電することにより、パターンの抵抗をモニターすることができる。 当然ながら、試料を押圧するための微小球体を磁石で吸引保持することができる。 圧力印加用駆動体による圧力印加工程中において、パターンの抵抗率を計測する 手段を設けることもできる。
圧力印加用駆動体とパターンとの間を局所的に通電加熱することもできる。 実施例 1
[0036] 本発明の導電パターン作製装置は、図 1に示すように圧力印加用駆動体 10と試料 設置台 30からなる。図 1は、図 1 (a)に圧力印加用駆動体の断面図(図 1 (c)の B— B 断面図)、図 1 (b)に試料設置台の断面図(図 1 (c)の B— B断面図)、図 1 (c)に図 1 ( a)の A— A線を中心軸で回転させた断面の上面図である。圧力印加用駆動体 10は 、金属平板 1の上面に円柱形状のマグネット 2を設け、その金属平板 1の下面に矩形 の枠 3を設け、この矩形の枠 3内の金属平板 1の下面に複数の金属球体 20を隙間無 く 1段だけ設ける構成をとる。金属球体 20は金属平板 1にマグネット 2で吸着されて!/、 る。本発明に用いる金属球体 20の材質は、着磁性、強度を持ち合わせる必要がある ため、鉄、炭素鋼、ステンレス(SUS410、 SUS430)である。金属球体 20の直径は 0. lmm〜5. Ommであり、加圧時に一接点当たりにかかる圧力が 0. lMpa~100 Mpaに入るように調節する。試料設置台 30は矩形の金属平板からなる。試料設置台 30は温度調節可能になっている。
[0037] 圧力印加用駆動体 10と試料設置台 30で導電パターン作製装置を構成する。
試料の可撓性基板 50は可撓性を持つ一般的なプラスチック基板、例えば、プラス チックフィルムからなる。 微粒子パターン 40は、金属や半導体の粉体や微粒子を粘着物質の表面に吸着、 固定化したもの、または、金属や半導体の粉体や微粒子を粘着物質中に分散したも ので、可撓性基板上に塗設(塗布手段により設けられた)されている。
[0038] 装置駆動時、圧力印加用駆動体 10を用いて、可撓性基板上に塗設された金属ま たは半導体微粒子が分散された微粒子パターン 40、もしくは、粘着物質上に吸着、 固定化された金属または半導体微粒子により形成された微粒子パターン 40に対し、 加熱しながら、基板面に垂直に金属球体 20を加圧しながら圧力印加用駆動体 10を 微粒子パターン 40平面内で基板面に沿って任意方向に走査させて摺り応力を加え て微粒子パターン 40全面を効率よく押圧することにより高伝導性 ·高電気特性を持 つ導電パターンの作製を行う。
[0039] この処理工程を経ることにより、微粒子パターン 40は初期状態の図 2 (a)の状態か ら、処理後の図 2 (b)の状態になる。
この微粒子パターンは、金属や半導体の粉体や微粒子 70を粘着物質の樹脂バイ ンダー 60中に分散したものである。図 2 (a)は、樹脂バインダー 60中に金属粉体が 散在した初期状態を示す。図 2 (b)は、圧力印加用駆動体 10で微粒子パターンを押 圧した結果を示す。図 2 (b)は、金属粉体が表面上に揃って隙間が無く配置された状 態を示す。好ましくは、金属粉体 42が表面上に 1段だけ揃って隙間が無く配置され た状態にする。
[0040] 本発明に用いる樹脂バインダーの条件は、印刷、デイスペンシング法、インクジエツ ト法によりパターン形成できる粘弾性を持っていることであり、前記粘着物質と同じ特 性を有すること。たフィルム基板が設置される表面が平板の試料設置台が、抵抗型 温度計にて温度計測され、その検知された温度が任意の設定された温度に制御さ れる。これにより、導電性ペースト中のバインダーの蒸発を制御する。
[0041] また、導電パターン形成装置において、圧力印加用駆動体とパターン (例えば、パ ターンに形成された導電性ペースト)との間に通電し、圧力印加工程中においてバタ ーンの抵抗率を計測する。これにより、パターンのできあがり抵抗値を所望の値に制 御する。
また、導電パターン形成装置において、圧力印加用駆動体とパターン (例えば、パ ターンに形成された導電性ペースト)との間を局所的に通電加熱する。これにより、導 電性ペースト中のバインダーの蒸発を制御する。
[0042] スクリーン印刷機にスクリーンマスクを装着し、アンテナ用基板 90 (ポリアリレート系 液晶ポリマー基板)上に、図 3に示すようなスクリーン印刷用銀インク 80のアンテナ配 線パターン 81を形成し、それらを試料設置台 30上に約 100°Cで 1時間放置し、スクリ ーン印刷用銀インク 80内に含まれる有機溶剤成分を蒸発させた。その後、それらの アンテナ配線パターン 81を圧力印加用駆動体 10と試料設置台 30により挟み込む。 その状態で、圧力印加用駆動体 10を基板面に沿って平行に動力もて、金属球体 20 をアンテナ配線パターン 81全面に押圧状態で順次摺動接触し、アンテナ配線バタ ーン 81が均一に押圧されるように圧力印加用駆動体 10を試料設置台 30平面と平行 な面に沿って前後左右掃引させる。加圧前後のアンテナ配線パターン 81表面の走 查型電子顕微鏡写真を図 4に、また、アンテナ配線パターン 81の断面図を図 2に示 す。図 5は本発明のパターンにおいて触針法により 100 mの表面形状の掃引計測 で求めた算術平均粗さ Raを示す。縦軸は膜厚方向の凹凸/ mを示し、横軸は観 測針の掃引距離/ inを示す。特性曲線 Ra = 0. 99 111は、処理前の特性を表し、 膜厚の距離変化が変動している。これに対し、特性 Ra = 0. Ι β μ ηιί 処理後の特 性を表し、膜厚の距離変化がほぼ一定に改善されて!/、る。
[0043] 加圧前の図 4 (a)の画像ではアンテナ配泉パターンは多孔質状になっており密度 が低い状態であることが観察される。加圧後の図 4 (b)の画像では空孔がほぼ消滅し 、金属微粒子が高密度状態になっている。このアンテナ配線パターンについてインピ 一ダンスの周波数特性の測定を行った。測定系にはアジレント社製精密インピーダ ンスアナライザ (4294A)を用いた。図 6に加圧前後のアンテナ配線パターンにつ!/ヽ てのインピーダンス特性を示す。 log表示の周波数 104 (Hz)における加圧前のインピ 一ダンスが 850. 7 Ωであったのに対し、加圧後のインピーダンスは 8· 4 Ωとなり加圧 力 Sインピーダンス減少に効果があることを示している。次にアンテナとしての特性を評 価するために Q値を算出した。
[0044] Q値の定義を
[数 1]
Figure imgf000016_0001
f :アンテナの共振周波数、 f :半値の低周波数側の値、 f :半値の高周波数側の
0 1 2
値として、図 7に示すような共振周波数付近のインピーダンス特性から、加圧後のァ ンテナについて実測したインピーダンスの周波数特性から算出した Q値が 6. 9となり 、金属アルミをエッチングして作製した市販の RF— IDアンテナの Q値 5. 6を上回つ た。加圧前のアンテナに関してはインピーダンスの周波数特性に共振を示すピーク が観察されず Q値を算出することはできな力 た。加圧により高品質な印刷アンテナ を作製できること力示された。
本実施例 1のアンテナ用基板 90として、ポリイミド系基板、ポリエチレンテレフタレー ト系基板を用いても同様の結果を得た。
実施例 2
[0045] 図 8に示すように電界効果トランジスタ用基板 100 (ポリアリレート系液晶ポリマー基 板)上に、スクリーン印刷機にスクリーンマスクを装着し、ポリビュルアルコール(PVA ) 20wt%水溶液のペーストを塗設することにより PVA接着層 110を形成する。 PVA 接着層 110内の水分が残留し粘着性を保っている間に、 200メッシュ以下の粒径を 持つ酸化亜鉛半導体粉末 ZnOを PVA接着層 110上に吸着させた後、それらを試料 設置台 30上に約 100°Cで 1時間放置し、 PVA接着層 110内に残留する水分を蒸発 させ ZnO粉末を固定し ZnO層 120を形成させる。その後、基板 100力、ら ZnO層 120 までを圧力印加用駆動体 10と試料設置台 30により挟み込む。そのとき、圧力印加用 駆動体 10の金属球体 20が ZnO層 120全面に順次接して均一に押圧されるように圧 力印加用駆動体 10を試料設置台 30平面と水平に前後左右掃引させる。この ZnO 層 120にドレイン-ソース電極 140を Agペーストを用いて塗設する。
[0046] この場合、チャネル幅は 5000 μ m、チャネル長は 1000 μ mである。この上に PVA 10wt%水溶液からゲート絶縁膜 130を塗設し、最後にゲート電極 150を Agペースト を用いて塗設し、塗布型電界効果トランジスタを作製した。ゲート電圧源として Keithl ey社製 2400ソースメータ、ドレイン-ソース電圧源及び電流計として Keithley社製 6 430フェムトアンペアメータを連動させた測定系を真空プロ一バーに接続してトランジ スタ特性を測定した。図 9に示すようにドレイン電流のゲート電圧変調が観察され、図 10に示す伝達特性より典型的な N型電界効果トランジスタとして機能することが示さ れた。加圧前の ZnO層 120を用いて同様に電界効果トランジスタを作製すると全く動 作しないため、加圧による高密度化により ZnO層 120が N型半導体として機能するよ うになることが示された。
[0047] 本実施例 2における電界効果トランジスタ用基板 100として、ポリイミド系基板、ポリ エチレンテレフタレート系基板を用いても同様の結果を得た。本実施例 2において用 いた ZnO層 120の代わりに、 In O , NiO, SnO等の半導体層を用いても同様のト
2 3 2
ランジスタ特性を得ることができた。これらの半導体膜に対して振動容量型仕事関数 測定器 (理研計器株式会社 FAC— 1)を用いて仕事関数を測定したところ、 In O、
2 3
Ni〇、 SnOの順に 4· 2eV、 4. 7eV、 4. 9eVとなった。また、粉末の状態でこれらの
2
半導体を混合して力 半導体膜を作製することにより仕事関数を調節できることが示 された。
実施例 3
[0048] スクリーン印刷機にスクリーン印刷用銀ペーストを用いて PET基板上に線幅 lmm、 膜厚約 12 m、全長 100mmの印刷銀配線を作製した。膜厚測定はマイクロメータ( 株式会社ミツトヨ製 MDC— 25MJ)を用いた。この銀配線に対して赤外線加熱機構 を設けたローラ型プレス機を用いてにて加熱加圧処理を行ったところ膜厚は約 6 m まで減少し、表面に金属光沢が観察された。このとき、ローラは赤外線により加熱され 80°Cまで温度が上昇していたが、試料台は常温に保たれていた。圧力測定シート( 富士写真フィルム株式会社製 プレスケール (登録商標)中圧用及び高圧用)を用い て加圧時の圧力分布を測定したところ lOMPaから lOOMPaの範囲以内であった。 加熱加圧処理による膜厚以外の配線寸法の変化は 1 %以内であった。加熱加圧処 理前後の PET基板の寸法変化も 1 %以内であった。
[0049] デジタルマルチメータ(三和電気計器株式会社製 PC500)を用いて電気抵抗を 測定し、配線の寸法から抵抗率を求めたところ 6· 0 X 10_6 Ω 'cmを得た。得られた 金属配線の断面から図 11で楕円体の長軸が基板平面に水平な軸に対して作る角と して定義される配向角の分布を求めたところ図 12のような結果になり、処理 (配向加 圧処理)前はほぼ等方的分布を示す平均配向角約 35度、幅約 23度の分布になって いるのに対して、本発明の処理 (配向加圧処理)後においては平均配向角約 12度、 幅約 10度の分布になり、長軸が膜面と平行方向に大きく配向した構造となっている。 このことより加圧配向効果が十分に得られていることが確認された。
また、基板上に形成させた導体パターンの断面図となる図 13において、処理 (配向 加圧処理)前と処理 (配向加圧処理)後における導体パターン中の微粒子の密度を 評価したところ、基板との界面近傍におけるペースト中の微粒子の密度は、基板と対 向する界面近傍におけるペースト中の微粒子の密度の約 1/2となり、基板界面近傍 の方がバインダー成分が多くなつていることが示された。
図 13は、上段が処理 (配向加圧処理)前の基板と導電パターンの断面図、下段が 処理 (配向加圧処理)後の基板と導電パターンの断面図である。
なお、上記評価は、図 13の断面写真をもとに面積分割法から求めたフィラー充填 率として評価した。
実施例 4
[0050] 実施例 3と同様に作製した印刷配線に対してブレード型コータにブレードを取り付 け、ブレードと基板の間隔を印刷配線の膜厚より小さい値である 8 inに設定し、印 刷配線上でブレードを走査し 80°Cにて加熱加圧処理を行った。この際、 PET基板は ブレードコータの試料台に固定しておいた。加熱加圧処理の結果、膜厚は約 8 111 まで減少し、表面に金属光沢が観察された。デジタルマルチメータをもちいて電気抵 抗を測定した結果、抵抗率は 1. 5 X 10— 5 Ω 'cmを得た。
実施例 5
[0051] 有機溶剤可溶型非晶性ポリエステル樹脂をメチルェチルケトンとトルエンの 1: 1混 合溶媒に重量濃度 30wt%となるように溶解させバインダー樹脂として用いここに表 面洗浄した長軸と短軸の長さに差を有するアルミニウム粉を 30wt%混合してアルミ ペーストとした。このアルミニウムペースト中に球体状の亜鉛微粒子をバインダー樹脂 に対して重量濃度 10wt%となるように分散させた。
[0052] このアルミニウムペーストを厚さ 50 a mの PET基板にブレードコート法で塗布し、 1 00°C30分間加熱させ溶媒成分を揮発させることにより約 100 m厚 lcm角のアルミ ニゥムパッチを作製した。デジタルマルチメータ(三和電気計器株式会社製 PC500 )を用いて電気抵抗を測定したところシート抵抗約 1M Ω /口であった。このアルミ二 ゥムパッチに対してローラ型プレス機を用いて加圧配向を行い電気抵抗測定を行つ たところシート抵抗約 20 Ω /口が得られた。振動容量型仕事関数測定器 (理研計器 株式会社 F AC— 1)によりパッチ表面の仕事関数を測定したところ 4. 5eVを得た。 実施例 6
[0053] 上記と同様に作製した長軸と短軸の長さに差を有するアルミニウム粉を非晶質ポリ エステルバインダー樹脂に対して 30wt%となるように分散させアルミニウムペースト を作製した。このアルミニウムペーストを厚さ 50 μ mの PET基板にブレードコート法で 塗布し、 100°C30分間加熱させ溶媒成分を揮発させることにより約 100 m厚の lc m角のアルミニウムパッチを作製した。デジタルマルチメータ(三和電気計器株式会 社製 PC500)を用いて電気抵抗を測定したところ測定不可 (40M Ω以上)であった 。このアルミニウムパッチに対してローラ型プレス機のローラ部分にステンレスメッシュ (635メッシュ)を挟み込み加圧配向を行い、電気抵抗測定を行ったところシート抵抗 約 1 Ω /口が得られた。振動容量型仕事関数測定器 (理研計器株式会社 FAC— 1 ) によりパッチ表面の仕事関数を測定したところ 4· 4eVを得た。ステンレスメッシュを 20 0メッシュのものにしても同様の効果を得た。
実施例 7
[0054] スクリーン印刷用絶縁ペースト(ナミックス株式会社製)を用いて、スクリーン印刷機 により lcm角の粘着性パッチを作製した。このパッチを乾燥させずに粘着性を保持し たまま密閉容器内に投入し、銀粒子(Aldrich社製 nanopowder 純度 99. 5% 平均粒径 lOOnm以下)または金粒子(Aldrich社製 nanopowder 純度 99. 9% 平均粒径 50— 130nm)を粘着パッチ上に吸着させた。パッチ以外に吸着した粒子 はブロア一によつて取り去った。この後、金属微粒子が吸着したパッチを 150°C30分 加熱することにより硬化させ金属微粒子を固定化させた。この状態の外観は、金粒子 を吸着させたパッチは茶色、銀粒子を吸着させたパッチは灰色で金属光沢は観察さ れな力 た。また、デジタルマルチメータによりパッチのシート抵抗を測定したところ、 測定不可 (40M Ω /口以上)であった。これらの金属微粒子が吸着したパッチに対 しローラ型プレス機により加圧処理を行った。パッチは金色と銀色の金属光沢を示す ようになり、シート抵抗は金、銀のパッチ両者で 0. 01 Ω /口以下 (測定下限)となつ た。金属薄膜部分のみの膜厚を測定することは不可能であった。振動容量型仕事関 数測定器 (理研計器株式会社 F AC— 1)によりパッチ表面の仕事関数を測定したとこ ろ、金のパッチが 4· 8eV、銀のパッチが 4· 6eVとなりバルタ状態と近い値を得た。

Claims

請求の範囲
[I] 可撓性を有するフィルム基板上に、導電性微粒子が粘着物質に分散して充填され たものを加熱しながら加圧して形成したパターンを設けたことを特徴とする導電バタ ーン形成フィルム。
[2] 前記導電性微粒子を金属又は半導体の微粒子としたことを特徴とする請求項 1記 載の導電パターン形成フィルム。
[3] 前記導電性微粒子の粒子径を 10nmから 10 mの範囲内の任意の値としたことを 特徴とする請求項 1又は 2項記載の導電パターン形成フィルム。
[4] 前記導電性微粒子を集合又は凝集して粉体としたことを特徴とする請求項 1乃至 3 のいずれか 1項記載の導電パターン形成フィルム。
[5] 前記粉体の形状は、等方的ではなぐ長軸と短軸とに差を有するものであって、そ の長軸が基板面に平行に配向して、隣接する粉体と接触していることを特徴とする請 求項 4記載の導電パターン形成フィルム。
[6] 前記導電性微粒子又は前記粉体を構成する導電性微粒子を、銀、金、銅及びァ ノレミニゥムの内の任意種類を含むようにしたことを特徴とする請求項 1乃至 5のいずれ 力、 1項記載の導電パターン形成フィルム。
[7] 前記導電性微粒子又は前記粉体を形成する導電性微粒子を構成する金属の微粒 子を、粒子添加物が混入しているアルミニウムとしたことを特徴とする請求項 1乃至 5 のいずれか 1項記載の導電パターン形成フィルム。
[8] 前記粒子添加物を、亜鉛粒子としたことを特徴とする請求項 7記載の導電パターン 形成フィルム。
[9] 前記導電性微粒子又は前記粉体を形成する導電性微粒子を構成する半導体の微 粒子を、酸化亜鉛、酸化インジウム、酸化チタン、酸化スズ及び酸化ニッケル又はそ れらを含む化合物の内の任意種類としたことを特徴とする請求項 1乃至 5のいずれか 1項記載の導電パターン形成フィルム。
[10] 前記粘着物質は、粘着物質を含む導電性ペーストとしたことを特徴とする請求項 1 乃至 9のいずれ力、 1項記載の導電パターン形成フィルム。
[I I] 前記粘着物質の前記基板面と垂直方向の密度変化は、前記基板と接触する面近 傍の方が、前記基板と接触する面と反対側の面近傍よりも高くなる傾斜構造を有する ようにすることを特徴とする請求項 1乃至 10のいずれか 1項記載の導電パターン形成 フィルム。
[12] 前記フィルム基板力 前記粘着物質に含まれる溶剤に対して耐性を持ち、それらの 溶剤の沸点以上のガラス転移点を持ち、粘着物質と密着性が良ぐ電気絶縁性を持 ち且つ低誘電率であることを特徴とする請求項 1乃至 11のいずれか 1項記載の導電 パターン形成フィルム。
[13] 前記基板を、 PETフィルムとしたことを特徴とする請求項 12記載の導電パターン形 成フィルム。
[14] 前記パターンの表面平滑性を、粗さ曲線を断面の光学顕微鏡像の算出幅 100 mから求めたとき、算術粗さ (Ra)で、 0. 2 in以下としたことを特徴とする請求項 1乃 至 13のいずれ力、 1項記載の導電パターン形成フィルム。
[15] 平らな載置面を有し、水平方向に移動自在に構成されている試料設置台と、
前記載置面に対し任意の速度で移動自在に対向配置された圧力印加用駆動体か らなり、
前記圧力印加用駆動体は、前記載置面と対抗し且つ試料と接触する面を、曲面又 は球面としたことを特徴とする導電パターン形成装置。
[16] 前記圧力印加用駆動体を、下面に金属球体を設けた金属平板から構成したことを 特徴とする請求項 15記載の導電パターン形成装置。
[17] 前記金属球体は、その直径が 0. 1mmから 5mmの範囲内の任意の値をとることを 特徴とする請求項 16記載の導電パターン形成装置。
[18] 前記圧力印加用駆動体は、前記試料設置台に対して、鉛直方向に移動されて圧 力を印加すると供に、水平方向に試料の移動速度とは異なる速度で駆動され、前記 鉛直方向と前記水平方向の両方に圧力を加えるように構成されていることを特徴とす る請求項 15乃至 17のいずれか 1項記載の導電パターン形成装置。
[19] 前記圧力印加駆動体は、前記金属球体を複数個前記金属平板の前記試料設置 台側に 1段設けたことを特徴とする請求項 16乃至 18のいずれか 1項記載の導電バタ ーン形成装置。
[20] 前記金属平板に、該金属平板を介して前記金属球体を吸着保持する磁石を設け たことを特徴とする請求項 16乃至 19のいずれか 1項記載の導電パターン形成装置。
[21] 前記圧力印加駆動体と試料との間にメッシュシートを配置し、メッシュシートを介し て圧力を印加させることを特徴とする請求項 16乃至 20のいずれか 1項記載の導電 パターン形成装置。導電パターン形成装置。
[22] 前記圧力印加駆動体が、前記試料設置台の平らな載置面と平行に且つ互いに並 列に複数個設けられ、前記載置面上の試料に対し前記並列に設けた複数個により 連続的に複数回の圧力印加を行なえるようにしたことを特徴とする請求項 16乃至 21 のいずれか 1項記載の導電パターン形成装置。
[23] 前記試料設置台に設けた制御装置は、前記試料設置台と前記圧力印加駆動体に 設けた加熱手段によりそれぞれの加熱温度をそれぞれ独立に制御できるようにしたこ とを特徴とする請求項 16乃至 22のいずれか 1項記載の導電パターン形成装置。
[24] 前記加熱手段を赤外線ランプとしたことを特徴とする請求項 23記載の導電パター ン形成装置。
[25] 前記パターンの抵抗率を計測する手段を設けたことを特徴とする請求項 16乃至 24 のいずれか 1項記載の導電パターン形成装置。
[26] 前記圧力印加用駆動体と前記パターンとの間を局所的に通電加熱することを特徴 とする請求項 16乃至 25のいずれか 1項記載の導電パターン形成装置。
[27] 可撓性を有するフィルム基板上に、金属や半導体の微粒子が粘着物質中に分散さ れたものの塗布により形成されたパターンの抵抗率を低下させる装置であって、バタ 一ン塗設されたフィルム基板をパターン塗設面を上に向けて設置する表面が平滑な 試料設置台と、その上方に配置され、試料設置台に平行に面している面が突起状を 有する圧力印加用駆動体から構成され、圧力印加用駆動体を、加熱状態の試料設 置台の平面上に設置したフィルムに対して、フィルム面と鉛直方向力 接触加圧する と供に、圧力印加用駆動体をフィルム面と平行な任意の方向に走査させることにより 発生する摺り応力を加えることでフィルム上に形成した塗設パターンの導電率を向上 させることを特徴とする請求項 17記載の導電パターン形成装置。
[28] 前記加熱の温度を、導電性ペーストまたは粘着物質に含まれる溶剤の沸点以上、 プラスチック基板のガラス転移点以下としたことを特徴とする請求項 27記載の導電パ ターン形成装置。
[29] 前記加圧の圧力を、金属球とパターンとの一つの接点に力、かる圧力が 0. IMPaか ら lOOMPaの内の任意の値としたことを特徴とする請求項 27又は 28記載の導電パ ターン形成装置。
[30] 前記制御装置は、前記加熱の温度および前記加圧の圧力を、加熱、加圧前後の パターン変形率が平面方向で ± 1 %以内、膜厚方向で ± 10 %以内となるように制御 することを特徴とする請求項 26乃至 29のいずれか 1項記載の導電パターン形成装 置。
PCT/JP2007/070230 2006-10-19 2007-10-17 Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice WO2008047823A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07829964.1A EP2075802B1 (en) 2006-10-19 2007-10-17 Conductive pattern forming film, and conductive pattern forming method
US12/443,482 US8278561B2 (en) 2006-10-19 2007-10-17 Conductive pattern forming film, and conductive pattern forming method and conductive pattern forming apparatus for the conductive pattern forming film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-284445 2006-10-19
JP2006284445 2006-10-19
JP2007-268168 2007-10-15
JP2007268168A JP5252473B2 (ja) 2006-10-19 2007-10-15 導電パターン形成フィルムと、そのための導電パターン形成方法及び導電パターン形成装置

Publications (1)

Publication Number Publication Date
WO2008047823A1 true WO2008047823A1 (fr) 2008-04-24

Family

ID=39314045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070230 WO2008047823A1 (fr) 2006-10-19 2007-10-17 Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice

Country Status (5)

Country Link
US (1) US8278561B2 (ja)
EP (1) EP2075802B1 (ja)
JP (1) JP5252473B2 (ja)
KR (1) KR20090064445A (ja)
WO (1) WO2008047823A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065271A1 (ja) * 2009-11-24 2011-06-03 独立行政法人産業技術総合研究所 導電性基板とその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802387B2 (en) 2008-04-30 2014-08-12 Nanyang Technological University Methods and compounds for detecting beta-lactamase activity
US8679905B2 (en) * 2011-06-08 2014-03-25 Cbrite Inc. Metal oxide TFT with improved source/drain contacts
US9412623B2 (en) * 2011-06-08 2016-08-09 Cbrite Inc. Metal oxide TFT with improved source/drain contacts and reliability
TW201339279A (zh) * 2011-11-24 2013-10-01 Showa Denko Kk 導電圖型形成方法及藉由光照射或微波加熱的導電圖型形成用組成物
KR101796452B1 (ko) * 2012-12-31 2017-11-13 주식회사 아모그린텍 연성인쇄회로기판 및 그 제조 방법
KR101560268B1 (ko) * 2014-04-21 2015-10-14 경희대학교 산학협력단 플렉서블 기판용 배리어 막 형성 방법
US10235061B1 (en) * 2016-09-26 2019-03-19 EMC IP Holding Company LLC Granular virtual machine snapshots
WO2019125488A1 (en) * 2017-12-22 2019-06-27 Hewlett-Packard Development Company, L.P. Encoding in three-dimensional objects
CN108718479A (zh) * 2018-07-13 2018-10-30 上海德门信息技术有限公司 一种液晶聚合物银浆的柔性电路基板及其制备方法和应用
US20230062683A1 (en) * 2020-05-01 2023-03-02 Dai Nippon Printing Co., Ltd. Wiring board and method for manufacturing wiring board
CN216930463U (zh) * 2021-10-09 2022-07-08 北京梦之墨科技有限公司 一种lcp电路板、多层lcp电路板及电子器件
CN114783298B (zh) * 2022-05-25 2023-08-01 苏州华星光电技术有限公司 柔性屏的校平装置和柔性屏的校平方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869295A (en) 1956-09-28 1961-05-31 Nippon Telegraph & Telephone Conductive paint and its application
JP2001064547A (ja) * 1999-09-01 2001-03-13 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化型導電性ペースト、それを用いた導体回路および非接触id
JP2001243836A (ja) 1999-12-21 2001-09-07 Murata Mfg Co Ltd 導電性ペースト及びそれを用いた印刷配線板
JP2004273205A (ja) 2003-03-06 2004-09-30 Harima Chem Inc 導電性ナノ粒子ペースト
JP2005259848A (ja) 2004-03-10 2005-09-22 Toshiba Corp 半導体装置及びその製造方法
JP2006024485A (ja) * 2004-07-09 2006-01-26 Mitsubishi Paper Mills Ltd 導電性膜または導電性画像作製方法
JP2006517606A (ja) 2003-01-29 2006-07-27 パレレック インコーポレイテッド 低い最低硬化温度を有する高導電性インク

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195837A (ja) * 1983-04-21 1984-11-07 Sharp Corp Lsiチツプボンデイング方法
US4960614A (en) * 1987-02-06 1990-10-02 Key-Tech, Inc. Printed circuit board
JPH03152992A (ja) * 1989-10-27 1991-06-28 W R Grace & Co 印刷回路板及びその製造方法
DE69121449T2 (de) * 1990-04-12 1997-02-27 Matsushita Electric Ind Co Ltd Leitende Tintenzusammensetzung und Verfahren zum Herstellen eines dickschichtigen Musters
EP0501358B1 (en) * 1991-02-25 1997-01-15 Canon Kabushiki Kaisha Connecting method and apparatus for electric circuit components
US5197655A (en) 1992-06-05 1993-03-30 International Business Machines Corporation Fine pitch solder application
US6034331A (en) * 1996-07-23 2000-03-07 Hitachi Chemical Company, Ltd. Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JP2000113919A (ja) * 1998-08-03 2000-04-21 Sony Corp 電気的接続装置と電気的接続方法
JP2000195584A (ja) * 1998-12-25 2000-07-14 Sony Corp 電気的接続装置と電気的接続方法
KR100305750B1 (ko) * 1999-03-10 2001-09-24 윤덕용 플라스틱 기판의 플립 칩 접속용 이방성 전도성 접착제의 제조방법
JP2001135138A (ja) * 1999-10-29 2001-05-18 Matsushita Electric Ind Co Ltd 導体ペースト
JP2003089282A (ja) 2001-09-18 2003-03-25 Fuji Xerox Co Ltd スクリーン印刷版及びその製造方法、スクリーン印刷版の製造装置、スクリーン印刷方法、スクリーン印刷装置、並びにスクリーン印刷物
JP4042497B2 (ja) * 2002-04-15 2008-02-06 セイコーエプソン株式会社 導電膜パターンの形成方法、配線基板、電子デバイス、電子機器、並びに非接触型カード媒体
EP1398673A3 (en) * 2002-09-12 2005-08-31 Canon Kabushiki Kaisha Developer
CN100380741C (zh) * 2003-06-25 2008-04-09 日立化成工业株式会社 电路连接材料、电路构件的连接结构及其制造方法
US20050153107A1 (en) * 2004-01-12 2005-07-14 Tdk Corporation Substrate having functional layer pattern formed thereon and method of forming functional layer pattern
JP4934993B2 (ja) * 2005-05-25 2012-05-23 住友電気工業株式会社 導電性ペーストおよびそれを用いた配線基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869295A (en) 1956-09-28 1961-05-31 Nippon Telegraph & Telephone Conductive paint and its application
JP2001064547A (ja) * 1999-09-01 2001-03-13 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化型導電性ペースト、それを用いた導体回路および非接触id
JP2001243836A (ja) 1999-12-21 2001-09-07 Murata Mfg Co Ltd 導電性ペースト及びそれを用いた印刷配線板
JP2006517606A (ja) 2003-01-29 2006-07-27 パレレック インコーポレイテッド 低い最低硬化温度を有する高導電性インク
JP2004273205A (ja) 2003-03-06 2004-09-30 Harima Chem Inc 導電性ナノ粒子ペースト
JP2005259848A (ja) 2004-03-10 2005-09-22 Toshiba Corp 半導体装置及びその製造方法
JP2006024485A (ja) * 2004-07-09 2006-01-26 Mitsubishi Paper Mills Ltd 導電性膜または導電性画像作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075802A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065271A1 (ja) * 2009-11-24 2011-06-03 独立行政法人産業技術総合研究所 導電性基板とその製造方法
JPWO2011065271A1 (ja) * 2009-11-24 2013-04-11 独立行政法人産業技術総合研究所 導電性基板とその製造方法
US8927054B2 (en) 2009-11-24 2015-01-06 National Institute Of Advanced Industrial Science And Technology Conductive substrate and process for producing same

Also Published As

Publication number Publication date
US20100025088A1 (en) 2010-02-04
JP2008124446A (ja) 2008-05-29
US8278561B2 (en) 2012-10-02
JP5252473B2 (ja) 2013-07-31
KR20090064445A (ko) 2009-06-18
EP2075802A4 (en) 2010-11-03
EP2075802B1 (en) 2013-11-20
EP2075802A1 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
WO2008047823A1 (fr) Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice
Zhang et al. Recent progress for silver nanowires conducting film for flexible electronics
Wajahat et al. Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube–polymer composites
US10234969B2 (en) Method of forming a composite conductive film
US8105126B2 (en) Method for fabricating touch panel
JP4763237B2 (ja) 基板上に導電性電子部品を製造する方法
Cao et al. Effect of graphene-EC on Ag NW-based transparent film heaters: optimizing the stability and heat dispersion of films
CN102087884A (zh) 基于有机聚合物和银纳米线的柔性透明导电薄膜及其制备方法
CN102270524A (zh) 基于热塑性透明聚合物的银纳米线透明导电薄膜及其制备方法
Li et al. Hybrid PEDOT: PSS to obtain high-performance Ag NW-based flexible transparent electrodes for transparent heaters
Yim et al. Hybrid copper–silver–graphene nanoplatelet conductive inks on pdms for oxidation resistance under intensive pulsed light
JP2008124446A5 (ja)
KR100992154B1 (ko) 탄소나노튜브를 이용한 투명 전도성 박막 및 그 제조 방법
Zhang et al. A novel flexible silver heater fabricated by a solution-based polyimide metalization and inkjet-printed carbon masking technique
Govind et al. Large‐Area Fabrication of High Performing, Flexible, Transparent Conducting Electrodes Using Screen Printing and Spray Coating Techniques
Li et al. Preparation of light-transmissive conductive film by free arc dispersed carbon nanotubes and thermos compression bonding
CN110240155A (zh) 界面组装大面积均匀碳材料薄膜、其制备方法与应用
KR101079664B1 (ko) 탄소나노튜브 박막 후처리 공정
Zhang et al. Method of multi-layer near-field electrohydraulic printing and sintering of nano-silver ink prepared by liquid phase reduction
CN109074917B (zh) 透明导电图案的形成方法
JP2013202911A (ja) 透明導電層付き基体の製造方法
CN113686466B (zh) 宽量程柔性电容式压力传感器及其制备方法
Porro et al. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks
WO2011065271A1 (ja) 導電性基板とその製造方法
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007829964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12443482

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097007319

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE