WO2011065271A1 - 導電性基板とその製造方法 - Google Patents

導電性基板とその製造方法 Download PDF

Info

Publication number
WO2011065271A1
WO2011065271A1 PCT/JP2010/070533 JP2010070533W WO2011065271A1 WO 2011065271 A1 WO2011065271 A1 WO 2011065271A1 JP 2010070533 W JP2010070533 W JP 2010070533W WO 2011065271 A1 WO2011065271 A1 WO 2011065271A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
conductive
substrate
aluminum
fine particles
Prior art date
Application number
PCT/JP2010/070533
Other languages
English (en)
French (fr)
Inventor
吉田 学
鎌田 俊英
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US13/503,632 priority Critical patent/US8927054B2/en
Priority to JP2011543218A priority patent/JPWO2011065271A1/ja
Publication of WO2011065271A1 publication Critical patent/WO2011065271A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0143Using a roller; Specific shape thereof; Providing locally adhesive portions thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0271Mechanical force other than pressure, e.g. shearing or pulling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive

Definitions

  • the present invention relates to a conductive substrate having a conductive pattern formed on a substrate, particularly a conductive substrate having a conductive pattern mainly composed of aluminum, and a method of manufacturing the same.
  • devices such as organic electroluminescence, batteries, and diodes considered to be applied to metal pattern technology are manufactured by a combination of an electrode having a high work function and an electrode having a low work function. It was difficult to make these devices by type.
  • the present inventors have reported on printed aluminum wiring, the resistivity is high and it is necessary to further reduce the resistivity for use in devices (see Non-Patent Documents 1 and 2).
  • Devices fabricated by printing tend to have inferior electrical characteristics as compared to devices fabricated by a common semiconductor process.
  • This relates to inking materials such as conductors, semiconductors, dielectrics, etc. to form an electrical circuit on a film substrate when adapting the printing process.
  • Functional inks (inks used for industrial inkjets and ultrafine inkjets, in which functional materials are inked.
  • Various inks such as metal ultrafine particle ink, conductive polymer ink, transparent electrode material ink, phosphor ink, etc.
  • the electrical properties of a printed pattern produced using this functional ink strongly depend on the bonding state between functional particles dispersed in the ink.
  • the baking temperature of 200 ° C. to 250 ° C. is still a high value to adapt to an inexpensive resin substrate such as PET (polyethylene terephthalate), and the cost of the ink itself using metal nanoparticles is very expensive.
  • PET polyethylene terephthalate
  • metal nanoparticles is very expensive.
  • spherical, scaly (fish-like) or dendritic (twist-like metal crystals radially in the crystallographic axis direction from the microcrystalline nucleus) radially in a binder made of insulating resin A film forming pattern is formed on the substrate by using a conductive paste in which an appropriate amount of aluminum particles such as a grown shape is dispersed, and a film forming pattern is formed on the substrate, and the film forming pattern is heated to remove the solvent in the film forming pattern.
  • the following "powder” means the powder which consists of the said microparticles
  • the present invention adopts the specific solutions described in the following (1) to (10) in order to achieve the above object.
  • the conductive substrate comprises a substrate and a conductive pattern provided on the substrate, and the conductive pattern has aluminum fine particles dispersed in the binder as a whole except for the surface opposite to the substrate side and the vicinity thereof A surface metal aluminum layer is formed on the surface and in the vicinity thereof, in which aluminum fine particles are rolled to form conductive junctions between the aluminum fine particles.
  • the surface metal aluminum layer of the conductive substrate is a conductive paste in which aluminum fine particles are dispersed in an arbitrary amount in a binder, and a film forming pattern is formed on the substrate using a film forming means. The surface is formed by applying pressure in the horizontal and vertical directions and heating.
  • the substrate of the conductive substrate is a plastic substrate.
  • the resistivity of the conductive pattern of the conductive substrate may be any value within the range of 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm (the resistivity of metal aluminum) or more at 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. Do.
  • Aluminum fine particles constituting a conductive pattern by setting the resistivity of the conductive pattern of the conductive substrate to an arbitrary value within the range of 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less at 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less
  • the crystal lattice of this crystallite is distorted by 0.1% or more at the time of pressure application processing compared with after printing and heating solvent removal processing, and this lattice distortion is 0.05 of the X-ray diffraction peak representing the (111) plane of aluminum crystal. To be observed as a shift of ° or more.
  • a film forming pattern is formed on the substrate by using a conductive paste in which an appropriate amount of aluminum fine particles is dispersed in a binder as a solvent made of insulating resin, The film formation pattern is heated to remove the solvent in the film formation pattern and dried, and pressure application processing in the horizontal and vertical directions and heat treatment are performed on the surface of the film formation pattern containing the aluminum fine particles. Create a conductive pattern.
  • the substrate is a plastic substrate.
  • the process temperature which is the temperature at the time of heating when producing a conductive pattern, is an arbitrary value within the range of values exceeding 0 ° C. at 150 ° C. or less.
  • the conductive pattern has a resistivity of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less and an arbitrary value in the range of 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or more, and the conductive pattern
  • the crystal lattice of the crystallite of aluminum fine particles that composes is distorted by 0.1% or more at the time of pressure application processing compared with after printing and heating solvent removal processing, and this lattice distortion represents the (111) plane of aluminum crystal Observe as a shift of 0.05 ° or more of the peak.
  • a film formation pattern is formed, and the aspect ratio (pattern height / pattern width) of the conductive pattern after the film formation pattern is heated and dried is 0.1 or less.
  • a film pattern is formed, and the pattern width deformation ratio is 10% or less when the pattern width after heat drying is compared with the pattern width after the pressure application processing.
  • a film formation (for example, printing) pattern is formed by conductive paste (including a binder) using aluminum fine particles that can easily form an insulating metal oxide on the fine particle surface, and the film formation pattern is heated to The solvent in the film formation pattern is removed and dried, and pressure and heat are applied horizontally and vertically to the surface of the film formation pattern to break the insulating aluminum oxide film formed on the aluminum fine particle surface. Form a good conductive bond between the aluminum particles.
  • the conductive pattern has a structure in which aluminum fine particles are dispersed in the binder as a whole except for the surface opposite to the substrate side and the vicinity thereof. Therefore, in the conductive pattern, a layer in which aluminum fine particles are dispersed in the binder resin is substantially formed on the substrate side, and the aluminum fine particles are rolled on the surface opposite to the substrate side and in the vicinity thereof. Since the surface metal aluminum layer on which the conductive junction is formed is formed, the conductor layer can be surely formed by the surface metal aluminum layer, and the layer in which aluminum fine particles are dispersed in the binder resin is surely semiconductive Body layers can be formed.
  • the conductive substrate on which such a conductive pattern mainly composed of aluminum is formed and the manufacturing method thereof can be suitably applied to an apparatus having various conductive parts such as an electrode of a device, a metal wiring, and an antenna regardless of the object. Conductive junction can be formed.
  • FIG. 1 shows a first embodiment of a manufacturing apparatus of the present invention. It is explanatory drawing of the force which acts on the film-forming pattern which concerns on this invention.
  • the Example 2 of the manufacturing apparatus of this invention is shown. It is a schematic diagram explaining the method to evaluate distortion of the crystal lattice in the conductive pattern which has aluminum as a main component in this invention from a X-ray-diffraction spectrum. It is a figure which shows the particle size distribution of two types of aluminum powder used by the Example of this invention.
  • FIG. 1 is a cross-sectional view of a conductive substrate in which a conductive pattern mainly composed of aluminum according to the present invention is provided on the substrate.
  • a conductive pattern 5 is provided on a substrate 1.
  • the aluminum fine particles 3 were dispersed in the binder 2 as a whole except for “surface and its vicinity” (hereinafter referred to as “pressure surface measurement” of the conductive pattern) on the side opposite to the substrate 1 side.
  • the surface metal aluminum layer 4 is formed in the "pressure surface measurement" of the said conductive pattern.
  • the ratio of the aluminum fine particles 3 to the binder 2 depends on the diameter of the aluminum fine particles 3, it varies depending on the characteristics to be obtained such as the conductivity and the resistance value of the conductive pattern 5.
  • the surface metal aluminum layer 4 is formed by the manufacturing method specific to the present invention described below. That is, A necessary amount of aluminum particles such as spheres, flakes (fish scale) or dendrites (a shape in which branch-like metal crystals grow radially in a crystallographic axis direction from a microcrystalline nucleus) in a binder made of insulating resin Form a film formation pattern (for example, a printing pattern) on the substrate by using a film forming means such as printing or coating with the conductive paste dispersed (an amount according to the conductivity, resistance value, etc.
  • a film formation pattern for example, a printing pattern
  • a film forming means such as printing or coating with the conductive paste dispersed (an amount according to the conductivity, resistance value, etc.
  • the film formation pattern is heated to remove the solvent in the film formation pattern and dried (in other words, the solvent is evaporated to dryness), and the surface of the film formation pattern (for example, print pattern) containing the aluminum fine particles is Apply pressure in the horizontal direction (for example, the same direction as the substrate surface) and in the vertical direction (for example, perpendicular to the substrate surface), and heat (to promote sintering between particles) Formation to.
  • the process of "forming a film formation pattern (for example, print pattern) using a film forming means, heating the film formation pattern to remove the solvent in the film formation pattern and drying” is formed. It is called “membrane and heating solvent removal treatment”.
  • the film forming means is a printing means and the film forming pattern is a printing pattern
  • the "film forming / heating solvent removing process” is called a “printing / heating solvent removing process” process.
  • the "application of pressure in the horizontal direction and the vertical direction with respect to the surface of the film formation pattern containing aluminum fine particles” is referred to as a "pressure application process”.
  • pressure application means in the horizontal direction (for example, the same direction as the substrate surface) and perpendicular direction (for example, the vertical direction to the substrate surface) with respect to the film formation pattern surface, and heating (sintering of fine particles is promoted)
  • the means will be described in detail in FIG.
  • the layer of the binder 2 basically has a thickness in the direction perpendicular to the upper surface of the substrate 1 from the side in contact with the substrate 1 to the side (pressure application side) of the surface metal aluminum layer 4 in contact with the outside air. And the thickness of the aluminum fine particle 3 or more.
  • the surface metal aluminum layer 4 and the layer of the aluminum fine particles 3 are present in the cross section viewed in the direction perpendicular to the substrate surface, but only the surface metal aluminum layer 4 may be .
  • the aluminum fine particles 3 on the pressure application surface side form a conductive junction between the aluminum fine particles so that adjacent ones break the insulating aluminum oxide film (crushed) to be substantially flat.
  • the aluminum fine particles 3 on the opposite side (closer to the substrate) to the pressure application surface tend to maintain a part of the original shape (in this example, a spherical shape). This tendency differs depending on the degree of application of pressure.
  • the materials constituting the respective portions of the conductive substrate and the manufacturing method will be shown below.
  • the substrate 1 is not particularly limited as long as it is usually used, and any material may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • plastic substrates of materials such as polycarbonate (PC), polyimide (PI), polyether sulfone (PES), polyacrylate (PAR), polyether ketone (PEEK), and preferably ceramic films such as plastic film substrates and green sheets
  • PC polycarbonate
  • PI polyimide
  • PES polyether sulfone
  • PAR polyacrylate
  • PEEK polyether ketone
  • the thickness of the substrate is not particularly limited, but an arbitrary value between 10 ⁇ m and 1000 ⁇ m is preferable because it is necessary to have strength to stably hold the element and to require flexibility.
  • the material constituting the binder 2 is made of an insulating resin and is not particularly limited, but preferably it is an acrylic resin, polycarbonate, polyvinyl butyral, polystyrene, polyimide, polyamide imide, polyester, epoxy resin, conductive Polymer materials, parylene, silazane materials, siloxane materials and the like are used.
  • fine particles such as spheres, scaly (fish scale) or dendrite (a shape in which metal crystals in the form of branches are radially grown in the crystal axis direction from the microcrystalline nucleus) are generally used. If it is a thing, it will not specifically limit, You may use any aluminum particulates. Hereinafter, the case where the shape of the aluminum fine particle 3 is spherical will be described.
  • the aluminum fine particles 3 are not particularly limited as long as they can be embedded in the layer of the binder 2, but smaller fine particles are more susceptible to the influence of the surface oxide film, and fine particles having a large particle diameter are limited by the film forming means In particular, in the case where the film forming means is used for printing, patterning becomes difficult, and the like, the value of which is in the range of 1 ⁇ m to 100 ⁇ m is preferable.
  • the following "powder” means the powder which consists of the said microparticles
  • the method of mixing the binder 2 and the aluminum fine particles 3 is not particularly limited as long as it is a commonly used method, and any method may be used.
  • a method generally used suitably, a ball mill stirring method, a revolution-revolution stirring method, an ultrasonic stirring method, a three-roller method and the like can be mentioned.
  • the method of forming a paste pattern in which the binder 2 and the aluminum fine particles 3 are mixed is not particularly limited as long as it is a commonly used method, and any method may be used.
  • a screen printing method As a pattern forming method generally and suitably used, a screen printing method, a gravure printing method, an offset printing method, an inkjet printing method, a doctor blade method, a slit coater method, a dispensing method, a micro contact printing method, a nanoimprinting method, etc. It can be mentioned.
  • the conductive pattern has a structure in which aluminum fine particles are dispersed in the binder as a whole except for the surface opposite to the substrate side and the vicinity thereof. For this reason, in the conductive pattern, a layer in which aluminum fine particles are dispersed in the binder resin is substantially formed on the substrate side, and the aluminum fine particles are rolled on the surface and in the vicinity thereof to form conductive bonding between the fine particles. Since the surface metal aluminum layer is formed, the conductor layer can be surely formed by the surface metal aluminum layer, and the semiconductor layer can be surely formed by the layer in which the aluminum fine particles are dispersed in the binder resin. it can.
  • FIG. 2 is a schematic view showing a cross-sectional view and a pressing method of the process for producing a conductive pattern containing aluminum as a main component according to the present invention.
  • FIG. 2 (a) shows, for comparison, the change of the aluminum pattern when the general heating and pressing method is applied
  • FIG. 2 (b) shows the aluminum pattern when the heating and pressure method of the present invention is applied. The corresponding change in the conductive pattern is shown.
  • FIG. 2 (a) is composed of FIGS. 2 (a) and 2 (a1) and FIGS. 2 (a) and 2 (a2).
  • FIG. 2 (b) is composed of FIG. 2 (b) (b1) and FIG. 2 (b) (b2).
  • the general heating and pressing method shown in FIG. 2 (a) is also referred to as a general roll pressing method, and is a method of sandwiching a sample between two rollers (having a heater unit) and applying pressure, for example, It is applied to the roll press device made by Nitto Reactor Co., Ltd.
  • a substrate 113 is formed of a conductive paste in which an appropriate amount of spherical aluminum fine particles 111 is dispersed in a binder 112 made of insulating resin.
  • a film formation pattern 110 is formed on the film formation means using the film formation means, and heating is performed while applying a force Fa in a direction perpendicular to the surface of the film formation pattern including the aluminum fine particles (for example, a direction perpendicular to the substrate surface). Heat solidify as shown in 2 (a) (a2).
  • the pressure is applied only in the direction perpendicular to the substrate 113, and the stress generated in the film formation pattern is the stress acting on the aluminum fine particles 111 and the binder resin Since the stress is dispersed to the stress 112, the crystal lattice of the crystallite in the aluminum fine particle 111 can not be distorted efficiently. Therefore, as shown in FIG. 2 (a) (a2), the aluminum oxide layer 114 remains on the surface of the aluminum fine particles 111 as shown by the arrows as a partially enlarged view of the aluminum fine particles 111, and the adjacent aluminum fine particles 111 are left. To form a conductive junction between them.
  • the spherical aluminum fine particles 11 are suitably contained in the binder 12 made of insulating resin.
  • a film forming pattern 10 is formed on the substrate 13 using a film forming means such as printing or coating by the dispersed conductive paste, and the film forming pattern 10 is heated to remove the solvent in the film forming pattern 10 and dried.
  • “application of pressure in the horizontal and vertical directions” basically refers to movement in the horizontal direction while applying pressure vertically, but, for example, the surface of the film formation pattern 10 of the conductive paste It also means to apply a force Fb to draw an arc as shown in FIG. 2 (b) (b1) on the side, in which case the binder 12 on the surface side of the film formation pattern 10 of the conductive paste and A force Fb is applied to the aluminum fine particles 11 so as to draw an arc.
  • This processing step is performed on the entire surface side of the conductive paste.
  • the pressure in the horizontal direction and the pressure in the vertical direction are applied to the surface side of the film forming pattern 10 of the conductive paste.
  • a further pressure is applied where the surface of the aluminum fine particle 11 is removed and the surface of the aluminum fine particle 11 is exposed (a portion in contact with the conductive paste of the force Fb has a predetermined area instead of a line, and the pressure continuously acts on the same portion) Therefore, the aluminum fine particles 11 are rolled to form a conductive bond between the fine particles, and the surface metal aluminum layer 5 is formed.
  • a member for applying the force Fb to the film forming pattern 10 of the conductive paste is not shown, for example, a roller provided on an eccentric shaft is used. That is, since the rotation shaft on which the roller is supported is eccentric, the roller itself performs an arc motion of the force Fb in FIG. 2B along with the rotation of the eccentric shaft while rotating.
  • FIG. 3 shows Example 1 of a manufacturing apparatus for carrying out the method of manufacturing a conductive substrate of the present invention.
  • the manufacturing apparatus 30 mainly includes a stage 32 which can be controlled to move in the X and Y directions, a pressure roller 35 which can be controlled to move in the Z direction while controlling rotation, and a control device (45 Through 47) and has a support mechanism (not shown) for holding the stage 32 and the pressure roller 35 in a predetermined relationship in advance before control.
  • the stage 32 has drive means provided with a drive source such as a motor, and is supported movably in the X-axis direction 41 and Y-axis direction 42 on the support table 31 on a plane, and controlled by the stage control unit 45
  • the rotational direction one direction, reciprocation), rotational speed and stop position etc. are controlled.
  • the moving distance in the case of the reciprocating operation and the number of reciprocating operations within the unit time can be arbitrarily set by the stage control unit 45.
  • a substrate 33 provided with a film formation pattern 34 for applying the manufacturing method of the present invention is placed on the stage 32.
  • the support roller 31 rotates the pressure roller 35 so that the outer peripheral facing portion of the pressure roller 35 is positioned at a position separated from the upper surface of the stage 32 by a predetermined distance between the pressure roller-stage gap Gr-s 40.
  • An axis 36 is arranged. This means that, for example, the center of the rotation shaft 36 can be controlled as a position separated in the Z-axis direction from the upper surface of the stage 32 by the length of “radius 44 of the pressure roller 35 + gap Gr ⁇ s40”. Do.
  • the axial center of the rotation axis 36 is parallel to the upper surface of the stage 32.
  • the interval of the gap Gr-s 40 includes an interval of a gap which prevents the opposing pressure roller 35 and the film forming pattern 34 from coming into contact before the control of the manufacturing process is started.
  • the rotation shaft 36 is provided so as to be capable of rotation control and movement control in the Z-axis direction.
  • a rotating shaft (not shown) of a motor (not shown) as a drive source is connected to the rotating shaft 36.
  • the rotating shaft 36 has a structure (not shown) capable of moving in the Z-axis direction 38 in a state of being connected to the rotating shaft of the motor, and is provided on a support mechanism (not shown) (not shown).
  • the motor connected to the rotation shaft 36 of the pressure roller 35 is attached to one side of a substantially L-shaped structure (not shown), and the other side of the substantially L-shaped structure is It is provided so as to be movable in the vertical direction (Z-axis direction 38) (not shown).
  • the structure capable of moving vertically can be configured as a combination structure of a linear gear and a rotary gear provided on the rotation shaft of the motor, a structure in which the opposing member constitutes a piezoelectric motor, or the like.
  • the pressure roller control unit 46 controls the rotational direction 37 (one direction, reciprocation), rotational speed, stop position and the like of the plurality of motors, and performs rotational control of the rotational shaft 36 and movement control in the Z-axis direction.
  • the control device comprises a pressure roller control unit 46, a stage control unit 45 and a manufacturing process control unit 47.
  • the manufacturing process control unit 47 controls the entire control unit.
  • a conductive paste of a predetermined composition is printed on the substrate 33 to form a print pattern, the print pattern is dried at a process temperature, and the substrate 33 provided with the film formation pattern 34 after drying is placed on the stage 32. I will leave it.
  • the manufacturing process control unit 47 sets the pressure roller-stage gap Gr-s 40 (as control parameters, the length to the top of the stage 32 and the center of the rotation shaft 36), the substrate 33 in the Z-axis direction. And the thickness value and the like of the film formation pattern 34 are respectively stored in storage means (not shown).
  • the means for obtaining each of the above values is selected from means obvious to those skilled in the art.
  • the pressing force of the pressure roller 35 applied to the film forming pattern 34 has a value of “radius 44 of pressure roller 35 + gap Gr ⁇ s40” representing the movement control amount of the rotating shaft 36 in the Z axis direction beforehand.
  • the relationship between the values of pressure sensors (not shown) applied to the film formation pattern data of the sample is stored in a table (storage means).
  • the control operation of the pressure roller control unit 46 based on the execution of the control step of the manufacturing process control unit 47 that performs overall control controls rotation of the rotation shaft 36 of the pressure roller 35 (for example, one-way operation) Or, while performing reciprocation operation control, central angle range control at reciprocation, control of the number of reciprocations per unit time, speed control, rotation number control, etc.), movement control of the rotation axis 36 in the Z axis direction is performed.
  • the start of the rotation control can be any timing from when the pressing force of the pressure roller 35 against the film forming pattern 34 reaches a predetermined value from zero.
  • the pressure roller 35 is brought into contact with the film forming pattern 34 by controlling to reduce the gap Gr-s 40, and after the contact, the pressure roller 35 is further added to the film forming pattern 34.
  • the pressing force of the pressure roller 35 is pressed to a predetermined pressure.
  • the force in the tangential direction of the pressure roller 35 ie, the XY plane, is formed on the surface of the film forming pattern 34. A horizontal force along it acts.
  • the pressure contact portion of the pressure roller 35 in the film forming pattern 34 moves along the XY plane, whereby the pressing force in the Z axis direction and the XY plane.
  • the horizontal force moves along the XY plane of the film formation pattern 34.
  • the force acting on the film formation pattern 34 is the pressing force in the Z-axis direction by the pressure roller 35 and the force in the horizontal direction along the XY plane.
  • FIG. 4 shows an example of the pressing force Pv in the Z-axis direction by the pressing roller 35 and the action of the horizontal force Ph along the XY plane.
  • FIG. 4 is an explanatory view of the force acting on the film formation pattern.
  • the pressing force Pv in the Z-axis direction by the pressing roller 35 and the force Ph in the horizontal direction along the XY plane act on the film forming pattern 34 to generate the above-mentioned bonding in FIG.
  • the pressure in the Z-axis direction by controlling the gap Gr-s 40, the contact position between the pressure roller 35 and the film formation pattern 34 is destroyed from the original position before the binder of the film formation pattern 34 is destroyed. It is applied to the position of the predetermined depth 43.
  • the position after movement of the pressure roller 35 is shown by the outline 39 thereof. During this time, both the control of the stage 32 and the heating control are performed.
  • the position of the depth 43 is in the state of FIG. 1 in which the film formation pattern 34 finally becomes the conductive pattern, ie, the conductive pattern 5 is opposite to the substrate 1 side.
  • Aluminum particles 3 are dispersed in the whole of the binder 2 except “surface and its vicinity” (hereinafter referred to as “pressure surface measurement” of the conductive pattern), and “pressure surface of the conductive pattern” In the measurement, the surface metal aluminum layer 4 is formed.
  • the ratio of the aluminum fine particles 3 to the binder 2 depends on the diameter of the aluminum fine particles 3, it becomes a position where it changes depending on the characteristics to be obtained such as the conductivity and the resistance value of the conductive pattern 5.
  • the manufacturing process control unit 47 applies pressure via the pressure roller control unit 46 and the stage control unit 45. Driving control of the roller 35 in the Z-axis direction gradually separated from the film forming pattern 34 is performed to perform necessary process end processing.
  • FIG. 5 is Example 2 of the manufacturing apparatus which provided the roller in the eccentric shaft for generating the arc-shaped movement of force Fb shown in FIG.2 (b).
  • the same reference numerals as those used in the description of the manufacturing apparatus of FIG. 3 have the same technical meanings, and thus the description thereof is omitted here.
  • the main configuration of the embodiment of FIG. 5 which differs from the embodiment of FIG. 3 is that an eccentric roller supported on a rotating body is used instead of the pressure roller.
  • a rotation shaft 49 is rotatably disposed on the support base 31 at a position separated from the upper surface of the stage 32 by a predetermined gap Gr-s 59 and a gap 58.
  • the axial centers of the rotation shaft 49 and the eccentric shaft 51 are parallel to the plane of the stage 32.
  • the gap Gr-s 59 includes a gap that prevents the opposing eccentric roller 50 and the film forming pattern 34 from contacting each other before the start of the control operation of the manufacturing apparatus in the manufacturing process.
  • “Gap Gr-s 59 + interval 58” can be used as a control parameter. This can control the position of the rotating shaft 49 as, for example, a position where the center of the rotating shaft 49 is separated in the Z-axis direction from the upper surface of the stage 32 by the length of “gap Gr-s 59 + interval 58”.
  • the rotating body 48 is configured as, for example, a disk, a roller, a cylinder, or the like. Similar to the example of the rotation shaft 36 of FIG. 3, the rotation shaft 49 is provided so as to be capable of rotation control and Z axis direction movement control.
  • a rotating shaft (not shown) of a motor (not shown) as a driving source is connected to the rotating shaft 49.
  • the rotating shaft 49 has a structure (not shown) capable of moving in the Z-axis direction 38 in a state of being connected to the rotating shaft of the motor, and is provided in a support mechanism (not shown) (not shown).
  • the motor connected to the rotation shaft 49 is attached to one side of a substantially L-shaped structure (not shown), and the other side of the substantially L-shaped structure is perpendicular to the support 31 (Z Provided so as to be movable in the axial direction 38) (not shown).
  • the structure capable of moving vertically can be configured as a combination structure of a linear gear and a rotary gear provided on the rotation shaft of the motor, a structure in which the opposing member constitutes a piezoelectric motor, or the like.
  • the rotating body control unit 56 controls the rotation direction 37 (one direction, reciprocation), the rotation speed and the stop position of the plurality of motors, and performs rotation control of the rotation shaft 49 and movement control of the Z axis direction.
  • the rotating body 48 is rotatably provided with an eccentric shaft 51 serving as a rotating shaft at an eccentric position separated from the axial center of the rotating shaft 49.
  • An eccentric roller 50 is integrally provided on the eccentric shaft 51.
  • the eccentric shaft 51 is connected to a rotary shaft (not shown) of a motor (not shown) as a drive source.
  • the motor connected to the eccentric shaft 51 is fixed to, for example, the rotating body 48 by a support structure (not shown).
  • the eccentric shaft 51 is rotatably provided.
  • the length to the point 52 on the outer periphery of the eccentric roller 50 on the extension is made longer than the length to the upper point (i.e., the radius). Due to the relative relationship between the rotating body 48 and the eccentric roller 50, only the eccentric roller 50 acts on the film forming pattern during the heating and pressing process of the present invention.
  • the range of rotation of the rotating body 48 is fine as long as it is slightly larger than the range in which the eccentric roller 50 acts on the film forming pattern 34.
  • FIG. A gap Gr-s 59 in the Z-axis direction between the eccentric roller 50 and the film forming pattern 34 which is a parameter used to control the pressure applied to the film forming pattern 34, is projected on the Z axis on the outer periphery of the eccentric roller 50. It is defined as the closest distance between the position of the point of and the position of the point on the deposition pattern 34.
  • the apparent radius A can be defined as “the length from the axial center of the rotational shaft 49 to the axial center of the eccentric shaft 51 + the length of the radius of the eccentric roller 50”.
  • the interval 58 is obtained as ““ the length from the center of the rotation shaft 49 to the center of the eccentric shaft 51 ” ⁇ “ cos ⁇ ”+“ the radius of the eccentric roller 50 ”.
  • means an angle formed by a line connecting the axis of the rotating shaft 49 and the axis of the rotating shaft 51 and the Z-axis direction 38.
  • the eccentric roller 50 is rotated in any direction 53 (one direction or both directions, any central angle range, etc. ), While rotating for an arbitrary period, rotate the rotating body 48 in an arbitrary angle range including the central angle ⁇ range involved in the heating and pressing process of the film formation pattern, in an arbitrary direction (one direction or both directions rotation), The film formation pattern 34 is heat-processed.
  • the eccentric roller control unit 55 controls the rotational direction 53 (one direction, reciprocation), the rotational speed and the stop position of the motor connected to the eccentric shaft 51, and controls the rotation of the eccentric roller 50.
  • the control device includes an eccentric roller control unit 55, a rotating body control unit 56, a stage control unit 45, and a manufacturing process control unit 57.
  • the manufacturing process control unit 57 integrally controls the control units 45, 55, 56.
  • a conductive paste of a predetermined composition is printed on the substrate 33 to form a print pattern, the print pattern is dried at a process temperature, and the substrate 33 provided with the film formation pattern 34 after drying is placed on the stage 32. I will leave it.
  • the manufacturing process control unit 57 sets the values of the gap Gr-s 59 and the interval 58 to the upper surface of the stage 32 and the axial center of the rotation shaft 49 (the center) and the thickness values of the substrate 33 and the film forming pattern 34 in the Z axis direction. It is stored in advance in storage means (not shown).
  • the interval 58 is, for example, a parameter of the central angle ⁇ between the line connecting the point 52 of the rotation axis 49 and the axis of the rotation axis 49 and the Z axis passing through the axis of the rotation axis 49 in advance.
  • “ the length from the axis of the rotating shaft 49 to the axis of the eccentric shaft 51 ” ⁇ “ cos ⁇ ”+“ the radius of the eccentric roller 50 ” is calculated, and the value is stored in the table .
  • the means for obtaining each of the above values is selected from means obvious to those skilled in the art.
  • the pressing force of the eccentric roller 50 applied to the film forming pattern 34 is stored in advance in a table as the relationship between the value of the gap Gr-s 59 and the value of the pressure sensor (not shown) applied to the sample film forming pattern material. Keep it.
  • the control operation of the eccentric roller control unit 55 based on the execution of the control step of the manufacturing process control unit 57 that performs overall control controls rotation of the rotation shaft 51 of the eccentric roller 50 (for example, one-direction operation or Reciprocation control, central angle range control during reciprocation, control of the number of reciprocations per unit time, speed control, rotation speed control, etc. are performed, and movement control of the rotating shaft 49 in the Z-axis direction is performed.
  • the start of the rotation control can be any timing from when the pressing force of the eccentric roller 50 against the film formation pattern 34 becomes from zero to a predetermined value.
  • the pressing force of the eccentric roller 50 on the film formation pattern 34 is acquired by a pressure sensor (not shown) or the like.
  • the rotor 48 in a state in which the eccentric roller 50 is fixed at an arbitrary central angle position is moved downward in the Z-axis direction (direction toward the substrate 33), and it is detected that the gap Gr-s 59 becomes a predetermined interval. Stop moving once.
  • the predetermined distance is set by the eccentric roller 50 when the rotating body 48 is rotated and the point 52 on the eccentric roller 50 is on the Z axis passing through the axis of the rotational shaft 49, ie, when the central angle ⁇ is zero degree. It means an interval at which a predetermined vertical force acts on the film formation pattern 34.
  • This “predetermined vertical force acting interval” is an arbitrary interval including the interval between pressure conditions exhibiting the cross-sectional structure of FIG. 1 from when the two are in contact with each other. The value of this interval is also previously obtained based on the sample before the execution of the manufacturing process.
  • the movement of the eccentric roller 50 and the rotating body 48, the movement of the stage 32, and the three parameters of the gap Gr-s 59 cause the following phenomena to occur.
  • Control This phenomenon is caused by applying a pressing force in the Z-axis direction by the eccentric roller 50 to the film forming pattern 34 and a force in the horizontal direction along the XY plane to shear the binder (for example, binder resin) in the film forming pattern 34.
  • the binder for example, binder resin
  • plastic deformation of metal particles such as aluminum particles is caused to destroy the surface oxide film, and the crystallites in the adjacent metal particles are joined by pressure. It refers to the phenomenon that forms.
  • the pressing force Pv in the Z-axis direction by the eccentric roller 50 and the force Ph in the horizontal direction along the XY plane act on the film forming pattern 34 to generate the above-mentioned bonding in the state of FIG.
  • the pressing position in the axial direction is controlled by the gap Gr-s 59 such that the contact position between the eccentric roller 50 and the film forming pattern 34 is a predetermined position where the binder is broken from the original position before the binder of the film forming pattern 34 is not broken. It applies to the position of the depth 43 of. While the point 52 on the eccentric roller 50 moves on the trajectory 54, control of the stage 32 and heating control are also performed.
  • the film formation pattern 34 finally becomes the conductive pattern in the state of FIG. 1 at the position of the depth 43, that is, the conductive pattern 5 is on the opposite side to the substrate 1 side.
  • It has a structure in which aluminum fine particles 3 are dispersed in the binder 2 as a whole except for “surface and its vicinity” (hereinafter referred to as “pressure surface measurement of conductive pattern”), “pressure surface measurement of the conductive pattern
  • the surface metal aluminum layer 4 is formed thereon.
  • the ratio of the aluminum fine particles 3 to the binder 2 depends on the diameter of the aluminum fine particles 3, it varies depending on the characteristics to be obtained such as the conductivity and the resistance value of the conductive pattern 5. Position where it will be.
  • the manufacturing process control unit 57 includes the eccentric roller control unit 55, the rotating body control unit 56, and the stage control unit 45.
  • the drive control of the eccentric roller 50 is performed in the Z-axis direction gradually separated from the film forming pattern 34 to perform necessary process end processing.
  • FIG. 6 is an explanatory view (FIG. 6 (b)) showing the relationship between the lattice distortion characteristics (FIG. 6 (a)) of crystallites in the aluminum fine particles constituting the conductive pattern and the shift of the X-ray diffraction peak.
  • the horizontal axis in FIG. 6A is the angle 2 ⁇ , and the vertical axis is the diffraction intensity.
  • the lattice diagram 74 of FIG. 6 (b) when tensile stress is applied to the crystal lattice in the direction of the arrow, the crystal lattice spacing widens. At this time, when observing the X-ray diffraction spectrum, the diffraction peak characteristic 71 appears on the low angle side as compared with the diffraction peak characteristic 72 of the original crystal lattice spacing.
  • the crystal lattice diagram 76 when compressive stress in the direction of the arrow acts on the crystal lattice, the crystal lattice spacing narrows, and the diffraction peak characteristic at the high angle side compared to the diffraction peak characteristic 72 showing the original crystal lattice spacing. 73 will appear.
  • the arrow means the stress to apply in the figure. If attention is paid to the relationship of FIG. 6, the crystal lattice of the crystallite of the aluminum fine particles constituting the conductive pattern of the present invention is distorted by 0.1% or more at the time of pressure application processing compared to after printing and heating solvent removal processing. The strain is observed as a 0.05 ° or more shift of the X-ray diffraction peak representing the (111) plane of the aluminum crystal.
  • particles made of Alfa Aesar (registered trademark) as aluminum powder 1, particle size: 325 mesh or less, purity 99.5% (metals basis), particles made of Alfa Aesar (registered trademark) as aluminum powder 2, particles Diameter: 100 mesh or less and 325 mesh or more, and purity of 99.5% (metals basis) were used.
  • FIG. 7 shows the particle size distribution (measured with a laser diffraction / scattering particle size distribution measuring device Partica LA-950V2 manufactured by Horiba, Ltd.) of each of the used aluminum powders.
  • the horizontal axis in FIG. 7 represents the particle diameter ( ⁇ m), and the vertical axis (the left side in the figure) represents the (occurrence) frequency (%).
  • the vertical axis (right side of the figure) indicates the passing part integrated value (the integrated frequency curve) (%).
  • the characteristic a of the Al powder (325 mesh or less) average particle diameter 18.0 ⁇ m in FIG. 7 is Al powder 1
  • the characteristic b of the Al powder (325 mesh or less) average particle diameter 93.3 ⁇ m is Al powder 2.
  • the particle diameter- (generation) frequency characteristics of FIG. 7 are the characteristics a of the Al powder 1 and the characteristics b of the Al powder 2, and the particle diameter-passage integrated value characteristics are the characteristics c of the Al powder 1 and the characteristics of the Al powder 2.
  • the integrated value of the passing portion rises from 0 to 100 on the upper right.
  • the average particle diameter of Al (aluminum) powder 1 was measured to be 18.0 ⁇ m, and the average particle diameter of Al powder 2 was measured to be 93.3 ⁇ m.
  • the substrate was Kapton (registered trademark) 300H (film thickness: 75 ⁇ m) manufactured by Toray DuPont Co., Ltd.
  • the film formation pattern is heated to remove the solvent in the film formation pattern and dried
  • a general roll press method manufactured by Nitto Reactor Co., Ltd.
  • Roll pressing device and the heating and pressing method of the present invention
  • the horizontal direction eg, same direction as the upper surface of the substrate
  • the vertical direction eg, substrate
  • the process temperature may take any value within the range of values greater than 0 ° C. at 150 ° C. or less.
  • Fig. 8 shows an X-ray diffraction spectrum (Fig. 8 (b)) of the conductive pattern using the aluminum powder 1 and an X-ray diffraction spectrum (Fig. 8 (a)) of the conductive pattern using the aluminum powder 2 Manufactured by RIGAKU Sample horizontal type multi-purpose X-ray diffractometer (measured using Ultima IV). The horizontal axis in FIG. 8 represents the angle “2 ⁇ / °”, and the vertical axis represents the intensity “Intensity (diffraction intensity)”.
  • FIG. 8 (a) shows the characteristics of the Al powder 2 having an average particle diameter of 93.3 ⁇ m, that is, the characteristics e after the roller pressing, the characteristics f before the pressing, and the characteristics g after the heating and pressing of the present invention.
  • FIG. 8 (b) shows the characteristics of the Al powder 1 having an average particle diameter of 18.0 ⁇ m, that is, the characteristics h after roller pressing, the characteristics i before pressing, and the characteristics j of the present invention after heating and pressing.
  • the upper column of Table 3 shows the characteristics f, g and e of the aluminum powder 2 having an average particle diameter of 93.3, and the lower column shows the characteristics i, j and h of the aluminum powder 1 having an average particle diameter of 18.0.
  • Table 3 regardless of the particle size of the aluminum fine particles, the lattice strain in the crystallite in the aluminum fine particles became 0.125% by performing the heating and pressing process of the present invention. At this time, the following equation 1
  • the stress calculated using the above is 86 MPa, which is larger than 17.2 MPa of the general roll pressing method, regardless of the particle diameter of the aluminum fine particles. From these results, it was shown that the heating and pressing method of the present invention can generate stress in crystals in aluminum fine particles very efficiently. Further, as shown in Table 1, the sheet resistance at this time was 0.8 ⁇ for the aluminum powder 1 and 1.0 ⁇ for the aluminum powder 2.
  • each resistivity is about 0.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm in the case of aluminum powder 1 and aluminum powder 2 In the case of, it is calculated as about 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the resistivity of the aluminum powder (fine particles) of the present invention is 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less and 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm (resistivity of metal aluminum) or more in any range.
  • FIG. 9 (a) shows the pattern width in the vertical and horizontal directions of the conductive pattern after the printing and heating solvent removal processing
  • FIG. 9 (b) shows the vertical pattern width of the conductive pattern after heating and pressing
  • FIG. 9A is 629 ⁇ m in the length between the tips of the arrows k1 and k2, and the vertical pattern width m is 605 ⁇ m in the length between the tips of the arrows m1 and m2, FIG.
  • the vertical pattern width n) is 621 ⁇ m in the length between the tips of the arrows n1 and n2, and the horizontal pattern width p in FIG. 9C is 629 ⁇ m in the length between the tips of the arrows p1 and p2.
  • the vertical and horizontal pattern widths read from FIG. 9 and the rates of change before and after the heat and pressure treatment are as shown in Table 4.
  • the change rate of the pattern is, as shown in Table 4 above, the change rate of vertical width 2.6%, width change It was shown that the rate was very small, 0%.
  • the invention may also take the embodiments described below.
  • the conductive pattern has a resistivity of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less and an arbitrary value in a range of 2.65 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or more to form a conductive pattern.
  • the crystal lattice of aluminum fine particle crystal is distorted by 0.1% or more at the time of heating pressure application processing compared with printing and drying (after heating solvent removal processing), and this lattice distortion represents the (111) plane of aluminum crystal
  • the aspect observed as a 0.05 degree or more shift of a diffraction peak can also be taken.
  • a film formation pattern is formed, and the film formation pattern is heated to remove the solvent in the film formation pattern and dried, and then the aspect ratio of the conductive pattern (pattern height / pattern width ) Form a film formation pattern when 0.1 or less, heat the film formation pattern, remove the solvent in the film formation pattern and dry it, and the pattern width after the heating pressure application treatment and It is also possible to adopt an aspect in which the pattern width deformation ratio is 10% or less when comparing.

Abstract

安価な材料を用い、従来のものより低い温度で製造することができる導電性基板とその製造方法を提供する。 導電性基板は、基板1と、基板1上に設けた導電パターン5からなり、導電パターン5は、基板1側とは反対側の表面及びその近傍を除いて全体的にバインダー2中にアルミニウム微粒子3が分散された構造を有し、前記表面及びその近傍にはアルミニウム微粒子3が圧延され微粒子同士の導電性接合が形成された表面金属アルミニウム層4が形成されている。

Description

導電性基板とその製造方法
 本発明は、基板上に導電パターンを形成した導電性基板、特にアルミニウムを主成分とする導電パターンを形成した導電性基板とその製造方法に関する。
 基板上に形成される導電パターンとして、今日までに、数多くの印刷による金属パターンの形成方法が報告されている。印刷で金属パターンを形成する場合、一度版を製造してしまえば、同じパターンを大量に高速に形成できる。また、真空プロセスやホトリソグラフィー等のプロセスが必要でないため、低エネルギー・低環境負荷な作製プロセスといえる。
 しかし、現在までに報告されている導電ペーストの主流は、銀ペーストであり(特許文献1、2参照)、銀の地金の価格高騰や価格の変動などの問題があった。
 また、一般的に、金属パターン技術適用対象と考えられている有機エレクトロルミネッセンスや電池、ダイオード等のデバイスは仕事関数の高い電極と仕事関数の低い電極の組み合わせで作製されることから、銀インク一種類でこれらのデバイスを作製することは困難であった。
 一方、本発明者らは印刷アルミニウム配線について報告しているが、抵抗率が高くデバイスに使用するには更なる抵抗率の低減が必要であった(非特許文献1,2参照)。
特許公開2009-16201 特許公開2008-186353
吉田 学他、第19回マイクロエレクトロニクスシンポジウム論文集、2009年、P.21 吉田 学他、第23回エレクトロニクス実装学会講演大会講演論文集、2009年、P.29
 印刷により作製したデバイスは、一般的な半導体プロセスで作製したデバイスと比較して電気特性が劣る傾向がある。これは、印刷プロセスを適応する際に、導体や半導体、誘電体等の材料をインク化し、フィルム基板上に電気回路を形成させることに関係している。機能性インク(工業用インクジェットや、超微細インクジェットに用いられるインクで、機能性材料をインク化したもの。金属超微粒子インク、導電性高分子インク、透明電極材料インク、蛍光体インクなど様々なインクが開発されている)は印刷適正を持たせるために、機能性微粒子、バインダー、界面活性剤、溶剤等の様々な物質を適切に混合して調製する。この機能性インクを用いて作製された印刷パターンの電気特性は、インク中に分散されている機能性微粒子間の接合状態に強く依存する。
 故に、例えば、一般的な金属インクを用いて低抵抗率金属配線を作製するには、印刷によりパターンを形成する過程のみでなく、溶媒を加熱除去して乾燥する過程、金属微粒子間を焼結させるための高温焼成過程が不可欠となる。これらの過程における焼成温度は基板の材質選択を制限する重要な因子となってくる。現在、焼成温度を低減させるための手法として金属ナノ粒子を用いた金属インクの研究が盛んに行われており、200℃~250℃付近の焼成温度でバルク銀の抵抗率(1.6×10-6Ω・cm)に近い抵抗率約2.0×10-6Ω・cmが得られている。
 しかしながら、200℃~250℃という焼成温度はPET(ポリエチレンテレフタレート)等の安価な樹脂基板に適応するには依然として高い値であるのと、金属ナノ粒子を用いたインク自身の価格が非常に高価であることとが、この技術を市場に普及させる際の壁となっている。また、アルミニウム等の非常に酸化されやすい材料を金属ナノ粒子化することは現在の技術では不可能である。
 このため、印刷アルミニウムパターンを導電化させるためには、印刷アルミニウムパターンを形成しているアルミニウム微粒子間に金属接合を形成する必要がある。
 本発明は、上記問題点に鑑み、安価な材料を用い、従来のものより低い温度で製造することができる導電性基板とその製造方法を提供することを目的とする。
 また、応力印加時の印刷パターン幅の変形率が小さい方法を提供することを目的とする。
 上記目的を達成するために、本発明は、絶縁性の樹脂からなるバインダー中に球状、鱗片状(魚の鱗状)又は樹枝状(微結晶核よりある結晶軸方向に小枝状の金属結晶が放射状に成長した形状)等のアルミニウム微粒子を適宜量分散した導電ペーストにより、基板上に成膜手段を用いて成膜パターンを形成し、成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥し、その成膜パターンのアルミニウム微粒子を構成する金属結晶子に効率よく応力を印加し、結晶格子に歪みを発生させ、アルミニウム微粒子表面にできる絶縁性の酸化アルミニウム膜を破壊することによりアルミニウム微粒子間の導電性接合を形成する手段を採用する。なお、下記「粉末」は、上記微粒子よりなる粉末をいう。
 本発明は、上記目的を達成するために下記の(1)から(10)記載の具体的な解決手段を採用する。
(1)導電性基板は、基板と、前記基板上に設けた導電パターンからなり、導電パターンは、基板側とは反対側の表面及びその近傍を除いて全体的にバインダー中にアルミニウム微粒子が分散された構造を有し、前記表面及びその近傍にはアルミニウム微粒子が圧延され前記アルミニウム微粒子同士の導電性接合が形成された表面金属アルミニウム層が形成されている。
(2)導電性基板の表面金属アルミニウム層は、バインダー中にアルミニウム微粒子を任意量分散した導電ペーストにより、基板上に成膜手段を用いて成膜パターンを形成し、アルミニウム微粒子を含む成膜パターン表面に対し水平方向と垂直方向への圧力印加と、加熱とを行って形成したものとする。
(3)導電性基板の基板は、プラスチック基板とする。
(4)導電性基板の導電パターンの抵抗率を、1×10-4Ω・cm以下で2.65×10-6Ω・cm(金属アルミニウムの抵抗率)以上の範囲内の任意の値とする。
(5)導電性基板の導電パターンの抵抗率を1×10-4Ω・cm以下で2.65×10-6Ω・cm以上の範囲内の任意の値とし、導電パターンを構成するアルミニウム微粒子の結晶子の結晶格子が圧力印加処理時に印刷・加熱溶媒除去処理後と比較して0.1%以上歪み、この格子歪をアルミニウム結晶の(111)面を表すX線回折ピークの0.05°以上のシフトとして観察されるようにする。
(6)導電性基板の製造方法において、絶縁性の樹脂からなる溶媒としてのバインダー中にアルミニウム微粒子を適宜量分散した導電ペーストにより、基板上に成膜手段を用いて成膜パターンを形成し、前記成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥し、前記アルミニウム微粒子を含む前記成膜パターン表面に対し水平方向と垂直方向への圧力印加処理と、加熱処理を行い、導電パターンを作成する。
(7)導電性基板の製造方法において、基板をプラスチック基板とする。
(8)導電性基板の製造方法において、導電パターンを作製するときの前記加熱時の温度となるプロセス温度を150℃以下で0℃を超える値の範囲内の任意の値とする。
(9)導電性基板の製造方法において、導電パターンの抵抗率が1×10-4Ω・cm以下で2.65×10-6Ω・cm以上の範囲内の任意の値をとり、導電パターンを構成するアルミニウム微粒子の結晶子の結晶格子が圧力印加処理時に印刷・加熱溶媒除去処理後と比較して0.1%以上歪み、この格子歪がアルミニウム結晶の(111)面を表すX線回折ピークの0.05°以上のシフトとして観察されるようにする。
(10)導電性基板の製造方法において、成膜パターンを形成し、この成膜パターンを加熱乾燥した後の導電パターンのアスペクト比(パターン高/パターン幅)が0.1以下となるように成膜パターンを形成し、加熱乾燥した後のパターン幅と前記圧力印加処理後のパターン幅とを比較したときのパターン幅変形率が10%以内となるようにする。
 本発明の製造方法は、アルミニウム微粒子を構成する金属結晶子に効率よく応力を印加し、結晶格子に歪みを発生させ、アルミニウム微粒子表面にできる絶縁性の酸化アルミニウム膜を破壊することによりアルミニウム微粒子間の導電性接合を形成することができる。
 具体的には、微粒子表面に絶縁性金属酸化物を作りやすいアルミニウム微粒子を用いた導電ペースト(バインダーを含む)により成膜(例えば、印刷)パターンを形成し、前記成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥し、この成膜パターン表面に対し水平方向および垂直方向への圧力印加と加熱とを施すことにより、アルミニウム微粒子表面にできる絶縁性の酸化アルミニウム膜を破壊し、アルミニウム微粒子間の良好な導電性接合を形成する。
 本発明の導電性基板は、導電パターンが、基板側とは反対側の表面及びその近傍を除いて全体的にバインダー中にアルミニウム微粒子が分散された構造を有する。このため、導電パターンは、実質的に、基板側にバインダー樹脂中にアルミニウム微粒子が分散された層が形成され、基板側とは反対側の表面及びその近傍にはアルミニウム微粒子が圧延され微粒子同士の導電性接合が形成された表面金属アルミニウム層が形成されるので、表面金属アルミニウム層で確実に導電体層を形成することができ、バインダー樹脂中にアルミニウム微粒子が分散された層で確実に半導電体層を形成することができる。
 このようなアルミニウムを主成分とする導電パターンを形成した導電性基板とその製造方法は、対象を選ばず、デバイスの電極や金属配線、アンテナ等の様々な導電部を有する装置に適用して良好な導電性接合を形成することができる。
本発明におけるアルミニウムを主成分とする導電パターンの断面を示す模式図である。 本発明におけるアルミニウムを主成分とする導電パターンを作製する方法を説明する模式図である。 本発明の製造装置の実施例1を示す。 本発明に係る成膜パターンに作用する力の説明図である。 本発明の製造装置の実施例2を示す。 本発明におけるアルミニウムを主成分とする導電パターン内の結晶格子の歪をX線回折スペクトルより評価する方法を説明する模式図である。 本発明の実施例で用いた二種類のアルミニウム粉末の粒度分布を示す図である。 本発明の加熱加圧法と一般的なロール加圧法を適応したアルミニウムを主成分とする導電パターンのX線回折スペクトル変化を示す図である。 本発明の加熱加圧法を適応したUHF-RFID用ICパッドのパターン変形を観察したレーザー共焦点顕微鏡像を示す図である。
1 基板
2 バインダー樹脂
3 アルミニウム微粒子
4 表面金属アルミニウム層
5 導電パターン
11 アルミニウム微粒子
12 バインダー樹脂
13 基板
14 酸化アルミニウム層
15 表面金属アルミニウム層
30 製造装置
31 支持台
32 ステージ
33 基板
34 成膜パターン
35 加圧ローラー
36 回転軸
37 回転方向
38 Z軸方向
39 輪郭線
40 ギャップGr-s
41 X軸方向
42 Y軸方向
43 所定の深さ
44 加圧ローラーの半径
45 ステージ制御部
46 加圧ローラー制御部
47 製造プロセス制御部
48 回転体
49 回転軸
50 偏心ローラー
51 偏心軸
52 点
53 回転方向
54 軌跡
55 偏心ローラー制御部
56 回転体制御部
57 製造プロセス制御部
58 間隔
59 ギャップGr-s
60 製造装置
71 低角側にシフトした回折ピーク特性
72 元の回折ピーク特性
73 高角側にシフトした回折ピーク特性
74 引っ張り応力を受けた結晶格子
75 元の結晶格子
76 圧縮応力を受けた結晶格子
Pv Z軸方向の押圧力
Ph XY平面に沿った水平方向の力
 本発明の実施の形態を図に基づいて詳細に説明する。
(アルミニウムを主成分とする導電パターンを設けた導電性基板)
 図1は本願発明のアルミニウムを主成分とする導電パターンを基板上に設けた導電性基板の断面図である。
 図1に示すように、本願発明の導電性基板は、基板1上に導電パターン5が設けられている。導電パターン5は、基板1側とは反対側の「表面及びその近傍」(以下、導電パターンの「加圧面測」と表す)を除いて全体的にバインダー2中にアルミニウム微粒子3が分散された構造を有し、前記導電パターンの「加圧面測」には表面金属アルミニウム層4が形成されている。バインダー2に対するアルミニウム微粒子3の比率は、アルミニウム微粒子3の径にもよるが、導電パターン5の導電率や抵抗値等の求める特性に応じて変わる。
 この表面金属アルミニウム層4は、以下に述べる本発明に特有の製造方法により形成される。すなわち、
 絶縁性の樹脂からなるバインダー中に球状、鱗片状(魚の鱗状)又は樹枝状(微結晶核よりある結晶軸方向に小枝状の金属結晶が放射状に成長した形状)等のアルミニウム微粒子を必要な量(求める導電パターン5の導電率や抵抗値等に応じた量)分散した導電ペーストにより、基板上に印刷やコーティング等の成膜手段を用いて成膜パターン(例えば、印刷パターン)を形成し、この成膜パターンを加熱して成膜パターン中の溶媒を除去して乾燥し(換言すると、溶媒を蒸発させ乾固させる)、前記アルミニウム微粒子を含む成膜パターン(例えば、印刷パターン)表面に対し水平方向(例えば、基板表面と同じ向き)および垂直方向(例えば、基板表面に対し垂直方向)への圧力印加と、加熱(微粒子間の焼結を促進するため)とを行って形成する。
 上記工程のうち、「成膜手段を用いて成膜パターン(例えば、印刷パターン)を形成し、成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥する」工程を「成膜・加熱溶媒除去処理」という。特に、成膜手段を印刷手段とし、成膜パターンを印刷パターンとした場合の上記「成膜・加熱溶媒除去処理」を「印刷・加熱溶媒除去処理」工程という。
 また、「アルミニウム微粒子を含む成膜パターン表面に対し水平方向と垂直方向への圧力の印加」工程を「圧力印加処理」工程という。
 ここでいう、成膜パターン表面に対し水平方向(例えば、基板表面と同じ向き)および垂直方向(例えば、基板表面に対し垂直方向)への圧力印加手段と、加熱(微粒子間の焼結を促進するため)手段については、詳しくは、図2で説明する。
 バインダー2の層は、基板1の上面に垂直な方向において、基本的に、基板1に接する面側から表面金属アルミニウム層4の外気と接する面(圧力印加面)側までの厚さを有し、且つアルミニウム微粒子3の径以上の厚さになる。このバインダー2の層内には、基板面と垂直な方向にみた断面において、表面金属アルミニウム層4とアルミニウム微粒子3の層が存在する例が好ましいが、表面金属アルミニウム層4のみであってもよい。
 表面金属アルミニウム層4において、圧力印加面側のアルミニウム微粒子3は隣接するもの同士が絶縁性の酸化アルミニウム膜を破壊するようにアルミニウム微粒子間の導電性接合を形成して(つぶれて)略平坦になっているが、圧力印加面と反対側(基板に近い側)のアルミニウム微粒子3は元の形状(この例では、球形状)の一部を保っている傾向を示す。この傾向は圧力の印加程度に応じて異なる。
 導電性基板のそれぞれの部位を構成する物質と製造方法を次に示す。
 基板1としては、通常用いられるものであれば特に限定されず、いかなる材料の物を用いても良い。一般に好適に用いられる物としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等が挙げられる。また、ポリカーボネート(PC)、ポリイミド(PI)、ポリエーテルスルホン(PES)、ポリアクリレート(PAR)、ポリエーテルケトン(PEEK)等の材料のプラスチック基板、好ましくはプラスチックフィルム基板、グリーンシート等のセラミックスフィルムなど、可撓性のあるフィルム基板等を用いることができる。基板の厚さは特に限定しないが、素子を安定に保持する強度を有する必要があることと、可撓性を必要とする場合があるため、10μmから1000μmの間の任意の値が好ましい。
 バインダー2を構成する材料は、絶縁性の樹脂からなり、特に限定されるものではないが、好ましくはアクリル系樹脂、ポリカーボネート、ポリビニルブチラール、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエステル、エポキシ系樹脂、導電性高分子材料、パリレン、シラザン系材料、シロキサン系材料等が用いられる。
 アルミニウム微粒子3に関しては、球状、鱗片状(魚の鱗状)又は樹枝状(微結晶核よりある結晶軸方向に小枝状の金属結晶が放射状に成長した形状)等の微粒子で、通常用いられるアルミニウム金属のものであれば特に限定されず、いかなるアルミニウム微粒子を用いても良い。以下、アルミニウム微粒子3の形状が球状の場合について説明する。アルミニウム微粒子3は、バインダー2の層中に埋設できるものであれば、特に限定されないが、小さい微粒子ほど表面酸化膜の影響を受けやすいことや、粒径が大きい微粒子では成膜手段により制限される、特に成膜手段を印刷とした場合にはパターニングが困難になること等から、1μmから100μmの範囲内の値のものが好適である。なお、下記「粉末」は、上記微粒子よりなる粉末をいう。
 バインダー2とアルミニウム微粒子3の混合方法に関しては、通常用いられる方法であれば特に限定されず、いかなる方法を用いても良い。一般的に好適に用いられる方法としては、ボールミル攪拌法、自公転式攪拌法、超音波攪拌法、三本ローラー法等が挙げられる。
 バインダー2とアルミニウム微粒子3を混合したペーストのパターンを形成する方法としては、通常用いられる方法であれば特に限定されず、いかなる方法を用いても良い。一般的に好適に用いられるパターン形成方法としては、スクリーン印刷法、グラビア印刷法、オフセット印刷法、インクジェット印刷法、ドクターブレード法、スリットコーター法、ディスペンシング法、マイクロコンタクトプリント法、ナノインプリント法等が挙げられる。
 本発明の導電性基板は、導電パターンが、基板側とは反対側の表面及びその近傍を除いて全体的にバインダー中にアルミニウム微粒子が分散された構造を有する。このため、導電パターンは、実質的に、基板側にバインダー樹脂中にアルミニウム微粒子が分散された層が形成され、表面及びその近傍にはアルミニウム微粒子が圧延され微粒子同士の導電性接合が形成された表面金属アルミニウム層が形成されるので、表面金属アルミニウム層で確実に導電体層を形成することができ、バインダー樹脂中にアルミニウム微粒子が分散された層で確実に半導電体層を形成することができる。
(アルミニウムを主成分とする導電パターンの製造方法)
 図2は本願発明のアルミニウムを主成分とする導電パターンの製造過程の断面図と加圧方法を示す模式図である。
 図2(a)は、比較のために、一般的な加熱加圧法を適応したときのアルミニウムパターンの変化を示し、図2(b)は本願発明の加熱加圧法を適応したときのアルミニウムパターンに相応する導電パターンの変化を示している。図2(a)は図2(a)(a1)と図2(a)(a2)からなる。図2(b)は図2(b)(b1)と図2(b)(b2)からなる。
 図2(a)の一般的な加熱加圧法は、一般的なロールプレス法とも云われ、二本のローラー(ヒーターユニットを持つ)間に試料を挟み込んで加圧する方法であり、例えば、後述する株式会社日東反応機製ロールプレス装置に適用されている。この一般的な加熱加圧法は、まず、図2(a)(a1)に示すように、絶縁性の樹脂からなるバインダー112中に球状のアルミニウム微粒子111を適宜量分散した導電ペーストにより、基板113上に成膜手段を用いて成膜パターン110を形成し、前記アルミニウム微粒子を含む成膜パターン表面に対し垂直方向(例えば、基板表面に垂直な方向)に力Faを印加しながら加熱し、図2(a)(a2)に示すように加熱固化する。
 図2(a)に示す一般的な加熱加圧法を適応した場合、圧力は基板113に対し垂直方向のみに印加され、成膜パターン内に発生する応力はアルミニウム微粒子111に作用する応力とバインダー樹脂112に作用する応力に分散されるため、効率的にアルミニウム微粒子111中の結晶子の結晶格子を歪ませることができない。それ故、図2(a)(a2)に、アルミニウム微粒子111の部分拡大図として矢印で引き出して示すように、酸化アルミニウム層114がアルミニウム微粒子111の表面に残留してしまい、隣接するアルミニウム微粒子111間の導電性接合を形成するには至らない。
 一方、図2(b)に示す本願発明の加熱加圧法は、まず、図2(b)(b1)に示すように、絶縁性の樹脂からなるバインダー12中に球状のアルミニウム微粒子11を適宜量分散した導電ペーストにより、基板13上に印刷やコーティング等の成膜手段を用いて成膜パターン10を形成し、この成膜パターン10を加熱して成膜パターン10中の溶媒を除去して乾燥し、前記アルミニウム微粒子11を含む成膜パターン(例えば、印刷パターン)10表面に対し水平方向(例えば、基板上面と同じ向き)および垂直方向(例えば、基板上面に対し垂直方向)への圧力印加と、加熱(微粒子間の焼結を促進するため)とを行って、図2(b)(b2)に示すように表面金属アルミニウム層15を形成する。
 ここでいう「水平方向と垂直方向への圧力印加」とは、基本的に、垂直に圧力を印加しながら水平方向へ移動することを意味するが、例えば、導電ペーストの成膜パターン10の表面側に図2(b)(b1)に示す弧を描くような力Fbを加えることをも意味し、この場合には、云わば、導電ペーストの成膜パターン10の表面側にあるバインダー12およびアルミニウム微粒子11に弧を描くような力Fbを加える。この加工工程を導電ペーストの表面側全体に行う。
 図2(b)に示す本願発明の加熱加圧法を用いれば、導電ペーストの成膜パターン10表面側に水平方向の圧力と鉛直方向の圧力を印加するため、水平方向の圧力成分でバインダー12が取り去られ、アルミニウム微粒子11表面が露出したところにさらなる圧力(力Fbの導電ペーストに接する箇所は、線ではなく所定の面積を有するため、同じ箇所に連続的に圧力が作用する)が印加されるためアルミニウム微粒子11が圧延され微粒子同士の導電性接合が形成され、表面金属アルミニウム層5が形成される。
 ここで、導電ペーストの成膜パターン10に力Fbを作用させる部材は、図示していないが、例えば、偏心軸に設けたローラー等を用いる。即ち、ローラーが軸支されている回転軸が偏心しているため、ローラー自体は、自転しながら、偏心軸の回転に伴って、図2(b)の力Fbの弧状運動を行う。
 この際、隣接するアルミニウム微粒子11内の結晶子同士が圧力により接合を形成するため、その部分に結晶格子の歪が生じる。
 パターン幅の変形に関しては、図2(a)の一般的な加熱加圧法を適応した場合、導電パターンの体積変化は起こらず、膜厚が薄膜化されるため、パターン幅が増加してしまう。一方、図2(b)の本願発明の加熱加圧法を適応した場合、余分なバインダーが水平方向の圧力により取り去られるため、パターン幅の変化は小さい。
 次に、本発明の加熱加圧法を実施するための製造装置および製造方法の実施例を示す。
図3は、本発明の導電性基板の製造方法を実行するための製造装置の実施例1を示す。
 この製造装置30は、主には、支持台31上に、XY方向に移動制御自在なステージ32と、回転制御しながらZ方向に移動制御自在な加圧ローラー35と、これらの制御装置(45~47からなる)と、ステージ32と加圧ローラー35を制御前に予め所定の関係に保持する支持機構(図示省略)を有する。
 ステージ32は、モータ等の駆動源を備えた駆動手段を有し、支持台31上を、平面上のX軸方向41およびY軸方向42に移動自在に支持され、ステージ制御部45の制御により回転方向(一方向、往復)、回転速度および停止位置等が制御される。往復動作の場合の移動距離や単位時間内の往復動作回数はステージ制御部45により任意に設定できる。ステージ32上には、本発明の製造方法を適用するための、成膜パターン34を設けた基板33が裁置される。
 支持台31には、ステージ32の上面から所定の加圧ローラー-ステージ間ギャップGr-s40の間隔だけ離間した位置に、加圧ローラー35の外周対向部が位置するように加圧ローラー35の回転軸36が配置される。このことは、例えば、回転軸36の中心が、「加圧ローラー35の半径44+ギャップGr-s40」の長さだけステージ32の上面からZ軸方向に離間した位置として制御することができることを意味する。回転軸36の軸中心はステージ32の上面と平行とする。
 ギャップGr-s40の間隔は、製造プロセスの制御開始前に、対向する加圧ローラー35と成膜パターン34が接触しないようにする隙間の間隔を含む。
 回転軸36は、回転制御自在且つZ軸方向移動制御自在に設けられている。回転軸36には、駆動源としてのモータ(図示省略)の回転軸(図示省略)が連結されている。回転軸36は、モータの回転軸と連結された状態で、Z軸方向38へ移動できるような構造体(図示省略)を有して図示しない支持機構(図示省略)に設けられている。例えば、加圧ローラー35の回転軸36に連結した状態のモータを、略L字状の構造体(図示省略)の一辺に取り付け、その略L字状の構造体の他辺を支持台31に対して垂直(Z軸方向38)に移動できるように設ける(図示省略)。前記垂直(Z軸方向38)に移動できる構造は、直線状のギヤと、モータの回転軸に設けた回転ギヤの組み合わせ構造や、対向部材が圧電モータを構成する構造等として構成できる。
 加圧ローラー制御部46は、上記複数のモータの回転方向37(一方向、往復)、回転速度および停止位置等を制御し、回転軸36の回転制御およびZ軸方向移動制御を行う。
 制御装置は、加圧ローラー制御部46、ステージ制御部45および製造プロセス制御部47からなる。製造プロセス制御部47は制御部全体を制御する。
 次に、図3の実施例における、本発明の加熱加圧法の製造プロセスを説明する。
 予め、所定の組成の導電ペーストを基板33上に印刷して印刷パターンを形成し、この印刷パターンをプロセス温度で乾燥し、乾燥後の成膜パターン34を備えた基板33を、ステージ32上へ裁置しておく。
 この段階で、製造プロセス制御部47は、加圧ローラー-ステージ間ギャップGr-s40の値(制御のパラメータとしては、ステージ32上面と回転軸36中心までの長さ)、Z軸方向の基板33および成膜パターン34の厚みの値等をそれぞれ記憶手段(図示省略)に記憶する。上記それぞれの値の取得手段は当業者に自明な手段から選択する。
 また、成膜パターン34に印加される加圧ローラー35の押圧力は、予め、回転軸36のZ軸方向の移動制御量を表す「加圧ローラー35の半径44+ギャップGr-s40」の値と、サンプルの成膜パターン資料に印加される圧力センサ(図示省略)の値の関係としてテーブル(記憶手段)に記憶しておく。
 この状態から、全体の制御を行う製造プロセス制御部47の制御ステップの実行に基づいた加圧ローラー制御部46の制御動作により、加圧ローラー35の回転軸36の回転制御(例えば、一方向動作、又は、往復動作制御、往復時の中心角範囲制御および単位時間あたりの往復回数制御、速度制御、回転数制御等)を行うと共に、回転軸36のZ軸方向の移動制御を行う。回転制御の開始は、成膜パターン34に対する加圧ローラー35の押圧力がゼロから所定の値になるまでの間の任意のタイミングとすることができる。
 Z軸方向の移動制御の態様は、まず、ギャップGr-s40の間隔を縮めるように制御することにより、加圧ローラー35を成膜パターン34に接触させ、その接触後更に成膜パターン34に対する加圧ローラー35の押圧力が所定圧力となるように押圧する。
 このとき、加圧ローラー35が回転しているとすると、成膜パターン34の表面には、上記加圧ローラー35の押圧力以外に、加圧ローラー35の接線方向の力、即ち、XY平面に沿った水平方向の力が作用する。
 更に、ステージ32がXY軸方向に駆動制御されていると、成膜パターン34における加圧ローラー35の圧接箇所がXY平面に沿って移動することにより、Z軸方向の押圧力とXY平面に沿った水平方向の力が成膜パターン34のXY平面に沿って移動することになる。
 この段階で、成膜パターン34に作用する力は、加圧ローラー35によるZ軸方向の押圧力とXY平面に沿った水平方向の力になる。図4に加圧ローラー35によるZ軸方向の押圧力PvとXY平面に沿った水平方向の力Phの作用例を示す。図4は成膜パターンに作用する力の説明図である。
 この状態を発生するために、図3において、加圧ローラー35の運動と、ステージ32の運動と、加圧ローラー-ステージ間のギャップGr-s40の3つのパラメータを以下の現象が発生するように制御する。この現象は、成膜パターン34に加圧ローラー35によるZ軸方向の押圧力とXY平面に沿った水平方向の力を作用させることにより、成膜パターン34中のバインダー(例えば、バインダー樹脂)の剪断応力以上の力を発生させ、このバインダーを破壊すると同時に、アルミニウム微粒子等の金属微粒子の塑性変形をおこさせ表面酸化膜を破壊し、隣接する金属微粒子内の結晶子同士が圧力により接合を形成する現象をいう。
 この加圧ローラー35によるZ軸方向の押圧力PvとXY平面に沿った水平方向の力Phが成膜パターン34に作用して上記接合が発生している図4の状態のまま、図3におけるZ軸方向の押圧力を、ギャップGr-s40の制御により、加圧ローラー35と成膜パターン34との接触位置が、成膜パターン34のバインダーが破壊されない前の元の位置からバインダーが破壊された所定の深さ43の位置まで印加する。加圧ローラー35の移動後の位置をその輪郭線39で示す。この間、ステージ32の制御も加熱制御も行う。
 深さ43の位置は、成膜パターン34が最終的に図1の状態、すなわち、成膜パターン34が最終的に導電パターンになる位置で、「導電パターン5は、基板1側とは反対側の「表面及びその近傍」(以下、導電パターンの「加圧面測」と表す)を除いて全体的にバインダー2中にアルミニウム微粒子3が分散された構造を有し、前記導電パターンの「加圧面測」には表面金属アルミニウム層4が形成されている。バインダー2に対するアルミニウム微粒子3の比率は、アルミニウム微粒子3の径にもよるが、導電パターン5の導電率や抵抗値等の求める特性に応じて変わる状態となる位置となる。
 更に前記状態を具体的な例で示すと、図8のアルミニウム粉末を用いた導電パターンに関するX線回析スペクトル特性を示す状態となる。
 成膜パターン34が製造プロセスの最終段階で所定の導電パターンとしての特性を有する構成となった後、製造プロセス制御部47は、加圧ローラー制御部46およびステージ制御部45を介して、加圧ローラー35を成膜パターン34から漸次離間するZ軸方向へ駆動制御し、必要なプロセス終了処理を行う。
 図5は、図2(b)に示す力Fbの弧状運動を発生するための、偏心軸にローラーを設けた製造装置の実施例2である。
 図5の製造装置60において、図3の製造装置の説明で用いた符号と同じ符号は同じ技術的意味を有するものとして、ここでは説明を省略する。
 図5の実施例において図3の実施例と相違する主な構成は、加圧ローラーの代わりに、回転体に軸支した偏心ローラーを用いた点にある。
 以下、図5の実施例の構成について詳細に説明する。
 支持台31には、ステージ32の上面から所定のギャップGr-s59および間隔58の間隔だけ離間した位置に、回転軸49が回転自在に配置される。回転軸49および偏心軸51の軸中心はステージ32の平面と平行とする。
 ギャップGr-s59の間隔は、製造プロセスにおける製造装置の制御動作開始前の時点において、対向する偏心ローラー50と成膜パターン34が接触しないようにする隙間の間隔を含む。
 なお、制御パラメータとしては、例えば、「ギャップGr-s59+間隔58」を使用することができる。このことは、例えば、回転軸49の中心が、「ギャップGr-s59+間隔58」の長さだけステージ32の上面からZ軸方向に離間した位置として、回転軸49の位置を制御することができる。
 回転体48は、例えば、円板、ローラー、円筒等として構成される。
 回転軸49は、図3の回転軸36の例と同様に回転制御自在且つZ軸方向移動制御自在に設けられている。
 回転軸49には、駆動源としてのモータ(図示省略)の回転軸(図示省略)が連結されている。回転軸49は、モータの回転軸と連結された状態で、Z軸方向38へ移動できるような構造体(図示省略)を有して図示しない支持機構(図示省略)に設けられている。例えば、回転軸49に連結した状態のモータを、略L字状の構造体(図示省略)の一辺に取り付け、その略L字状の構造体の他辺を支持台31に対して垂直(Z軸方向38)に移動できるように設ける(図示省略)。前記垂直(Z軸方向38)に移動できる構造は、直線状のギヤと、モータの回転軸に設けた回転ギヤの組み合わせ構造や、対向部材が圧電モータを構成する構造等として構成できる。
 回転体制御部56は、上記複数のモータの回転方向37(一方向、往復)、回転速度および停止位置等を制御し、回転軸49の回転制御およびZ軸方向移動制御を行う。
 回転体48には、回転軸49の軸心から離間した偏心位置に回転軸となる偏心軸51を回転自在に設ける。偏心軸51には偏心ローラー50が一体的に設けられている。
 偏心軸51には、駆動源としてのモータ(図示省略)の回転軸(図示省略)が連結されている。偏心軸51と連結された状態のモータは、例えば、回転体48に支持構造体(図示省略)によって固定されている。偏心軸51は、回転制御自在に設けられている。
 回転軸49の軸方向と直交する方向(半径方向)で、回転軸49の軸心から偏心軸51の軸心を結んだ線の延長線上における、回転軸49の軸心から回転体48の外周上の点までの長さ(即ち、半径)よりも、上記延長線上の偏心ローラー50の外周上の点52までの長さ(便宜上、見かけ上の半径Aという)が長くなるようにする。この回転体48と偏心ローラー50の相対関係により、本発明の加熱加圧処理中は、偏心ローラー50のみが成膜パターンに作用することになる。
 回転体48の回転範囲は、偏心ローラー50が成膜パターン34に作用する範囲よりも少し大きければ問題なく、例えば、図5に前記点52の軌跡54として例示してある。
 成膜パターン34への印加圧力の制御に用いるパラメータとなる、偏心ローラー50と成膜パターン34の間のZ軸方向のギャップGr-s59は、Z軸上に投影した、偏心ローラー50の外周上の点の位置と成膜パターン34上の点の位置の間の最も近い間隔として定義される。
 一方、見かけ上の半径Aは、「回転軸49の軸心から偏心軸51の軸心までの長さ+偏心ローラー50の半径の長さ」として定義できる。
 間隔58は、「「「回転軸49の軸心から偏心軸51の軸心までの長さ」×「cosθ」」+「偏心ローラー50の半径」」として求まる。ここで、「θ」は、回転軸49の軸心と回転軸51の軸心を結んだ線とZ軸方向38との成す角度を意味する。
 成膜パターン34の加熱加圧処理時には、製造プロセス制御部57の制御下における、偏心ローラー制御部55の制御により偏心ローラー50を、任意の回転方向53(一方向又は両方向、任意中心角範囲等)へ、任意期間の間回転させながら、回転体48を成膜パターンの加熱加圧処理に係わる中心角θ範囲を含む任意の角度範囲、任意方向(一方向又は両方向回転)へ回転させて、成膜パターン34を加熱加工処理する。
 偏心ローラー制御部55は、上記偏心軸51に連結したモータの回転方向53(一方向、往復)、回転速度および停止位置等を制御し、偏心ローラー50の回転制御を行う。
 制御装置は、偏心ローラー制御部55、回転体制御部56、ステージ制御部45および製造プロセス制御部57からなる。製造プロセス制御部57は前記制御部45、55、56を統括的に制御する。
 次に、図5の実施例における、本発明の加熱加圧法の製造プロセスを説明する。
 図3の製造装置における製造プロセスの説明と異なる、回転体48と、この回転体48と連動する偏心ローラー50の動作と、それらを制御する回転体制御部56、偏心ローラー制御部55および製造プロセス制御部57の制御動作に関し主に説明する。
 予め、所定の組成の導電ペーストを基板33上に印刷して印刷パターンを形成し、この印刷パターンをプロセス温度で乾燥し、乾燥後の成膜パターン34を備えた基板33を、ステージ32上へ裁置しておく。
 製造プロセス制御部57は、ステージ32上面と回転軸49の軸心(中心)までのギャップGr-s59および間隔58の値、Z軸方向の基板33および成膜パターン34の厚みの値等をそれぞれ記憶手段(図示省略)に予め記憶しておく。
 間隔58は、例えば、予め、回転軸49の回転に伴い変化する点52と回転軸49の軸心を結ぶ線と回転軸49の軸心を通るZ軸との成す中心角θの値をパラメータとして、「「「回転軸49の軸心から偏心軸51の軸心までの長さ」×「cosθ」」+「偏心ローラー50の半径」」として演算し、その値をテーブルに記憶しておく。
 上記それぞれの値の取得手段は当業者に自明な手段から選択する。
 成膜パターン34に印加される偏心ローラー50の押圧力は、予め、ギャップGr-s59の値と、サンプルの成膜パターン資料に印加される圧力センサ(図示省略)の値の関係としてテーブルに記憶しておく。
 この状態から、全体の制御を行う製造プロセス制御部57の制御ステップの実行に基づいた偏心ローラー制御部55の制御動作により、偏心ローラー50の回転軸51の回転制御(例えば、一方向動作、又は、往復動作制御、往復時の中心角範囲制御および単位時間あたりの往復回数制御、速度制御、回転数制御等)を行うと共に、回転軸49のZ軸方向の移動制御を行う。回転制御の開始は、成膜パターン34に対する偏心ローラー50の押圧力がゼロから所定の値になるまでの間の任意のタイミングとすることができる。成膜パターン34に対する偏心ローラー50の押圧力は、感圧センサ(図示省略)等により取得しておく。
 回転体および偏心ローラーの制御の態様は種々ある。好ましい例を例示する。
(1)偏心ローラー50を任意の中心角位置に固定した状態の回転体48を、Z軸方向下方(基板33へ向かう方向)へ移動させ、ギャップGr-s59が所定間隔になったことを検出して、一旦移動停止する。
 前記所定間隔は、回転体48を回転させて偏心ローラー50上の点52が回転軸49の軸心をとおるZ軸上にきたとき、すなわち、中心角θがゼロ度のとき、偏心ローラー50により成膜パターン34に所定の垂直方向の力が作用する間隔を意味する。この「所定の垂直方向の力が作用する間隔」は両者が接する場合から、図1の断面構造を呈する圧力状態の間隔までも含む任意の間隔とする。この間隔の値も、予め、製造プロセスの実行前に、サンプルに基づいて取得しておく。
 その後、点52が軌跡54上を移動するように、偏心ローラー50および回転体48を回転制御しながら、回転軸49の垂直方向(Z軸方向)の移動制御およびステージ32のXY方向の移動制御を行い、成膜パターン34へ偏心ローラー50により垂直方向の力と水平方向の力を印加しながら、偏心ローラー50と成膜パターン34との接触位置が、成膜パターン34のバインダーが破壊されない前の元の位置からバインダーが破壊された所定の深さ43の位置まで印加する。この結果、最終的に図1で説明した断面構造を有する導電パターンを製造して、製造プロセスは処理を終了する。
(2)最初から点52が軌跡54上を移動するように、偏心ローラー50および回転体48を回転制御しながら、回転軸49の垂直方向(Z軸方向)の移動制御およびステージ32のXY方向の移動制御を行い、偏心ローラー50を成膜パターン34に接触させ、成膜パターン34へ偏心ローラー50により垂直方向の力と水平方向の力を印加しながら、偏心ローラー50と成膜パターン34との接触位置が、成膜パターン34のバインダーが破壊されない前の元の位置からバインダーが破壊された所定の深さ43の位置まで印加する。この結果、最終的に図1で説明した断面構造を有する導電パターンを製造して、製造プロセスは処理を終了する。
 図5の実施例も、図3の実施例と同様に、偏心ローラー50および回転体48の運動と、ステージ32の運動と、ギャップGr-s59の3つのパラメータを以下の現象が発生するように制御する。この現象は、成膜パターン34に偏心ローラー50によるZ軸方向の押圧力とXY平面に沿った水平方向の力を作用させることにより、成膜パターン34中のバインダー(例えば、バインダー樹脂)の剪断応力以上の力を発生させ、このバインダーを破壊するのと同時に、アルミニウム微粒子等の金属微粒子の塑性変形をおこさせ表面酸化膜を破壊し、隣接する金属微粒子内の結晶子同士が圧力により接合を形成する現象をいう。
 この偏心ローラー50によるZ軸方向の押圧力PvとXY平面に沿った水平方向の力Phが成膜パターン34に作用して上記接合が発生している図4の状態のまま、図5におけるZ軸方向の押圧力を、ギャップGr-s59の制御により、偏心ローラー50と成膜パターン34との接触位置が、成膜パターン34のバインダーが破壊されない前の元の位置からバインダーが破壊された所定の深さ43の位置まで印加する。偏心ローラー50上の点52が軌跡54上を移動する間も、ステージ32の制御も加熱制御も行う。
 深さ43の位置は、成膜パターン34が最終的に図1の状態、すなわち、成膜パターン34は最終的に導電パターンになるとすると、「導電パターン5は、基板1側とは反対側の「表面及びその近傍」(以下、導電パターンの「加圧面測」と表す)を除いて全体的にバインダー2中にアルミニウム微粒子3が分散された構造を有し、前記導電パターンの「加圧面測」には表面金属アルミニウム層4が形成されている。バインダー2に対するアルミニウム微粒子3の比率は、アルミニウム微粒子3の径にもよるが、導電パターン5の導電率や抵抗値等の求める特性に応じて変わる。」状態となる位置となる。
 更に前記状態を具体的な例で示すと、図5のアルミニウム粉末を用いた導電パターンに関するX線回析スペクトル特性を示す状態となる。
 成膜パターン34が製造プロセスの最終段階で所定の導電パターンとしての特性を有する構成となった後、製造プロセス制御部57は、偏心ローラー制御部55、回転体制御部56およびステージ制御部45を介して、偏心ローラー50を成膜パターン34から漸次離間するZ軸方向へ駆動制御し、必要なプロセス終了処理を行う。
 図6に、導電パターンを構成するアルミニウム微粒子内の結晶子の格子歪み特性(図6(a))と、X線回折ピークのシフトの関係の説明図(図6(b))を示す。図6(a)の横軸は角度2θで、同じく縦軸は回折強度である。
 図6(b)の格子図74に示すように、結晶格子に矢印方向に引っ張り応力が加わると、結晶格子間隔が広がる。このとき、X線回折スペクトルを観察すると、元の結晶格子間隔の回折ピーク特性72と比較して低角度側に回折ピーク特性71が現れる。
 一方、格子図76が示すように、結晶格子に矢印方向の圧縮応力が働くと、結晶格子間隔が狭まり、元の結晶格子間隔を示す回折ピーク特性72と比較して高角度側に回折ピーク特性73が現れる。なお、図中、矢印は印加する応力を意味する。
 図6の関係に注目すれば、本発明の導電パターンを構成するアルミニウム微粒子の結晶子の結晶格子が圧力印加処理時に印刷・加熱溶媒除去処理後と比較して0.1%以上歪み、この格子歪がアルミニウム結晶の(111)面を表すX線回折ピークの0.05°以上のシフトとして観察される。
 本発明の実施例では、アルミニウム粉末1としてAlfa Aesar(登録商標)製、粒子径:325メッシュ以下、純度99.5%(metals basis)と、アルミニウム粉末2としてAlfa Aesar(登録商標)製、粒子径:100メッシュ以下325メッシュ以上、純度99.5%(metals basis)とを用いた。
 図7に、用いたそれぞれのアルミニウム粉末の粒度分布(株式会社堀場製作所製レーザー回折/散乱式粒子径分布測定装置 Partica LA-950V2にて測定)を示す。
 図7の横軸は粒子径(μm)、縦軸(図左側)は(発生)頻度(%)を示す。なお、縦軸(図右側)は通過分積算値(頻度曲線を積分したもの)(%)を示す。
 図7のAl粉末(325mesh以下)平均粒径18.0μmの特性aはAl粉末1で、Al粉末(325mesh以下)平均粒径93.3μmの特性bはAl粉末2である。
 なお、図7の粒子径-(発生)頻度特性はAl粉末1の特性aおよびAl粉末2の特性bで、粒子径-通過分積算値特性は、Al粉末1の特性cおよびAl粉末2の特性dとも通過分積算値が0から100まで右肩上がりに立ち上がっている。
 Al(アルミニウム)粉末1は平均粒子径が18.0μm、Al粉末2は平均粒子径が93.3μmと計測された。基板は東レ・デュポン株式会社製カプトン(登録商標)300H(膜厚:75μm)とした。
 導電パターンの製造時、アルミニウム粉末をバインダーとなる東洋紡績株式会社製バイロマックス(登録商標)に30重量%混合し、自公転式攪拌装置ARE-310にて3分間攪拌を行い、導電ペーストを製造した。この導電ペーストを用いて、マイクロ・テック株式会社製スクリーン印刷装置MT-320TVと東京プロセスサービス株式会社製スクリーンマスクとを組み合わせてスクリーン印刷を行った。印刷パターンをプロセス(乾燥プロセス)温度150℃にて乾燥(成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥)した後、一般的なロールプレス法(株式会社日東反応機製ロールプレス装置使用)および、本願発明の加熱加圧法を施し、アルミニウム微粒子を含む成膜パターン(例えば、印刷パターン)表面に対し水平方向(例えば、基板上面と同じ向き)および垂直方向(例えば、基板上面に対し垂直方向)への圧力印加と、加熱(微粒子間の焼結を促進するため)を行う。前記プロセス温度は、150℃以下で0℃を超える値の範囲内の任意の値を採り得る。
 それぞれの処理前後の特性の比較を行った。
 図7の粒子径と頻度のサンプリングデータを下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 図8にアルミニウム粉末1を用いた導電パターンに関するX線回折スペクトル(図8(b))とアルミニウム粉末2を用いた導電パターンに関するX線回折スペクトル(図8(a))とを示す(株式会社リガク製 試料水平型多目的X線回折装置 Ultima IVを用いて測定)。図8の横軸は角度「2θ/°」を、縦軸は強度「Intensity(回折強度)」を表す。
 図8(a)は平均粒径93.3μmのAl粉末2の特性、即ち、ローラー加圧後特性e、加圧前特性f、および本発明の加熱加圧後の特性gを表す。図8(b)は平均粒径18.0μmのAl粉末1の特性、即ち、ローラー加圧後の特性h、加圧前の特性i、および本発明の加熱加圧後の特性jを表す。
 図8の角度「2θ/°」と「Intensity(回折強度)」のサンプリングデータを下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 また、観測されたこれらの回折ピークを用いて算出した結晶子サイズと格子間隔、歪、応力を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 表3の上欄は平均粒径93.3のアルミニウム粉末2の特性f、g、eで、下欄は平均粒径18.0のアルミニウム粉末1の特性i、j、hである。
 表3から解かるように、アルミニウム微粒子の粒子径に関わらず、本発明の加熱加圧処理を行うことにより、アルミニウム微粒子中の結晶子中の格子歪は0.125%となった。このときに下記数1の式
(数1)
 σ(Pa)=εE(Pa)
 但し、σ:応力、ε:歪、E:ヤング率(Alの場合69GPa)
を用いて、算出された応力は、アルミニウム微粒子の粒子径に関わらず86MPaで、一般的なロール加圧法の17.2MPaに比べて大きい。この結果より、本発明の加熱加圧法は非常に効率的にアルミニウム微粒子内の結晶に応力を発生させることができることが示された。また、このときのシート抵抗は表1に示すようにアルミニウム粉末1に関しては0.8Ω、アルミニウム粉末2に関しては1.0Ωとなった。
 これらのパターンの断面写真から観察される表面金属アルミニウム層の膜厚が約1μmであることから、それぞれの抵抗率はアルミニウム粉末1の場合約0.8×10-5Ω・cm、アルミニウム粉末2の場合約1.0×10-4Ω・cmと算出される。これらの例から、本発明のアルミニウム粉末(微粒子)の抵抗率は1×10-4Ω・cm以下で2.65×10-6Ω・cm(金属アルミニウムの抵抗率)以上の範囲内の任意の値をとる。
 アルミニウム粉末1を用いたペーストにより、UHF用のRFIDアンテナのICパッドを印刷したときのパターン幅変化をレーザー共焦点顕微鏡(株式会社キーエンス製 VK-9700)により観察した結果を図9に示す。
 図9(a)は印刷・加熱溶媒除去処理後の導電パターンの縦横のパターン幅を示し、図9(b)は加熱加圧後の導電パターンの縦のパターン幅を、図9(c)は同じく加熱加圧後の導電パターンの横のパターン幅を示す。図9(a)の横のパターン幅kは矢印k1と矢印k2の先端間の長さで629μm、縦のパターン幅mは矢印m1と矢印m2の先端間の長さで605μm、図9(b)の縦のパターン幅nは矢印n1と矢印n2の先端間の長さで621μm、図9(c)の横のパターン幅pは矢印p1と矢印p2の先端間の長さで629μmである。
 図9から読み取った縦横のパターン幅と加熱加圧処理前後の変化率は表4に示すとおりである。
Figure JPOXMLDOC01-appb-T000004
 
 本発明の加熱加圧法では、アルミニウム微粒子に効率的に大きな応力を発生できるにも拘わらず、パターンの変化率は、上記表4に示すように、縦幅変化率が2.6%、横幅変化率が0%と、非常に小さいことが示された。
 本発明は、以下に説明する実施態様もとりうる。
 導電性基板の製造方法として、導電パターンの抵抗率が1×10-4Ω・cm以下で2.65×10-6Ω・cm以上の範囲内の任意の値をとり、導電パターンを構成するアルミニウム微粒子の結晶子の結晶格子が加熱圧力印加処理時に印刷・乾燥(加熱溶媒除去処理後)と比較して0.1%以上歪み、この格子歪がアルミニウム結晶の(111)面を表すX線回折ピークの0.05°以上のシフトとして観察される態様もとりうる。
 また、導電性基板の製造方法として、成膜パターンを形成し、成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥した後の導電パターンのアスペクト比(パターン高/パターン幅)が0.1以下のときの成膜パターンを形成し、成膜パターンを加熱してこの成膜パターン中の溶媒を除去して乾燥した後のパターン幅と加熱圧力印加処理後のパターン幅とを比較したときのパターン幅変形率が10%以内とする態様もとりうる。
 

Claims (10)

  1. 基板と、前記基板上に設けた導電パターンからなり、前記導電パターンは、基板側とは反対側の表面及びその近傍を除いて全体的にバインダー中にアルミニウム微粒子が分散された構造を有し、前記表面及びその近傍には前記アルミニウム微粒子が圧延され前記アルミニウム微粒子同士の導電性接合が形成された表面金属アルミニウム層が形成されていることを特徴とする導電性基板。
  2. 前記表面金属アルミニウム層は、前記バインダー中にアルミニウム微粒子を任意量分散した導電ペーストにより、基板上に成膜手段を用いて成膜パターンを形成し、前記アルミニウム微粒子を含む前記成膜パターン表面に対し水平方向と垂直方向への圧力印加と、加熱とを行って形成したものとしたことを特徴とする請求項1記載の導電性基板。
  3. 前記基板をプラスチック基板としたことを特徴とする請求項1又は2記載の導電性基板。
  4. 前記導電パターンの抵抗率を、1×10-4Ω・cm以下で2.65×10-6Ω・cm以上の範囲内の任意の値としたことを特徴とする請求項1乃至3のいずれか1項記載の導電性基板。
  5. 前記導電パターンの抵抗率が1×10-4Ω・cm以下で2.65×10-6Ω・cm以上の範囲内の任意の値をとり、前記導電パターンを構成するアルミニウム微粒子の結晶子の結晶格子が圧力印加処理時に印刷・加熱溶媒除去処理後と比較して0.1%以上歪み、この格子歪がアルミニウム結晶の(111)面を表すX線回折ピークの0.05°以上のシフトとして観察されることを特徴とする請求項1乃至3のいずれか1項記載の導電性基板。
  6. 絶縁性の樹脂からなる溶媒としてのバインダー中にアルミニウム微粒子を適宜量分散した導電ペーストにより、基板上に成膜手段を用いて成膜パターンを形成し、前記成膜パターンを加熱してこの成膜パターン中の前記溶媒を除去して乾燥し、前記アルミニウム微粒子を含む前記成膜パターン表面に対し水平方向と垂直方向への圧力印加処理と、加熱処理を行い、導電パターンを作成することを特徴とする導電性基板の製造方法。
  7. 前記基板をプラスチック基板としたことを特徴とする請求項6記載の導電性基板の製造方法。
  8. 前記導電パターンを作製するときの前記加熱時の温度となるプロセス温度を150℃以下で0℃を超える値の範囲内の任意の値としたことを特徴とする請求項6又は7記載の導電性基板の製造方法。
  9. 前記導電パターンの抵抗率が1×10-4Ω・cm以下で2.65×10-6Ω・cm以上の範囲内の任意の値をとり、前記導電パターンを構成するアルミニウム微粒子の結晶子の結晶格子が圧力印加処理時に印刷・加熱溶媒除去処理後と比較して0.1%以上歪み、この格子歪がアルミニウム結晶の(111)面を表すX線回折ピークの0.05°以上のシフトとして観察されることを特徴とする請求項6乃至8のいずれか1項記載の導電性基板の製造方法。
  10. 前記成膜パターンを形成し、該成膜パターンを加熱乾燥した後の導電パターンのアスペクト比が0.1以下となるように前記成膜パターンを形成し、加熱乾燥した後のパターン幅と前記圧力印加処理後のパターン幅とを比較したときのパターン幅変形率が10%以内となるようにしたことを特徴とする請求項6乃至9のいずれか1項記載の導電性基板の製造方法。
       
PCT/JP2010/070533 2009-11-24 2010-11-18 導電性基板とその製造方法 WO2011065271A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/503,632 US8927054B2 (en) 2009-11-24 2010-11-18 Conductive substrate and process for producing same
JP2011543218A JPWO2011065271A1 (ja) 2009-11-24 2010-11-18 導電性基板とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-266075 2009-11-24
JP2009266075 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065271A1 true WO2011065271A1 (ja) 2011-06-03

Family

ID=44066375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070533 WO2011065271A1 (ja) 2009-11-24 2010-11-18 導電性基板とその製造方法

Country Status (3)

Country Link
US (1) US8927054B2 (ja)
JP (1) JPWO2011065271A1 (ja)
WO (1) WO2011065271A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016111133A1 (ja) * 2015-01-06 2017-08-17 株式会社フジクラ 導体層の製造方法及び配線基板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162298A1 (de) * 2014-04-25 2015-10-29 Ceramtec Gmbh Aluminiumpaste für dickfilmhybride
JP6582063B2 (ja) * 2016-01-20 2019-09-25 オリンパス株式会社 処置具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064547A (ja) * 1999-09-01 2001-03-13 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化型導電性ペースト、それを用いた導体回路および非接触id
JP2007335558A (ja) * 2006-06-14 2007-12-27 Konica Minolta Holdings Inc 導電性パターン及び導電性パターンの作製方法
WO2008047823A1 (fr) * 2006-10-19 2008-04-24 National Institute Of Advanced Industrial Science And Technology Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice
JP2008235198A (ja) * 2007-03-23 2008-10-02 Alpha Scientific Kk 導電粉、導電ペースト、導電シート、回路板および電子部品実装回路板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053917A1 (fr) 2006-11-02 2008-05-08 Toyo Ink Mfg. Co., Ltd. Encre conductrice, circuit conducteur et support sans contact
JP2008186353A (ja) 2007-01-31 2008-08-14 Toppan Printing Co Ltd Icタグ用アンテナ
JP4986745B2 (ja) 2007-07-05 2012-07-25 Dowaエレクトロニクス株式会社 銀ペースト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064547A (ja) * 1999-09-01 2001-03-13 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化型導電性ペースト、それを用いた導体回路および非接触id
JP2007335558A (ja) * 2006-06-14 2007-12-27 Konica Minolta Holdings Inc 導電性パターン及び導電性パターンの作製方法
WO2008047823A1 (fr) * 2006-10-19 2008-04-24 National Institute Of Advanced Industrial Science And Technology Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice
JP2008235198A (ja) * 2007-03-23 2008-10-02 Alpha Scientific Kk 導電粉、導電ペースト、導電シート、回路板および電子部品実装回路板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016111133A1 (ja) * 2015-01-06 2017-08-17 株式会社フジクラ 導体層の製造方法及び配線基板

Also Published As

Publication number Publication date
US8927054B2 (en) 2015-01-06
US20120222890A1 (en) 2012-09-06
JPWO2011065271A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
Zhang et al. Recent progress for silver nanowires conducting film for flexible electronics
Kamikoriyama et al. Ambient aqueous-phase synthesis of copper nanoparticles and nanopastes with low-temperature sintering and ultra-high bonding abilities
Sreenilayam et al. Advanced materials of printed wearables for physiological parameter monitoring
US11395413B2 (en) Liquid metal fusion with conductive inks and pastes
JP7001659B2 (ja) 焼結材料、及びそれを用いる接着方法
Li et al. Copper nanowires in recent electronic applications: progress and perspectives
Ren et al. One-step preparation of silver hexagonal microsheets as electrically conductive adhesive fillers for printed electronics
EP2248399B1 (en) Printed electronics
ES2833274T3 (es) Materiales de sinterización y métodos de fijación mediante el uso de los mismos
TWI655090B (zh) 透明電極及其製造方法
TWI533767B (zh) 石墨烯印刷線路結構
Aminuzzaman et al. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film
TWI669722B (zh) Silver paste and semiconductor device using the same
Bhuiyan et al. A hybrid process for printing pure and high conductivity nanocrystalline copper and nickel on flexible polymeric substrates
Xu et al. Pressure-assisted low-temperature sintering for paper-based writing electronics
WO2008047823A1 (fr) Film de formation d'impression conductrice, et procédé de formation d'impression conductrice et appareil de formation d'impression conductrice pour le film de formation d'impression conductrice
WO2011140085A1 (en) Mechanical sintering of nanoparticle inks and powders
WO2011065271A1 (ja) 導電性基板とその製造方法
WO2012064292A1 (en) A method for preparing polymer/oxygen-free graphene composites using electrochemical process
TWI383950B (zh) 奈米點狀材料的形成方法
Lu et al. Preparation of highly conductive silver nanowires for electrically conductive adhesives
KR101947633B1 (ko) 전도성 구리 복합잉크 및 이를 이용한 광소결 방법
Nakajima et al. Highly stable flexible thermistor properties of spinel Mn-Co-Ni oxide films on silver/carbon micro-pinecone array composite electrodes
Xiao et al. Sintering and electrical properties of commercial PZT powders modified through mechanochemical activation
Zhang et al. Method of multi-layer near-field electrohydraulic printing and sintering of nano-silver ink prepared by liquid phase reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543218

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13503632

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833117

Country of ref document: EP

Kind code of ref document: A1