CN113686466B - 宽量程柔性电容式压力传感器及其制备方法 - Google Patents

宽量程柔性电容式压力传感器及其制备方法 Download PDF

Info

Publication number
CN113686466B
CN113686466B CN202110551510.8A CN202110551510A CN113686466B CN 113686466 B CN113686466 B CN 113686466B CN 202110551510 A CN202110551510 A CN 202110551510A CN 113686466 B CN113686466 B CN 113686466B
Authority
CN
China
Prior art keywords
dielectric
pressure sensor
sensor
wide
capacitive pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110551510.8A
Other languages
English (en)
Other versions
CN113686466A (zh
Inventor
余辉洋
李义丰
李传亮
王震涛
陈昊东
刘雪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202110551510.8A priority Critical patent/CN113686466B/zh
Publication of CN113686466A publication Critical patent/CN113686466A/zh
Application granted granted Critical
Publication of CN113686466B publication Critical patent/CN113686466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors

Abstract

本发明公开了一种基于介电应变效应的宽量程柔性电容式压力传感器及其制备方法,传感器按照从上至下顺序依次设置有传感器上电极、复合介质层和传感器下电极,在上下电极之上附着一层保护层,所述复合介质层由柔性基底材料掺杂纳米铁磁性材料组成,同时用磁铁对纳米铁磁性粒子的分布进行控制,使其在柔性基底内规则排布,因此,在压力的作用下,敏感层产生形变,纳米粒子的电偶极矩足够近并且趋于同向就可以在电偶极子之间产生较强的耦合作用,使传感器的电介质获得较高的介电系数,以此来提高传感器的灵敏度。

Description

宽量程柔性电容式压力传感器及其制备方法
技术领域
本发明涉及柔性压力传感器技术领域,尤其是宽量程柔性电容式压力传感器。
背景技术
柔性压力传感器是用来检测两个接触面之间表面作用力大小的电子器件。随着科学技术的快速发展,人们工作的环境更加趋于复杂化和多样化,对电子器件在柔韧性、便携性、可穿戴性等方面的要求越来越高。传统的压力传感器由于大多以半导体刚性材料为主,柔韧性较差,已经很难适应下一代传感器在柔性和便捷性等方面的需求,其应用受到了限制。与传统的压力传感器相比,柔性压力传感器克服了易脆的缺点,并且具有尺寸小、重量轻、功耗低、易于集成并且耐恶劣工作环境等优点,成为了许多科研工作者的研究重点,并在很多领域被广泛应用,比如健康监测、电子皮肤、生物医药、可穿戴电子产品等。在新一代柔性材料和传感技术的发展前提下,适应性良好、便携性高、灵敏度精确、稳定性好、响应度高、成本低廉等逐步成为柔性压力传感器的发展潮流。
但是,想要实现低成本制造分辨率高、灵敏度精确、超宽测量范围、响应迅速和可以进行复杂信号检测的柔性传感器依然是很难攻克的。现有的柔性压力传感器的一个共同缺陷是测量范围小,在压力达到某一数值后,传感器的灵敏度曲线的斜率迅速减小,导致传感器的线性度下降,另一个弊端是制备工艺复杂,从环保的角度考虑,对环境污染比较大。因此,需要进一步拓展柔性压力传感器的测量范围,改善其线性度并简化其制备工艺和流程。
发明内容
本发明针对背景技术中的不足,提供了一种基于介电应变效应的宽量程柔性电容式压力传感器及其制备方法。
本发明为解决上述现象,采用以下的技术方案,基于介电应变效应的宽量程柔性电容式压力传感器,其特征在于,包括有传感器上保护层,上电极,复合介质层,传感器下电极和传感器下保护层。所述复合介质层由柔性材料掺杂在磁铁控制下的铁磁性纳米粒子组成。
作为本发明的进一步优选方式,所述传感器上保护层和传感器下保护层采用聚对苯二甲酸乙二醇酯(PET)材质,传感器上电极和传感器下电极采用铜箔材料,所述复合介质层为聚二甲基硅氧烷(PDMS)和在磁铁控制下的纳米铁粉(直径为500nm)的混合物。
基于介电应变效应的宽量程柔性电容式压力传感器的制备方法,制备步骤包括如下:
S1,打印模具:利用3D打印机打印出制备电介质的模具,模具内部包含三个长方体槽,两侧的槽用来放置磁铁,中间的槽用来放置制备电介质的混合溶液;
S2,配置混合溶液:取一定质量的铁磁性纳米材料(纳米铁粉镍、钴、氧化铁,直径为50-1000nm)加入聚二甲基硅氧烷(PDMS)溶剂,并用玻璃棒充分搅拌,直至混合均匀;
S3,喷涂脱模剂:向S1中所加工出的模具的中间槽中喷涂脱模剂;
S4,排出空气:用胶头滴管将S2中所得的共混溶液滴入S1所得模具的中间的槽中,并将该滴有共混溶液的模具放入真空釜中,排除未固化的电介质中的空气;
S5,放置磁铁控制并加热:从真空釜中取出S4中的模具,在中间的槽上加上盖子(防止未固化的电介质在磁铁的作用下被吸出),并在两侧的槽中放入磁铁,使磁铁以相吸引的方式放置,将此时所得的模具放入烘箱,并加热至电介质完全固化;
S6,电介质剥离:用镊子将S5步骤所得的最终电介质从模具中剥离;
S7,制备薄层电介质:用匀胶机在两块铜箔电极表面甩一层纯PDMS作为薄层电介质,可以通过设置匀胶的速度控制其厚度;
S8,粘贴铜箔电极:对剥离后的复合电介质上下表面粘贴涂敷PDMS的铜箔电极使带有薄层电介质的一面与复合电介质的上下表面贴合然后加热使 PDMS固化并将电极引出。
本发明基于介电应变效应的宽量程柔性电容式压力传感器,在可穿戴式智能设备、工业器械传感和软体机器人以及电子皮肤等领域具有广泛的应用前景,该传感器的结构简单,制备工艺简便,但可以改善现有的柔性压力传感器测量范围小以及线性特性差的现状,本发明对柔性电介质层内所掺杂的增敏粒子进行控制,在施加在上表面的压力作用下,柔性电介质层发生垂直向下的位移及应变,传感器上下极板的间距减小,复合电介质中各电偶极子的耦合作用增强,传感器的电容值随所加压力的增大而增大;设法控制所掺杂的粒子在PDMS中的分布,使粒子不杂乱无章的分布在PDMS中,以此来提高传感器的介电性能。通过电介质层的介电常数受压力作用发生变化的机理提高器件的灵敏度。这种效应的应用可以有效地提高电容式压力传感器的性能。本发明着重以柔性电介质基底作为研究的切入点,将柔性电子技术与介电应变耦合机制相结合开发具有高介电应变性能的柔性电介质并深入到柔性电容式压力传感器的研究。为研制物联网和人工智能领域亟需的低功耗、高性能、低成本的柔性电容式压力传感器提供支持。
附图说明
图1为本发明其中一实施例对应的柔性电容式压力传感器的制备方法流程示意图;
图2为本发明其中一实施例的制备模具的主视图;
图3为本发明其中一实施例的制备模具BB’方向的剖视图;
图4为本发明其中一实施例的柔性电容式压力传感器的结构示意图;
图5为图4沿AA’方向的剖视图。
具体实施方式
下面将结合本发明实施例中,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明提出一种柔性电容式压力传感器的制备方法,如图1所示,制备步骤包括如下:
S1,打印模具:利用3D打印机打印出制备电介质的模具,模具例如包含三个长方体槽,两侧的槽(例如具有尺寸2.5cm×2cm×0.8cm)用来放置磁铁,中间的槽(例如具有尺寸1.5cm×1.5cm×0.5cm)用来放置制备电介质的混合溶液,如图2-3所示;图3中a为模具中放置磁铁的槽的宽度,该宽度只需要设计的比磁铁的厚度大即可,b为模具中放置电介质的槽的宽度,也是制备出的电介质的厚度,c为模具中放置电介质的槽的高度,也是制备出的电介质的宽度。
S2,配置混合溶液:取铁磁性纳米材料(纳米铁、镍、钴、氧化铁,直径例如为50-1000nm范围)掺入柔性聚合物溶剂(例如为聚偏二氟乙烯PVDF, 聚二甲基硅氧烷PDMS,聚对苯二甲酸乙二醇酯PET等),掺入的铁磁性纳米材料的质量分数可控制在2%-20%之间,并用玻璃棒充分搅拌,直至均匀。
S3,喷涂脱模剂:向S1中所得模具中间的槽中喷涂脱模剂,本实施例中采用的脱模剂例如是硅油;
S4,排出空气:用胶头滴管将S2中所得的共混溶液滴入S1所得模具的中间的槽中,并将该滴有共混溶液的模具放入真空釜中,排除未固化的电介质中的空气;
S5,放置磁铁控制并加热:从真空釜中取出S4中的模具,在中间的槽上加上盖子(防止未固化的电介质在磁铁的作用下被吸出),并在两侧的槽中放入磁铁,使磁铁以相吸引的方式放置,将此时所得的模具放入烘箱加热直至电介质完全固化;
S6,电介质剥离:用镊子将S5步骤所得的最终电介质从模具中剥离;
S7,制备薄层电介质:用匀胶机在两块铜箔电极表面甩一层纯PDMS作为薄层电介质,可以通过设置匀胶的速度控制其厚度;
S8,粘贴铜箔电极:对剥离后的复合电介质上下表面粘贴涂敷PDMS的铜箔电极使带有薄层电介质的一面与复合电介质的上下表面贴合然后加热使 PDMS固化并将电极引出。
由此,获得本发明所提出的宽量程柔性电容式压力传感器。
实施例2
依据实施例1所制备的宽量程柔性电容式压力传感器,如图3-4所示,本发明所提出的电容式压力传感器包括传感器上电极1,第一薄层电介质2,复合介质层3,第二薄层电介质4,传感器下电极5,铁磁性纳米粒子在聚合物中形成的线状分布6,这上下电极和位于其间的电介质层构成了一个类似“三明治”结构的电容,传感器按照从上至下顺序依次设置有传感器上电极1,第一薄层电介质2,复合介质层3,第二薄层电介质4,传感器下电极5,所述复合介质层3由柔性材料掺杂在磁铁控制下的铁磁性纳米粒子组成。
所述传感器上电极1和传感器下电极5例如采用铜箔材料,具有良好的导电性和抗静电屏蔽特性,所述复合介质层3例如为聚二甲基硅氧烷(PDMS) 和在磁场控制下的纳米铁粉的混合物。第一薄层电介质2,复合介质层3和第二薄层电介质3共同构成传感器的压力敏感层,当压力施加在传感器的电极表面,第一薄层电介质和第二薄层电介质的厚度发生变化,复合电介质层的厚度和电阻(导)率发生变化,使电介质层的等效介电系数发生变化,进而使传感器的电容值发生变化。所述复合电介质层采用聚二甲基硅氧烷PDMS,所述铁磁性纳米材料采用铁纳米粒子。
本发明的特点在于通过控制所掺杂的铁磁性纳米粒子的分布,使复合柔性电介质内部的铁纳米粒子呈磁感线状分布。由于磁场对铁磁性纳米粒子具有吸引作用,因此,靠近永磁体表面的铁磁性纳米粒子首先向磁铁方向移动并产生一定的集聚。此外,距离表面较远位置的纳米粒子由于受磁场作用也将对它周围的纳米粒子形成一定的吸引力,从而使周围的纳米粒子向其靠近,最终铁磁性纳米粒子的分布将呈现类似于磁感应线状态的分布,靠近磁铁表面粒子浓度较高,原理磁铁表面的区域粒子浓度降低。在施加磁场的两块磁铁之间的距离不大的情况下,由于磁场强度基本保持恒定,中间的铁磁性粒子的浓度也基本稳定从而呈现较均匀的线状分布。掺杂的铁磁性纳米粒子浓度越高中间形成的纳米粒子线越粗以及纳米粒子线的密度也越大。当掺入的纳米粒子呈线状分布的情况下,从电介质极化粒子耦合作用的角度看,在外界压力的作用下,纳米粒子之间的电偶极矩减小,当该距离减小到一定程度时,纳米粒子的极化方向趋于同向,此时偶极子之间的耦合作用明显增强,使得偶极子附近的局部电场增强,等效电介质系数增大,以此来达到提高传感器灵敏度的目的。从界面极化的角度看,压力作用使各电介质层的厚度减小,复合电介质的电导率增大,等效介电系数增大,传感器的电容值增大。此外,传感器上电极1和传感器下电极5之间的间距减小,传感器的电容值也随之发生变化,因此,极板间距变化对器件的灵敏度也做出贡献。
上述两方面共同作用使基于介电应变效应的柔性压力传感器的灵敏度高于很多现有传感器,且线性度明显优于其他传感器,同时传感器的压力测量范围也有所拓展;现有技术中,柔性压力传感器的量程一般介于0-10kPA;而本发明的柔性压力传感器到250kPa都还能维持线性增加。
加入铁磁性纳米粒子的比例可调节,质量分数在2%-10%范围内,纳米铁粉的掺杂浓度越高,制备出的复合电介质在压力的作用下介电常数变化越大,但由于有渗流阈值(掺杂体积比20%)的限制,铁电纳米颗粒的比例不宜过大,否则电介质的损耗将增大。同时磁场强度大小对介电应变效应的影响也不可以忽略,需要根据掺杂的铁磁性纳米粒子的类型进行合理的设计。
本发明的工作机理是通过整个电介质层的等效介电常数受压力作用发生变化进而提高器件的灵敏度。这种效应的应用可以有效地提高电容式压力传感器的性能。本发明以柔性电介质基底作为研究的切入点,将柔性电子技术与介电应变耦合机制相结合开发具有高介电应变性能的柔性电介质并深入到柔性电容式压力传感器的应用。利用该效应制作的传感器成本低廉,制备流程简便,使其可以大规模的运用在工业生产中,为研制物联网和人工智能领域亟需的低功耗、高性能、低成本的柔性电容式压力传感器提供了有力支持。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.一种宽量程柔性电容式压力传感器的制备方法,其特征在于,制备步骤包括:
S1,打印模具:所述模具包含相互邻接的三个长方体槽,两侧的槽用来放置磁铁,中间的槽用来放置制备复合电介质的混合溶液;
S2,配置混合溶液:取铁磁性纳米材料溶于溶剂,并充分搅拌,直至均匀;
S3,喷涂脱模剂:向S1中所得模具中间的槽中喷涂脱模剂;
S4,排出空气:将S2中所得的共混溶液滴入S1所得模具的中间的槽中,并将滴有混合溶液的模具放入真空釜中,排除未固化的复合电介质中的空气;
S5,放置磁铁控制并加热:从真空釜中取出S4中的模具,在中间的槽上加上盖子,并在两侧的槽中放入磁铁,使磁铁以相吸引的方式放置,将此时所得的模具放入烘箱,并加热至复合电介质完全固化;
S6,复合电介质剥离:将S5步骤所得的最终复合电介质从模具中剥离;
S7,制备薄层电介质:用匀胶机在两块金属电极表面甩一层薄层电介质;
S8,粘贴金属电极:对剥离后的复合电介质上下表面粘贴金属电极使带有薄层电介质的一面与复合电介质的上下表面贴合然后加热固化并将电极引出。
2.根据权利要求1所述的一种宽量程柔性电容式压力传感器的制备方法,其特征在于,所述S2中的溶剂为聚二甲基硅氧烷(PDMS)。
3.根据权利要求1所述的一种宽量程柔性电容式压力传感器的制备方法,其特征在于,所述铁磁性纳米材料占溶剂的质量百分比为2%-10%。
4.根据权利要求1所述的一种宽量程柔性电容式压力传感器的制备方法,其特征在于,所述打印模具采用3D打印机完成。
5.根据权利要求1所述的一种宽量程柔性电容式压力传感器的制备方法,其特征在于,所述薄层电介质的厚度远小于所述复合电介质的厚度。
6.一种根据权利要求1-5任一项所述的制备方法制备的宽量程柔性电容式压力传感器,其特征在于,所述传感器包括依次堆叠的传感器上电极,第一薄层电介质,复合介质层,第二薄层电介质,传感器下电极;其中,所述复合介质层由在磁铁控制下的铁磁性纳米粒子掺杂于柔性材料而形成。
7.根据权利要求6所述的宽量程柔性电容式压力传感器,其特征在于,所铁磁性纳米粒子呈磁感线状分布。
8.根据权利要求6所述的宽量程柔性电容式压力传感器,其特征在于,所述第一薄层电介质和/或所述第二薄层电介质的材质为PDMS或PVDF薄膜。
9.根据权利要求6所述的宽量程柔性电容式压力传感器,其特征在于,所述第一薄层电介质和/或所述第二薄层电介质的厚度远小于所述复合介质层的厚度。
10.根据权利要求6或9所述的宽量程柔性电容式压力传感器,其特征在于,所述第一薄层电介质和/或所述第二薄层电介质的电阻率远大于所述复合介质层的电阻率。
CN202110551510.8A 2021-05-20 2021-05-20 宽量程柔性电容式压力传感器及其制备方法 Active CN113686466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110551510.8A CN113686466B (zh) 2021-05-20 2021-05-20 宽量程柔性电容式压力传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110551510.8A CN113686466B (zh) 2021-05-20 2021-05-20 宽量程柔性电容式压力传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN113686466A CN113686466A (zh) 2021-11-23
CN113686466B true CN113686466B (zh) 2023-01-03

Family

ID=78576433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110551510.8A Active CN113686466B (zh) 2021-05-20 2021-05-20 宽量程柔性电容式压力传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN113686466B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689217B (zh) * 2022-03-31 2023-08-25 南京工业大学 一种柔性压敏层、制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971610B2 (ja) * 1991-03-28 1999-11-08 和廣 岡田 力・加速度・磁気の検出装置およびその製造方法
CN108540008B (zh) * 2018-05-10 2019-07-02 西安交通大学 基于逆挠曲电的柔性材料往复式多层结构作动器及方法
CN108731851B (zh) * 2018-08-01 2023-10-20 南京工业大学 一种柔性电容式压力传感器及其制备方法
CN109813466A (zh) * 2019-03-22 2019-05-28 重庆大学 具有滑移感知功能的触觉传感器
CN111562038A (zh) * 2020-06-16 2020-08-21 厦门大学 一种柔性电容式压力传感器和柔性电容式压力阵列传感器

Also Published As

Publication number Publication date
CN113686466A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN111505065B (zh) 一种基于超级电容传感原理的叉指型对电极式柔性触觉传感器及其制备方法
CN110375895B (zh) 多功能全柔性指纹状触觉传感器
WO2020215886A1 (zh) 可形变结构、柔性衬底、柔性显示装置、和应变传感器
CN112484887A (zh) 宽量程柔性电容式压力传感器及其制备方法
CN108613761A (zh) 一种柔性三维接触力传感器
US8278561B2 (en) Conductive pattern forming film, and conductive pattern forming method and conductive pattern forming apparatus for the conductive pattern forming film
CN208350249U (zh) 一种高灵敏度柔性压力传感器
He et al. A high-resolution flexible sensor array based on PZT nanofibers
CN113686466B (zh) 宽量程柔性电容式压力传感器及其制备方法
Brito-Pereira et al. Printed multifunctional magnetically activated energy harvester with sensing capabilities
CN103515045A (zh) 一种柔软压敏电涡流线圈及其研制方法
CN104916379A (zh) 作为可印刷热敏电阻的含有硅-碳复合物的导电薄膜
Chen et al. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array
Liu et al. Preparation and property research of strain sensor based on PDMS and silver nanomaterials
Chang et al. Transparent soft electrothermal actuators with integrated Cu nanowire heater for soft robotics
CN103973155A (zh) 磁感应电缆
Cheng et al. A triboelectric nanogenerator coupled with internal and external friction for gesture recognition based on EHD printing technology
Tian et al. Magnetic and electrically conductive polyurethane composites with high content of two functional fillers base on “Root” inspired microstructure
CN102830370A (zh) 基于Fe3O4纳米颗粒的磁场检测装置及其制造方法
Shen et al. Flexible magnetic film: Key technologies and applications
WO2020133416A1 (zh) 离子橡胶弹性体及其制备方法、离电子式电子皮肤
CN114689217B (zh) 一种柔性压敏层、制备方法及应用
CN207366108U (zh) 一种软性薄膜压力传感器
CN108762525B (zh) 自供电六轴传感器及其制造方法
CN207581351U (zh) 一种基于柔性薄膜的mems执行器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant