WO2008044356A1 - Fil d'acier à résistance élevée présentant une excellente ductilité et son procédé de fabrication - Google Patents

Fil d'acier à résistance élevée présentant une excellente ductilité et son procédé de fabrication Download PDF

Info

Publication number
WO2008044356A1
WO2008044356A1 PCT/JP2007/058897 JP2007058897W WO2008044356A1 WO 2008044356 A1 WO2008044356 A1 WO 2008044356A1 JP 2007058897 W JP2007058897 W JP 2007058897W WO 2008044356 A1 WO2008044356 A1 WO 2008044356A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
steel wire
less
ppm
mpa
Prior art date
Application number
PCT/JP2007/058897
Other languages
English (en)
French (fr)
Inventor
Shingo Yamasaki
Seiki Nishida
Makio Kikuchi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006278781A external-priority patent/JP2007131945A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP07742332.5A priority Critical patent/EP2083094B1/en
Priority to JP2007541549A priority patent/JP5233281B2/ja
Priority to ES07742332T priority patent/ES2734903T3/es
Priority to CN2007800006754A priority patent/CN101331244B/zh
Priority to BRPI0702884-9A priority patent/BRPI0702884B1/pt
Priority to US11/922,524 priority patent/US8168011B2/en
Publication of WO2008044356A1 publication Critical patent/WO2008044356A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel wire, a steel wire, and a method for producing them. More specifically, for example, radial tires for automobiles, various industrial belts,
  • This paper describes steel cords used as reinforcements for hoses, rolled wire suitable for applications such as sawing wire and its manufacturing method, and steel wires made from the above-mentioned rolled wire.
  • Steel cord steel wire used as a reinforcing material for automobile radial tires, various belts and hoses, or steel wire for sawing wire is generally wire diameter (diameter) adjusted and cooled after hot rolling.
  • a steel wire with a diameter of 5 to 6 mm is subjected to primary wire drawing to a diameter of 3 to 4 mm, followed by a patenting treatment, and further subjected to secondary wire drawing to a diameter of 1 to 2 mm. After this, a final patenting process is performed, followed by brass plating and further a final wet wire drawing to a diameter of 0.15 to 0.40 mm.
  • a steel cord is manufactured by twisting a plurality of ultrafine steel wires obtained in this way by twisting into a twisted steel wire.
  • Japanese Patent No. 2609387 discloses a high-strength, high-toughness ultrafine steel wire, a high-strength, high-toughness ultrafine steel wire, which is made of a steel material having a specific chemical composition and defines the content average area ratio of proeutectoid cementite. And a twisted product using the ultrafine steel wire, and a method for producing the ultrafine steel wire ”.
  • the wire proposed in this document contains one or more of the expensive elements Ni and Co as essential components, which increases the manufacturing cost.
  • the drawing value of the patenting wire is austenite grains.
  • the aperture value can be improved by making the austenite grain size finer, so the carbide and nitrides such as Nb, Ti, and B can be used as pinning particles to make the austenite grain size finer.
  • Japanese Patent No. 2609387 includes Nb: 0.01 to 0.1% by weight, Zr: 0.05 to 0.1% by weight, Mo: 0.02 to 0.5% by weight as constituent elements.
  • a technique for further enhancing the toughness of ultrafine steel wire by containing one or more types from the group is disclosed.
  • Japanese Laid-Open Patent Publication No. 2001-131697 also discloses austenite by NbC. The refinement of the grain size has been proposed.
  • a high-carbon wire rod is obtained by fixing solid solution N with Ti, B.
  • Techniques for improving wire drawing workability have also been proposed.
  • the cement component in the wire is dissociated during wire drawing, and the amount of solute C increases. It is considered difficult to increase
  • Japanese Patent Laid-Open Nos. 2000-355736 and 2004-137597 also propose a technique for suppressing ferrite precipitation by solute B, but on the other hand, coarse precipitation that promotes precipitation by solute B is proposed.
  • Consideration of cementite and Fe 2 3 (CB) 6 has not been made, and there is a high possibility of disconnection. Disclosure of the invention
  • the present invention has been made in view of the above-described situation, and the object thereof is to obtain a wire rod excellent in cold workability such as wire drawing workability suitable for uses such as a steel cord sawing wire, and the wire rod described above. It is to provide steel wires made of the material with high yield and low cost under high productivity.
  • the structure of the manufacturing method according to the present invention that has solved the above problems is as follows: (1) to (3) a steel wire, (4) a method of manufacturing a steel wire, and (5) a high strength On steel wire.
  • the area ratio of the partite structure after patenting is 97% or more, and the balance is bainite, pseudo-parite, and non-partite composed of pro-eutectoid ferrite.
  • a steel wire material that has a light structure and that has a drawing value RA satisfying the following formulas (1), (2), (3), and a tensile strength TS satisfying the formula (4).
  • a wire having the chemical composition described in (2) to (3) is subjected to the following temperature Tmii! It is heated to ⁇ 1100 ° C., and a patenting process is performed in an atmosphere of 500 to 650 ° C. such that a cooling speed of 800 to 650 ° C. is 50 ° C / s or more. 1) The manufacturing method of the steel wire described in 1).
  • Tmin 1000 + 1450 / (B (ppm)-0.77XN (ppm) 1) 10) (5) (5)
  • tensile strength is 2800MPa or more A high-strength steel wire with excellent ductility.
  • Figure 1 shows the relationship between the non-partite area ratio and the aperture value.
  • Figure 2 shows the relationship between pearlite block particle size and aperture value.
  • Fig. 3 is a diagram showing the relationship between the lower limit value Mmin of the aperture value expressed by Equation (1) and the actual aperture value.
  • the inventors of the present invention repeatedly investigated and studied the influence of the chemical composition and mechanical properties of the wire on the wire drawing workability. As a result, the following knowledge was obtained.
  • the drawing workability can be estimated from the tensile strength before drawing, that is, after the heat treatment, and the fracture drawing value.
  • the wire drawing workability after the final heat treatment shows a good correlation with the tensile strength and the drawing value after the final heat treatment, and the wire drawing workability is very good when the drawing value is a certain value or more according to the tensile strength. Is obtained.
  • (c) B forms a compound with N, and the amount of solid solution B is determined by the total amount of B, the amount of N, and the heating temperature before the particulate transformation.
  • Solid solution B must be generated from the austenite grain boundaries during cooling from the austenite temperature during the patenting process. Suppresses the generation of weak, particularly weak, low-strength microstructures such as inits, ferrites, and pseudo-palites. Of these non-particulate organizations, the ones that have the most negative effect on wire drawing are the bainites.
  • Bainite accounts for over 60% of non-partite organizations. If the amount of solute B is small, the above effect is small, and if it is excessive, coarse Fe 2 3 (CB) 6 precipitates before the perlite transformation, and the wire drawing workability deteriorates. The present invention has been completed based on the above findings.
  • the drawing value of the patenting wire can be improved if the perlite block particle size, which is almost proportional to the austenite ⁇ particle size, is refined to 10 1 m or less, and precipitates such as TiN, A 1 N and NbC are austenite. It is known to contribute to grain refinement. However, in steel cord wires, addition of Ti or A1 is difficult because it forms coarse oxides that cause wire breakage. Nb is also difficult to use due to concerns over the formation of coarse NbC. In order to refine the particulate block grains without using these precipitates, it is necessary to lower the austenity heating temperature and shorten the heating time. However, it was extremely difficult to stably and finely control the austenite grain size by such a method, and it was difficult in actual operation.
  • the non-palai grain structure consisting of ferrite, pseudopalite, and bainite in the wire after patenting is suppressed to 3% or less, thereby greatly increasing the particle size of the block. It is characterized by increasing the aperture value of the wire without the need for miniaturization.
  • RAmin a— b X particle block particle size ( ⁇ ⁇
  • Tmin 1000 + 1450 / (B (ppm) -0.77XN (ppm) -10)
  • C is an element effective for increasing the strength of the wire, and if its content is less than 0.70%, it is difficult to stably impart high strength to the final product, and at the same time, austenite The precipitation of proeutectoid ferrite at the grain boundaries is promoted, making it difficult to obtain a uniform partite structure.
  • the C content is set to 0.70 to 1.10% by mass.
  • Si is an effective element for increasing the strength. Furthermore, it is an element useful as a deoxidizer, and is also an element necessary when targeting steel wires that do not contain A1. If it is less than 0.1% by mass, the deoxidation action is too small. On the other hand, if the amount of Si is too large, precipitation of proeutectoid ferrite is promoted even in hypereutectoid steel, and the limit working degree in wire drawing decreases. Furthermore, the wire drawing process by mechanical dual force rudescaling (hereinafter abbreviated as MD) becomes difficult. Therefore, the Si content is set to 0.1 to 1.5 mass%.
  • Mn Mn, like Si, is a useful element as a deoxidizer. It is also effective in improving hardenability and increasing the strength of the wire. Furthermore, Mn has the effect of preventing hot brittleness by fixing S in steel as MnS. If the content is less than 0.1% by mass, it is difficult to obtain the above effect. On the other hand, Mn is a segregation shading element. If it exceeds 1.0 mass%, it will be prayed especially at the center of the wire, and martensite and bainite will be generated in the segregation part. descend. Therefore, the Mn content is set to 0.1 to 1.0% by mass.
  • A1 0.01% or less: The content of A1 is defined as 0.01% or less, including 0%, so that hard non-deformation alumina-based non-metallic inclusions are not generated to cause ductility deterioration and wire drawing deterioration of the steel wire. .
  • Ti 0.01% or less: Ti content is specified to be 0.01% or less, including 0%, so that hard non-deformable oxides are not formed and the steel wire is not ductile and drawn.
  • N 10-60ppm: N has the effect of forming B and nitrides in steel and preventing coarsening of the austenite grain size during heating. Is effectively exerted by adding more than lOppm. However, if the content is too high, the amount of nitride will increase too much, and the amount of dissolved B in the austenite will decrease. Furthermore, there is a risk that solute N may promote aging during wire drawing, so the upper limit was set to 60 ppm.
  • B 3 ppn! ⁇ Or (0.777X N (ppm) — 17.4) ⁇ 50ppm:
  • B When B is present in the austenite in a solid solution state, it concentrates at the grain boundary and does not contain ferrite, pseudo-parite, paynite, etc. Suppresses the formation of pearlite precipitation.
  • excessive addition of B promotes the precipitation of coarse Fe 23 (CB) 6 carbides in the austenite and adversely affects the wire drawing. Therefore, the lower limit of the B content was 3 or (0.777XN (ppm)-17.4), whichever was larger, and the upper limit was 50 mass ppm.
  • Impurities P and S are not specified, but each is preferably 0.02% or less from the viewpoint of securing ductility as with conventional ultrafine steel wires.
  • the steel wire used in the present invention has the above-mentioned elements as basic components, but for the purpose of further improving mechanical properties such as strength, toughness and ductility, one type of selectively permissible additive elements as follows is used. Or, two or more kinds may be actively included.
  • Cr 0.03 to 0.5% Cr is an element effective in reducing the lamellar spacing of the pearlite and improving the strength of the wire and the wire drawing workability. Addition of 0.03% or more is preferable for effectively exhibiting such an effect. On the other hand, if the amount of Cr is too large, the transformation end time becomes longer, and there is a possibility that a supercooled structure such as martensite and bainite is formed in the hot-rolled wire rod. The upper limit was set to 0.5% because the mechanical and scaling properties also deteriorated.
  • Ni 0.5% or less Ni does not contribute much to the strength of the wire, but is an element that increases the toughness of the wire. Addition of 0.1% or more is preferable in order to exert such an effect effectively. On the other hand, if Ni is added excessively, the transformation end time becomes longer, so the upper limit was set to 0.5%.
  • Co 1% or less Co is an element effective in suppressing precipitation of proeutectoid cementite in the rolled material. Addition of 0.1% or more is preferable for effectively exhibiting such an effect. On the other hand, even if Co is added excessively, the effect is saturated and economically useless, so the upper limit was set to 0.5%.
  • V 0.03-0.5%
  • V forms fine carbonitrides in the ferrite to prevent coarsening of austenite grains during heating, improve ductility, and increase strength after rolling. Contribute. Addition of 0.03% or more is preferable in order to exert such an action effectively. However, if the amount is excessively added, the amount of carbonitride formed becomes too large and the particle size of the carbonitride increases, so the upper limit was made 0.5%.
  • Cu 0.2% or less Cu has the effect of enhancing the corrosion resistance of ultra fine steel wires. Addition of 0.1% or more is preferable for effectively exhibiting such an effect. However, if it is added in excess, it reacts with S and segregates CuS in the grain boundaries, so that ingots are generated in the steel ingot and wire during the wire manufacturing process. In order to prevent such adverse effects, the upper limit was set to 0.2%.
  • Mo has the effect of enhancing the corrosion resistance of ultra fine steel wires. Addition of 0.1% or more is preferable for effectively exhibiting such an effect. On the other hand, if Mo is added excessively, the transformation completion time becomes longer, so the upper limit was set to 0.2%.
  • W has the effect of increasing the corrosion resistance of ultra-fine steel wires. Addition of 0.1% or more is preferable in order to exert the effect effectively. On the other hand, if W is added excessively, the transformation end time becomes longer, so the upper limit was set to 0.2%.
  • Nb has the effect of increasing the corrosion resistance of ultra fine steel wires. Addition of 0.05% or more is preferable in order to exert such an effect effectively. On the other hand, when Nb is added excessively, the transformation completion time becomes longer, so the upper limit was set to 0.1%.
  • the L cross-section of the rolled wire was embedded in resin, then polished with alumina, corroded with saturated picral, and SEM observation was performed.
  • the SEM observation area is the surface layer, 1 Z 4 D, 1/2 D (D is the wire diameter) part, and in each area, 10 photographs of an area of 50 X 40 ⁇ m are taken at a magnification of 3000
  • the artificial parlay with the cementite dispersed in a granular manner
  • the area ratios of the ferrite portion where the plate cementite is dispersed along the austenite ridge where the plate-like cementite is dispersed with a coarse lamellar spacing of 3 times or more from the surroundings are measured by image analysis. Non-partite volume fraction was used.
  • the particle block particle size of the patented wire was calculated by embedding the L cross-section of the wire into the resin and then cutting and polishing, and analyzing the area surrounded by the 9 ° misalignment interface as one block particle by EBSP analysis. The average particle size was determined from the volume.
  • a zinc phosphate coating is applied by a bonder treatment, and the area reduction rate per pass is 16 to 20% using a die of 10 degrees each approach.
  • Continuous wire drawing was performed to obtain a high strength wire drawing material having a diameter of 0.18 to 0.30 mm.
  • Table 1 shows the chemical composition of the evaluation material
  • Table 2 shows the test conditions, block particle size, and mechanical properties.
  • RAm i n a ⁇ b X perlite block particle size (m).
  • Examples 16 and 22 are examples in which the drawing value was low because the heating temperature before patenting was low, and nitrides and carbides of B precipitated before the patenting treatment, and the amount of solute B could not be secured.
  • Examples 17 and 23-27 are examples of low aperture values due to low or no addition of B.
  • 18 is an example in which the amount of B is excessive, and a large amount of B carbide and proeutectoid cementite precipitate at the austenite grain boundary, resulting in a low aperture value.
  • No. 19 is an example in which the amount of Si was excessive and the precipitation of proeutectoid ferrite could not be suppressed.
  • 20 is an example in which the amount of C was excessive and the precipitation of proeutectoid cementite could not be suppressed.
  • 21 is an example in which the amount of Mn was excessive and the formation of micromartensite could not be suppressed.
  • No. 28 is an example in which the cooling rate during the patenting process was small and the predetermined tensile strength could not be satisfied.
  • Figure 1 shows the relationship between the non-partite area ratio and the drawing value for the inventive steel and the comparative steel. It can be seen that the steel of the present invention having a non-partite area ratio of 3% or less tends to have a high aperture value. However, as already mentioned, the aperture value is also affected by the tensile strength, so there are overlapping data.
  • Figure 2 shows the relationship between the block particle size and the drawing value of the inventive steel and the comparative steel. It can be seen that the steel of the present invention tends to have a high aperture value. However, as already mentioned, the drawing value is also affected by the tensile strength, so there are overlapping data.
  • Figure 3 shows the relationship between the lower limit value RAm i n of the aperture value given by Equation (1) and the actual aperture value. It can be seen that the aperture value of the developed steel is higher than RAmin.
  • the present invention makes it possible to produce rolled wire rods suitable for applications such as automotive radial tires, steel cords used as reinforcing materials for various industrial belts and hoses, and sawing wires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Metal Extraction Processes (AREA)

Description

延性に優れた高強度鋼線およびその製造方法
技術分野
本発明は、 鋼線材、 鋼線及びそれらの製造方法に関する。 より詳 しくは、 例えば、 自動車のラジアルタイヤや、 各種産業用ベルトや 明
ホースの補強材として用いられるスチールコード、 更には、 ソ一ィ ングワイヤなどの用途に好適な圧延線材とその製造方法、 および前 '記の圧延線材を素材とする鋼線に関す書る。
背景技術
自動車のラジアルタイヤや、 各種のベルト、 ホースの補強材とし て用いられるスチールコード用鋼線、 あるいは、 ソ一イングワイヤ 用の鋼線は、 一般に、 熱間圧延後調整冷却した線径 (直径) が 5〜 6 mmの鋼線材を、 1次伸線加工して直径を 3〜 4 mmにし、 次いで、 パテンティ ング処理を行い、 更に 2次伸線加工して 1〜 2 mmの直径 にする。 この後、 最終パテンティ ング処理を行い、 次いで、 ブラス メツキを施し、 更に最終湿式伸線加工を施して直径 0. 1 5〜0. 40匪に する。 このようにして得られた極細鋼線を、 更に撚り加工で複数本 撚り合わせて撚鋼線とすることでスチールコードが製造される。
一般に、 線材を鋼線に加工する際や鋼線を撚り加工する際に断線 が生ずると、 生産性と歩留りが大きく低下してしまう。 したがって 、 上記技術分野に属する線材ゃ鋼線は、 伸線加工時ゃ撚り加工時に 断線しないことが強く要求される。 伸線加工のうちでも最終湿式伸 線加工の場合には、 被処理鋼線の線径が極めて細いため、 特に断線 が発生しやすい。 更に、 近年、 種々の目的からスチールコードなどを軽量化する働 きが高まってきた。 このため、 前記の各種製品に対して高強度が要 求されるようになり、 C含有量が 0. 7質量%未満の炭素鋼線材など では、 所望の高強度が得られなくなつており、 0. 75質量%以上の C 含有量の鋼線を用いることが多くなつている。 しかし、 C含有量を 高めると伸線加工性が低下するので、 断線頻度が高くなる。 このた め、 C含有量が高くて鋼線に高い強度を確保させることができ、 し かも伸線加ェ性にも優れた線材に対する要求が極めて大きくなつて いる。
上記した近年の産業界からの要望に対して、 偏析ゃミクロ組織を 制御したり、 特定の元素を含有させることで高炭素線材の伸線加工 性を高める技術が提案されている。
例えば特許 2609387号公報には、 特定の化学組成を有する鋼材か らなり、 初析セメンタイ トの含有平均面積率を規定した 「高強度高 靱性極細鋼線用線材、 高強度高靱性極細鋼線、 および該極細鋼線を 用いた撚り製品、 並びに該極細鋼線の製造方法」 が開示されている 。 しかし、 この文献で提案された線材は、 高価な元素である N i及び Coの 1種以上を必須の成分として含有するため、 製造コス トが嵩む 一方、 パテンティ ング線材の絞り値はオーステナイ ト粒径に依存 し、 オーステナイ ト粒径を微細化することによって絞り値が向上す ることから、 Nb, T i, B等の炭化物や窒化物をピニング粒子として 用いることによってオーステナイ ト粒径を微細化する試みもなされ ている。 特許 2609387号公報には、 成分元素として Nb: 0. 0 1〜0. 1重 量%、 Z r: 0. 05〜0. 1重量%、 Mo: 0. 02〜0. 5重量%よりなる群から 1種以上を含有させて極細鋼線の靱延性を一層高める技術が開示さ れている。 特開 200 1— 13 1697号公報でも、 NbCによるオーステナイ ト粒径の微細化が提案されている。 しかしこれら添加元素は高価な ためコス ト増を招く こと、 Nbは粗大な炭化物、 窒化物を、 T iは粗大 な酸化物を形成するため細い線径、 例えば、 直径 0. 40mm以下の線径 にまで伸線すると、 断線する場合があった。 また、 本発明者らによ る検証によれば、 BNのピニングでは、 絞り値に影響を及ぼすほどォ ーステナイ 卜粒径を微細化することは難しい。
さらに、 特開 2000— 309849号公報、 特開昭 56— 44747号公報、 特 開平 0 1— 3 16420号公報のように、 T i , Bにより固溶 Nを固定するこ とにより高炭素線材の伸線加工性を高める技術も提案されている。 しかし、 近年の報告によれば、 伸線中に線材中のセメン夕イ トが分 解し、 固溶 C量が高まるため、 伸線前の固溶 Nを固定しても伸線加 ェ性を高めることは困難と考えられる。
また、 特開 2000— 355736号公報、 特開 2004— 137597号公報では、 固溶 Bによりフェライ ト析出を抑制する技術も提案されているが、 一方で固溶 Bにより析出が促進される粗大なセメン夕イ ト、 Fe2 3 (C B) 6への配慮がなされておらず、 断線の可能性が高い。 発明の開示
本発明は、 上記現状に鑑みなされたもので、 その目的は、 スチ一 ルコードゃソーイングワイヤなどの用途に好適な伸線加工性などの 冷間加工性に優れた線材を得るとともに、 前記の線材を素材とする 鋼線を高い生産性の下に歩留りよく廉価に提供することである。
上記課題を解決することのできた本発明に係る製造方法の構成は 、 下記 ( 1 ) から ( 3 ) に示す鋼線材、 ( 4 ) に示す鋼線材の製造 方法、 および ( 5 ) に示す高強度鋼線にある。
( 1 ) パテンティ ング後のパーライ ト組織の面積率が 97 %以上、 残 部がベイナイ ト、 擬似パーライ ト、 初析フェライ トからなる非パー ライ ト組織であり、 破断絞り値 RAが次式 ( 1 ) , ( 2 ) , ( 3 ) 、 引張り強さ TSが式 ( 4) を満足することを特徴とする鋼線材。
RA≥RAmin · · ( 1 )
ただし、 RAmin= a— b Xパーライ トブロック粒径 ( m) a = - 0.0001187 XTS (MPa) 2 -t- 0.31814XTS (MPa) - 151.32 • · ( 2 )
b = 0.0007445 XTS (MPa) - 0.3753 · · ( 3 )
TS≥ 1000 X C ( % ) 一 10X線径 (mm) + 320 MPa · · ( 4 )
( 2 ) 質量%で、 C : 0· 70〜し 10%、 Si : 0. 1〜1.5%、 Mn: 0. 1〜 1 .0%、 A1 : 0.01%以下、 Ti : 0.01%以下、 N : 10〜60質量 1)111、 B
: (0.77X N (ppm) — 17.4) 質量 ppm、 もしくは 3質量 ppmのいず れか高い量以上、 52質量 ppm以下を含有し、 残部は Fe及び不純物か らなることを特徴とする ( 1 ) に記載の鋼線材。
( 3 ) 更に Cr: 0.03〜0.5%、 Ni : 0.5%以下 ( 0 %を含まない) 、 Co : 0.5%以下 ( 0 %を含まない) 、 V : 0.03〜0.5%、 Cu: 0.2% 以下 ( 0 %を含まない) 、 Mo : 0.2%以下 ( 0 %を含まない) 、 W
: 0.2%以下 ( 0 %を含まない) 、 Nb: 0. 1%以下 ( 0 %を含まない ) 、 よりなる群から選択される少なく とも 1種以上を含有すること を特徴とする ( 2 ) に記載の鋼線材。
( 4 ) ( 2 ) 乃至 ( 3 ) に記載の化学組成を有する線材を、 次に示 す温度 Tmii!〜 1100°Cに加熱し、 500〜 650°Cの雰囲気中で、 800〜65 0°Cの冷速が 50°C/ s以上であるようなパテンティ ング処理を行う ことを特徴とする、 ( 1 ) に記載の鋼線材の製造方法。
B ( ρι) -0.77XN (ppm) > 0.0の場合は加熱最低温度 T min は 850°C、
B (ppm) -0.77XN (ppm) ≤0.0の場合は、 加熱最低温度 Tm inは、 Tmin= 1000 + 1450/ (B (ppm) - 0.77XN (ppm) 一 10) ( 5 ) ( 1 ) に記載の鋼線材を冷間伸線することによって製造する 、 引張り強さが 2800MPa以上であることを特徴とする延性に優れた 高強度鋼線。 図面の簡単な説明
図 1 は、 非パーライ ト面積率と絞り値の関係を示す図。
図 2は、 パーライ トプロック粒径と絞り値の関係を示す図。
図 3は、 式 ( 1 ) で示される絞り値の下限値 Mminと、 実際の絞 り値の関係を示す図。 発明を実施するための最良の形態
本発明者らは、 線材の化学組成と機械的性質が伸線加工性に及ぼ す影響について調査 · 研究を重ね、 その結果、 下記の知見を得た。
( a ) 引張強さを高めるためには、 C, Si, Mn, Crなどの合金元素 の含有量を増やせばよいが、 これら合金元素の含有量の増加は伸線 加工性の低下、 つまり、 伸線加工時の限界加工度の低下を招くため 、 断線する頻度が増加する。
( b) 伸線加工性は、 伸線加工前、 つまり熱処理後の引張り強さと 破断絞り値とから推定できる。 特に、 最終熱処理後の伸線加工性は 最終熱処理後の引張り強さ及び絞り値とよい相関を示し、 絞り値が 引張り強さに応じたある一定値以上の場合に極めて良好な伸線加工 性が得られる。
( c ) Bは Nと化合物を形成し、 固溶 B量はトータルの B量、 N量 およびパ一ライ ト変態前の加熱温度によって決定される。 固溶 Bは オーステナィ ト粒界に偏祈し、 パテンティ ング処理に際するオース テナイ ト温度からの冷却中に、 オーステナイ ト粒界から発生するべ イナイ ト、 フェライ ト、 擬似パーライ ト等の、 ミクロ組織が粗く低 強度な組織、 特にべイナイ トの発生を抑制する。 これら非パ一ライ ト組織の内、 伸線性に最も悪影響を及ぼす組織はべイナィ トである
。 非パーライ ト組織の内、 ベイナイ トが占める割合は、 60 %以上で ある。 固溶 Bが少ないと上記効果は小さく、 過剰であるとパーライ ト変態に先立ち、 粗大な Fe2 3 ( CB) 6が析出し、 伸線加工性が低下 する。 本発明は、 上記の知見に基づいて完成されたものである。
以下、 本発明の各要件について詳しく説明する。
線材の組織および機械的性質 :
パテンティ ング線材の絞り値は、 オーステナイ 卜粒径にほぼ比例 するパーライ トブロック粒径を 10 1 m以下に微細化すれば改善され ること、 T iN, A 1 Nや NbC等の析出物がオーステナイ ト粒の微細化に 寄与することが知られている。 しかしスチールコード用線材におい ては、 T iや A 1の添加は断線の原因となる粗大な酸化物を形成するた め困難である。 Nbについても粗大な NbCの生成が懸念するため、 そ の利用は困難である。 これらの析出物を利用することなくパ一ライ トブロック粒を微細化するには、 オーステナィ 卜加熱温度を低下さ せること、 加熱時間短縮する必要がある。 しかし、 このような方法 によってオーステナイ 卜粒径を安定して微細にコントロールするこ とは極めて難しく、 実操業においては困難であった。 これに対し、 本発明では、 パテンティ ング後の線材中の、 フェライ ト、 擬似パ一 ライ ト、 ベイナイ トからなる非パーライ 卜組織を 3 %以下に抑制す ることで、 プロック粒径の大幅な微細化を必要とすることなく線材 の絞り値を高めたことに特徴がある。
発明者らの検討によれば、 従来用いられてきた線材用鋼の破断絞 り値 Mは TSならびにパーライ トブロック粒径と相関があり、 次の関 係にあることが判明した。 RA≥RAmin · · ( 1 )
RAmin= a— b Xパ一ライ トブロック粒径 ( ι πθ
a = - 0.0001187 XTS (MPa) 2 + 0.31814XTS (MPa) - 151.32 • · ( 2 )
b = 0.0007445 XTS (MPa) - 0.3753 · · ( 3 )
また、 引張試験の際に亀裂の発生起点となるのは旧ァ粒界に発生 した初析フェライ トまたはべィナイ トあるいは擬似パーライ トとい つた、 規則的なラメラ組織を呈しない非パーライ ト組織であること を明らかにし、 この非パーライ ト組織率を 3 %以下に抑制できれば 破断絞り値を飛躍的に改善できること、 非パ一ライ ト組織の低減に は B添加と、 パテンティ ング処理前の加熱温度を添加 B量に応じて 調整すること、 具体的には次式に示す加熱下限温度 Tmin〜1100°C に加熱し、 500〜 650°Cの雰囲気中で、 800〜 650°Cの冷速が 50°C/ s 以上であるようなパテンティ ング処理を行うことが有効であること を見出した。
B ( pm) -0.77XN (ρρπι) > 0.0の場合は加熱最低温度 T min は 850°C、
B (ppm) -0.77XN (ppm) ≤ 0.0の場合は、 加熱最低温度 Tm inは、
Tmin= 1000 + 1450/ (B (ppm) -0.77XN (ppm) - 10) これにより、 式 ( 1 ) で示される以上の絞り値を有する高強度線 材を得ることができる。
成分組成 :
C : Cは、 線材の強度を高めるのに有効な元素であり、 その含有 量が 0.70%未満の場合には高い強度を安定して最終製品に付与させ ることが困難であると同時に、 オーステナイ ト粒界に初析フェライ トの析出が促進され、 均一なパ一ライ ト組織を得ることが困難とな る。 一方、 Cの含有量が多すぎるとオーステナイ ト粒界にネッ ト状 の初析セメン夕ィ トが生成して伸線加工時に断線が発生しやすくな るだけでなく、 最終伸線後における極細線材の靱性 · 延性を著しく 劣化させる。 したがって、 Cの含有量を 0.70〜1.10質量%とした。
Si : Siは強度を高めるのに有効な元素である。 更に脱酸剤として 有用な元素であり、 A1を含有しない鋼線材を対象とする際にも必要 な元素である。 0.1質量%未満では脱酸作用が過少である。 一方、 S i量が多すぎると過共析鋼においても初析フェライ トの析出を促進 するとともに、 伸線加工での限界加工度が低下する。 更にメカ二力 ルデスケーリ ング (以下、 MDと略記する。 ) による伸線工程が困難 になる。 したがって、 Siの含有量を 0. 1〜1.5質量%とした。
Mn : Mnも Siと同様、 脱酸剤として有用な元素である。 また、 焼き 入れ性を向上させ、 線材の強度を高めるのにも有効である。 更に Mn は、 鋼中の Sを MnSとして固定して熱間脆性を防止する作用を有す る。 その含有量が 0.1質量%未満では前記の効果が得難い。 一方、 M nは偏析しゃすい元素であり、 1.0質量%を超えると特に線材の中心 部に偏祈し、 その偏析部にはマルテンサイ トやべイナィ トが生成す るので、 伸線加工性が低下する。 したがって、 Mnの含有量を 0.1〜 1 .0質量%とした。
A1 : 0.01%以下 : A1の含有量は、 硬質非変形のアルミナ系非金属 介在物が生成して鋼線の延性劣化と伸線性劣化を招かないように 0 %を含む 0.01%以下と規定した。
Ti : 0.01%以下 : Tiの含有量は、 硬質非変形の酸化物が生成して 鋼線の延性劣化と伸線性劣化を招かないように 0 %を含む 0.01%以 下と規定した。
N : 10〜60ppm : Nは、 鋼中で Bと窒化物を生成し、 加熱時にお けるオーステナイ ト粒度の粗大化を防止する作用があり、 その効果 は lOppm以上含有させることによって有効に発揮される。 しかし、 含有量が多くなり過ぎると、 窒化物量が増大し過ぎて、 オーステナ イ ト中の固溶 B量を低下させる。 さらに固溶 Nが伸線中の時効を促 進する恐れが生じてくるので、 上限を 60ppmとした。
B : 3 ppn!〜、 または (0. 77X N (ppm) — 17.4) 〜50ppm : Bは 固溶状態でオーステナイ ト中に存在する場合、 粒界に濃化してフエ ライ ト、 擬似パーライ ト、 ペイナイ ト等の非パーライ ト析出の生成 を抑制する。 一方、 Bを添加しすぎるとオーステナイ ト中において 粗大な Fe23 (CB) 6炭化物の析出を促進し、 伸線性に悪影響を及ぼ す。 したがって Bの含有量の下限値を 3または (0. 77XN (ppm) - 17.4) のいずれか大きい値、 上限値を 50質量 ppmとした。
なお、 不純物である Pと Sは特に規定しないが、 従来の極細鋼線 と同様に延性を確保する観点から、 各々 0.02%以下とすることが望 ましい。
本発明に用いられる鋼線材は上記元素を基本成分とするものであ るが、 更に強度、 靱性、 延性等の機械的特性の向上を目的として、 以下の様な選択的許容添加元素を 1種または 2種以上、 積極的に含 有してもよい。
Cr: 0.03〜0. 5%、 Ni : 0. 5%以下、 Co: 0. 5%以下、 V : 0.03〜0 . 5%、 Cu: 0. 2%以下、 Mo : 0. 2%以下、 W : 0. 2%以下、 Nb: 0. 1% 以下 (Ni, Co, Cu, Mo, W, NMこついてはいずれも 0 %を含まない ) 。 以下、 各元素について説明する。
Cr : 0.03〜0. 5% Crはパ一ライ トのラメラ間隔を微細化し、 線 材の強度や伸線加工性等を向上させるのに有効な元素である。 この 様な作用を有効に発揮させるには 0.03%以上の添加が好ましい。 一 方、 Cr量が多過ぎると変態終了時間が長くなり、 熱間圧延線材中に マルテンサイ トやべイナィ トなどの過冷組織が生じる恐れがあるほ 、 メカニカルでスケーリング性も悪くなるので、 その上限を 0.5 %とした。
Ni: 0.5%以下 Niは線材の強度上昇にはあまり寄与しないが、 伸線材の靱性を高める元素である。 この様な、 作用を有効に発揮さ せるには 0.1%以上の添加が好ましい。 一方、 Niを過剰に添加する と変態終了時間が長くなるので、 上限値を 0.5%とした。
Co : 1 %以下 Coは、 圧延材における初析セメンタイ トの析出を 抑制するのに有効な元素である。 この様な作用を有効に発揮させる には 0.1%以上の添加が好ましい。 一方、 Coを過剰に添加してもそ の効果は飽和して経済的に無駄であるので、 その上限値を 0.5%と した。
V : 0.03〜0.5% Vはフェライ ト中に微細な炭窒化物を形成す ることにより、 加熱時のオーステナイ ト粒の粗大化を防止し、 延性 を向上させるとともに、 圧延後の強度上昇にも寄与する。 この様な 作用を有効に発揮させるには 0.03%以上の添加が好ましい。 しかし 、 過剰に添加し過ぎると、 炭窒化物の形成量が多くなり過ぎると共 に、 炭窒化物の粒子径も大きくなるため上限を 0.5%とした。
Cu : 0.2%以下 Cuは、 極細鋼線の耐食性を高める効果がある。 この様な作用を有効に発揮させるには 0.1%以上の添加が好ましい 。 しかし過剰に添加すると、 Sと反応して粒界中に CuSを偏析する ため、 線材製造過程で鋼塊ゃ線材などに疵を発生させる。 この様な 悪影響を防止するために、 その上限を 0.2%とした。
Mo : Moは、 極細鋼線の耐食性を高める効果がある。 この様な作用 を有効に発揮させるには 0.1%以上の添加が好ましい。 一方、 Moを 過剰に添加すると変態終了時間が長くなるので、 上限値を 0.2%と した。
"W: Wは、 極細鋼線の耐食性を高める効果がある。 この様な作用 を有効に発揮させるには 0. 1%以上の添加が好ましい。 一方、 Wを 過剰に添加すると変態終了時間が長くなるので、 上限値を 0.2%と した。
Nb : Nbは、 極細鋼線の耐食性を高める効果がある。 この様な作用 を有効に発揮させるには 0.05%以上の添加が好ましい。 一方、 Nbを 過剰に添加すると変態終了時間が長くなるので、 上限値を 0. 1%と した。
伸線条件 :
請求項 1 に記載の鋼線材に冷間伸線を施すことにより、 引張り強 さが 2800MPa以上であることを特徴とする延性に優れた高強度鋼線 を得ることができる。 冷間伸線の真ひずみは 3以上、 望ましくは 3. 5以上である。 実施例
次に実施例を挙げて本発明をより具体的に説明するが、 本発明は もとより下記実施例に限定されるものではなく、 本発明の趣旨に適 合し得る範囲で適当に変更を加えて実施することも勿論可能であり 、 それらはいずれも本発明の技術的範囲に含まれる。
表 1 に示す化学成分の硬鋼線材を使用し、 パテンティ ングと伸線 により線径を 1.2〜1.6mmに調整した後、 鉛炉 (以下 LPと称する) も しくは流動床 (以下 FBPと称する) によりパテンティ ング処理を施 した。
非パ一ライ ト体積率の測定のため、 圧延線材の L断面を樹脂埋め 込み後、 アルミナ研磨し、 飽和ピクラールにて腐食し、 SEM観察を 実施した。 SEMの観察領域は表層、 1 Z 4 D、 1 / 2 D (Dは線径 ) 部とし、 各領域にて、 倍率 3000にて 50 X 40 ^mの面積の写真を任 意に 10枚撮影し、 セメンタイ トが粒状に分散した擬似パーライ 卜部 、 板状セメンタイ トが周囲より 3倍以上の粗いラメラ間隔で分散し ているペイナイ ト部、 オーステナイ 卜に沿って析出した初析フェラ イ ト部の面積率を、 画像解析により測定した値を、 非パーライ ト体 積率とした。
パテンティ ング線材のパーライ トブロック粒径は、 線材の L断面 を、 樹脂に埋め込み後切断研磨し、 EBSP解析により方位差 9 ° の界 面で囲まれた領域を一つのプロック粒として解析し、 その平均体積 から求めた平均粒径とした。
上記パテンティ ング線材のスケールを酸洗にて除去した後、 ボン デ処理により リン酸亜鉛皮膜を付与し、 アプローチ各 10度のダイス を使用して、 1パス当たりの減面率 16〜20 %の連続伸線を行い、 直 径 0. 18〜0. 30mmの高強度伸線材を得た。
表 ]
No. 元素 (質量% (B,_N以外) )
^^^ R N z ^ ^ 1 z N N M z Z.=*. C Si P S B (ppm) Al Ti N (ppm) Cr Mo Ni
1 比比比比比比比比比比比比比
発発発発発発発発発発発発発発発発発発発発発発発発 0.70 0.30 45 0.019 0.025 24 0.000 0. 000 20 一 - 一
2 較較較較較較較較較較較較較
Β 0.82 0.20 51 0.015 0.013 15 0.000 0. 000 12 0.20 一 一
3 0.82 0.20 49 0.010 0.007 16 0.000 0. 000 50 一 - -
4 0.92 0.25 46 0.019 0.025 30 0.000 0. 000 60 一 - 0.10
5 0.87 1.20 5 0.008 0.007 46 0.001 0. 000 50 0.20 ― ―
6 1.09 0.20 5 0.010 0.009 25 0.000 0. 001 50 0.20 ― ―
7 0.92 0.60 5 0.025 0.020 30 0.001 0. 000 25 一 一 一
8 0.82 0.20 5 0.008 0.008 11 0.000 0. 000 34 一 一 一
9 0.82 0.20 5 0.008 0.008 11 0.000 0. 000 20 一 - -
10 0.82 0.20 5 0.008 0.008 20 0.001 0. 000 25 一 - 一
11 0.82 0.20 5 0.008 0.008 20 0.000 0. 000 35 一 - 一
12 0.82 0.20 5 0.008 0.008 11 0.000 0. 000 35 一 -
13 0.82 0.20 5 0.008 15 0.000 0. 000 25 一 ― -
14 0.82 0.20 5 0.008 0.008 21 0.000 0. 000 16 一 ― 一
15 0.82 0.22 5 0.008 0.008 20 0.001 0. 000 35 0.20 ― ―
A 0.92 0.20 5 0.008 0.008 15 0.000 0. 000 25 0.20 ― ―
B 0.92 0.20 5 o o 0.008 10 0.000 0. 000 21 0.20 一 一
C 1.02 0.20 5 0.008 15 0.000 0. 000 25 0.20 - -
D 1.02 0.20 5 0.008 0.008 10 0.000 0. 000 21 0.20 ― 一
E 0.82 0.21 48 0.009 0.009 12 0.000 0. 000 24 0.03 ― -
F 0.82 0.19 51 0.009 0.009 11 0.000 0. 000 25 0.06 - ―
G 0.92 0.20 5 0.008 0.008 9 0.000 0. 000 23 0.05 ― -
H 1.01 0.20 5 0.008 0.009 10 0.000 0. 000 23 0.05 一 -
I 1.02 0.20 5 0.008 0.008 8 0.000 0. 000 21 0.04 ― -
16 0.70 0.30 0.008 0.007 11 0.000 0. 000 35 一 0.20 ― 17 0.82 0.20 0.010 0.009 2 0.000 0. 010 50 0.20 一 一 18 0.90 0.20 0.010 0.009 60 0.000 0. 005 25 一 一 0.10 19 0.87 1.70 0.015 0.013 20 0. 010 25 0.20 一
20 1.30 1.00 0.015 0.013 20 0.030 0. 000 25 一 一 - 21 0.92 0.30 0.015 0.013 20 0.000 0. 000 25 一 ― ― 22 0.82 1.00 0.025 0.020 20 0.030 0. 000 35 - 一 一 23 0.96 0.20 0.010 0.009 0 0.000 0. 010 25 0.20 - 一 24 0.82 0.20 0.010 0.009 0 0.000 0. 010 25 - - - 25 0.82 0.20 0.010 0.009 0 0.000 0. 010 25 - - ― 26 0.82 0.20 0.010 0.009 0 0.000 0. 010 25 - 一 - 27 0.82 0.20 0.010 0.009 0 0.000 0. 010 25 一 一 - 28 0.82 0.20 0.019 0.025 24 0.000 0. 000 25 一 一 一
表 2
Figure imgf000016_0001
表 1は評価材の化学組成、 表 2は試験条件、 ブロック粒径および 機械的性質を示す。
表 1, 2において、 1〜15、 A〜 I は本発明鋼、 16から 28は比較 鋼である。 式 ( 1 ) で示される絞り値の最小値は RAminとして示す 。 なお、 RAm i nとは、 RAm i n = a— b Xパーライ トブロック粒径 ( m) の式で表わせるものである。
16および 22はパテンティ ング前の加熱温度が低いため、 パテンテ イ ング処理前に Bの窒化物および炭化物が析出し、 固溶 B量を確保 できなかったため、 絞り値が低かった例である。 17および 23〜27は B量が低いあるいは無添加のため、 絞り値が低かった例である。 18 は B量が過剰であり、 多量の B炭化物および初析セメン夕イ トがォ ーステナイ ト粒界に析出してしまい、 絞り値が低かった例である。 19は Si量が過剰で、 初析フェライ ト析出を抑制できなかった例であ る。 20は C量が過剰で、 初析セメンタイ ト析出を抑制できなかった 例である。 21は Mn量が過剰で、 ミクロマルテンサイ トの生成を抑制 できなかった例である。 28はパテンティ ング処理時の冷速が小さく 、 所定の引張り強さを満足できなかった例である。
なお、 実施例中の本発明鋼 A, B , C , Dを用いて、 φ 0.2mniの スチールコード用鋼線を試作したところ、 TSが各々 4053MPa、 4197M Pa、 4394MPa、 4550MPaでデラミネーシヨ ンの発生しない鋼線を作製 できた。 一方、 比較鋼の 23を用いて同様の試作を行ったところ、 TS は 4316MPaで、 デラミネーシヨンが発生した。
図 1 に本発明鋼と比較鋼の非パーライ ト面積率と絞り値の関係を 示す。 非パーライ ト面積率が 3 %以下である本発明鋼は、 絞り値が 高い傾向にあることが分かる。 しかし、 既述の通り絞り値は引張り 強さにも影響されるため、 オーバーラップするデータも存在する。
図 2に本発明鋼と比較鋼のプロック粒径と絞り値の関係を示す。 本発明鋼は絞り値が高い傾向にあることが分かる。 しかし、 既述の 通り絞り値は引張り強さにも影響されるため、 オーバーラップする データも存在する。
図 3は式 ( 1 ) で示される絞り値の下限値 RAm i nと、 実際の絞り 値の関係を示す。 開発鋼の絞り値は RAm inより高いことが分かる。
図 1〜 3において、 ♦は本発明鋼、 口は比較鋼を示す。 産業上の利用可能性
本発明は、 自動車のラジアルタイヤや、 各種産業用ベルトゃホ一 スの補強材として用いられるスチールコード、 更には、 ソーイング ワイヤなどの用途に好適な圧延線材の製造が可能となる。

Claims

1 . パテンティ ング後のパーライ ト組織の面積率が 97%以上、 残 部がベイナイ ト、 擬似パーライ ト、 初析フェライ トからなる非パー ライ ト組織であり、 破断絞り値 RAが次式 ( 1 ) , ( 2 ) , ( 3 ) 、 引張り強さ TSが式 ( 4 ) を満足することを特徴とする鋼線材。
RA≥RAmin · · ( 1 )請 ただし、 RAmin= a— b Xパーライ トブロック粒径 ( m) a = - 0.0001187 XTS (MPa) 2 + 0.31814XTS (MPa) - 151.32 • ·
( 2 )
b = 0.0007445 XTS (MPa) - 0.3753 · · ( 3 )
TS≥ 1000 X C (%) 一 10X線径 (mm) + 320 MPa · · ( 4 ) 2. 質量%で、 C : 0· 70〜1. 10%、 Si : 0. 1〜1.5%、 Mn : 0. 1〜1 .0%、 Al : 0.01%以下、 Ti : 0.01%以下、 N : 10〜60質量 ppm、 B : (0.77XN (ppm) — 17.4) 質量 ppm、 もしくは 3質量 ppmのいず れか高い量以上、 52質量 ppm以下を含有し、 残部は Fe及び不純物か らなることを特徴とする請求項 1 に記載の鋼線材。
3. 更に Cr: 0.03〜0.5%、 Ni : 0.5%以下 ( 0 %を含まない) 、 Co ·· 0.5%以下 ( 0 %を含まない) 、 V : 0.03~0.5%、 Cu: 0.2% 以下 ( 0 %を含まない) 、 Mo : 0.2%以下 ( 0 %を含まない) 、 W : 0.2%以下 ( 0 %を含まない) 、 Nb : 0. 1%以下 ( 0 %を含まない
) 、 よりなる群から選択される少なく とも 1種以上を含有すること を特徴とする請求項 2に記載の鋼線材。
4. 請求項 2又は 3に記載の化学組成を有する線材を、 次に示す 温度 Tmii!〜 1100°Cに加熱し、 500〜 650 の雰囲気中で、 800〜650 °Cの冷速が 50°C / s以上であるようなパテンティ ング処理を行うこ とを特徴とする、 請求項 1 に記載の鋼線材の製造方法。 B (ppm) -0.77XN (ppm) 〉 0.0の場合は加熱最低温度 T min は 850°C、
B ( pm) - 0.77X N (ppm) ≤ 0.0の場合は、 加熱最低温度 Tm inは、
Tmin= 1000 + 1450/ ( B (ppm) - 0.77X N (ppm) - 10) 5. 請求項 1 に記載の鋼線材を冷間伸線することによって製造す る、 引張り強さ力 800MPa以上であることを特徴とする延性に優れ た高強度鋼線。
PCT/JP2007/058897 2006-10-12 2007-04-18 Fil d'acier à résistance élevée présentant une excellente ductilité et son procédé de fabrication WO2008044356A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07742332.5A EP2083094B1 (en) 2006-10-12 2007-04-18 High-strength steel wire excelling in ductility and process for producing the same
JP2007541549A JP5233281B2 (ja) 2006-10-12 2007-04-18 延性に優れた高強度鋼線およびその製造方法
ES07742332T ES2734903T3 (es) 2006-10-12 2007-04-18 Alambre de acero de alta resistencia excelente en ductilidad y proceso para fabricar el mismo
CN2007800006754A CN101331244B (zh) 2006-10-12 2007-04-18 延性优良的高强度钢丝及其制造方法
BRPI0702884-9A BRPI0702884B1 (pt) 2006-10-12 2007-04-18 Fiomáquina de aço e seu método de produção
US11/922,524 US8168011B2 (en) 2006-10-12 2007-04-18 High-strength steel wire excellent in ductility and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-278781 2006-10-12
JP2006278781A JP2007131945A (ja) 2005-10-12 2006-10-12 延性に優れた高強度鋼線およびその製造方法

Publications (1)

Publication Number Publication Date
WO2008044356A1 true WO2008044356A1 (fr) 2008-04-17

Family

ID=39282566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058897 WO2008044356A1 (fr) 2006-10-12 2007-04-18 Fil d'acier à résistance élevée présentant une excellente ductilité et son procédé de fabrication

Country Status (8)

Country Link
US (1) US8168011B2 (ja)
EP (1) EP2083094B1 (ja)
JP (1) JP5233281B2 (ja)
KR (1) KR100940379B1 (ja)
CN (1) CN101331244B (ja)
BR (1) BRPI0702884B1 (ja)
ES (1) ES2734903T3 (ja)
WO (1) WO2008044356A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126073A1 (ja) * 2010-04-08 2011-10-13 新日本製鐵株式会社 ソーワイヤ用素線及びその製造方法
JP2012106570A (ja) * 2010-11-16 2012-06-07 Toyo Tire & Rubber Co Ltd 空気入りラジアルタイヤ
KR20170028396A (ko) 2014-08-08 2017-03-13 신닛테츠스미킨 카부시키카이샤 신선 가공성이 우수한 고탄소강 선재
JP2018083231A (ja) * 2012-09-07 2018-05-31 コンパニー ゼネラール デ エタブリッスマン ミシュラン ワイヤ引き抜き方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069409A (ja) * 2006-09-14 2008-03-27 Bridgestone Corp 高強度高炭素鋼線およびその製造方法
SE531889C2 (sv) 2007-01-26 2009-09-01 Sandvik Intellectual Property Blyfritt automatstål och användning därav
KR101392017B1 (ko) * 2009-11-05 2014-05-07 신닛테츠스미킨 카부시키카이샤 가공성이 우수한 고탄소강 선재
WO2012124679A1 (ja) * 2011-03-14 2012-09-20 新日本製鐵株式会社 鋼線材及びその製造方法
PL2806045T3 (pl) * 2012-01-20 2018-11-30 Nippon Steel & Sumitomo Metal Corporation Walcówka w postaci pręta i sposób jej wytwarzania
JP5796782B2 (ja) * 2012-03-30 2015-10-21 株式会社神戸製鋼所 皮削り性に優れた高強度ばね用鋼線材および高強度ばね
FR2995250B1 (fr) * 2012-09-07 2016-04-01 Michelin & Cie Fil d'acier a haute trefilabilite comprenant un taux de carbone en masse compris entre 0,6 % et 0,74 % bornes incluses
CN103966417B (zh) * 2013-01-31 2016-04-20 张家港市骏马钢帘线有限公司 一种提高超细高碳钢丝表面质量和拉拔性能的工艺方法
JP6180351B2 (ja) 2013-03-28 2017-08-16 株式会社神戸製鋼所 生引き性に優れた高強度鋼線用線材および高強度鋼線
US10174399B2 (en) 2013-06-24 2019-01-08 Nippon Steel & Sumitomo Metal Corporation High carbon steel wire rod and method for manufacturing same
CN103962401B (zh) * 2014-01-17 2016-01-13 东南大学 一种低缺陷高强度钢丝的生产方法
JP2016014169A (ja) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 鋼線用線材および鋼線
JP6264462B2 (ja) 2014-08-15 2018-01-24 新日鐵住金株式会社 伸線加工用鋼線
EP3235918A4 (en) * 2014-12-15 2018-04-25 Nippon Steel & Sumitomo Metal Corporation Wire material
CN104694825B (zh) * 2015-02-06 2017-01-11 铜陵百荣新型材料铸件有限公司 一种耐腐蚀铸造高碳钢及其制备方法
CA3001966A1 (en) * 2015-10-23 2017-04-27 Nippon Steel & Sumitomo Metal Corporation Steel wire rod for wire drawing
CN108368583B (zh) * 2016-01-20 2020-05-26 日本制铁株式会社 非调质机械部件用钢丝及非调质机械部件
KR101839238B1 (ko) * 2016-11-10 2018-03-15 주식회사 포스코 연성이 우수한 고탄소 선재 및 이의 제조방법
CN109108103A (zh) * 2018-08-07 2019-01-01 辽宁通达建材实业有限公司 抗拉强度为2300MPa级的预应力钢绞线生产工艺
CN109735773A (zh) * 2018-12-28 2019-05-10 首钢集团有限公司 一种高碳钢珠光体片层间距控制方法
CN113699438B (zh) * 2021-07-20 2022-07-08 武汉钢铁有限公司 一种86级低成本帘线钢及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195083A (ja) * 1991-07-22 1993-08-03 Bekaert Sa:Nv 鋼線の熱処理方法
JPH0649592A (ja) * 1992-06-04 1994-02-22 Sumitomo Metal Ind Ltd 高強度・高延性鋼線用高炭素鋼線材
JPH11199978A (ja) * 1998-01-12 1999-07-27 Kobe Steel Ltd 捻回特性に優れた鋼線と伸線加工用鋼材及びその製造方法
JP2000119805A (ja) * 1998-08-12 2000-04-25 Sumitomo Metal Ind Ltd 伸線加工性に優れた鋼線材
JP2005126765A (ja) * 2003-10-23 2005-05-19 Kobe Steel Ltd 延性に優れた極細高炭素鋼線およびその製造方法
JP2006028619A (ja) * 2004-07-21 2006-02-02 Sumitomo Metal Ind Ltd 高強度低合金鋼線材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644747A (en) 1979-09-21 1981-04-24 Azuma Seikosho:Kk High carbon steel wire rod with superior drawability
JPS5444747A (en) 1977-09-14 1979-04-09 Omron Tateisi Electronics Co Relay
JPH01316420A (ja) 1988-06-14 1989-12-21 Sumitomo Metal Ind Ltd コードワイヤー用鋼線材の製造方法
EP0349697A1 (en) * 1988-07-06 1990-01-10 Enrique Bernat F., S.A. A display-dispenser for sweets, in particular for those with handles
JP2609387B2 (ja) 1990-12-28 1997-05-14 株式会社 神戸製鋼所 高強度高靭性極細鋼線用線材、高強度高靭性極細鋼線、および該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法
JP3387149B2 (ja) * 1993-05-13 2003-03-17 住友金属工業株式会社 伸線強化高強度鋼線用線材およびその製造方法
JPH07126765A (ja) * 1993-10-30 1995-05-16 Kankyo Soken Consultant:Kk 膜状複合材から金属膜の連続回収装置
JP3435112B2 (ja) 1999-04-06 2003-08-11 株式会社神戸製鋼所 耐縦割れ性に優れた高炭素鋼線、高炭素鋼線用鋼材およびその製造方法
JP3572993B2 (ja) 1999-04-22 2004-10-06 住友金属工業株式会社 鋼線材、鋼線及びその製造方法
JP3456455B2 (ja) 1999-11-01 2003-10-14 住友金属工業株式会社 鋼線材、鋼線及びそれらの製造方法
JP4088220B2 (ja) 2002-09-26 2008-05-21 株式会社神戸製鋼所 伸線前の熱処理が省略可能な伸線加工性に優れた熱間圧延線材
JP2005163082A (ja) * 2003-12-01 2005-06-23 Kobe Steel Ltd 耐縦割れ性に優れた高炭素鋼線材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195083A (ja) * 1991-07-22 1993-08-03 Bekaert Sa:Nv 鋼線の熱処理方法
JPH0649592A (ja) * 1992-06-04 1994-02-22 Sumitomo Metal Ind Ltd 高強度・高延性鋼線用高炭素鋼線材
JPH11199978A (ja) * 1998-01-12 1999-07-27 Kobe Steel Ltd 捻回特性に優れた鋼線と伸線加工用鋼材及びその製造方法
JP2000119805A (ja) * 1998-08-12 2000-04-25 Sumitomo Metal Ind Ltd 伸線加工性に優れた鋼線材
JP2005126765A (ja) * 2003-10-23 2005-05-19 Kobe Steel Ltd 延性に優れた極細高炭素鋼線およびその製造方法
JP2006028619A (ja) * 2004-07-21 2006-02-02 Sumitomo Metal Ind Ltd 高強度低合金鋼線材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126073A1 (ja) * 2010-04-08 2011-10-13 新日本製鐵株式会社 ソーワイヤ用素線及びその製造方法
JP4943564B2 (ja) * 2010-04-08 2012-05-30 新日本製鐵株式会社 ソーワイヤ用素線及びその製造方法
JP2012106570A (ja) * 2010-11-16 2012-06-07 Toyo Tire & Rubber Co Ltd 空気入りラジアルタイヤ
JP2018083231A (ja) * 2012-09-07 2018-05-31 コンパニー ゼネラール デ エタブリッスマン ミシュラン ワイヤ引き抜き方法
KR20170028396A (ko) 2014-08-08 2017-03-13 신닛테츠스미킨 카부시키카이샤 신선 가공성이 우수한 고탄소강 선재
US10487379B2 (en) 2014-08-08 2019-11-26 Nippon Steel Corporation High-carbon steel wire rod with excellent wire drawability

Also Published As

Publication number Publication date
KR20080058294A (ko) 2008-06-25
BRPI0702884B1 (pt) 2018-05-15
EP2083094B1 (en) 2019-06-05
CN101331244B (zh) 2011-04-13
BRPI0702884A2 (pt) 2009-01-20
JPWO2008044356A1 (ja) 2010-02-04
CN101331244A (zh) 2008-12-24
ES2734903T3 (es) 2019-12-12
US8168011B2 (en) 2012-05-01
US20100212786A1 (en) 2010-08-26
EP2083094A1 (en) 2009-07-29
EP2083094A4 (en) 2015-04-22
KR100940379B1 (ko) 2010-02-02
JP5233281B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2008044356A1 (fr) Fil d'acier à résistance élevée présentant une excellente ductilité et son procédé de fabrication
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
JP5939359B2 (ja) 高炭素鋼線材及びその製造方法
JP5114684B2 (ja) 延性に優れた線材及び高強度鋼線並びにそれらの製造方法
JP5092749B2 (ja) 高延性の高炭素鋼線材
WO2011089782A1 (ja) 線材、鋼線、及び線材の製造方法
WO2012124679A1 (ja) 鋼線材及びその製造方法
JP2007131945A (ja) 延性に優れた高強度鋼線およびその製造方法
EP2238271A1 (en) Wire rods having superior strength and ductility for drawing and method for manufacturing the same
JP2005206853A (ja) 伸線加工性に優れた高炭素鋼線材およびその製造方法
JP6264461B2 (ja) 伸線加工性に優れた高炭素鋼線材
JP2010270391A (ja) 延性に優れた高強度鋼線用線材及び鋼線並びにその製造方法
WO2016158901A1 (ja) 伸線性に優れた高炭素鋼線材、および鋼線
JP5201000B2 (ja) 高強度鋼線用線材、高強度鋼線及びこれらの製造方法
JP5304323B2 (ja) 高強度鋼線用線材、高強度鋼線及びこれらの製造方法
JP2008208450A (ja) 強度延性バランスに優れた高強度極細鋼線の製造方法
JP4267375B2 (ja) 高強度鋼線用線材、高強度鋼線およびこれらの製造方法
JP2009138251A (ja) 伸線性に優れた鋼線材
JP2003193129A (ja) 伸線加工性に優れる高強度鋼線材の製造方法
JP6648516B2 (ja) 伸線加工用熱間圧延線材
JP2021195566A (ja) 高炭素鋼線材
JP2000319757A (ja) 鋼線材、鋼線及びその製造方法
JP2002220633A (ja) 低C−Mn系超微細粒鋼とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000675.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007541549

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007742332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11922524

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077030676

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0702884

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE