WO2008041681A1 - Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet - Google Patents

Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet Download PDF

Info

Publication number
WO2008041681A1
WO2008041681A1 PCT/JP2007/069220 JP2007069220W WO2008041681A1 WO 2008041681 A1 WO2008041681 A1 WO 2008041681A1 JP 2007069220 W JP2007069220 W JP 2007069220W WO 2008041681 A1 WO2008041681 A1 WO 2008041681A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
antireflection film
fibrous
coating composition
hollow
Prior art date
Application number
PCT/JP2007/069220
Other languages
English (en)
French (fr)
Inventor
Takashige Yoneda
Yohei Kawai
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to CN200780036499XA priority Critical patent/CN101523242B/zh
Priority to EP07828960A priority patent/EP2071366A4/en
Priority to JP2008537525A priority patent/JPWO2008041681A1/ja
Publication of WO2008041681A1 publication Critical patent/WO2008041681A1/ja
Priority to US12/417,056 priority patent/US20090191406A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • Antireflection film-forming coating composition and article formed with antireflection film are provided.
  • the present invention relates to a coating composition for forming an antireflection film and an article on which an antireflection film is formed.
  • Patent Document 1 An antireflection film containing hollow fine particles and a binder
  • Patent Document 2 An antireflection film containing fibrous solid fine particles, spherical solid fine particles, and a binder
  • Patent Document 3 An antireflection film comprising hollow fine particles, solid fine particles larger than the hollow fine particles, and a binder.
  • the antireflection film of (1) since the strength of the hollow fine particles is insufficient, it is necessary to increase the amount of the binder in order to ensure the film strength. However, when the binder is increased, the voids in the film are reduced, so that the refractive index of the film is increased and the antireflection effect is lowered.
  • the film strength is sufficient. Since there are few voids in the film, the antireflective effect is insufficient because the refractive index of the film is high.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-233611
  • Patent Document 2 Japanese Patent Laid-Open No. 2005_010470
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-117924
  • the present invention provides an antireflection film-forming coating composition capable of forming an antireflection film having an antireflection effect and high film strength, and an article capable of maintaining a high antireflection effect for a long period of time.
  • the gist of the present invention is as follows.
  • the fibrous solid fine particles and the hollow fine particles contain SiO, described in (1) above.
  • a coating composition for forming an antireflection film is provided.
  • the mass ratio of the fibrous solid fine particles to the hollow fine particles is 0 ⁇ ;! to 1 ⁇ 5, (1) to (6)
  • the mass ratio of the fibrous solid fine particles to the hollow fine particles is 0 ⁇ 25 ⁇ ;! ⁇ 5, (1) to (6)
  • the coating composition for forming an antireflection film of the present invention the antireflection effect and film strength are high, and an antireflection film can be formed.
  • the article of the present invention can maintain a high antireflection effect for a long period of time.
  • the fibrous form in the fibrous solid fine particles means that the length in the extension direction is larger than the length in the direction perpendicular to the extension direction.
  • the fibrous solid fine particles may be primary particles or secondary particles in which a plurality of solid fine particles are aggregated. That is, the fibrous solid fine particles are solid fine particles in which the length in the extension direction of the primary particles is larger than the length in the direction perpendicular to the extension direction, and the length in the extension direction of the secondary particles is in the extension direction. It includes any solid fine particles (regardless of the shape of the primary particles) that are larger than the length in the vertical direction.
  • the fibrous solid fine particles are preferably in the form of a chain or a pearl necklace as the form of secondary particles in which a plurality of solid fine particles, which are preferably in the form of needles or rods, are connected.
  • the shape of the fibrous solid fine particles include a linearly extended shape, a two-dimensionally or three-dimensionally curved shape, and the like, and voids are easily formed between adjacent fibrous solid fine particles.
  • a three-dimensionally curved shape is preferred, with a two-dimensional or three-dimensionally curved shape being preferred. Since the length of the particles in the direction of elongation varies from particle to particle, it has a certain range of distribution as a whole.
  • the average length in the extension direction of particles refers to the average value of the distribution. The same applies to the average length in the direction perpendicular to the stretching direction.
  • the material of the fibrous solid fine particles includes SiO, Al 2 O, SnO (ATO, FTO), TiO, Z
  • Inorganic materials such as acrylic resin, styrene resin, urethane acrylate resin, epoxy acrylate resin, polyester acrylate, polyether acrylate, epoxy resin, silicone resin, etc., and relatively low refractive index Because of its excellent chemical stability and excellent adhesion to glass, SiO-containing materials are preferred. The material is more preferable.
  • the average aggregate particle size of the fibrous solid fine particles is preferably 20 to 200 nm force S, preferably 50 to;! OOnm force beam. If the average aggregate particle size of the fibrous solid fine particles is 20 nm or more, sufficient voids are formed between the adjacent fibrous solid fine particles, so that the refractive index of the antireflection film is lowered and the antireflection effect is high. Become. If the average aggregate particle diameter of the fibrous solid fine particles is 200 ⁇ m or less, light scattering can be suppressed, and a highly transparent antireflection film can be obtained.
  • the average aggregate particle diameter of the fibrous solid fine particles is the average aggregate particle diameter of the fibrous solid fine particles in the dispersion medium, and is measured by a dynamic light scattering method.
  • the refractive index of the fibrous solid fine particles is preferably 1.3 to 3.0 force S, more preferably 1.3 to 2.0. If the refractive index of the fibrous solid fine particles is 1.3 or more, an antireflection film having a refractive index of 1.2 or more is obtained, or an antireflection film having excellent antireflection performance is obtained when glass is used as a base material. It is If the refractive index of the fibrous solid fine particles is 3.0 or less, an antireflection film with a refractive index of 1.4 or less is obtained, or an antireflection film with excellent antireflection performance is obtained when glass is used as a base material. It is done.
  • the refractive index of the fibrous solid fine particles is the refractive index at 550 nm.
  • the refractive index is measured with a refractometer while being dispersed in a dispersion medium or coated with a matrix, and converted from the volume ratio. Calculated.
  • the aspect ratio of the fibrous solid fine particles is 2 to 10; 5 to 10 is more preferable. If the aspect ratio of the fibrous solid fine particles is 2 or more, sufficient voids are formed between adjacent fibrous solid fine particles, so the refractive index of the antireflection film is lowered and the antireflection effect is high. Become. If the aspect ratio of the fibrous solid fine particles is 10 or less, the film forming property is excellent, and thus an antireflection film having an excellent appearance can be obtained.
  • the aspect ratio of the fibrous solid fine particles is a value calculated by dividing the length of the fine particles in the elongation direction by the length in the direction perpendicular to the elongation direction, and the length in the elongation direction and the direction perpendicular to the elongation direction.
  • the length of is observed with an electron microscope or the like.
  • the aspect ratio is observed with respect to the primary particles of fibrous solid particles. Due to secondary aggregation, the length of secondary particles extends in the direction of extension. For fibrous solid particulates that are larger than the length in the straight direction, an aspect ratio is observed for secondary particles.
  • Fibrous solid fine particles are available as commercial products. Commercially available products of fibrous solid fine particles include “IPA-ST-UP” manufactured by Nissan Chemical Industries, Ltd.
  • the fibrous solid fine particles can be produced by a known production method.
  • Examples of the method for producing fibrous solid fine particles include the methods described in Examples of JP-A-1-317115.
  • fibrous solid fine particles can be obtained by adding a binder component to a dispersion of solid fine particles in the presence of polyvalent metal ions and heating.
  • the hollow fine particles are particles having voids inside the outer shell.
  • the hollow fine particles include spherical hollow fine particles, fibrous hollow fine particles whose length in the extension direction is larger than the length in the direction perpendicular to the extension direction, and the like, and voids are easily formed between adjacent particles. Therefore, fibrous hollow fine particles are preferable.
  • the same fibrous hollow fine particles as in the case of the fibrous solid fine particles may be secondary particles obtained by aggregating a plurality of hollow fine particles, which may be primary particles.
  • Materials for the hollow fine particles include SiO, Al 2 O, SnO (ATO, FTO), TiO, ZrO 2, Z
  • Organic materials such as acrylic resin, styrene resin, urethane acrylate resin, epoxy acrylate resin, polyester acrylate, polyether acrylate, epoxy resin, silicone resin, etc.
  • Chemicals with relatively low refractive index A material that is substantially SiO power, which is preferable to materials containing SiO, because of its excellent stability and excellent adhesion to glass.
  • both the fibrous solid fine particles and the hollow fine particles contain SiO.
  • the average agglomerated particle diameter of the hollow fine particles is preferably 5 to 300 nm force S, more preferably 10 to OOnm. If the average aggregate particle diameter of the hollow fine particles is 5 nm or more, sufficient voids are formed between adjacent hollow fine particles, so that the refractive index of the antireflection film is lowered and the antireflection effect is enhanced. Light scattering is suppressed if the average aggregate particle size of hollow microparticles is 300 nm or less. Therefore, a highly transparent antireflection film can be obtained.
  • the average agglomerated particle diameter of the hollow fine particles is the average agglomerated particle diameter of the hollow fine particles in the dispersion medium, and is measured by a dynamic light scattering method. Therefore, in the case of monodispersed spherical hollow fine particles having no secondary aggregation, the average aggregate particle diameter substantially coincides with the average primary particle diameter.
  • the thickness of the outer shell of the hollow fine particles is preferably! To 50 nm, and preferably 1/20 to 1/3 of the average primary particle diameter of the hollow fine particles. If the thickness of the outer shell of the hollow fine particles is within this range, an antireflection film having sufficient strength and excellent antireflection performance can be obtained.
  • the outer shell thickness and average primary particle size of the hollow microparticles were determined by observing the hollow microparticles with a transmission electron microscope and randomly selecting 100 particles. The diameter was measured, and the thickness of the outer shell and the particle diameter of 100 hollow fine particles were averaged.
  • the refractive index of the hollow fine particles is 1.;! ⁇ 1.4 force S, preferably 1.2 ⁇ ; 1.35. If the refractive index of the hollow fine particles is 1.1 or more, it is easy to obtain an antireflection film having a refractive index of 1.2 or more, and an antireflection film excellent in antireflection performance can be obtained when glass is used as a base material. If the refractive index of the hollow fine particles is 1.4 or less, an antireflection film having a refractive index of 1.4 or less can be obtained, or an antireflection film having excellent antireflection performance can be obtained when glass is used as a base material.
  • the refractive index of the hollow fine particles is a refractive index at 550 nm, and is calculated by measuring the refractive index with a refractometer in a state of being dispersed in a dispersion medium or being coated with a matrix and converting it from a volume ratio.
  • the hollow fine particles in addition to the above-mentioned spherical hollow fine particles and fibrous hollow fine particles, primary particles having a tube shape or a sheet shape can be used.
  • fibrous hollow fine particles are preferable because voids are formed between adjacent fine particles and an antireflection film excellent in antireflection performance is easily obtained.
  • the aspect ratio of the fibrous hollow fine particles is 2 to 10 force S, preferably 5 to 10. If the aspect ratio of the fibrous hollow fine particles is 2 or more, sufficient voids are formed between adjacent fine particles, so that the refractive index of the antireflection film is lowered and the antireflection effect is enhanced. When the aspect ratio of the fibrous hollow fine particles is 10 or less, the film forming property is excellent, and thus an antireflection film having an excellent appearance can be obtained.
  • the aspect ratio of fibrous hollow microparticles is that the length of microparticles in the extension direction is perpendicular to the extension direction. It is a value calculated by dividing by the length in any direction, and the length in the extension direction and the length in the direction perpendicular to the extension direction are observed with an electron microscope or the like.
  • the aspect ratio is observed with respect to the primary particles of the fibrous hollow fine particles.
  • the aspect ratio is observed with respect to the secondary particles.
  • the aspect ratio of both the fibrous solid fine particles and the hollow fine particles is 2 to 10;
  • the spherical hollow fine particles are produced, for example, by removing the core of the core-shell particles.
  • the outer shell (shell) is SiO, it is manufactured through the following steps.
  • a process of depositing SiO on the particle surface to obtain core-shell particles A process of depositing SiO on the particle surface to obtain core-shell particles.
  • Core particles include thermally decomposable organic fine particles (surfactant micelles, water-soluble organic polymers, styrene resins, acrylic resins, etc.), acid-soluble inorganic fine particles (ZnO, NaAlO, CaCO
  • Examples of the SiO precursor include a caustic acid, a kaate, and a kaate alkoxide.
  • dispersion medium examples include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4 dioxane, etc.), esters (ethyl acetate). , Methyl acetate, etc.), glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N dimethylacetamide, N, N dimethylformamide, etc.), sulfur-containing compounds (dimethylsulfoxide, etc.) Etc.).
  • the dispersion medium requires water for hydrolysis of the SiO precursor, the dispersion medium is 100% by mass.
  • the core fine particles are acid-soluble inorganic fine particles
  • the core fine particles can be dissolved and removed by adding an acid.
  • the acid examples include inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.), organic acids (formic acid, acetic acid, etc.), acidic cation exchange resins, and the like.
  • Fibrous hollow fine particles in which hollow fine particles as primary particles are elongated can be produced by forming a shell using fibrous solid fine particles as a core and then removing the core.
  • the fibrous hollow fine particles in which a plurality of hollow fine particles are bonded are the same as the method for producing the fibrous solid fine particles, which are secondary particles as an aggregate, except that the hollow fine particles are used instead of the solid fine particles. Can be manufactured.
  • the hollow fine particles may be hydrothermally treated for the purpose of improving strength.
  • solder examples include hydrolyzable silanes (tetramethoxysilane, tetraethoxysilane, etc.), a carboxylic acid oligomer obtained by hydrolyzing hydrolyzable silanes, and a silanol-containing key compound (key acid). , Trimethylsilanol, etc.), active silica (water glass, sodium orthokeate, etc.), organic polymers (polyethylene glycol, polyacrylamide derivatives, polybulu alcohol, etc.) and the like. Cases containing SiO as binder
  • the fibrous solid fine particles, the hollow fine particles, and the binder all contain Si 2 O.
  • dispersion medium examples include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4 dioxane, etc.), esters (ethyl acetate). , Methyl acetate, etc.), glycol ethers (Ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethylsulfoxide, etc.) and the like.
  • the coating composition for forming an antireflective film of the present invention contains a dispersion medium, fibrous solid fine particles, hollow fine particles, and a binder.
  • the average aggregate particle diameter of the fibrous solid fine particles measured by the dynamic light scattering method is equal to or larger than the average aggregate particle diameter of the hollow fine particles measured by the dynamic light scattering method. If the average agglomerated particle size of the fibrous solid fine particles is equal to or larger than the average agglomerated particle size of the hollow fine particles, the high-strength fibrous solid fine particles will be mainly subjected to external pressure, so the strength is low. The hollow fine particles are crushed and the film strength of the antireflection film is increased.
  • the ratio of the average agglomerated particle size of fibrous solid particles to the average agglomerated particle size of hollow fine particles must be 1.0 or more Preferably, it is 1.0 to 5.0, more preferably 1.2 to 4.0.
  • the mass ratio of the fibrous solid fine particles to the hollow fine particles is preferably 0.;! To 1.5, preferably 0.25 to 1.5. More preferred.
  • the fibrous solid fine particles / air fine particles (mass ratio) are 0.1 or more, an antireflection film having sufficient film strength is formed. If the fibrous solid fine particles / hollow fine particles (mass ratio) are 1.5 or less, the refractive index of the antireflection film can be kept low, and an antireflection film having a high antireflection effect can be formed.
  • the mass ratio of the binder to the total particles is 0.;! ⁇ 2 ⁇ 0 force S, preferably 0 ⁇ 2 ⁇ ;! Is more preferable.
  • the binder / (fibrous solid fine particles + hollow fine particles) (mass ratio) is 0.1 or more, an antireflection film having sufficient film strength is formed.
  • the binder / (fibrous solid fine particles + hollow fine particles) (mass ratio) is 2.0 or less, the refractive index of the antireflection film can be kept low, and an antireflection film having a high antireflection effect can be formed.
  • the solid content concentration of the coating composition for forming an antireflection film of the present invention is preferably 0.
  • the coating composition for forming an antireflection film of the present invention has solid fine particles other than fibrous solid fine particles.
  • a child may be included within a range not impairing the effects of the present invention.
  • the coating composition for forming an antireflective film of the present invention comprises chlorides such as magnesium, calcium, strontium, norlium, alkaline earth metal salts such as nitrates, sulfates, formates and acetates; inorganic acids, Curing catalysts for organic acids, bases, metal chelate compounds, quaternary ammonium salts, organic tin, etc .; known additives such as inorganic fine particles, organic pigments, dyes, organic resins showing ultraviolet shielding properties, infrared shielding properties, and conductivity May be included.
  • chlorides such as magnesium, calcium, strontium, norlium, alkaline earth metal salts such as nitrates, sulfates, formates and acetates
  • inorganic acids Curing catalysts for organic acids, bases, metal chelate compounds, quaternary ammonium salts, organic tin, etc .
  • known additives such as inorganic fine particles, organic pigments, dyes, organic resins showing
  • the coating composition for forming an antireflective film of the present invention described above includes fibrous solid fine particles and hollow fine particles, and the flatness of fibrous solid fine particles measured by a dynamic light scattering method. Since the average agglomerated particle diameter is equal to or larger than the average agglomerated particle diameter of the hollow fine particles measured by the dynamic light scattering method, the hollow fine particles are crushed and the film strength of the antireflection film is increased. Further, since the fibrous solid fine particles are used as the solid fine particles, voids are formed between the adjacent fibrous solid fine particles, and the refractive index of the antireflection film is lowered. Therefore, the antireflection effect of the antireflection film can be enhanced while keeping the strength of the antireflection film high.
  • the article of the present invention is an article in which an antireflection film is formed from the coating composition for forming an antireflection film of the present invention.
  • the thickness of the antireflection film is preferably 50 to 300 nm force S, more preferably 80 to 200 nm force S. If the film thickness of the antireflection film is 50 nm or more, light interference occurs and antireflection performance appears. If the film thickness of the antireflection film is 300 nm or less, it is possible to form a film without generating cracks.
  • the film thickness of the antireflection film can be obtained by measuring the coating and non-coating interfaces with a step gauge.
  • Ratio of average aggregate particle diameter of fibrous solid fine particles measured by dynamic light scattering method and film thickness of antireflection film is preferably 0.5 to 1.0; more preferably 0.7 to 0.9. If the average aggregated particle diameter of the fibrous solid fine particles / the film thickness of the antireflection film is 0.5 or more, the strong solid fibrous fine particles will be mainly subjected to external pressure. Low hollow particles are not easily crushed Thus, the film strength of the antireflection film is increased.
  • the fibrous solid fine particles / the film thickness of the antireflection film is 1.0 or less, the fibrous solid fine particles are prevented from protruding from the surface of the antireflection film.
  • the anti-reflection film strength is also peeled off.
  • the refractive index of the antireflection film is preferably 1.2 to 1.4 force S, more preferably 1.23 to 1.35. If the antireflective film has a refractive index of 1.2 or more, the light reflected from the upper surface of the film interferes with the light reflected from the lower surface, so that an antireflective film excellent in antireflection performance can be obtained. If the refractive index of the antireflection film is 1.4 or less, the light reflected on the top surface of the film and the light reflected on the bottom surface cancel each other out, and the antireflection performance is achieved when glass is used as the base material. An antireflection film excellent in the above can be obtained.
  • the refractive index of the antireflection film is a refractive index at 550 nm and is measured by a refractometer.
  • the antireflection film can be formed by applying the coating composition for forming an antireflection film of the present invention to the surface of a substrate and drying the coating film.
  • Examples of the material for the base material include glass, metal, organic polymer, silicon, and the like, and a base material on which some kind of coating film is formed in advance may be used.
  • Examples of the organic polymer include polyethylene terephthalate, polycarbonate, and polymethyl methacrylate.
  • Examples of the shape of the substrate include a plate and a film.
  • Examples of the coating method include known methods such as bar coating, die coating, gravure coating, roll coating, flow coating, spray coating, online spray coating, and dip coating.
  • On-line spray coating is a method of spray coating as it is on a line for forming a base material. It can be manufactured at low cost because it eliminates the step of reheating the substrate, and is useful.
  • the article of the present invention described above has an antireflection film having a high antireflection effect and high film strength, the high antireflection effect can be maintained for a long time.
  • Examples;! To 9 are examples, examples 10 to 15 are comparative examples.
  • the average aggregate particle size of the fine particles was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrack UPA).
  • a dynamic light scattering particle size analyzer manufactured by Nikkiso Co., Ltd., Microtrack UPA.
  • the average primary particle diameter of spherical fine particles and the average aggregate particle diameter are substantially the same.
  • the aspect ratio of primary particles or secondary particles is determined by observing fine particles with a transmission electron microscope (Hitachi Seisakusho, H-9000) and randomly 100 particles (primary particles or secondary particles). The length of each fine particle in the direction of elongation and the length in the direction perpendicular to the direction of elongation was measured, and the average value was obtained by dividing the length in the direction of elongation by the length in the direction perpendicular to the direction of elongation. .
  • the antireflection film was visually observed and evaluated according to the following criteria.
  • the haze value of the antireflection film on the substrate was measured with a- ⁇ 1 computer (manufactured by Suga Test Instruments Co., Ltd., HGM-3DP).
  • the reflectance of the antireflection film on the substrate at 380 to 1200 nm was measured with a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100) to determine the minimum reflectance (minimum reflectance). .
  • the surface of the antireflection film was worn 1000 times with felt at 100 g load, and the reflectance was measured in the same manner to determine the minimum reflectance (minimum reflectance).
  • ethanol 60 g, ZnO fine particle water dispersion sol (average primary particle size 20 nm, average agglomerated particle size 40 nm, solid content equivalent concentration 20 mass%) 30 g, tetraethoxysilane (SiO solid content concentration 29 mass%) 10 ⁇ , add aqueous ammonia solution and p
  • the liquid dispersion was concentrated by ultrafiltration to a solid content concentration of 20% by mass.
  • the spherical hollow fine particles (1) were secondary agglomerated.
  • the outer shell of the spherical hollow microparticle (1) had a thickness of 5 nm and was 1/6 of the average primary particle size.
  • the average agglomerated particle diameter of the spherical hollow fine particles (1) was 40 nm.
  • the aspect ratio of the spherical hollow fine particles (1) was 1.0.
  • the SiO power was also the same as in Production Example 1 except that the water-dispersed sol of ZnO fine particles was changed to a water-dispersed sol of ZnO fine particles (average primary particle size 20 nm, average aggregated particle size 60 nm, solid content equivalent concentration 20 mass%)
  • a dispersion of spherical hollow fine particles (2) (solid content concentration 20% by mass)
  • the spherical hollow fine particles (2) were secondary aggregated.
  • the thickness of the outer shell of the spherical hollow fine particles (2) was 5 nm and 1/6 of the average primary particle size.
  • the average aggregate particle diameter of the spherical hollow fine particles (2) was 60 nm.
  • the aspect ratio of the spherical hollow fine particles (2) was 1.0.
  • a glass container is charged with 2000 g of a dispersion of spherical hollow fine particles (1) (solid concentration 3% by mass), and with stirring, 10% by mass calcium chloride aqueous solution 8.0 g, 10% by mass sodium hydroxide aqueous solution 12 Og was added.
  • the mixed solution was put into a 2.5 L stainless steel autoclave container and heated at 130 ° C. for 24 hours to obtain a dispersion of fibrous hollow fine particles (1).
  • the dispersion The solid content was concentrated to 20% by mass by ultrafiltration.
  • the fibrous hollow fine particles (1) were secondary aggregated.
  • the average aggregate particle diameter of the fibrous hollow fine particles (1) was 70 nm.
  • the aspect ratio of the fibrous hollow fine particles (1) was 5.0.
  • a dispersion of fibrous hollow microparticles (2) (solid content concentration 20% by mass) was obtained in the same manner as in Production Example 3, except that the heating time in the autoclave container was changed to 6 hours.
  • the fibrous hollow fine particles (2) were secondary aggregated.
  • the average aggregate particle diameter of the fibrous hollow fine particles (2) was 50 ⁇ m.
  • the aspect ratio of the fibrous hollow fine particles (2) was 2.0.
  • Dispersion of fibrous solid fine particles (1) (monodispersion without secondary agglomeration): manufactured by Nissan Chemical Industries, I PA-ST-UP, solid content concentration 15% by mass, average agglomerated particle size (average primary particle size ) 90nm, aspect ratio 7.0.
  • Dispersion of spherical solid fine particles (1) (monodispersion without secondary aggregation): manufactured by Nissan Chemical Industries, IP A-ST, solid content concentration 30% by mass, average aggregate particle size (average primary particle size) 13 nm, The aspect ratio is 1.0.
  • Dispersion of spherical solid fine particles (2) (monodispersion without secondary aggregation): Nissan Chemical Industries, IP A-ST-ZL, solid content concentration 30% by mass, average aggregate particle size (average primary particle size) 85nm, aspect ratio 1.0.
  • Dispersion of spherical solid fine particles (3) (monodispersion without secondary aggregation): Nissan Chemical Industries, IP A-ST-L, solid content concentration 20% by mass, average aggregate particle size (average primary particle size) 45 nm, aspect ratio 1.0.
  • Dispersion of spherical hollow fine particles (1) (solid content concentration 20% by mass) 2g, dispersion of fibrous solid fine particles (1) (solid content concentration 15% by mass) 2 ⁇ , ethanol 90g in a 200mL glass container Then, 6 ⁇ of a carboxylic acid oligomer solution (solid content concentration 5% by mass) was added and stirred for 10 minutes to obtain a coating composition for forming an antireflection film.
  • the coating composition was applied to the surface of a glass substrate wiped with ethanol (100 mm X 100 mm, thickness 3.5 mm), and homogenized by spin coating at 200 rpm for 60 seconds, followed by 200 ° C. was dried for 30 minutes to form an antireflection film having a thickness of lOOnm, and each evaluation was performed.
  • a 150 nm-thick antireflection film was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • Dispersion of spherical hollow microparticles (2) (solid concentration 20% by mass) 3g, dispersion of fibrous solid microparticles (1) (solids concentration 15% by mass) 0.7g, ethanol in a 200mL glass container 90.3 g of a caustic acid oligomer solution (solid content concentration 5 mass%) 6 ⁇ was added and stirred for 10 minutes to obtain a coating composition for forming an antireflection film.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • a dispersion of spherical hollow fine particles (2) (solid concentration 20 mass%) 1.5 g, a dispersion of fibrous solid fine particles (1) (solid concentration 15 mass%) 3 ⁇ , 90.5 g of ethanol and 5 ⁇ of a carboxylic acid oligomer solution (solid content concentration 5% by mass) were added and stirred for 10 minutes to obtain a coating composition for forming an antireflection film.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • dispersion of spherical hollow fine particles (1) solid concentration 20 mass%) 2.75 g, dispersion of fibrous solid fine particles (1) (solid concentration 15 mass%) 1 ⁇ , 9 0.25 g of ethanol and 6 ⁇ of a carboxylic acid oligomer solution (solid content concentration 5% by mass) were added and stirred for 10 minutes to obtain a coating composition for forming an antireflection film.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • An antireflection film having a thickness of 1 OOnm was formed in the same manner as in Example 1 except that the coating composition was used, and each evaluation was performed. The results are shown in Tables 1 and 2.
  • the particle size is the average aggregate particle size
  • the ratio is the mass ratio of the solid content in the composition.
  • examples 5 and 7 were formed from a coating composition for forming an antireflection film containing fibrous hollow fine particles having a aspect ratio of 5.0 and fibrous solid fine particles having an aspect ratio of 7.0.
  • the anti-reflection film has a high anti-reflection effect with a very low reflectivity before wear, and a high film strength with very little change in reflectivity due to wear.
  • the minimum reflectance at a wavelength of 380 nm to 1200 nm is preferably 1.0% or less.
  • the change in the minimum reflectivity before and after wear is preferably 0.5% or less, more preferably 0.3% or less.
  • the antireflection film of Example 10 formed from a coating composition for forming an antireflection film that does not contain fibrous solid fine particles and contains hollow fine particles has an antireflection effect that the reflectance before wear is sufficiently low. Although it was high, the film strength with a large change in reflectance due to wear was insufficient.
  • the antireflection film of Example 11 formed from a coating composition for forming an antireflection film containing spherical solid fine particles and hollow fine particles having a small particle diameter has a high reflectance before wear and has an antireflection effect. It was enough. In addition, the film strength with a large change in reflectivity due to wear was insufficient.
  • the antireflection film of Example 12 formed from a coating composition for forming an antireflection film containing spherical solid fine particles having a large particle size and hollow fine particles has an antireflection effect with high reflectance before wear. The fruit was insufficient. On the other hand, the change in reflectance due to wear was small and the film strength was high.
  • the antireflection film of Example 13 formed from a coating composition for forming an antireflection film containing spherical hollow fine particles and fibrous hollow fine particles had a high antireflection effect with a sufficiently low reflectivity before wear. The film strength with a large change in reflectance due to wear was insufficient.
  • the anti-reflective coating of Example 14 formed from a coating composition for forming an anti-reflective coating containing spherical solid fine particles and fibrous solid fine particles is insufficient in anti-reflective effect due to its high reflectivity before wear. there were. On the other hand, the change in reflectance due to wear was small and the film strength was high.
  • the anti-reflective coating of Example 15 formed from a coating composition for forming an anti-reflective coating containing spherical hollow microparticles and fibrous solid microparticles having a large particle size has a high reflectivity before wear and is not effective in antireflection. It was enough. On the other hand, since the content of fibrous solid fine particles was relatively high, the change in reflectance due to wear was small and the film strength was high.
  • An article on which an antireflection film comprising the coating composition for forming an antireflection film of the present invention is formed is a vehicle transparent component (headlight cover, side mirror, front transparent substrate, side transparent substrate, rear transparent substrate).
  • Etc. opaque parts for vehicles (instrument panel surfaces, etc.), meters, architectural windows, show windows, displays (notebook computers, monitors, LCD, PD P, ELD, CRT, PDA, etc.), LCD Color filters, touch panel substrates, pick-up lenses, optical lenses, spectacle lenses, camera parts, video components, CCD cover substrates, optical fiber end faces, projector parts, copier parts, transparent substrates for solar cells, mobile phone windows, backlights Tutu parts (for example, light guide plates, cold cathode fluorescent lamps, etc.), backlight unit parts, LCD brightness enhancement films (for example, Rhythm, transflective film, etc.), liquid crystal brightness enhancement film, organic EL light-emitting element parts, inorganic EL light-emitting element parts, phosphor light-emitting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

明 細 書
反射防止膜形成用塗料組成物および反射防止膜が形成された物品 技術分野
[0001] 本発明は、反射防止膜形成用塗料組成物、および反射防止膜が形成された物品 に関する。
背景技術
[0002] 反射防止膜としては、下記のものが知られている。
(1)中空微粒子と、バインダーとを含む反射防止膜 (特許文献 1)。
(2)繊維状中実微粒子と、球状中実微粒子と、バインダーとを含む反射防止膜 (特 許文献 2)。
(3)中空微粒子と、該中空微粒子よりも大きい中実微粒子と、バインダーとを含む 反射防止膜 (特許文献 3)。
[0003] (1)の反射防止膜は、中空微粒子の強度が不充分なため、膜強度を確保するため にバインダーの量を増やす必要がある。しかし、バインダーを増やした場合、膜中の 空隙が少なくなるため、膜の屈折率が高くなり、反射防止効果が低下する。
(2)の反射防止膜は、中空微粒子を含まないため、膜強度は充分である。し力、し、 膜中に空隙が少ないため、膜の屈折率が高ぐ反射防止効果が不充分である。
(3)の反射防止膜は、中空微粒子よりも大きい中実微粒子を含むため、膜強度が 向上している。し力、し、中空微粒子よりも大きい中実微粒子を含むことによって、膜中 の空隙が少なくなるため、膜の屈折率が高ぐ反射防止効果が不充分である。 特許文献 1 :特開 2001— 233611号公報
特許文献 2:特開 2005 _ 010470号公報
特許文献 3:特開 2006— 117924号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、反射防止効果および膜強度が高い反射防止膜を形成できる反射防止 膜形成用塗料組成物、および高!/、反射防止効果を長期間維持できる物品を提供す 課題を解決するための手段
本発明は以下を要旨とするものである。
(1)分散媒と、繊維状中実微粒子と、中空微粒子と、バインダーとを含み、 動的光散乱法で測定された前記繊維状中実微粒子の平均凝集粒子径が、動的光 散乱法で測定された前記中空微粒子の平均凝集粒子径以上である、反射防止膜形 成用塗料組成物。
(2)前記繊維状中実微粒子、前記中空微粒子および前記バインダーの!/、ずれかが 、 SiOを含む、前記(1)に記載の反射防止膜形成用塗料組成物。
2
(3)前記繊維状中実微粒子および前記中空微粒子が、 SiOを含む、前記(1)に記
2
載の反射防止膜形成用塗料組成物。
(4)前記中空微粒子が、繊維状中空微粒子である、前記(1)〜(3)のいずれかに記 載の反射防止膜形成用塗料組成物。
(5)前記繊維状中実微粒子または前記中空微粒子のアスペクト比力 S、 2〜; 10である 、前記(1)〜(4)のいずれかに記載の反射防止膜形成用塗料組成物。
(6)前記繊維状中実微粒子および前記中空微粒子のアスペクト比力 S、 2〜; 10である 、前記(1)〜(4)のいずれかに記載の反射防止膜形成用塗料組成物。
(7)前記繊維状中実微粒子と前記中空微粒子との質量比 (繊維状中実微粒子/中 空微粒子)が、 0· ;!〜 1 · 5である、前記(1)〜(6)のいずれかに記載の反射防止膜 形成用塗料組成物。
(8)前記繊維状中実微粒子と前記中空微粒子との質量比 (繊維状中実微粒子/中 空微粒子)が、 0· 25〜; ! · 5である、前記(1)〜(6)のいずれかに記載の反射防止膜 形成用塗料組成物。
(9)基材上に前記(1)〜(8)のいずれかに記載の反射防止膜形成用塗料組成物か ら反射防止膜が形成された物品。
(10)動的光散乱法で測定された前記繊維状中実微粒子の平均凝集粒子径と前記 反射防止膜の膜厚との比 (繊維状中実微粒子の平均凝集粒子径/反射防止膜の 膜厚)が、 0. 5〜; 1. 0である、前記(9)に記載の物品。 (11 )前記反射防止膜の膜厚が、 50〜300nmである、前記(9)または(10)に記載 の物品。
発明の効果
[0006] 本発明の反射防止膜形成用塗料組成物によれば、反射防止効果および膜強度が 高レ、反射防止膜を形成できる。
本発明の物品は、高い反射防止効果を長期間維持できる。
発明を実施するための最良の形態
[0007] (繊維状中実微粒子)
繊維状中実微粒子における繊維状とは、伸長方向の長さが、伸長方向に垂直な方 向の長さに比べて大きいものをいう。繊維状中実微粒子は、一次粒子であってもよく 、複数の中実微粒子が凝集した二次粒子であってもよい。すなわち、繊維状中実微 粒子は、一次粒子の伸長方向の長さが伸長方向に垂直な方向の長さに比べて大き い中実微粒子、二次粒子の伸長方向の長さが伸長方向に垂直な方向の長さに比べ て大きい中実微粒子(一次粒子の形状を問わない)、の何れも含む。繊維状中実微 粒子としては、針状、棒状が好ましぐ複数の中実微粒子が連結した二次粒子の形 態としては、鎖状、パールネックレス状が好ましい。繊維状中実微粒子の形状として は、直線状に伸びた形状、二次元的または三次元的に湾曲した形状等が挙げられ、 隣接する繊維状中実微粒子間に空隙が形成されやすい点から、二次元的または三 次元的に湾曲した形状が好ましぐ三次元的に湾曲した形状がより好ましい。粒子の 伸長方向の長さは、粒子 1個 1個で異なるため、全体としてある範囲の分布を持って いる。粒子の伸長方向の平均長さとは、その分布の平均値のことをさす。伸長方向に 垂直な方向の平均長さも同様である。
[0008] 繊維状中実微粒子の材料としては、 SiO、 Al O、 SnO (ATO、 FTO)、 TiO、 Z
2 2 3 2 2 rO 、 ZnO (AZO、 GZO)、 Fe O 、 CeO 、 Sb O 、 Sb O 、 In O (ITO)、カーボン
2 2 3 2 2 3 2 5 2 3
等の無機材料;アクリル樹脂、スチレン樹脂、ウレタンアタリレート樹脂、エポキシァク リレート樹脂、ポリエステルアタリレート、ポリエーテルアタリレート、エポキシ樹脂、シリ コーン樹脂等の有機材料が挙げられ、比較的屈折率が低ぐ化学的安定性に優れ、 ガラスとの密着性に優れる点から、 SiOを含む材料が好ましぐ実質的に SiO力 な る材料がより好ましい。
[0009] 繊維状中実微粒子の平均凝集粒子径は、 20〜200nm力 S好ましく、 50〜; !OOnm 力はり好ましい。繊維状中実微粒子の平均凝集粒子径が 20nm以上であれば、隣接 する繊維状中実微粒子間に充分な空隙が形成されるため、反射防止膜の屈折率が 低くなり、反射防止効果が高くなる。繊維状中実微粒子の平均凝集粒子径が 200η m以下であれば、光の散乱が抑えられるため、透明性の高い反射防止膜が得られる
繊維状中実微粒子の平均凝集粒子径は、分散媒中における繊維状中実微粒子の 平均凝集粒子径であり、動的光散乱法で測定される。
[0010] 繊維状中実微粒子の屈折率は、 1. 3〜3. 0力 S好ましく、 1. 3〜2. 0がより好ましい 。繊維状中実微粒子の屈折率が 1. 3以上であれば、屈折率が 1. 2以上の反射防止 膜を得やすぐガラスを基材とした場合に反射防止性能に優れる反射防止膜が得ら れる。繊維状中実微粒子の屈折率が 3. 0以下であれば、屈折率が 1. 4以下の反射 防止膜を得やすぐガラスを基材とした場合に反射防止性能に優れる反射防止膜が 得られる。
繊維状中実微粒子の屈折率は、 550nmにおける屈折率であり、分散媒に分散し た状態またはマトリックスとともに塗膜化した状態で屈折計により屈折率を測定し、体 積比率より換算することにより算出される。
[0011] 繊維状中実微粒子のアスペクト比は、 2〜; 10が好ましぐ 5〜; 10がより好ましい。繊 維状中実微粒子のアスペクト比が 2以上であれば、隣接する繊維状中実微粒子間に 充分な空隙が形成されるため、反射防止膜の屈折率が低くなり、反射防止効果が高 くなる。繊維状中実微粒子のアスペクト比が 10以下であれば、造膜性に優れるため、 外観に優れる反射防止膜が得られる。
繊維状中実微粒子のアスペクト比は、微粒子の伸長方向の長さを伸長方向に垂直 な方向の長さで割ることにより算出される値であり、伸長方向の長さおよび伸長方向 に垂直な方向の長さは電子顕微鏡等によって観察される。なお、二次凝集のない単 分散の繊維状中実微粒子につ!/、ては、繊維状中実微粒子の一次粒子に対してァス ぺクト比が観察される。二次凝集により二次粒子の伸長方向の長さが伸長方向に垂 直な方向の長さに比べて大きい繊維状中実微粒子については、二次粒子に対して アスペクト比が観察される。
[0012] 繊維状中実微粒子は、市販品として入手できる。繊維状中実微粒子の市販品とし ては、 日産化学工業社製の「IPA— ST— UP」等が挙げられる。
また、繊維状中実微粒子は、公知の製造方法にて製造できる。繊維状中実微粒子 の製造方法としては、特開平 1— 317115号公報の実施例に記載の方法が挙げられ る。具体的には、多価金属イオンの存在下に、中実微粒子の分散液にバインダー成 分を添加して過熱することで繊維状中実微粒子が得られる。
[0013] (中空微粒子)
中空微粒子は、外殻の内部に空隙を有する粒子である。中空微粒子としては、球 状中空微粒子、伸長方向の長さが、伸長方向に垂直な方向の長さに比べて大きい 繊維状中空微粒子等が挙げられ、隣接する粒子間に空隙が形成されやすい点から 、繊維状中空微粒子が好ましい。繊維状中実微粒子の場合と同じぐ繊維状中空微 粒子は、一次粒子であってもよぐ複数の中空微粒子が凝集した二次粒子であって あよい。
[0014] 中空微粒子の材料としては、 SiO、 Al O、 SnO (ATO、 FTO)、 TiO、 ZrO 、 Z
2 2 3 2 2 2 nO (AZO、 GZO)、 Fe O、 CeO、 Sb O 、 Sb O 、 In O (ITO)、カーボン等の無
2 3 2 2 3 2 5 2 3
機材料;アクリル樹脂、スチレン樹脂、ウレタンアタリレート樹脂、エポキシアタリレート 樹脂、ポリエステルアタリレート、ポリエーテルアタリレート、エポキシ樹脂、シリコーン 樹脂等の有機材料が挙げられ、比較的屈折率が低ぐ化学的安定性に優れ、ガラス との密着性に優れる点から、 SiOを含む材料が好ましぐ実質的に SiO力 なる材
2 2 料がより好ましい。
本発明において、繊維状中実微粒子および中空微粒子がいずれも SiOを含むの
2 が特に好ましい。
[0015] 中空微粒子の平均凝集粒子径は、 5〜300nm力 S好ましく、 10〜; !OOnmがより好ま しい。中空微粒子の平均凝集粒子径が 5nm以上であれば、隣接する中空微粒子間 に充分な空隙が形成されるため、反射防止膜の屈折率が低くなり、反射防止効果が 高くなる。中空微粒子の平均凝集粒子径が 300nm以下であれば、光の散乱が抑え られるため、透明性の高い反射防止膜が得られる。
中空微粒子の平均凝集粒子径は、分散媒中における中空微粒子の平均凝集粒子 径であり、動的光散乱法で測定される。したがって、二次凝集のない単分散の球状 中空微粒子の場合、平均凝集粒子径は平均一次粒子径と略一致する。
[0016] 中空微粒子の外殻の厚さは、;!〜 50nmであり、かつ中空微粒子の平均一次粒子 径の 1/20〜1/3が好ましい。中空微粒子の外殻の厚さが該範囲内にあれば、充 分な強度を持ち、優れた反射防止性能を示す反射防止膜が得られる。
中空微粒子の外殻の厚さおよび平均一次粒子径は、中空微粒子を透過型電子顕 微鏡にて観察し、 100個の粒子を無作為に選び出し、各中空微粒子の外殻の厚さ および粒子径を測定し、 100個の中空微粒子の外殻の厚さおよび粒子径をそれぞ れ平均した値である。
[0017] 中空微粒子の屈折率は、 1.;!〜 1. 4力 S好ましく、 1. 2〜; 1. 35がより好ましい。中空 微粒子の屈折率が 1. 1以上であれば、屈折率が 1. 2以上の反射防止膜を得やすく 、ガラスを基材とした場合に反射防止性能に優れる反射防止膜が得られる。中空微 粒子の屈折率が 1. 4以下であれば、屈折率が 1. 4以下の反射防止膜を得やすぐ ガラスを基材とした場合に反射防止性能に優れる反射防止膜が得られる。
中空微粒子の屈折率は、 550nmにおける屈折率であり、分散媒に分散した状態ま たはマトリックスとともに塗膜化した状態で屈折計により屈折率を測定し、体積比率よ り換算することにより算出される。
[0018] 中空微粒子としては、前記した球状中空微粒子、繊維状中空微粒子のほか、一次 粒子として、チューブ状、シート状等の形状のものを用いることができる。また、隣接 する微粒子間に空隙が形成されやすぐ反射防止性能に優れた反射防止膜が得ら れやすい点から、繊維状中空微粒子が好ましい。繊維状中空微粒子のアスペクト比 は、 2〜; 10力 S好ましく、 5〜; 10がより好ましい。繊維状中空微粒子のアスペクト比が 2 以上であれば、隣接する微粒子間に充分な空隙が形成されるため、反射防止膜の 屈折率が低くなり、反射防止効果が高くなる。繊維状中空微粒子のアスペクト比が 10 以下であれば、造膜性に優れるため、外観に優れる反射防止膜が得られる。
繊維状中空微粒子のアスペクト比は、微粒子の伸長方向の長さを伸長方向に垂直 な方向の長さで割ることにより算出される値であり、伸長方向の長さおよび伸長方向 に垂直な方向の長さは電子顕微鏡等によって観察される。なお、二次凝集のない単 分散の繊維状中空微粒子については、繊維状中空微粒子の一次粒子に対してァス ぺクト比が観察される。二次凝集により二次粒子の伸長方向の長さが伸長方向に垂 直な方向の長さに比べて大きい繊維状中空微粒子については、二次粒子に対して アスペクト比が観察される。
本発明において、繊維状中実微粒子および中空微粒子のアスペクト比力 いずれ も 2〜; 10であるのが好ましぐいずれも 5〜; 10であるのがより好ましい。
[0019] 球状中空微粒子は、たとえば、コア シェル粒子のコアを除去することによって製 造される。
具体的には、外殻 (シェル)が SiO の場合、下記工程を経て製造される。
2
(a)分散媒中にて、コア微粒子の存在下に SiO前駆物質を加水分解して、コア微
2
粒子表面に SiOを析出させ、コア シェル粒子を得る工程。
2
(b)コア シェル粒子のコアを溶解または分解する工程。
[0020] (a)工程:
コア粒子としては、熱分解性有機微粒子(界面活性剤ミセル、水溶性有機ポリマー 、スチレン樹脂、アクリル樹脂等。)、酸溶解性無機微粒子(ZnO、 NaAlO 、 CaCO
2 3
、塩基性 ZnCO等。)、光溶解性無機微粒子(ZnS、 CdS、 ZnO等。)等が挙げられ
3
[0021] SiO前駆物質としては、ケィ酸、ケィ酸塩、ケィ酸アルコキシド等が挙げられる。
2
分散媒としては、水、アルコール類 (メタノール、エタノール、イソプロパノール等。 ) 、ケトン類(アセトン、メチルェチルケトン等。)、エーテル類(テトラヒドロフラン、 1 , 4 ジォキサン等。)、エステル類(酢酸ェチル、酢酸メチル等。)、グリコールエーテル類 (エチレングリコールモノアルキルエーテル等。)、含窒素化合物類(N, N ジメチル ァセトアミド、 N, N ジメチルホルムアミド等。)、含硫黄化合物類(ジメチルスルホキ シド等。)等が挙げられる。
[0022] 分散媒は、 SiO前駆物質の加水分解に水が必要であるため、分散媒 100質量%
2
中、 5〜: 100質量%の水を含む。 分散媒の pHは、 SiO前駆物質が三次元的に重合してシェルを形成しやすい点か
2
ら、 7以上が好ましぐ 8以上が好ましぐ 9〜; 10が特に好ましい。コア微粒子として酸 溶解性無機微粒子を用いる場合は、該微粒子が溶解しない pH、すなわち 8以上が 好ましい。
[0023] (b)工程:
コア微粒子が酸溶解性無機微粒子の場合、酸を添加することによってコア微粒子 を溶解、除去できる。
酸としては、無機酸 (塩酸、硫酸、硝酸等。 )、有機酸 (ギ酸、酢酸等。 )、酸性カチ オン交換樹脂等が挙げられる。
[0024] 一次粒子としての中空微粒子が細長く伸びた繊維状中空微粒子は、繊維状中実 微粒子をコアとしてシェルを形成した後にコアを除去することにより製造できる。複数 の中空微粒子が結合した繊維状中空微粒子は、中実微粒子の代わりに中空微粒子 を用いる以外は、凝集体としての二次粒子である繊維状中実微粒子の製造方法と同 様の方法にて製造できる。
中空微粒子は、強度を向上させる目的で、水熱処理されていてもよい。
[0025] (バインダー)
ノ^ンダ一としては、加水分解性シラン類 (テトラメトキシシラン、テトラエトキシシラン 等。)、加水分解性シラン類を加水分解して得られるケィ酸オリゴマー、シラノール基 を有するケィ素化合物(ケィ酸、トリメチルシラノール等。)、活性シリカ(水ガラス、ォ ルトケィ酸ナトリウム等。)、有機ポリマー(ポリエチレングリコール、ポリアクリルアミド誘 導体、ポリビュルアルコール等。)等が挙げられる。バインダーとして、 SiOを含むケ
2 ィ酸オリゴマーが特に好まし!/、。
本発明において、繊維状中実微粒子、中空微粒子およびバインダーがいずれも Si Oを含むのが特に好ましい。
2
[0026] (分散媒)
分散媒としては、水、アルコール類 (メタノール、エタノール、イソプロパノール等。 ) 、ケトン類(アセトン、メチルェチルケトン等。)、エーテル類(テトラヒドロフラン、 1 , 4 ジォキサン等。)、エステル類(酢酸ェチル、酢酸メチル等。)、グリコールエーテル類 (エチレングリコールモノアルキルエーテル等。)、含窒素化合物類(N, N—ジメチル ァセトアミド、 N, N—ジメチルホルムアミド等。)、含硫黄化合物類(ジメチルスルホキ シド等。)等が挙げられる。
[0027] (反射防止膜形成用塗料組成物)
本発明の反射防止膜形成用塗料組成物は、分散媒と、繊維状中実微粒子と、中 空微粒子と、バインダーとを含む。
[0028] 動的光散乱法で測定された繊維状中実微粒子の平均凝集粒子径は、動的光散乱 法で測定された中空微粒子の平均凝集粒子径以上である。繊維状中実微粒子の平 均凝集粒子径が、中空微粒子の平均凝集粒子径以上であれば、強度の高い繊維状 中実微粒子が外部からの圧力を主に受けるようになるため、強度の低い中空微粒子 が潰れに《なり、反射防止膜の膜強度が高くなる。繊維状中実微粒子の平均凝集 粒子径と中空微粒子の平均凝集粒子径との比率 (繊維状中実微粒子の平均凝集粒 子径/中空微粒子の平均凝集粒子径)は、 1. 0以上が必要であり、好ましくは 1. 0 〜5. 0、より好ましくは 1. 2—4. 0である。
[0029] 繊維状中実微粒子と前記中空微粒子との質量比 (繊維状中実微粒子/中空微粒 子)は、 0. ;!〜 1. 5が好ましぐ 0. 25〜; 1. 5がより好ましい。繊維状中実微粒子/中 空微粒子(質量比)が 0. 1以上であれば、充分な膜強度を有する反射防止膜が形成 される。繊維状中実微粒子/中空微粒子(質量比)が 1. 5以下であれば、反射防止 膜の屈折率を低く維持でき、反射防止効果が高い反射防止膜を形成できる。
[0030] ノ^ンダ一と全粒子との質量比 (バインダー/ (繊維状中実微粒子 +中空微粒子) )は、 0. ;!〜 2· 0力 S好ましく、 0· 2〜; ! · 0がより好ましい。バインダー/ (繊維状中実 微粒子 +中空微粒子)(質量比)が 0. 1以上であれば、充分な膜強度を有する反射 防止膜が形成される。バインダー/ (繊維状中実微粒子 +中空微粒子)(質量比)が 2. 0以下であれば、反射防止膜の屈折率を低く維持でき、反射防止効果が高い反 射防止膜を形成できる。
[0031] 本発明の反射防止膜形成用塗料組成物の固形分濃度は、 0. ;!〜 20. 0質量%が 好ましい。
本発明の反射防止膜形成用塗料組成物は、繊維状中実微粒子以外の中実微粒 子 (球状中実微粒子、シート状中実微粒子等。)を、本発明の効果を損なわない範囲 で含んでいてもよい。
本発明の反射防止膜形成用塗料組成物は、マグネシウム、カルシウム、ストロンチ ゥム、ノ リウムなどの塩化物、硝酸塩、硫酸塩、蟻酸塩、酢酸塩等のアルカリ土類金 属塩;無機酸、有機酸、塩基、金属キレート化合物、 4級アンモユウム塩、有機すず 等の硬化触媒;紫外線遮蔽性、赤外線遮蔽性、導電性を示す無機微粒子、有機顔 料、染料、有機樹脂等の公知の添加剤を含んでいてもよい。
[0032] 以上説明した本発明の反射防止膜形成用塗料組成物にあっては、繊維状中実微 粒子および中空微粒子を含み、動的光散乱法で測定された繊維状中実微粒子の平 均凝集粒子径が動的光散乱法で測定された中空微粒子の平均凝集粒子径以上で あるため、中空微粒子が潰れに《なり、反射防止膜の膜強度が高くなる。また、中実 微粒子として、繊維状中実微粒子を用いているため、隣接する繊維状中実微粒子間 に空隙が形成され、反射防止膜の屈折率が低くなる。よって、反射防止膜の強度を 高く保持しつつ、反射防止膜の反射防止効果を高くできる。
[0033] (反射防止膜が形成された物品)
本発明の物品は、本発明の反射防止膜形成用塗料組成物から反射防止膜が形成 された物品である。
[0034] 反射防止膜の膜厚は、 50〜300nm力 S好ましく、 80〜200nm力 Sより好ましい。反射 防止膜の膜厚が 50nm以上であれば、光の干渉が起こり反射防止性能が発現する。 反射防止膜の膜厚が 300nm以下であれば、クラックが発生せずに製膜することが可 能である。
反射防止膜の膜厚は、塗工および非塗工界面を段差計で測定することによって得 られる。
[0035] 動的光散乱法で測定された繊維状中実微粒子の平均凝集粒子径と前記反射防止 膜の膜厚との比 (繊維状中実微粒子の平均凝集粒子径/反射防止膜の膜厚)は、 0 . 5〜; 1. 0が好ましぐ 0. 7〜0. 9がより好ましい。繊維状中実微粒子の平均凝集粒 子径/反射防止膜の膜厚が 0. 5以上であれば、強度の高い繊維状中実微粒子が 外部からの圧力を主に受けるようになるため、強度の低い中空微粒子が潰れにくくな り、反射防止膜の膜強度が高くなる。繊維状中実微粒子の平均凝集粒子径/反射 防止膜の膜厚が 1. 0以下であれば、繊維状中実微粒子が反射防止膜の表面から突 出することがなぐ繊維状中実微粒子が反射防止膜力も剥がれ落ちに《なる。
[0036] 反射防止膜の屈折率は、 1. 2〜; 1. 4力 S好ましく、 1. 23〜; 1. 35がより好ましい。反 射防止膜の屈折率が 1. 2以上であれば、膜の上面で反射される光と下面で反射さ れる光が干渉することで打ち消し合い反射防止性能に優れる反射防止膜が得られる 。反射防止膜の屈折率が 1. 4以下であれば、膜の上面で反射される光と下面で反 射される光が干渉することで打ち消し合い、ガラスを基材とした場合に反射防止性能 に優れる反射防止膜が得られる。
反射防止膜の屈折率は、 550nmにおける屈折率であり、屈折計により測定される。
[0037] 反射防止膜は、基材表面に本発明の反射防止膜形成用塗料組成物を塗布し、塗 膜を乾燥することによって形成できる。
基材の材料としては、ガラス、金属、有機ポリマー、シリコン等が挙げられ、あらかじ め何らかの塗膜が形成されている基材でもよい。有機ポリマーとしては、ポリエチレン テレフタレート、ポリカーボネート、ポリメタクリル酸メチル等が挙げられる。
基材の形状としては、板、フィルム等が挙げられる。
[0038] 塗布方法としては、バーコート、ダイコート、グラビアコート、ロールコート、フローコ ート、スプレーコート、オンラインスプレーコート、ディップコート等の公知の方法が挙 げられる。オンラインスプレーコートとは、基材を成型するライン上でそのままスプレー 塗布する方法であり、基板を再加熱する工程が省けるため低コストで製造することが 可能であり有用である。
[0039] 以上説明した本発明の物品は、反射防止効果および膜強度が高い反射防止膜を 有するため、高い反射防止効果を長期間維持できる。
実施例
[0040] 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限 定されない。
例;!〜 9は、実施例であり、例 10〜; 15は、比較例である。
[0041] (中空微粒子の外殻の厚さおよび平均一次粒子径) 中空微粒子を透過型電子顕微鏡(日立製作所社製、 H- 9000)にて観察し、 100 個の粒子(一次粒子)を無作為に選び出し、各中空微粒子の外殻の厚さおよび粒子 径を測定し、 100個の中空微粒子の外殻の厚さおよび粒子径をそれぞれ平均して、 中空微粒子の外殻の厚さおよび平均一次粒子径を求めた。
[0042] (微粒子の平均凝集粒子径)
微粒子の平均凝集粒子径は、動的光散乱法粒度分析計(日機装社製、マイクロト ラック UPA)を用いて測定した。二次凝集のない単分散の場合、球状微粒子の平均 一次粒子径と平均凝集粒子径は略一致する。
[0043] (微粒子のアスペクト比)
一次粒子または二次粒子のアスペクト比は、微粒子を透過型電子顕微鏡(日立製 作所社製、 H— 9000)にて観察し、 100個の粒子(一次粒子または二次粒子)を無 作為に選び出し、各微粒子の伸長方向の長さおよび伸長方向に垂直な方向の長さ を測定し、伸長方向の長さを伸長方向に垂直な方向の長さで割った値を平均して求 めた。
[0044] (外観)
反射防止膜を目視で観察し、下記基準で評価した。
〇:塗布ムラがなく外観上良好である。
X:塗布ムラがあり実用的でない。
[0045] (ヘイズ値)
JIS K 7105 (1981年)に準拠し、基材上の反射防止膜のヘイズ値を、 - ^一ズコ ンピューター(スガ試験機社製、 HGM- 3DP)で測定した。
[0046] (最低反射率)
380〜1200nmにおける、基材上の反射防止膜の反射率を分光光度計(日立製 作所社製、型式: U— 4100)で測定し、反射率の最小値 (最低反射率)を求めた。 反射防止膜の表面を、フェルトにて 100g荷重で 1000回往復磨耗した後、同様に して反射率を測定し、反射率の最小値 (最低反射率)を求めた。
磨耗後の最低反射率と磨耗前の最低反射率との差( Δ反射率)を求めた。
[0047] 〔製造例 1〕 球状中空微粒子(1)の製造:
200mLのガラス製容器に、エタノール 60g、 ZnO微粒子の水分散ゾル(平均一次 粒子径 20nm、平均凝集粒子径 40nm、固形分換算濃度 20質量%) 30g、テトラエト キシシラン(SiO固形分濃度 29質量%) 10§を入れ、アンモニア水溶液を添加して p
2
Hを 10とし、 20°Cで 6時間撹拌して、コア—シェル粒子の分散液(固形分濃度 6質量 %) 100gを得た。
[0048] コア シェル粒子の分散液 100gに、強酸性カチオン交換樹脂(総交換容量 2. Om eq/mL以上)を 100g加え、 1時間撹拌して pHが 4となった後、ろ過により強酸性力 チオン交換樹脂を除去し、 SiOからなる球状中空微粒子(1 )の分散液を得た。該分
2
散液を限外ろ過により固形分濃度 20質量%まで濃縮した。球状中空微粒子(1)は 二次凝集していた。球状中空微粒子(1)の外殻の厚さは 5nmであり、かつ平均一次 粒子径の 1/6であった。球状中空微粒子(1)の平均凝集粒子径は、 40nmであった 。球状中空微粒子(1)のアスペクト比は、 1. 0であった。
[0049] 〔製造例 2〕
球状中空微粒子(2)の製造:
ZnO微粒子の水分散ゾルを、 ZnO微粒子の水分散ゾル(平均一次粒子径 20nm、 平均凝集粒子径 60nm、固形分換算濃度 20質量%)に変更した以外は、製造例 1と 同様にして SiO力もなる球状中空微粒子(2)の分散液(固形分濃度 20質量%)を得
2
た。球状中空微粒子(2)は二次凝集していた。球状中空微粒子(2)の外殻の厚さは 5nmであり、かつ平均一次粒子径の 1/6であった。球状中空微粒子(2)の平均凝 集粒子径は、 60nmであった。球状中空微粒子(2)のアスペクト比は、 1. 0であった
[0050] 〔製造例 3〕
繊維状中空微粒子( 1 )の製造:
ガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 3質量%) 2000gを入 れ、撹拌しながら、 10質量%塩化カルシウム水溶液 8. 0g、 10質量%水酸化ナトリウ ム水溶液 12. Ogを加えた。該混合液を 2. 5Lのステンレス製オートクレーブ容器に入 れ、 130°Cで、 24時間加熱し、繊維状中空微粒子(1)の分散液を得た。該分散液を 限外ろ過により固形分濃度 20質量%まで濃縮した。繊維状中空微粒子(1)は二次 凝集していた。繊維状中空微粒子(1)の平均凝集粒子径は、 70nmであった。繊維 状中空微粒子(1)のアスペクト比は、 5. 0であった。
[0051] 〔製造例 4〕
繊維状中空微粒子(2)の製造:
オートクレープ容器における加熱時間を 6時間に変更した以外は、製造例 3と同様 にして繊維状中空微粒子(2)の分散液(固形分濃度 20質量%)を得た。繊維状中空 微粒子(2)は二次凝集していた。繊維状中空微粒子(2)の平均凝集粒子径は、 50η mであった。繊維状中空微粒子(2)のアスペクト比は、 2. 0であった。
[0052] 〔製造例 5〕
繊維状中実微粒子(2)の製造:
活性ケィ酸のコロイド水溶液(SiO固形分濃度 3. 56質量%、 ^12. 81) 2000gを
2
入れ、撹拌しながら、 10質量%塩化カルシウム水溶液 8. 0g、 10質量%水酸化ナトリ ゥム水溶液 12. Ogを加えた。該混合液を 2. 5Lのステンレス製オートクレーブ容器に 入れ、 130°Cで、 24時間加熱し、繊維状中実微粒子(2)の分散液を得た。該分散液 を限外ろ過により固形分濃度 15質量%まで濃縮した。繊維状中実微粒子(2)は二 次凝集していた。繊維状中実微粒子(2)の平均凝集粒子径は、 150nmであった。 繊維状中実微粒子(2)のアスペクト比は、 10· 0であった。
[0053] 〔市販の粒子〕
繊維状中実微粒子(1)の分散液 (二次凝集のない単分散):日産化学工業社製、 I PA— ST— UP、固形分濃度 15質量%、平均凝集粒子径(平均一次粒子径) 90nm 、ァスぺク卜比 7. 0。
球状中実微粒子(1)の分散液 (二次凝集のない単分散):日産化学工業社製、 IP A— ST、固形分濃度 30質量%、平均凝集粒子径(平均一次粒子径) 13nm、ァスぺ タト比 1. 0。
球状中実微粒子(2)の分散液 (二次凝集のない単分散):日産化学工業社製、 IP A— ST— ZL、固形分濃度 30質量%、平均凝集粒子径(平均一次粒子径) 85nm、 アスペクト比 1. 0。 球状中実微粒子(3)の分散液 (二次凝集のない単分散):日産化学工業社製、 IP A— ST— L、固形分濃度 20質量%、平均凝集粒子径(平均一次粒子径) 45nm、ァ スぺタト比 1. 0。
[0054] 〔製造例 6〕
ケィ酸オリゴマー溶液の製造:
テトラエトキシシランのエタノール溶液に硝酸水溶液を加え、テトラエトキシシランを 加水分解させてケィ酸オリゴマー溶液(固形分濃度 5質量%)を得た。
[0055] 〔例 1〕
200mLのガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 20質量% ) 2g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 2§、エタノール 90g、 ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射防止 膜形成用塗料組成物を得た。
[0056] 該塗料組成物を、エタノール拭きしたガラス基板(100mm X 100mm、厚さ 3. 5m m)の表面に塗布し、回転数 200rpmで 60秒間スピンコートして均一化した後、 200 °Cで 30分間乾燥し、膜厚 lOOnmの反射防止膜を形成し、各評価を行った。
結果を表 1および表 2に示す。
[0057] 〔例 2〕
200mLのガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 20質量% ) 4g、繊維状中実微粒子(2)の分散液(固形分濃度 15質量%) 4§、エタノール 80g、 ケィ酸オリゴマー溶液(固形分濃度 5質量%) 12§を入れ、 10分間撹拌して、反射防 止膜形成用塗料組成物を得た。
該塗料組成物を用いた以外は、例 1と同様にして膜厚 150nmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0058] 〔例 3〕
200mLのガラス製容器に、球状中空微粒子(2)の分散液(固形分濃度 20質量% ) 3g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 0. 7g、エタノール 90 . 3g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反 射防止膜形成用塗料組成物を得た。 該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0059] 〔例 4〕
200mLのガラス製容器に、球状中空微粒子(2)の分散液(固形分濃度 20質量% ) 1. 5g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 3§、エタノール 90 . 5g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 5§を入れ、 10分間撹拌して、反 射防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0060] 〔例 5〕
200mLのガラス製容器に、繊維状中空微粒子(1)の分散液(固形分濃度 20質量 %) 2g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 2§、エタノール 90 g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射 防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0061] 〔例 6〕
200mLのガラス製容器に、繊維状中空微粒子(2)の分散液(固形分濃度 20質量 %) 2g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 2§、エタノール 90 g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射 防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0062] 〔例 7〕
200mLのガラス製容器に、球状中空微粒子(2)の分散液(固形分濃度 20質量% ) lg、繊維状中空微粒子(1)の分散液(固形分濃度 20質量%) lg、繊維状中実微 粒子(1)の分散液(固形分濃度 15質量%) 2§、エタノール 90g、ケィ酸オリゴマー溶 液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射防止膜形成用塗料組成 物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0063] 〔例 8〕
200mLのガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 20質量% ) 2. 75g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 1§、エタノール 9 0. 25g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、 反射防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
〔例 9〕
200mLのガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 20質量% ) 2. 85g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 0. 87g、ェタノ ール 90. 28g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌 して、反射防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
〔例 10〕
200mLのガラス製容器に、球状中空微粒子(2)の分散液(固形分濃度 20質量% ) 3. 5g、エタノール 90· 5g、ケィ酸オリゴマー溶液(固形分濃度 5質量0 /0) 6gを入れ 、 10分間撹拌して、反射防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0064] 〔例 11〕
200mLのガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 20質量% ) 2g、球状中実微粒子(1)の分散液(固形分濃度 30質量%) 、エタノール 91g、ケ ィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射防止 膜形成用塗料組成物を得た。 該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0065] 〔例 12〕
200mLのガラス製容器に、球状中空微粒子(2)の分散液(固形分濃度 20質量% ) 2g、球状中実微粒子(2)の分散液(固形分濃度 30質量%) 、エタノール 91g、ケ ィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射防止 膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0066] 〔例 13〕
200mLのガラス製容器に、球状中空微粒子(1)の分散液(固形分濃度 20質量% ) 2g、繊維状中空微粒子(1)の分散液(固形分濃度 20質量%) 1. 5g、エタノール 90 . 5g、ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反 射防止膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0067] 〔例 14〕
200mLのガラス製容器に、球状中実微粒子(3)の分散液(固形分濃度 20質量% ) 2g、繊維状中実微粒子(1)の分散液(固形分濃度 15質量%) 2§、エタノール 90g、 ケィ酸オリゴマー溶液(固形分濃度 5質量%) 6§を入れ、 10分間撹拌して、反射防止 膜形成用塗料組成物を得た。
該塗料組成物を用レ、た以外は、例 1と同様にして膜厚 1 OOnmの反射防止膜を形 成し、各評価を行った。結果を表 1および表 2に示す。
[0068] [表 1] 表 1
Figure imgf000020_0001
表中、粒子径は平均凝集粒子径であり、比率は組成物中の固形分の質量比である。
[0069] [表 2]
表 2
Figure imgf000021_0001
[0070] 繊維状中実微粒子と中空微粒子とを含む反射防止膜形成用塗料組成物から形成 された、例;!〜 9の反射防止膜は、磨耗前の反射率が充分に低ぐ反射防止効果が 高かった。また、磨耗による反射率の変化も少なぐ膜強度が高かった。特に、ァスぺ タト比が 5. 0の繊維状中空微粒子とアスペクト比 7. 0の繊維状中実微粒子とを含む 反射防止膜形成用塗料組成物から形成された、例 5および例 7の反射防止膜は、磨 耗前の反射率がかなり低ぐ反射防止効果が優れ、かつ、磨耗による反射率の変化 も極めて少なぐ膜強度が高力、つた。磨耗前の反射率としては、波長 380nm〜; 1200 nmにおける最低反射率が 1. 0%以下が実用上好ましい。一方、磨耗前後の最低反 射率の変化は、 0. 5%以下であることが実用上好ましぐ 0. 3%以下であることがより 好ましい。
繊維状中実微粒子を含まず、中空微粒子を含む反射防止膜形成用塗料組成物か ら形成された、例 10の反射防止膜は、磨耗前の反射率が充分に低ぐ反射防止効 果が高かったものの、磨耗による反射率の変化が大きぐ膜強度が不充分であった。 粒子径の小さい球状中実微粒子と中空微粒子とを含む反射防止膜形成用塗料組 成物から形成された、例 11の反射防止膜は、磨耗前の反射率が高ぐ反射防止効 果が不充分であった。また、磨耗による反射率の変化が大きぐ膜強度も不充分であ つた。 [0071] 粒子径の大きい球状中実微粒子と中空微粒子とを含む反射防止膜形成用塗料組 成物から形成された、例 12の反射防止膜は、磨耗前の反射率が高ぐ反射防止効 果が不充分であった。一方、磨耗による反射率の変化は小さぐ膜強度は高かった。 球状中空微粒子と繊維状中空微粒子とを含む反射防止膜形成用塗料組成物から 形成された、例 13の反射防止膜は、磨耗前の反射率が充分に低ぐ反射防止効果 が高かったものの、磨耗による反射率の変化が大きぐ膜強度が不充分であった。 球状中実微粒子と繊維状中実微粒子とを含む反射防止膜形成用塗料組成物から 形成された、例 14の反射防止膜は、磨耗前の反射率が高ぐ反射防止効果が不充 分であった。一方、磨耗による反射率の変化は小さぐ膜強度は高かった。
球状中空微粒子と粒子径の大きい繊維状中実微粒子とを含む反射防止膜形成用 塗料組成物から形成された、例 15の反射防止膜は、磨耗前の反射率が高ぐ反射 防止効果が不充分であった。一方、繊維状中実微粒子の含有量が相対的に多いた め、磨耗による反射率の変化は小さぐ膜強度は高かった。
産業上の利用可能性
[0072] 本発明の反射防止膜形成用塗料組成物からなる反射防止膜が形成された物品は 、車両用透明部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基 板、リア透明基板等。)、車両用不透明部品(インスツルメントパネル表面等。)、メー ター、建築窓、ショーウィンドウ、ディスプレイ(ノート型パソコン、モニター、 LCD, PD P、 ELD、 CRT, PDA等。)、 LCDカラーフィルター、タツチパネル用基板、ピックァ ップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、 CCD用カバー基板、 光ファイバ一端面、プロジェクター部品、複写機部品、太陽電池用透明基板、携帯 電話窓、バックライトュュット部品(たとえば、導光板、冷陰極管等。 )、バックライトュ ニット部品液晶輝度向上フィルム(たとえば、プリズム、半透過フィルム等。)、液晶輝 度向上フィルム、有機 EL発光素子部品、無機 EL発光素子部品、蛍光体発光素子 部品、光学フィルター、光学部品の端面、照明ランプ、照明器具のカバー、増幅レー ザ一光源、反射防止フィルム、偏光フィルム、農業用フィルム等として有用である。 なお、 2006年 10月 2曰に出願された曰本特許出願 2006— 271015号の明細書 て、取り入れるものである。

Claims

請求の範囲
[I] 分散媒と、繊維状中実微粒子と、中空微粒子と、バインダーとを含み、
動的光散乱法で測定された前記繊維状中実微粒子の平均凝集粒子径が、動的光 散乱法で測定された前記中空微粒子の平均凝集粒子径以上である、反射防止膜形 成用塗料組成物。
[2] 前記繊維状中実微粒子、前記中空微粒子および前記バインダーのいずれかが、 S ΪΟを含む、請求項 1に記載の反射防止膜形成用塗料組成物。
2
[3] 前記繊維状中実微粒子および前記中空微粒子が、 SiOを含む、請求項 1に記載
2
の反射防止膜形成用塗料組成物。
[4] 前記中空微粒子が、繊維状中空微粒子である、請求項;!〜 3のいずれかに記載の 反射防止膜形成用塗料組成物。
[5] 前記繊維状中実微粒子または前記中空微粒子のアスペクト比力 2〜; 10である、 請求項;!〜 4のいずれかに記載の反射防止膜形成用塗料組成物。
[6] 前記繊維状中実微粒子および前記中空微粒子のアスペクト比力 2〜; 10である、 請求項;!〜 4のいずれかに記載の反射防止膜形成用塗料組成物。
[7] 前記繊維状中実微粒子と前記中空微粒子との質量比 (繊維状中実微粒子/中空 微粒子)が、 0. ;!〜 1. 5である、請求項 1〜6のいずれかに記載の反射防止膜形成 用塗料組成物。
[8] 前記繊維状中実微粒子と前記中空微粒子との質量比 (繊維状中実微粒子/中空 微粒子)が、 0. 25〜; 1. 5である、請求項 1〜6のいずれかに記載の反射防止膜形成 用塗料組成物。
[9] 基材上に請求項;!〜 8のいずれかに記載の反射防止膜形成用塗料組成物から反 射防止膜が形成された物品。
[10] 動的光散乱法で測定された前記繊維状中実微粒子の平均凝集粒子径と前記反射 防止膜の膜厚との比 (繊維状中実微粒子の平均凝集粒子径/反射防止膜の膜厚) 、 0. 5〜; 1. 0である、請求項 9に記載の物品。
[I I] 前記反射防止膜の膜厚が、 50〜300nmである、請求項 9または 10に記載の物品
PCT/JP2007/069220 2006-10-02 2007-10-01 Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet WO2008041681A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780036499XA CN101523242B (zh) 2006-10-02 2007-10-01 防反射膜形成用涂料组合物及形成有防反射膜的物品
EP07828960A EP2071366A4 (en) 2006-10-02 2007-10-01 COATING COMPOSITION FOR FORMING ANTIREFLECTION FILM, AND ARTICLE ON WHICH IS FORMED ANTIREFLECTION FILM
JP2008537525A JPWO2008041681A1 (ja) 2006-10-02 2007-10-01 反射防止膜形成用塗料組成物および反射防止膜が形成された物品
US12/417,056 US20090191406A1 (en) 2006-10-02 2009-04-02 Coating composition for forming antireflective film, and article having antireflective film formed thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-271015 2006-10-02
JP2006271015 2006-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/417,056 Continuation US20090191406A1 (en) 2006-10-02 2009-04-02 Coating composition for forming antireflective film, and article having antireflective film formed thereon

Publications (1)

Publication Number Publication Date
WO2008041681A1 true WO2008041681A1 (fr) 2008-04-10

Family

ID=39268536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069220 WO2008041681A1 (fr) 2006-10-02 2007-10-01 Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet

Country Status (5)

Country Link
US (1) US20090191406A1 (ja)
EP (1) EP2071366A4 (ja)
JP (1) JPWO2008041681A1 (ja)
CN (1) CN101523242B (ja)
WO (1) WO2008041681A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108155A (ja) * 2007-10-29 2009-05-21 Jgc Catalysts & Chemicals Ltd 繊維状中空シリカ微粒子分散液、繊維状中空シリカ微粒子ならびに該微粒子を含有する反射防止被膜形成用組成物および反射防止被膜付基材
JP2009143754A (ja) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd 導電性繊維状中空シリカ微粒子分散質およびその製造方法
JP2010128309A (ja) * 2008-11-28 2010-06-10 Jgc Catalysts & Chemicals Ltd 反射防止膜付基材および反射防止膜形成用塗布液
JP2011064737A (ja) * 2009-09-15 2011-03-31 Nikon Corp 光学系部品
JP2011102977A (ja) * 2009-10-16 2011-05-26 Dainippon Printing Co Ltd 光学フィルム及びディスプレイパネル
EP2419767A1 (en) * 2009-04-15 2012-02-22 3M Innovative Properties Company Optical film
EP2457968A1 (en) 2010-11-30 2012-05-30 Nitto Denko Corporation Surface protective sheet
CN104004466A (zh) * 2014-05-23 2014-08-27 东莞轩朗实业有限公司 反射膜及其制备方法
JPWO2013111783A1 (ja) * 2012-01-23 2015-05-11 旭化成イーマテリアルズ株式会社 コーティング組成物及び反射防止膜
JP2015102666A (ja) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 反射防止膜形成用塗布液および反射防止膜付基材とその製造方法ならびにその用途
WO2015141240A1 (ja) * 2014-03-17 2015-09-24 富士フイルム株式会社 水性コート剤、膜、膜の製造方法、積層体、及び太陽電池モジュール
JP2017001032A (ja) * 2011-11-04 2017-01-05 旭硝子株式会社 膜付き基材の製造方法
JP2017049313A (ja) * 2015-08-31 2017-03-09 キヤノン株式会社 反射防止膜、光学部材、反射防止膜の製造方法および光学部材の製造方法
RU169993U1 (ru) * 2016-07-22 2017-04-11 Общество с ограниченной ответственностью "Нанотехнологический центр композитов" (ООО "НЦК") Композитная накладка фары наземного транспортного средства
JP2017194632A (ja) * 2016-04-22 2017-10-26 キヤノン株式会社 遮熱膜、遮熱塗料、および光学機器
JP2018035227A (ja) * 2016-08-30 2018-03-08 日本ペイントマリン株式会社 塗料組成物及びそれから形成される塗膜
WO2022196218A1 (ja) * 2021-03-19 2022-09-22 日本電気硝子株式会社 スプレーコート用コーティング液及びその製造方法、並びにアンチグレア層付き基材の製造方法
CN116897194A (zh) * 2021-03-19 2023-10-17 日本电气硝子株式会社 喷涂用涂敷液和其制造方法以及带防眩光层的基材的制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI365999B (en) * 2008-07-31 2012-06-11 Benq Materials Corp Antiglare film and method of forming the same
JP6030893B2 (ja) * 2012-09-04 2016-11-24 石原産業株式会社 内部に空隙を有するフルオロアルミン酸化合物粒子及びその製造方法並びに当該粒子を含有する組成物及び反射防止膜
US9423532B2 (en) * 2013-03-12 2016-08-23 Intermolecular, Inc. Anti-reflection coatings with aqueous particle dispersions and methods for forming the same
US10608580B2 (en) 2013-10-31 2020-03-31 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus
JPWO2017022175A1 (ja) * 2015-08-05 2018-05-31 パナソニックIpマネジメント株式会社 光学膜用組成物、光学膜を有する基材、成形体、および成形体の製造方法
CN105199556B (zh) * 2015-10-09 2017-08-11 深圳市佰瑞兴实业有限公司 一种高雾度高清晰度的喷涂涂料及其喷涂方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (ja) 1988-03-16 1989-12-21 Nissan Chem Ind Ltd 細長い形状のシリカゾル及びその製造法
JP2001233611A (ja) 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2005010470A (ja) 2003-06-19 2005-01-13 Asahi Kasei Corp 反射防止膜用塗布組成物および反射防止膜
JP2005266231A (ja) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc 光学フィルム、偏光板及び画像表示装置
JP2005266232A (ja) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc 光学フィルム、偏光板及び画像表示装置
JP2006117924A (ja) 2004-09-22 2006-05-11 Fuji Photo Film Co Ltd 硬化組成物、反射防止フィルム、その製造方法、偏光板、及び画像表示装置
JP2006231900A (ja) * 2004-11-16 2006-09-07 Jsr Corp 積層体の製造方法
JP2006257402A (ja) * 2005-02-21 2006-09-28 Fuji Photo Film Co Ltd 低屈折率層形成塗布組成物、反射防止フィルム、偏光板、および液晶表示装置
JP2006271015A (ja) 2005-03-22 2006-10-05 Denso Corp 車両用交流発電機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378972B2 (ja) * 2003-02-25 2009-12-09 パナソニック電工株式会社 反射防止膜、反射防止膜の製造方法、反射防止部材
EP1479734B1 (en) * 2003-05-20 2009-02-11 DSM IP Assets B.V. Nano-structured surface coating process, nano-structured coatings and articles comprising the coating
TWI388876B (zh) * 2003-12-26 2013-03-11 Fujifilm Corp 抗反射膜、偏光板,其製造方法,液晶顯示元件,液晶顯示裝置,及影像顯示裝置
KR101182002B1 (ko) * 2005-02-16 2012-09-11 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및표시 장치
US7419707B2 (en) * 2005-02-21 2008-09-02 Fujifilm Corporation Coating composition for the formation of low refractive index layer, antireflection film, polarizing plate and liquid crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (ja) 1988-03-16 1989-12-21 Nissan Chem Ind Ltd 細長い形状のシリカゾル及びその製造法
JP2001233611A (ja) 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2005010470A (ja) 2003-06-19 2005-01-13 Asahi Kasei Corp 反射防止膜用塗布組成物および反射防止膜
JP2005266231A (ja) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc 光学フィルム、偏光板及び画像表示装置
JP2005266232A (ja) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc 光学フィルム、偏光板及び画像表示装置
JP2006117924A (ja) 2004-09-22 2006-05-11 Fuji Photo Film Co Ltd 硬化組成物、反射防止フィルム、その製造方法、偏光板、及び画像表示装置
JP2006231900A (ja) * 2004-11-16 2006-09-07 Jsr Corp 積層体の製造方法
JP2006257402A (ja) * 2005-02-21 2006-09-28 Fuji Photo Film Co Ltd 低屈折率層形成塗布組成物、反射防止フィルム、偏光板、および液晶表示装置
JP2006271015A (ja) 2005-03-22 2006-10-05 Denso Corp 車両用交流発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2071366A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108155A (ja) * 2007-10-29 2009-05-21 Jgc Catalysts & Chemicals Ltd 繊維状中空シリカ微粒子分散液、繊維状中空シリカ微粒子ならびに該微粒子を含有する反射防止被膜形成用組成物および反射防止被膜付基材
JP2009143754A (ja) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd 導電性繊維状中空シリカ微粒子分散質およびその製造方法
JP2010128309A (ja) * 2008-11-28 2010-06-10 Jgc Catalysts & Chemicals Ltd 反射防止膜付基材および反射防止膜形成用塗布液
EP2419767A1 (en) * 2009-04-15 2012-02-22 3M Innovative Properties Company Optical film
JP2011064737A (ja) * 2009-09-15 2011-03-31 Nikon Corp 光学系部品
JP2011102977A (ja) * 2009-10-16 2011-05-26 Dainippon Printing Co Ltd 光学フィルム及びディスプレイパネル
EP2457968A1 (en) 2010-11-30 2012-05-30 Nitto Denko Corporation Surface protective sheet
JP2017001032A (ja) * 2011-11-04 2017-01-05 旭硝子株式会社 膜付き基材の製造方法
JPWO2013111783A1 (ja) * 2012-01-23 2015-05-11 旭化成イーマテリアルズ株式会社 コーティング組成物及び反射防止膜
JP2015102666A (ja) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 反射防止膜形成用塗布液および反射防止膜付基材とその製造方法ならびにその用途
WO2015141240A1 (ja) * 2014-03-17 2015-09-24 富士フイルム株式会社 水性コート剤、膜、膜の製造方法、積層体、及び太陽電池モジュール
JP2015174972A (ja) * 2014-03-17 2015-10-05 富士フイルム株式会社 水性コート剤、膜、膜の製造方法、積層体、及び太陽電池モジュール
CN104004466A (zh) * 2014-05-23 2014-08-27 东莞轩朗实业有限公司 反射膜及其制备方法
JP2017049313A (ja) * 2015-08-31 2017-03-09 キヤノン株式会社 反射防止膜、光学部材、反射防止膜の製造方法および光学部材の製造方法
JP2017194632A (ja) * 2016-04-22 2017-10-26 キヤノン株式会社 遮熱膜、遮熱塗料、および光学機器
RU169993U1 (ru) * 2016-07-22 2017-04-11 Общество с ограниченной ответственностью "Нанотехнологический центр композитов" (ООО "НЦК") Композитная накладка фары наземного транспортного средства
JP2018035227A (ja) * 2016-08-30 2018-03-08 日本ペイントマリン株式会社 塗料組成物及びそれから形成される塗膜
WO2022196218A1 (ja) * 2021-03-19 2022-09-22 日本電気硝子株式会社 スプレーコート用コーティング液及びその製造方法、並びにアンチグレア層付き基材の製造方法
CN116897194A (zh) * 2021-03-19 2023-10-17 日本电气硝子株式会社 喷涂用涂敷液和其制造方法以及带防眩光层的基材的制造方法

Also Published As

Publication number Publication date
JPWO2008041681A1 (ja) 2010-02-04
CN101523242B (zh) 2012-08-01
EP2071366A4 (en) 2010-01-27
CN101523242A (zh) 2009-09-02
US20090191406A1 (en) 2009-07-30
EP2071366A1 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2008041681A1 (fr) Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet
JP5578073B2 (ja) コア−シェル粒子の製造方法および中空粒子の製造方法
JP5434928B2 (ja) 中空粒子、その製造方法、塗料組成物および物品
JP4883383B2 (ja) 中空状SiO2を含有する分散液、塗料組成物及び反射防止塗膜付き基材
US8480989B2 (en) Hollow fine particles, production process thereof, coating composition and article having coating film formed
KR100635550B1 (ko) 경질 코팅물질 및 이를 포함하는 막
TWI394985B (zh) 抗眩膜及其製造方法
JP6586897B2 (ja) 防眩膜付き基材、膜形成用塗布液およびその製造方法
JP2006335605A (ja) 中空状SiO2微粒子分散液の製造方法、塗料組成物及び反射防止塗膜付き基材
WO2010018852A1 (ja) 塗料組成物および塗膜が形成された物品
WO2014061606A1 (ja) 防汚性反射防止膜、物品およびその製造方法
JP5304638B2 (ja) 中空微粒子、その製造方法、塗料組成物および塗膜が形成された物品
CN103666007A (zh) 透明被膜形成用涂布液及带透明被膜的基材
JP2015049319A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
CN106029798B (zh) 用于形成透明被膜的涂布液以及具有透明被膜的基材的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036499.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537525

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12009500587

Country of ref document: PH

Ref document number: 2007828960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2196/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE