WO2008041399A1 - Convertisseur cc-cc d'isolation à double extrémité - Google Patents

Convertisseur cc-cc d'isolation à double extrémité Download PDF

Info

Publication number
WO2008041399A1
WO2008041399A1 PCT/JP2007/063714 JP2007063714W WO2008041399A1 WO 2008041399 A1 WO2008041399 A1 WO 2008041399A1 JP 2007063714 W JP2007063714 W JP 2007063714W WO 2008041399 A1 WO2008041399 A1 WO 2008041399A1
Authority
WO
WIPO (PCT)
Prior art keywords
turn
synchronous rectifier
edge signal
power switch
circuit
Prior art date
Application number
PCT/JP2007/063714
Other languages
English (en)
French (fr)
Inventor
Tadahiko Matsumoto
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008537421A priority Critical patent/JP5012807B2/ja
Priority to CN2007800342609A priority patent/CN101517878B/zh
Publication of WO2008041399A1 publication Critical patent/WO2008041399A1/ja
Priority to US12/399,157 priority patent/US7596009B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a double-end insulated DC-DC converter such as a half-bridge DC-DC converter, a push-pull DC-DC converter, a full-bridge DC-DC converter, or the like.
  • Fig. 1 shows an example of a conventional double-ended isolated DC-DC converter.
  • This double-end isolated DC-DC converter 120 is composed of an external drive circuit 114, totem pole drivers 1 and 118, DC leveler shifter 121, first and second switch dryers 122 and 124, and a first-order law switch.
  • a smoothing capacitor Co, resistors Rl, R2, R3, R4, capacitors CI, C2, C3, C4, and diodes Dl, D2, D3, D4 are provided.
  • the rise of the first PWM signal is delayed by diode Dl, resistor Rl, and capacitor C1
  • the rise of the second PWM signal is delayed by diode D2, resistor R2, and capacitor C2, and is input to the driver.
  • the driver generates the gate drive signals for the primary switches Ql and Q2 based on the input signal.
  • the first and second PWM signals are input to the signal transmission transformer T2, and become a composite signal in which the first PWM signal appears in the first polarity of the transformer coil voltage and the second PWM signal appears in the second polarity. Secondary side Transmitted to the circuit.
  • the DC level shifter 121 By adding the transmitted composite signal to the DC level shifter 121, the DC level of the driving voltage of the totem pole drivers 116 and 118 is increased, and the ON period of the totem pole drivers 116 and 118 is expanded, and the first and second The synchronous rectifiers Q3 and Q4 are driven at almost the same timing as the primary switches Ql and Q2.
  • Patent Document 1 Special Table 2003-511004
  • the conventional double-end isolated DC-DC converter shown in Fig. 1 combines the first and second PWM signals in the primary circuit and separates them in the secondary circuit.
  • a separate circuit was required and the circuit configuration was complicated. Since the signal transmission transformer T2 needs to transmit a signal at a switching frequency (several tens of kHz), for example, a relatively large inductance of 100 H or more is required. For this reason, the outer shape of the signal transmission transformer T2 inevitably increases, making it difficult to reduce the overall size and weight of the converter.
  • the object of the present invention is to maintain a highly efficient power conversion by driving the primary-side switch and the secondary-side synchronous rectifier at substantially complementary timings, while maintaining a small size as a whole. -To provide a double-ended isolated DC-DC converter that is lightweight. Means for solving the problem
  • the present invention provides a main transformer (8) having at least a primary coil and a secondary coil, and first and second power switches (Ql, Q2) connected to the primary side of the main transformer.
  • the primary side control circuit 70, 80, 90 that controls the switching of the first and second electrical switches (Ql, Q2) and the first, second, and second sides connected to the secondary side of the main transformer.
  • the double-end insulated DC-DC converter comprising a synchronous rectifier (11, 12) and at least one choke coil (13), the first power is based on a signal from the primary side control circuit.
  • a first synchronous rectifier control circuit that turns off and turns on the first synchronous rectifier (9) with a first turn-on edge signal (F) transmitted by the first Norse transformer (9). (73) and the second turn-off edge signal (G) transmitted by the second Norse transformer (10) to turn off the second synchronous rectifier (12), and the second pulse transformer ( 10) Second turn-on edge transmitted by No. and second synchronous rectifier control circuit for turning on said second synchronous rectifier (12) (H) (74),
  • the first power switch (4) and the first synchronous rectifier (11) are driven at substantially complementary timings, and the second power switch (5) and the second synchronous rectifier (12 ) Is driven at almost complementary timing.
  • the primary-side control circuit (70, 80, 90) receives the first power switch (11) from the turn-off of the first synchronous rectifier (11). 4) delays the turn-on of the second power switch (5) after the turn-off of the second synchronous rectifier (12) after the generation of the second turn-off edge signal (G). Shall be provided.
  • a delay circuit on the first synchronous rectifier side that delays the turn-on of the first synchronous rectifier (11) from the turn-off of the first power switch (4) after the generation of the first turn-on edge signal (F) (76, 46) and the second synchronous rectifier (5) from the turn-off of the second power switch (5)
  • a second synchronous rectifier side delay circuit (77, 47) is provided to delay the turn-on of 12).
  • the first synchronous rectifier side delay circuit (76) includes a drain voltage of the first synchronous rectifier (11), a coil voltage of the main transformer (8), and a voltage of the choke coil (13).
  • a delay time control circuit that detects any change and terminates the delay at the timing when the drain voltage of the first synchronous rectifier (11) changes
  • the second synchronous rectifier side delay circuit Detects a change in at least one of the drain voltage of the second synchronous rectifier (12), the coil voltage of the main transformer (8), and the voltage of the choke coil (13) to detect the second synchronous rectifier (12). It is assumed that a delay time control circuit that stops the delay at the timing when the drain voltage of the rectifier (12) changes is provided.
  • the second power switch (5) is a high-side switch whose reference potential is not connected to the ground (GND), and the primary-side control circuit includes the second power switch (5). Is provided with a circuit that is turned on by the second turn-off edge signal (G) and turned off by the second turn-on edge signal (H).
  • the main transformer (8) and the first and second Nors transformers (9, 10) each have a pair of cores and independent coils, and function equivalently as independent transformers. Installed in the composite transformer.
  • the core (43E, 431) includes a middle leg (42) and at least one pair of outer legs opposed via the middle leg to form a closed magnetic circuit
  • the coil is capable of coil wiring between a first set of coils each including at least two coils (8A, 8B, 8C) wound around the middle leg of the core and one of the pair of outer legs.
  • the coil (9A, 9A, coil) was separated into two outer legs with a certain gap, and wound around the two separated outer legs (38, 39) so that the winding directions were opposite to each other.
  • 9B) and the second pair of coils and the other of the pair of outer legs are separated into two outer legs with a gap to allow coil wiring, and the two separated outer legs are separated.
  • the 1st and 2nd Nord transformers transmit a wedge-shaped edge signal that is not a switching frequency signal.
  • a small Norst transformer with a low inductance of several H can be used. 'Weight can be reduced.
  • the primary-side control circuit uses the first power switch (4) after the first turn-off edge signal (E) is generated and the first synchronous rectifier (11) is turned off. Since the turn-on of the second power switch (5) is delayed from the turn-off of the second synchronous rectifier (12) after the generation of the second turn-off edge signal (G), the first power switch (G) is delayed. Short-circuiting due to simultaneous ON of 4) and the first synchronous rectifier (11) and short-circuiting due to simultaneous ON of the second power switch (5) and the second synchronous rectifier (12) can be prevented.
  • [0016] Due to the action of the first synchronous rectifier side delay circuit (76, 46), after the generation of the first turn-on edge signal (F), the first power switch (4) turns off the first Since the turn-on of the synchronous rectifier (11) is delayed, and the second synchronous rectifier (12) is turned on by the action of the second synchronous rectifier side delay circuit (77, 47) than the turn-off of the second power switch (5). Due to the delay, the first power switch (4) and the first synchronous rectifier (11) are short-circuited simultaneously, and the second power switch (5) and the second synchronous rectifier (12) are simultaneously turned on. Can prevent short circuit.
  • the first and second delay time control circuits By detecting a change in at least one of the drain voltage of the second synchronous rectifier (12), the coil voltage of the main transformer (8), and the voltage of the choke coil (13), Since the delay is cut off at the timing when the drain voltage of the synchronous rectifier (12) changes, if a reverse current exceeding a certain value flows through the first and second synchronous rectifiers, the first and second delay time control circuits The amount of delay increases due to the action, and the first and second synchronous rectifiers Tan'onta timing is delayed, reverse current is limited. That is, a comparator using a synchronous rectifier The reverse flow mode of operation is blocked despite the fact that the
  • the second power switch (5) is a high side switch whose reference potential is not connected to the ground (GND), and the primary side control circuit is connected to the second power switch (5). Can be turned on with the second turn-off edge signal (G) and turned off with the second turn-on edge signal (H) to reduce the high-side driver (3) and reduce the overall component cost There is an effect.
  • the first and second Nord transformers (9, 10) transmit a no-less edge signal that is not a switching frequency signal. If it is a type core, it can be configured by winding it one or two turns, so the main transformer (8) and the first and second norlas transformers (9, 10) are connected to a pair of cores and independent coils. In addition, by providing it in a composite transformer that functions as an independent transformer equivalently, it is possible to make a composite without substantially impairing the characteristics of the main transformer.
  • FIG. 1 is a circuit diagram of a double-end insulated DC-DC converter disclosed in Patent Document 1.
  • FIG. 2 is a circuit diagram of the double-end insulated DC-DC converter of the first embodiment.
  • FIG. 3 is a voltage / current waveform diagram of the main part of FIG.
  • FIG. 4 is a diagram showing a configuration of a composite transformer used in the double-end insulated DC-DC converter according to the first embodiment.
  • FIG. 5 is a circuit diagram of a double-ended insulated DC-DC converter according to a second embodiment.
  • FIG. 6 is a circuit diagram of a double-ended insulated DC-DC converter according to a third embodiment.
  • FIG. 7 is a circuit diagram of a double-end insulated DC-DC converter according to a fourth embodiment. Explanation of symbols
  • Double-sided board that composes 3 or 4 layers of 4 layers board
  • FIG. 2 is a circuit diagram of the double-end insulated DC-DC converter of the first embodiment
  • FIG. 3 is a waveform diagram of the main part thereof.
  • FIG. 4 is a diagram showing the configuration of the transformer used in the first embodiment.
  • the double-end insulated DC-DC converter 101 includes a main transformer 8 having a primary coiner 8A and a secondary coil 8B, and a first transformer connected to the primary side of the main transformer 8.
  • a synchronous rectifier 11, a second synchronous rectifier 12, and a choke coil 13 are provided.
  • a first turn-off edge signal and a first turn-on edge signal that substantially correspond to the turn-on and turn-off timings of the first power switch 4 are generated based on the signal from the primary side control circuit 70.
  • the second turn-off edge signal and the second turn-on corresponding to the turn-on and turn-off timing of the second power switch 5 based on the signals from the edge signal generation circuit 71 of the first and the control circuit 70 on the primary side
  • a second edge signal generation circuit 72 for generating an edge signal is provided.
  • the first turn-off edge signal and the first turn-on edge signal are transmitted to the secondary side, and the second turn-off edge signal and the second turn-on signal are transmitted to the secondary side.
  • the second Nord transformer 10 that transmits the edge signal to the secondary side and the first turn-off edge signal (E in FIG. 3 described later) transmitted by the first Nord transformer 9
  • the first synchronous rectifier control circuit that turns off the synchronous rectifier 11 and turns on the first synchronous rectifier 11 with the first turn-on edge signal (F in FIG. 3) transmitted by the first NOR transformer 9. 73.
  • the second synchronous rectifier 12 is turned off by the second turn-off edge signal (G in FIG.
  • a second synchronous rectifier control circuit 74 that turns on the second synchronous rectifier 12 with a turn-on edge signal (H in FIG. 3) is provided.
  • a series circuit of first and second power switches 4 and 5 and capacitors 6 and 7 is connected between the lines of the input DC power source 1, and the first and second power switches 4 and 5 are connected.
  • the primary coil 8A of the main transformer 8 is connected between the connection point and the connection points of the capacitors 6 and 7.
  • One end of the choke coil 13 is connected to the connection point of the secondary coils 8B and 8C of the main transformer 8, and the output smoothing capacitor 14 is connected between the other end of the choke coil 13 and the secondary side ground. Yes.
  • a first synchronous rectifier 11 is connected between one end of the secondary coil 8B of the main transformer 8 and the secondary side ground.
  • a second synchronous rectifier 12 is connected between one end of the secondary coil 8C of the main transformer 8 and the secondary side ground.
  • the primary side control circuit 70 includes a PWM control circuit 2 and a high side driver 3.
  • the first PWM signal output terminal 2A and the second PWM signal output terminal 2B are connected to the high side driver 3.
  • the first power switch drive terminal 3A of the side driver 3 is connected to the gate of the first power switch 4, and the second power switch drive terminal 3B is connected to the gate of the second power switch 5 and connected.
  • the ground terminal 2C of the PWM control circuit 2 and the ground terminal 3C of the no-side driver 3 are each connected to the primary side ground.
  • the input DC power source 1 is connected to the input of the double-end insulated DC-DC converter 101, and the load 15 is connected to the output.
  • a control power supply voltage is applied to the primary side control circuit power supply input section 16.
  • the first edge signal generation circuit 71 includes Schottky barrier diodes (hereinafter referred to as "SBD") 19, 20 and a capacitor 22, and includes a primary side control circuit power input unit 16 and a primary side. It is connected between the ground.
  • the second edge signal generation circuit 72 is composed of SBDs 17 and 18 and a capacitor 21, and is connected between the primary side control circuit power supply input unit 16 and the primary side ground.
  • a primary coil 9 A of the first Nors transformer 9 is connected between the first PWM signal output terminal 2 A of the PWM control circuit 2 and the first edge signal generation circuit 71.
  • the primary coil 1 OA of the second Nord transformer 10 is connected between the second PWM signal output terminal 2 B of the PWM control circuit 2 and the second edge signal generation circuit 72.
  • the first synchronous rectifier control circuit 73 includes an N-channel MOSFET 24, a P-channel MOSFE T25, diodes ( ⁇ diodes) 26 and 27, a Zener diode 29, and a resistor 28.
  • the second synchronous rectifier control circuit 74 includes a negative channel MOSFET 35, a P channel MOSFET 36, diodes (PN diodes) 32 and 33, a Zener diode 30, and a resistor 31.
  • the series circuit of FET24, FET25, and resistor 23 is connected between the secondary control circuit power input 37 and the secondary ground, and the connection point between FET24 and FET25 is the N-channel MOSFET. Connected to the gate of synchronous rectifier 11. Similarly, the series circuit of FET35, FET36, and resistor 34 is connected between the secondary side control circuit power supply input 37 and the secondary side ground, and the connection point of FET35 and FET36 is an N-channel MOSFET. Connected to the gate of the rectifier 12 and lowered.
  • the secondary coil 9B of the first pulse transformer 9 is connected between the connection point of the diodes 26 and 27 of the first synchronous rectifier control circuit 73 and the connection point of the FETs 24 and 25.
  • the secondary coil 10B of the second Nord transformer 10 is connected between the connection point of the diodes 32 and 33 of the second synchronous rectifier control circuit 74 and the connection point of the FETs 3 5 and 36.
  • the DC-DC converter 101 shown in Fig. 2 is a half-bridge converter, and the on-duty of the first power switch 4 is almost equal to the on-duty of the first and second power switches 4 and 5.
  • the on-duty of the second power switch 5 is also narrowed.
  • the first electric switch 4 and the first synchronous rectifier 11 are driven at almost complementary timing, and the second electric switch 5 and the second synchronous rectifier 12 are also driven at almost complementary timing. .
  • the first and second power switches 4, 5 are switched alternately to convert the DC power into AC power.
  • This AC power is transmitted from the primary side circuit to the secondary side circuit by the main transformer 8, rectified by the first and second synchronous rectifiers 11 and 12, smoothed by the choke coil 13 and the output smoothing capacitor 14, and then DC again. And supplied to load 15.
  • a feedback circuit detects the output voltage, generates an error signal by comparison with a reference voltage, and transmits the error signal from the secondary side circuit to the primary side circuit.
  • Circuit 2 outputs the first and second PWM signals with pulse width control.
  • the first PWM signal is output from the first PWM signal output terminal 2A, input to the negative side driver 3, and output from the first power switch driving terminal 3A of the high side driver 3.
  • the second PWM signal is output from the second PWM signal output terminal 2B.
  • the reference potential (source) is converted into a signal that can drive the high-side switch that is not connected to the ground, and is output from the second power switch drive terminal 3B.
  • the first turn-off edge signal E is transmitted from the primary coil 9A to the secondary coil 9B, and generates a voltage between the source and drain of the FET 25 (hereinafter, between S and G) through the PN diode 27 (Fig. (Refer to (12) of 3), turn on FET25.
  • the FET 25 When the FET 25 is turned on, the charge accumulated in the gate of the first synchronous rectifier 11 is instantaneously discharged (see (13) in FIG. 3), and the first synchronous rectifier 11 is turned off.
  • the ON state of FET25 can be maintained for a time longer than the pulse width of the first turnoff edge signal E (Fig. (See 3 (12)).
  • the accumulated charge on the gate of FET 25 is gradually discharged through resistor 28 and diode 26.
  • the Zener diode 29 is provided to quickly discharge the gate accumulated charge of the FET 25 when the first turn-on edge signal F having the reverse polarity is generated. If the Zener voltage of Zener diode 29 is smaller than the sum of the threshold voltages of FET24 and FET25, no through current will be generated due to FET24 and FET25 turning on simultaneously.
  • the amplitude of the first turn-off edge signal E decreases as the capacitor 22 is charged, and when the SBD 19 becomes conductive when the voltage of the capacitor 22 becomes higher than the voltage of the primary side control circuit power supply input section 16, the primary coil 9A The voltage corresponding to the forward voltage drop of SBD19 appears in (Figure 3 (3)).
  • the voltage corresponding to the forward voltage drop of SBD19 is opposite in polarity to the first turn-off edge signal E, and when the first turn-off edge signal E is generated, the excitation energy stored in the first Nord transformer is released. Since SBD19 has a smaller forward drop than PN diode 26 connected to secondary coil 9B, the voltage corresponding to the forward voltage drop of SBD19 generated in primary coil 9A appears between GS of FET24. No malfunction occurs.
  • the accumulated charge in the capacitor 22 is discharged through the primary coil 9A of the first noisy (see Fig. 3 ( 2)), the first tar On-edge signal F is generated (see (3) in Figure 3).
  • the first turn-on edge signal F is transmitted from the primary coil 9A to the secondary coil 9B, generates a voltage between G and S of the FET24 through the PN diode 26 (see (11) in Fig. 3), and turns on the FET24.
  • the ON state of the FET 24 can be maintained for a time longer than the pulse width of the first turn-on edge signal F (( 1 See 1)).
  • the gate storage charge of the FET 24 is gradually discharged through the resistor 28 and the diode 27.
  • the Zener diode 29 quickly discharges the gate accumulated charge of the FET 24 when the first turn-off edge signal E having the reverse polarity is generated.
  • the amplitude of the first turn-on edge signal F decreases as the capacitor 22 is discharged. If SBD20 conducts when the capacitor 22 voltage is lower than the ground potential, it corresponds to the forward voltage drop of SBD20 in the primary coil 9A. A voltage appears (see (3) in Fig. 3).
  • the voltage corresponding to the forward voltage drop of the SBD 20 is opposite in polarity to the first turn-on edge signal F, and releases the excitation energy stored in the first pulse transformer when the first turn-on edge signal F is generated.
  • the voltage corresponding to the forward voltage drop of SBD20 generated in primary coil 9A is between S and G of FET25. It does not appear and does not malfunction.
  • the phase of the output signal is delayed from that of the input signal.
  • the operation of turning off the gate of the power switch has a propagation delay.
  • the first turn-off edge signal E is generated by a delay time I earlier than the G ⁇ S voltage rising force S of the power switch 4 due to the propagation delay.
  • the turn-off timing of the synchronous rectifier 11 is earlier than the turn-on timing of the first power switch 4, and no short-circuit current occurs Yes
  • the resistor 23 limits the gate charging speed of the first synchronous rectifier 11 and delays the turn-on of the first synchronous rectifier 11 by the third delay time K to prevent the occurrence of a short-circuit current!
  • the first synchronous rectifier 11 is driven at a timing substantially complementary to the power switch 4.
  • the redundant description of the operation is as follows. Omitted.
  • the second turn-off edge signal G generated at the rising edge of the second PWM signal output from the 2B terminal of the PWM control circuit 2 and the second turn-on edge signal H generated at the falling edge of the second PWM signal are This is transmitted from the primary side circuit to the secondary side circuit by the Nord transformer 10 to turn on and off the FET 36 and FET 35, and the second synchronous rectifier 12 is driven at a timing almost complementary to the power switch 5.
  • the first and second power switches 4 and 5 and the first and second synchronous rectifiers 11 and 12 are driven at substantially complementary timings.
  • the secondary coil output current of the main transformer 8 flows through the parasitic diode of the synchronous rectifier, and there is no occurrence of a short-circuit current due to a shift in the synchronous rectifier drive timing, so a highly efficient power conversion operation can be realized.
  • FIG. 4 is a diagram showing the structure of a composite transformer in which the main transformer 8 and the first and second pulse transformers 9 and 10 are combined to form a single transformer.
  • first and second pulse transformers 9 and 10 transmit a pulsed edge signal that is not a switching frequency signal, for example, if the core is a closed magnetic circuit type core with a low inductance of several H, it is 1 or 2 turns. Can be configured by winding.
  • This composite transformer includes a main transformer 8 and first and second pulse transformers 9 and 10, each having a pair of cores and independent coils.
  • FIG. 4 are plan views showing coil patterns provided on the transformer substrate, and (C) and (D) of FIG. It is sectional drawing in the predetermined position of a joint transformer.
  • closed magnetism is achieved by interposing the printed circuit boards 44 and 45 with an EI core that is a combination of an E-type core 43E with 5 Ji rejections 39, 40, 41 and 42 and a flat core 431. Constitutes the road.
  • leg 38 is the first outer leg
  • leg 39 is the second outer leg
  • leg 40 is the third outer leg
  • leg 41 is the fourth outer leg
  • leg 42 is the middle leg. They pass through the first, second, third, and fourth outer holes of the printed boards 44 and 45 and the central hole, respectively.
  • the printed circuit board is a four-layer multilayer board.
  • a double-layer board 44 constituting the first and second layers and a double-side board 45 constituting the third and fourth layers are laminated by sandwiching a pre-preder. It constitutes the board.
  • “a” to “m” are through holes provided in the printed circuit boards 44 and 45, and constitute input / output terminals of each transformer.
  • the printed circuit boards 44 and 45 are formed so that the conductor pattern of the primary coil 8A, secondary coil 8B, and tertiary coil 8C of the main transformer 8 is spirally wound around the center leg 42 of the core. Yes.
  • the primary coil 8A has three turns between the input / output terminals e and f of the double-sided board 44, the secondary coil 8B and the tertiary coil 8C have the intermediate tap h of the double-sided board 45, and the input / output terminal g It is wound around the cage one turn at a time.
  • the primary coil 9A and the secondary coil 9B of the first pulse transformer 9 are connected in series to the first outer leg 38 and the second outer leg 39 in the reverse direction and the same number of coils. . Specifically, the primary coil 9A is wound one turn between the input / output terminals ab of the double-sided board 44, and the secondary coil 9B is wound one turn between the input / output terminals cd of the double-sided board 45.
  • the primary coil 10A and the secondary coil 10B of the second pulse transformer 10 are connected in series to the third outer leg 40 and the fourth outer leg 41 in the reverse direction and the same number of coils. . Specifically, the primary coil 10A is wound one turn between the input / output terminals 1 m of the double-sided board 44, and the secondary coil 10B is wound one turn between the input / output terminals j-k of the double-sided board 45.
  • the main transformer can be combined with almost no loss of characteristics, which is advantageous in terms of downsizing and cost reduction.
  • FIG. 5 is a circuit diagram of the double-end insulated DC-DC converter of the second embodiment.
  • the basic configuration of this double-end insulated DC-DC converter is the same as that shown in the first embodiment.
  • the first and second synchronous rectifier side delay circuits 76 and 77 are different from those shown in FIG. In the example shown in FIG.
  • the gate charging current of the first and second synchronous rectifiers 11 and 12 is limited by resistors 23 and 34, and the turn-on timing of the first and second synchronous rectifiers 11 and 12 is limited to the third The fourth delay time ⁇ , the force that delays by L to prevent the occurrence of a short-circuit current Due to variations in the input capacitance of the synchronous rectifiers 11 and 12, the turn-on of the synchronous rectifier may deviate from the optimal timing.
  • the optimal turn-on timing differs depending on the load current, and it is desirable to slightly advance the turn-on timing for operations with large load currents! /.
  • the first synchronous rectifier side delay circuit 76 is provided with a first delay time control circuit 46 including a transistor 50, resistors 23 and 48, and a capacitor 49.
  • the first delay time control circuit 46 observes a change in drain voltage of the first synchronous rectifier 11 with a differentiating circuit composed of a resistor 48 and a capacitor 49. When this differential circuit detects a drop in the drain voltage of the first synchronous rectifier 11, the transistor 50 is turned on and the delay operation is terminated (terminates).
  • the second synchronous rectifier side delay circuit 77 is provided with a second delay time control circuit 47 including a transistor 53, resistors 34 and 51, and a capacitor 52.
  • the second delay time control circuit 47 observes the drain voltage change of the second synchronous rectifier 11 with a differential circuit composed of a resistor 51 and a capacitor 52. When this differential circuit detects the drain voltage drop of the second synchronous rectifier 12, the transistor 53 is turned on and the delay operation is terminated (terminates).
  • the first and second power The synchronous rectifier self-oscillates immediately after the switching operation of switches 4 and 5 is stopped. Excessive voltage / current stress is applied to the barter parts.
  • the first and second synchronous rectifiers are operated under AND conditions of receiving the turn-on edge signal via the first and second Nord transformers 9 and 10 and detecting the change in the drain voltage of the synchronous rectifier.
  • the coil voltage change of the main transformer 8 and the voltage change of the choke coil 13 may be detected.
  • a reverse flow operation mode in which a reverse current flows in the input direction from the converter output during the switching operation of the first and second power switches 4 and 5 can generally occur.
  • the reverse current operation mode when a reverse current flows from the source of the first and second power switches 4 and 5 to the drain, the gates of the first and second power switches 4 and 5 are turned off immediately. The drain voltage does not increase. In other words, even if the secondary side circuit receives the first and second turn-on edge signals F and H, the drain voltage of the first and second synchronous rectifiers does not change immediately.
  • the first and second delay time control circuits 46 and 47 provide a reverse current self-limiting function.
  • FIG. 6 is a circuit diagram of the double-end insulated DC-DC converter of the third embodiment.
  • This double-end insulated DC-DC converter 103 is obtained by reducing the high-side driver 3 shown in FIG. 2 in order to reduce costs. Therefore, the second power switch 5 whose reference potential (source) is not connected to the ground is driven by using the second Nord transformer 10.
  • a bootstrap circuit 54 including a capacitor 56 and a diode 55 is provided to secure driving power for the second power switch 5.
  • This bootsto A series circuit of FET58, FET59, and resistor 57 is connected between the output section of wrap circuit 54 and the primary side ground, and the connection point of FET58 and FET59 is connected to the gate of second power switch 5.
  • the gates of FET58 and FET59 are connected to a circuit consisting of diodes 60 and 61, Zener diode 63, and resistor 62.
  • the tertiary coil 10C of the second Nord transformer 10 is connected between the connection point of the diodes 60 and 61 and the connection point of the FETs 58 and 59.
  • the first power switch side delay circuit 78 by the resistor 64 and SBD65 is connected to the PWM control circuit.
  • the second turn-off edge signal G output from the tertiary coil of the second Nord transformer 10 is applied to the gate of the FET 58 through the PN diode 60, the FET 58 is turned on, and the gate of the second power switch 5 is turned on. As a result, the second power switch 5 is turned on. Thereafter, the second turn-on edge signal H is applied to the gate of the FET 59 through the PN diode 61, the FET 59 is turned on, the charge of the gate of the second power switch 5 is discharged, and the second power switch 5 is turned on. Turned off.
  • the power switch 5 is driven at the same timing as the second PWM signal output from the PWM control circuit 2, and the second synchronous rectifier 12 is inverted. Therefore, the second power switch 5 and the second synchronous rectifier 12 are driven with substantially complementary timing. Similarly, the first power switch 4 and the first synchronous rectifier 11 are driven with substantially complementary timing.
  • the charging current of the gate of the second power switch 5 is limited by the resistor 57. As a result, the second delay time J is secured. Further, the gate charge current of the power switch 4 is limited by the first power switch side delay circuit 78. As a result, the first delay time I is secured.
  • FIG. 7 is a circuit diagram of a double-end insulated DC-DC converter of the fourth embodiment. The basic configuration of this double-ended isolated DC-DC converter is shown in the first embodiment. It is the same as what I did.
  • the fourth embodiment is an example in which the present invention is applied to a circuit topology different from the first to third embodiments.
  • the current doubler rectifier circuit type is suitable for the above.
  • the main transformer 8 is provided with a second primary coil 8D in addition to the first primary coil 8A, and the second power switch 5 is connected to the second primary coil 8D.
  • the primary side control circuit 90 includes a first power switch side delay circuit 78 composed of a resistor 64 and SBD65, and a second power switch side delay circuit 79 composed of a resistor 67 and SBD68.
  • the first power switch side delay circuit 78 is provided between the first PWM signal output terminal 2A of the PWM control circuit 2 and the gate of the first power switch 4, and the second power switch side delay circuit is provided.
  • 79 is provided between the second PWM signal output terminal 2 B of the PWM control circuit 2 and the gate of the second power switch 5.
  • the first and second power switches 4 and 5 perform switching operations alternately to convert DC power into AC power.
  • the AC power is transmitted from the primary circuit to the secondary circuit by the main transformer 8, rectified by the first and second synchronous rectifiers 11 and 12, and smoothed by the choke coils 13 and 66 and the output smoothing capacitor 14. Then, it is converted to DC again and supplied to the load 15.
  • the duty of the first power switch 4 and the duty of the first and second power switches 4 and 5 are substantially equal, the duty of the second power switch 5 is also narrowed.
  • the first power switch 4 and the first synchronous rectifier 11 are driven with substantially complementary timing, and the second power switch 5 and the second synchronous rectifier 12 are driven with substantially complementary timing.
  • the high-side driver having an inherent propagation delay is used for V, TE! /, NA! /, So that the resistor 64 and the SBD65 of the first power switch side delay circuit 78 are used.
  • Get The second delay time J is secured by limiting the charging current.
  • the present invention can take various application forms other than the first to fourth embodiments.
  • Other power conversion circuit topologies can be applied to, for example, full bridge converters.
  • the circuit that receives the turn-on edge signal and the turn-off edge signal to drive the synchronous rectifier can also have a circuit configuration different from the first to fourth embodiments. For example, by adjusting the constant of the resistor 28, FET24 and FET25 can be If it is possible to operate without ON, the Zener diode 29 can be reduced. Similarly, the Zener diode 30 can be reduced if the constant adjustment of the resistor 31 enables operation without causing the FET 35 and FET 36 to be simultaneously turned on. It is also possible to configure a composite transformer with a shape different from that shown in Fig. 4, and even if the main transformer 8 and the first and second Nord transformers 9 and 10 are separated, there is no problem in circuit operation. There is no.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

明 細 書
ダブルエンド絶縁型 DC— DCコンバータ
技術分野
[0001] この発明は、ハーフブリッジ型 DC— DCコンバータ、プッシュプル型 DC— DCコン バータ、フルブリッジ型 DC— DCコンバータ等のダブルエンド絶縁型 DC— DCコン バータに関するものである。
背景技術
[0002] 図 1に従来のダブルエンド絶縁型 DC— DCコンバータの例を示す。このダブルェン ド絶縁型 DC— DCコンバータ 120は、外部駆動回路 114、トーテムポールドライバ 1 16, 118、 DCレべノレシフタ 121、第 1 ·第 2のスィッチドライノ 122, 124、 1次ィ則スィ ツチ Ql , Q2、主トランス Tl、信号伝送トランス Τ2、第 1 ·第 2の同期整流器 Q3, Q4、 第 1、第 2、第 3、第 4のスィッチ Q5, Q6, Q7, Q8、チョークコィノレ Lo、出力平滑コン デンサ Co、抵抗 Rl , R2, R3, R4、コンデンサ CI , C2, C3, C4、ダイオード Dl , D 2, D3, D4を備えている。
[0003] 図 1に示したダブルエンド絶縁型 DC— DCコンバータにおいて、入力直流電源 Vin から直流電圧が加わると、 1次側スィッチ Q1と Q2が交互にスイッチング動作して直流 電力が交流電力に変換される。この交流電力は主トランス T1で 1次側回路から 2次 側回路に伝送され、第 1 ·第 2の同期整流器 Q3, Q4で整流され、チョークコイル Lo、 出力平滑コンデンサ Coで平滑されて再度直流に変換される。図示を省略されたフィ ードバック回路によって、出力電圧の検出、基準電圧との比較による誤差信号の生 成、 2次側回路から 1次側回路への誤差信号の伝送が行われ、 PWM制御回路が第 1 ·第 2の PWM信号を出力する。第 1の PWM信号はダイオード Dl、抵抗 Rl、コンデ ンサ C1で立ち上がりが遅延され、第 2の PWM信号はダイオード D2、抵抗 R2、コン デンサ C2で立ち上がりが遅延されてそれぞれドライバに入力される。ドライバは入力 信号を基に、 1次側スィッチ Ql , Q2のゲート駆動信号を生成する。同時に、第 1 ·第 2の PWM信号は信号伝送トランス T2に入力され、トランスコイル電圧の第 1の極性 に第 1の PWM信号、第 2の極性に第 2の PWM信号が現れる合成信号となり、 2次側 回路に伝送される。伝送された合成信号を DCレベルシフタ 121に加える事で、トー テムポールドライバ 116, 118の駆動電圧の DCレベルが増加して、トーテムポールド ライバ 116, 118のオン期間が広がり、第 1 ·第 2の同期整流器 Q3, Q4力 1次側スィ ツチ Ql , Q2とほぼ相補的なタイミングで駆動される。
特許文献 1:特表 2003— 511004号公報
発明の開示
発明が解決しょうとする課題
[0004] 図 1に示した従来のダブルエンド絶縁型 DC— DCコンバータでは、 1次側スィッチ Ql , Q2と第 1 ·第 2の同期整流器 Q3, Q4とがほぼ相補的なタイミングで駆動される ので、主トランス T1の 2次コイル出力電流が同期整流器の寄生ダイオードを流れる期 間がなぐ且つ同期整流器駆動タイミングのずれによる短絡電流の発生もないので 高効率な電力変換動作が実現できる。
[0005] ところ力 図 1に示した従来のダブルエンド絶縁型 DC— DCコンバータでは、 1次側 回路で第 1 ·第 2の PWM信号を合成し、 2次側回路で分離するので、合成'分離回 路が必要であり、回路構成が複雑であるという問題があった。信号伝送トランス T2は 、スイッチング周波数 (数十 kHz)で信号を伝送する必要があるので、例えば、 100 H以上の比較的大きなインダクタンスが必要になる。そのため、必然的に信号伝送ト ランス T2の外形が大きくなり、コンバータ全体の小型 ·軽量化が困難であった。
[0006] そこで、この発明の目的は、 1次側のスィッチと 2次側の同期整流器とがほぼ相補的 なタイミングで駆動されるようにして高効率な電力変換を維持しつつ、全体に小型- 軽量化を図ったダブルエンド絶縁型 DC— DCコンバータを提供することにある。 課題を解決するための手段
[0007] この発明は、少なくとも 1次コイルおよび 2次コイルを有する主トランス(8)と、該主ト ランスの 1次側に接続される第 1 ·第 2の電力スィッチ(Ql , Q2)と、第 1 ·第 2の電カス イッチ(Ql , Q2)をスイッチング制御する 1次側制御回路(70, 80, 90)と、前記主ト ランスの 2次側に接続される第 1 ·第 2の同期整流器(11 , 12)と、少なくとも 1個のチヨ ークコイル(13)と、を備えるダブルエンド絶縁型 DC— DCコンバータにおいて、 前記 1次側制御回路からの信号に基づいて前記第 1の電力スィッチのターンオン およびターンオフのタイミングにほぼ対応する第 1のターンオフエッジ信号および第 1 のターンオンエッジ信号を発生する第 1のエッジ信号発生回路(71)と、前記 1次側 制御回路からの信号に基づいて前記第 2の電力スィッチのターンオンおよびターン オフのタイミングにほぼ対応する第 2のターンオフエッジ信号および第 2のターンオン エッジ信号を発生する第 2のエッジ信号発生回路(72)と、
前記第 1のターンオフエッジ信号および前記第 1のターンオンエッジ信号を 2次側 へ伝送する第 1のノ^レストランス(9)と、前記第 2のターンオフエッジ信号および前記 第 2のターンオンエッジ信号を 2次側へ伝送する第 2のパルストランス(10)と、 前記第 1のノ ルストランス(9)によって伝送された第 1のターンオフエッジ信号 (E) で前記第 1の同期整流器(11)をターンオフし、前記第 1のノ ルストランス(9)によつ て伝送された第 1のターンオンエッジ信号 (F)で前記第 1の同期整流器 (9)をターン オンする第 1の同期整流器制御回路(73)と、前記第 2のノ ルストランス(10)によって 伝送された第 2のターンオフエッジ信号 (G)で前記第 2の同期整流器(12)をターン オフし、前記第 2のパルストランス(10)によって伝送された第 2のターンオンエッジ信 号 (H)で前記第 2の同期整流器(12)をターンオンする第 2の同期整流器制御回路( 74)と、
を備え、
前記第 1の電力スィッチ (4)と、前記第 1の同期整流器(11)がほぼ相補的なタイミ ングで駆動され、前記第 2の電力スィッチ(5)と、前記第 2の同期整流器(12)がほぼ 相補的なタイミングで駆動されることを特徴としている。
[0008] 前記 1次側制御回路(70, 80, 90)は、前記第 1のターンオフエッジ信号 (E)の発 生後、前記第 1の同期整流器(11)のターンオフより第 1の電力スィッチ (4)のターン オンを遅らせ、前記第 2のターンオフエッジ信号 (G)の発生後、前記第 2の同期整流 器(12)のターンオフより第 2の電力スィッチ(5)のターンオンを遅らせる遅延特性を 備えるものとする。
[0009] 前記第 1のターンオンエッジ信号 (F)の発生後、前記第 1の電力スィッチ(4)のター ンオフより第 1の同期整流器(11)のターンオンを遅らせる第 1同期整流器側遅延回 路(76, 46)、および前記第 2の電力スィッチ(5)のターンオフより第 2の同期整流器 ( 12)のターンオンを遅らせる第 2同期整流器側遅延回路(77, 47)を設けたる。
[0010] 前記第 1同期整流器側遅延回路(76)は、前記第 1の同期整流器(11)のドレイン 電圧、前記主トランス(8)のコイル電圧、前記チョークコイル(13)の電圧のうち少なく ともいずれかの変化を検知して、前記第 1の同期整流器(11)のドレイン電圧が変化 するタイミングで前記遅延を打ち切る遅延時間制御回路を備え、前記第 2同期整流 器側遅延回路(77)は、前記第 2の同期整流器(12)のドレイン電圧、前記主トランス (8)のコイル電圧、前記チョークコイル(13)の電圧のうち少なくともいずれかの変化 を検知して、前記第 2の同期整流器(12)のドレイン電圧が変化するタイミングで前記 遅延を打ち切る遅延時間制御回路を備えたものとする。
[0011] 前記第 2の電力スィッチ(5)は、基準電位がグランド(GND)に対して非接続のハイ サイドスィッチであり、前記 1次側制御回路は、前記第 2の電力スィッチ(5)を前記第 2のターンオフエッジ信号(G)でターンオンさせ前記第 2のターンオンエッジ信号(H )でターンオフさせる回路を備えたものとする。
[0012] 前記主トランス(8)および第 1 ·第 2のノ ルストランス(9, 10)は、一対のコアと、それ ぞれ独立したコイルを備えて、等価的にそれぞれ独立したトランスとして作用する複 合トランスに設ける。
[0013] 具体的には、前記コア(43E, 431)は、中脚(42)と、該中脚を介して対向する少な くとも 1対の外脚とを備えて閉磁路を構成し、前記コイルは、前記コアの前記中脚に 巻回した少なくとも 2つのコイル(8A, 8B, 8C)を組とする第 1組のコイルと、前記 1対 の外脚の一方を、コイル配線可能な程度の隙間を空けて 2つの外脚部に分離し、当 該分離した 2つの外脚部(38, 39)のそれぞれに巻回方向が互いに逆方向となるよう に巻回したコイル(9A, 9B)を組とする第 2組のコイルと、前記 1対の外脚の他方を、 コイル配線可能な程度の隙間を空けて 2つの外脚部に分離し、当該分離した 2つの 外脚部(40, 41)のそれぞれに巻回方向が互いに逆方向となるように巻回したコイル (10A, 10B)を組とする第 3組のコイルと、から成り、前記第 1組のコイルと前記コアと で前記主トランスを構成し、前記第 2組のコイルと前記コアとで前記第 1のパルストラ ンスを構成し、前記第 3組のコイルと前記コアとで前記第 2のパルストランスを構成す 発明の効果
[0014] この発明によれば、次のような効果を奏する。
[1]第 1 ·第 2のノ ルストランスはスイッチング周波数の信号ではなぐノ ルス状のェ ッジ信号を伝送するため、例えば数 Hの低インダクタンスで良ぐ小型のノ ルストラ ンスを用いて小型'軽量化が図れる。
[0015] [2] 1次側制御回路は、その遅延特性により、第 1のターンオフエッジ信号 (E)の発 生後、第 1の同期整流器(11)のターンオフより第 1の電力スィッチ(4)のターンオン を遅らせ、第 2のターンオフエッジ信号 (G)の発生後、第 2の同期整流器(12)のター ンオフより第 2の電力スィッチ(5)のターンオンが遅れるので、第 1の電力スィッチ(4) と第 1の同期整流器(11)との同時オンによる短絡、および第 2の電力スィッチ(5)と 第 2の同期整流器(12)との同時オンによる短絡が防止できる。
[0016] [3]第 1同期整流器側遅延回路(76, 46)の作用により、第 1のターンオンエッジ信 号 (F)の発生後、第 1の電力スィッチ(4)のターンオフより第 1の同期整流器(11)の ターンオンが遅れるので、また第 2同期整流器側遅延回路(77, 47)の作用により、 第 2の電力スィッチ(5)のターンオフより第 2の同期整流器(12)のターンオンが遅れ るので、第 1の電力スィッチ(4)と第 1の同期整流器(11)との同時オンによる短絡、 および第 2の電力スィッチ(5)と第 2の同期整流器(12)との同時オンによる短絡が防 止できる。
[0017] [4]第 1の遅延時間制御回路 (46)の作用により、第 1の同期整流器(11)のドレイ ン電圧、主トランス(8)のコイル電圧、チョークコイル(13)の電圧のうち少なくともいず れかの変化を検知して、第 1の同期整流器(11)のドレイン電圧が変化するタイミング で前記遅延を打ち切られるので、また、第 2の遅延時間制御回路 (47)の作用により 、前記第 2の同期整流器(12)のドレイン電圧、前記主トランス(8)のコイル電圧、前 記チョークコイル(13)の電圧のうち少なくともいずれかの変化を検知して、前記第 2 の同期整流器(12)のドレイン電圧が変化するタイミングで前記遅延を打ち切られる ので、第 1 ·第 2の同期整流器に一定値以上の逆流電流が流れると、第 1 ·第 2の遅延 時間制御回路の作用により遅延量が増大し、第 1 ·第 2の同期整流器のターンオンタ イミングが遅れて、逆流電流が制限される。すなわち、同期整流器を用いたコンパ一 タであるにもかかわらず逆流動作モードが阻止される。
[0018] [5]第 2の電力スィッチ(5)が、基準電位がグランド (GND)に対して非接続のハイ サイドスィッチであり、 1次側制御回路が、第 2の電力スィッチ(5)を第 2のターンオフ エッジ信号 (G)でターンオンさせ第 2のターンオンエッジ信号 (H)でターンオフさせる 回路を備えたことにより、ハイサイドドライバ(3)を削減して、全体の部品コストを削減 できるという効果を奏する。
[0019] [6]第 1 ·第 2のノ ルストランス(9, 10)は、スイッチング周波数の信号ではなぐノ ノレス状のエッジ信号を伝送するため、例えば数 の低インダクタンスで良ぐ平磁 路型コアであれば 1ターンまたは 2ターン巻回すれば構成できるので、主トランス(8) および第 1 ·第 2のノ ルストランス(9, 10)を、一対のコアと、それぞれ独立したコイル を備えて、等価的にそれぞれ独立したトランスとして作用する複合トランスに設けるこ とによって、主トランスの特性をほとんど損なわずに複合化できる。回路図上はトラン スの数が 3個になる力 各トランスを一体構成できるので、実際には 1個のトランスで済 み、コンバータの小型化とコスト低減が可能となる。
図面の簡単な説明
[0020] [図 1]特許文献 1に示されているダブルエンド絶縁型 DC— DCコンバータの回路図で ある。
[図 2]第 1の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。
[図 3]図 2の主要部の電圧 ·電流の波形図である。
[図 4]第 1の実施形態のダブルエンド絶縁型 DC— DCコンバータで用いる複合トラン スの構成を示す図である。
[図 5]第 2の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。
[図 6]第 3の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。
[図 7]第 4の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。 符号の説明
[0021] 1 · · ·入力直流電源
2· · ·Ρλ¥Μ制御回路
3· · ·ハイサイドドライバ ···第 1の電力スィッチ
…第 2の電力スィッチ ···第 1のパルストランス
0···第 2のパルストランス
1…第 1の同期整流器
2…第 2の同期整流器
3、 66…チョークコイル
5···負荷
6… 1次側制御回路電源入力部
7、 18、 19、 20、 65、 68…ショットキーノ リアダイオード(SBD) 、 35、 58···Νチヤネノレ MOSFET
5、 36、 59···Ρチヤネノレ MOSFET
6、 27、 32、 33、 55、 60、 61···ΡΝダイオード
、 30、 63…ツエナーダイオード
7·· · 2次側制御回路電源入力部
···Εコアの第 1の外脚
···Εコアの第 2の外脚
···Εコアの第 3の外脚
1···Εコアの第 4の外脚
···Εコアの中脚
…コア
"'4層基板の 1, 2層を構成する両面基板
···4層基板の 3, 4層を構成する両面基板
···第 1の遅延時間制御回路
…第 2の遅延時間制御回路
、 53'-'ΡΝΡ卜ランジスタ
…ブートストラップ回路 70, 80, 90· 1次側制御回路
71 · · •第 1のエッジ信号発生回路
72· · •第 2のエッジ信号発生回路
73· · •第 1の同期整流器制御回路
74· · •第 2の同期整流器制御回路
76 · · •第 1の同期整流器側遅延回路
77· · •第 2の同期整流器側遅延回路
78 · · •第 1の電力スィッチ側遅延回路
79· · •第 2の電力スィッチ側遅延回路
101 — 104· · ·ダブルエンド絶縁型 DC
発明を実施するための最良の形態
[0022] 《第 1の実施形態》
図 2は第 1の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図であり、 図 3はその主要部分の波形図である。また、図 4は第 1の実施形態で用いるトランスの 構成を示す図である。
[0023] 図 2に示すように、ダブルエンド絶縁型 DC— DCコンバータ 101は、 1次コィノレ 8A および 2次コイル 8Bを有する主トランス 8、この主トランス 8の 1次側に接続される第 1 の電力スィッチ 4および第 2の電力スィッチ 5、第 1 ·第 2の電力スィッチ 4, 5をスィッチ ング制御する 1次側制御回路 70と、主トランス 8の 2次側に接続される第 1の同期整 流器 11、第 2の同期整流器 12、チョークコイル 13を備えている。
[0024] また、 1次側制御回路 70からの信号に基づいて第 1の電力スィッチ 4のターンオン およびターンオフのタイミングにほぼ対応する第 1のターンオフエッジ信号および第 1 のターンオンエッジ信号を発生する第 1のエッジ信号発生回路 71と、 1次側制御回 路 70からの信号に基づいて第 2の電力スィッチ 5のターンオンおよびターンオフのタ イミングにほぼ対応する第 2のターンオフエッジ信号および第 2のターンオンエッジ信 号を発生する第 2のエッジ信号発生回路 72を備えている。
[0025] また、第 1のターンオフエッジ信号および第 1のターンオンエッジ信号を 2次側へ伝 送する第 1のノ ルストランス 9と、第 2のターンオフエッジ信号および第 2のターンオン エッジ信号を 2次側へ伝送する第 2のノ ルストランス 10と、第 1のノ ルストランス 9によ つて伝送された第 1のターンオフエッジ信号 (後述する図 3中の E)で第 1の同期整流 器 11をターンオフし、第 1のノ ルストランス 9によって伝送された第 1のターンオンエツ ジ信号(図 3中の F)で第 1の同期整流器 11をターンオンする第 1の同期整流器制御 回路 73を備えている。さらに、第 2のノ ルストランス 10によって伝送された第 2のター ンオフエッジ信号(図 3中の G)で第 2の同期整流器 12をターンオフし、第 2のパルス トランス 10によって伝送された第 2のターンオンエッジ信号(図 3中の H)で第 2の同期 整流器 12をターンオンする第 2の同期整流器制御回路 74を備えている。
[0026] 入力直流電源 1のライン間には第 1 ·第 2の電力スィッチ 4, 5およびコンデンサ 6, 7 の直列回路をそれぞれ接続していて、第 1 ·第 2の電力スィッチ 4, 5の接続点とコン デンサ 6, 7の接続点との間に主トランス 8の 1次コイル 8Aを接続している。
[0027] 主トランス 8の 2次コイル 8B、 8Cの接続点にはチョークコイル 13の一端を接続し、 チョークコイル 13の他端と 2次側グランドとに間に出力平滑コンデンサ 14を接続して いる。
[0028] 主トランス 8の 2次コイル 8Bの一端と 2次側グランドとの間には第 1の同期整流器 11 を接続している。また、主トランス 8の 2次コイル 8Cの一端と 2次側グランドとの間には 第 2の同期整流器 12を接続している。
[0029] 1次側制御回路 70は PWM制御回路 2とハイサイドドライバ 3を備えている。そして 第 1の PWM信号出力端子 2Aと第 2の PWM信号出力端子 2Bをハイサイドドライバ 3 に接続している。ノ、ィサイドドライバ 3の第 1の電力スィッチ駆動端子 3Aは第 1の電力 スィッチ 4のゲートに接続し、第 2の電力スィッチ駆動端子 3Bは第 2の電力スィッチ 5 のゲートに接続してレ、る。 PWM制御回路 2のグランド端子 2Cおよびノヽィサイドドライ ノ 3のグランド端子 3Cはそれぞれ 1次側のグランドに接続している。
[0030] このダブルエンド絶縁型 DC— DCコンバータ 101の入力には入力直流電源 1が接 続され、出力には負荷 15が接続される。また、 1次側制御回路電源入力部 16には制 御電源電圧が印加される。
[0031] 第 1のエッジ信号発生回路 71は、ショットキーバリアダイオード(以下、「SBD」)19 , 20、およびコンデンサ 22で構成していて、 1次側制御回路電源入力部 16と 1次側 のグランドとの間に接続している。同様に、第 2のエッジ信号発生回路 72は、 SBD17 , 18、およびコンデンサ 21で構成していて、 1次側制御回路電源入力部 16と 1次側 のグランドとの間に接続している。
[0032] PWM制御回路 2の第 1の PWM信号出力端子 2Aと第 1のエッジ信号発生回路 71 との間には第 1のノ ルストランス 9の 1次コイル 9Aを接続している。同様に、 PWM制 御回路 2の第 2の PWM信号出力端子 2Bと第 2のエッジ信号発生回路 72との間には 第 2のノ ルストランス 10の 1次コイル 1 OAを接続している。
[0033] 第 1の同期整流器制御回路 73は、 Nチャネル MOSFET24、 Pチャネル MOSFE T25、ダイオード(ΡΝダイオード) 26, 27、ツエナーダイオード 29、抵抗 28を備えて いる。同様に、第 2の同期整流器制御回路 74は、 Νチャネル MOSFET35、 Pチヤネ ル MOSFET36、ダイオード(PNダイオード) 32, 33、ツエナーダイオード 30、抵抗 31を備えている。
[0034] FET24、 FET25、抵抗 23の直列回路は 2次側制御回路電源入力部 37と 2次側グ ランドとの間に接続し、 FET24と FET25の接続点は Nチャネル MOSFETである第 1の同期整流器 11のゲートに接続している。同様に FET35、 FET36、抵抗 34の直 列回路は 2次側制御回路電源入力部 37と 2次側グランドとの間に接続し、 FET35と FET36の接続点は Nチャネル MOSFETである第 2の同期整流器 12のゲートに接 ¾してレヽる。
[0035] また、図 2に示すとおり、第 1の同期整流器制御回路 73のダイオード 26, 27の接続 点と FET24, 25の接続点との間に第 1のパルストランス 9の 2次コイル 9Bを接続して いる。同様に、第 2の同期整流器制御回路 74のダイオード 32, 33の接続点と FET3 5, 36の接続点との間に第 2のノ ルストランス 10の 2次コイル 10Bを接続している。
[0036] 次に、図 2の回路動作を図 3の波形を参照して説明する。
図 3において、各符号の意味は次のとおりである。
[0037] Α· · ·第 1の電力スィッチ 4のオフタイミング
Β· · ·第 2の電力スィッチ 5のオンタイミング
C…第 2の電力スィッチ 5のオフタイミング
D…第 1の電力スィッチ 4のオンタイミング Ε· · ·第 1のターンオフエッジ信号
F…第 1のターンオンエッジ信号
G…第 2のターンオフエッジ信号
Η· · ·第 2のターンオンエッジ信号
I· · ·第 1の遅延時間(第 1のターンオフエッジ信号 Ε発生から第 1の電力スィッチター ンオンまでの時間)
J…第 2の遅延時間(第 2のターンオフエッジ信号 G発生から第 2の電力スィッチター ンオンまでの時間)
Κ· · ·第 3の遅延時間(第 1のターンオンエッジ信号 F受信から第 1の同期整流器ター ンオンまでの時間)
L…第 4の遅延時間(第 2のターンオンエッジ信号 H受信から第 2の同期整流器ター ンオンまでの時間)
図 2に示した DC— DCコンバータ 101はハーフブリッジ型のコンバータであり、第 1 · 第 2の電力スィッチ 4, 5のオンデューティはほぼ等しぐ第 1の電力スィッチ 4のオン デューティが狭まると、第 2の電力スィッチ 5のオンデューティも狭まる。第 1の電カス イッチ 4と第 1の同期整流器 11は、ほぼ相補的なタイミングで駆動され、第 2の電カス イッチ 5と第 2の同期整流器 12も、ほぼ相補的なタイミングで駆動される。
[0038] 入力直流電源 1から直流電圧が加わると、第 1 ·第 2の電力スィッチ 4, 5が交互にス イッチングして直流電力が交流電力に変換される。この交流電力は主トランス 8で 1次 側回路から 2次側回路に伝送され、第 1 ·第 2の同期整流器 11 , 12で整流され、チヨ ークコイル 13、出力平滑コンデンサ 14で平滑されて再度直流に変換され、負荷 15 に供給される。
[0039] 図示を省略されたフィードバック回路によって、出力電圧の検出、基準電圧との比 較による誤差信号の生成、 2次側回路から 1次側回路への誤差信号の伝送が行われ 、 PWM制御回路 2がパルス幅制御された第 1 ·第 2の PWM信号を出力する。第 1の PWM信号は第 1の PWM信号出力端子 2Aから出力され、ノ、ィサイドドライバ 3に入 力されてハイサイドドライバ 3の第 1の電力スィッチ駆動端子 3Aから出力される。第 2 の PWM信号は第 2の PWM信号出力端子 2Bから出力され、ハイサイドドライバ 3で 基準電位 (ソース)がグランドと非接続のハイサイドスィッチを駆動できる信号に変換さ れ、第 2の電力スィッチ駆動端子 3Bから出力される。
[0040] PWM制御回路 2の 2A端子から出力される第 1の PWM信号の立ち上がり時(図 3 の(1)参照)に、第 1のノ レストランス 9の 1次コィノレ 9Aを通してコンデンサ 22が充電 され(図 3の(2)参照)、第 1のノ ルストランス 9に第 1のターンオフエッジ信号 Eが発生 する(図 3の(3)参照)。
[0041] 第 1のターンオフエッジ信号 Eは、 1次コイル 9Aから 2次コイル 9Bに伝送され、 PN ダイオード 27を通して FET25のソース一ドレイン間(以下、 S— G間)に電圧を発生し (図 3の(12)参照)、 FET25をターンオンさせる。 FET25がターンオンすると、第 1の 同期整流器 11のゲート蓄積電荷が瞬時に放電され(図 3の(13)参照)、第 1の同期 整流器 11がターンオフする。第 1のターンオフエッジ信号 Eを、 PNダイオード 27を通 して FET25の S— G間に加えることにより、第 1のターンオフエッジ信号 Eのパルス幅 より長い時間、 FET25のオン状態を維持できる(図 3の(12)参照)。 FET25のゲート 蓄積電荷は、抵抗 28とダイオード 26を通して徐々に放電される。
[0042] ツエナーダイオード 29は逆極性の第 1のターンオンエッジ信号 F発生時に FET25 のゲート蓄積電荷を速やかに放電させるために設けている。ツエナーダイオード 29の ツエナー電圧が FET24と FET25のスレショルド電圧の合計値より小さければ、 FET 24と FET25の同時オンによる貫通電流は発生しない。第 1のターンオフエッジ信号 Eの振幅はコンデンサ 22の充電に伴って小さくなり、コンデンサ 22の電圧が 1次側制 御回路電源入力部 16の電圧より大きくなつて SBD19が導通すると、 1次コイル 9Aに SBD19の順方向電圧降下に相当する電圧が現れる(図 3の(3)参照)。 SBD19の 順方向電圧降下に相当する電圧は第 1のターンオフエッジ信号 Eと逆極性であり、第 1のターンオフエッジ信号 E発生時に第 1のノ ルストランスに蓄えられた励磁エネルギ 一を放出する。 SBD19は、 2次コイル 9Bに接続した PNダイオード 26より順方向降 下が小さいため、 1次コイル 9Aに生じた SBD19の順方向電圧降下に相当する電圧 は、 FET24の G— S間には現れず、誤動作することはない。
[0043] 第 1の PWM信号の立ち下がり時(図 3の(1)参照)に、第 1のノ レストランスの 1次コ ィル 9Aを通してコンデンサ 22の蓄積電荷が放電され(図 3の(2)参照)、第 1のター ンオンエッジ信号 Fが発生する(図 3の(3)参照)。第 1のターンオンエッジ信号 Fは、 1次コイル 9Aから 2次コイル 9Bに伝送され、 PNダイオード 26を通して FET24の G— S間に電圧を発生し(図 3の(11)参照)、 FET24をターンオンさせる。 FET24がター ンオンすると、第 1の同期整流器 11のゲートが抵抗 23を通して徐々に充電され(図 3 の(13)参照)、第 1の同期整流器 11がターンオンする。第 1のターンオンエッジ信号 Fを、 PNダイオード 26を通して FET24の G— S間に加えることにより、第 1のターンォ ンエッジ信号 Fのパルス幅より長い時間、 FET24のオン状態を維持できる(図 3の(1 1)参照)。 FET24のゲート蓄積電荷は、抵抗 28とダイオード 27を通して徐々に放電 される。
[0044] ツエナーダイオード 29は逆極性の第 1のターンオフエッジ信号 E発生時に FET24 のゲート蓄積電荷を速やかに放電する。第 1のターンオンエッジ信号 Fの振幅はコン デンサ 22の放電に伴って小さくなり、コンデンサ 22の電圧がグランド電位より小さくな つて SBD20が導通すると、 1次コイル 9Aに SBD20の順方向電圧降下に相当する 電圧が現れる(図 3の(3)参照)。 SBD20の順方向電圧降下に相当する電圧は第 1 のターンオンエッジ信号 Fと逆極性であり、第 1のターンオンエッジ信号 F発生時に第 1のパルストランスに蓄えられた励磁エネルギーを放出する。 SBD20は、 2次コイル 9 Bに接続した PNダイオード 27より順方向降下が小さいため、 1次コイル 9Aに生じた S BD20の順方向電圧降下に相当する電圧は、 FET25の S— G間には現れず、誤動 作することはない。
[0045] ノ、ィサイドドライバ 3は、部品によって固有の伝搬遅延(1例として数十 nsから百数 十 ns程度)を有するため、出力信号は入力信号より位相が遅れる。第 1の PWM信号 発生から電力スィッチ 4のゲート駆動信号立ち上がりまでは、第 1の遅延時間 Iに相当 する時間遅れ、第 2の PWM信号発生から電力スィッチ 5のゲート駆動信号立ち上が りまでは、第 2の遅延時間 Jに相当する時間遅れる。電力スィッチのゲートをターンォ フする動作も同様に伝搬遅延がある。第 1の同期整流器 11のターンオフ時は、前記 伝搬遅延により、第 1のターンオフエッジ信号 Eは電力スィッチ 4の G— S電圧立ち上 力 Sりより遅延時間 Iだけ早く発生するので、第 1の同期整流器 11のターンオフタイミン グが第 1の電力スィッチ 4のターンオンタイミングより早くなり、短絡電流が発生しない 〇
[0046] 一方、第 1の同期整流器 11のターンオン動作では、第 1のターンオンエッジ信号 F が電力スィッチ 4の G— S電圧立ち下がりより早く発生するので、そのままのタイミング では、ターンオンが早すぎて短絡電流が発生してしまう。そこで抵抗 23によって、第 1 の同期整流器 11のゲート充電速度を制限し、第 1の同期整流器 11のターンオンを 第 3の遅延時間 Kだけ遅らせ、短絡電流の発生を防止して!/、る。
[0047] 前述の動作により、第 1の同期整流器 11は、電力スィッチ 4とほぼ相補的なタイミン グで駆動される。
[0048] 第 2の電力スィッチ 5と第 2の同期整流器 12の動作は、前述の第 1の電力スィッチ 4 と第 1の同期整流器 11の動作と同じ関係であるので、重複的な動作説明は省略する 。 PWM制御回路 2の 2B端子から出力される第 2の PWM信号立ち上がり時に発生 する第 2のターンオフエッジ信号 Gと、第 2の PWM信号立ち下がり時に発生する第 2 のターンオンエッジ信号 Hを、第 2のノ ルストランス 10で 1次側回路から 2次側回路に 伝送して FET36と FET35をオンオフし、第 2の同期整流器 12を電力スィッチ 5とほ ぼ相補的なタイミングで駆動する。
[0049] 第 1の実施形態のハーフブリッジ型のコンバータでは、第 1 ·第 2の電力スィッチ 4, 5と、第 1 ·第 2の同期整流器 11 , 12とがほぼ相補的なタイミングで駆動されることによ り、主トランス 8の 2次コイル出力電流が同期整流器の寄生ダイオードを流れる期間が なぐかつ同期整流器駆動タイミングずれによる短絡電流の発生もないので、高効率 な電力変換動作が実現できる。
[0050] さて図 4は、主トランス 8と第 1 ·第 2のパルストランス 9, 10を複合化し、 1個のトランス として構成した複合トランスの構造を示す図である。
第 1 ·第 2のノ ルストランス 9, 10はスイッチング周波数の信号ではなぐパルス状の エッジ信号を伝送するため、例えば数 Hの低インダクタンスでよぐ閉磁路型コアで あれば 1ターンまたは 2ターン巻回すれば構成できる。この複合トランスは、主トランス 8および第 1 ·第 2のパルストランス 9, 10を、一対のコアと、それぞれ独立したコイルを 備えたものである。
[0051] 図 4の (A) (B)はトランス基板に設けたコイルパターンを示す平面図、(C) (D)は複 合トランスの所定位置での断面図である。
[0052] 図 4において、 5本 Ji却き 39, 40, 41 , 42を備える E型コア 43Eと平板コア 431と を組み合わせた E Iコアでプリント基板 44, 45を挟んで嵌合させることによって閉磁 路を構成している。図 4において、脚部 38は第 1の外脚、脚部 39は第 2の外脚、脚部 40は第 3の外脚、脚部 41は第 4の外脚、脚部 42は中脚であり、それぞれプリント基 板 44, 45の第 1、第 2、第 3、第 4の外孔と中央の中孔を貫通している。
[0053] プリント基板は 4層の多層基板であり、 1 , 2層を構成する両面基板 44と、 3, 4層を 構成する両面基板 45とをプリプレダを挟んで積層することによって 4層の多層基板を 構成している。 a〜mはプリント基板 44, 45に設けたスルーホールであり、各トランス の入出力端子を構成している。またプリント基板 44, 45には、主トランス 8の 1次コィ ノレ 8A、 2次コイル 8B、 3次コイル 8Cの導体パターンをコアの中脚 42の周囲に渦状に 巻回するように形成している。具体的には、 1次コイル 8Aを両面基板 44の入出力端 子 e— f間に 3ターン、 2次コイル 8B、 3次コイル 8Cを両面基板 45の中間タップ hを挟 んで入出力端子 g 澗に各 1ターンずつ巻回している。
[0054] 第 1のパルストランス 9の 1次コイル 9Aおよび 2次コイル 9Bは、第 1の外脚 38と第 2 の外脚 39とに逆方向 ·同数巻回したコイルを直列接続している。具体的には、 1次コ ィル 9Aを両面基板 44の入出力端子 a b間に 1ターン、 2次コイル 9Bを両面基板 45 の入出力端子 c d間に 1ターン巻回している。
[0055] 第 2のパルストランス 10の 1次コイル 10Aおよび 2次コイル 10Bは、第 3の外脚 40と 第 4の外脚 41とに逆方向 ·同数巻回したコイルを直列接続している。具体的には、 1 次コイル 10Aが両面基板 44の入出力端子 1 m間に 1ターン、 2次コイル 10Bを両面 基板 45の入出力端子 j—k間に 1ターン巻回している。
[0056] このような構成により、主トランスの特性をほとんど損なわずに複合化でき、小型化、 低コスト化の観点で有利である。
[0057] 《第 2の実施形態》
図 5は第 2の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。 このダブルエンド絶縁型 DC— DCコンバータは基本的な構成は第 1の実施形態で示 したものと同様である。 [0058] 図 5に示すダブルエンド絶縁型 DC— DCコンバータ 102において第 1 ·第 2の同期 整流器側遅延回路 76, 77の構成が図 2に示したものと異なる。図 2に示した例では、 第 1 ·第 2の同期整流器 11 , 12のゲート充電電流を抵抗 23、 34で制限し、第 1 ·第 2 の同期整流器 11 , 12のターンオンタイミングを第 3 ·第 4の遅延時間 Κ, Lだけ遅らせ て短絡電流の発生を防止している力 同期整流器 11 , 12の入力容量のばらつきに よって同期整流器のターンオンが最適なタイミングからずれる可能性がある。また、負 荷電流によって最適なターンオンタイミングが異なり、負荷電流が大きい動作では、 ターンオンタイミングをやや早める事が望まし!/、。
[0059] 第 1の同期整流器側遅延回路 76に ΡΝΡトランジスタ 50、抵抗 23, 48およびコンデ ンサ 49からなる第 1の遅延時間制御回路 46を設けている。この第 1の遅延時間制御 回路 46は、第 1の同期整流器 11のドレイン電圧変化を抵抗 48とコンデンサ 49とから なる微分回路で観測している。この微分回路で第 1の同期整流器 11のドレイン電圧 低下を検知すると ΡΝΡトランジスタ 50をターンオンして遅延動作を打ち切る(終息さ せる)。
[0060] 同様に、第 2の同期整流器側遅延回路 77に ΡΝΡトランジスタ 53、抵抗 34, 51およ びコンデンサ 52からなる第 2の遅延時間制御回路 47を設けて!/、る。この第 2の遅延 時間制御回路 47は、第 2の同期整流器 11のドレイン電圧変化を抵抗 51とコンデン サ 52とからなる微分回路で観測している。この微分回路で第 2の同期整流器 12のド レイン電圧低下を検知すると ΡΝΡトランジスタ 53をターンオンして遅延動作を打ち切 る(終息させる)。
[0061] すなわち、第 1 ·第 2のターンオンエッジ信号 F, Ηを受信した後、第 1 ·第 2の同期整 流器 11 , 12のドレイン電圧変化を検知すれば第 1 ·第 2の同期整流器 11 , 12をター ンオンさせる、という動作によってターンオンタイミングの調整を行い、部品定数のば らつきや負荷電流の変動があっても同期整流器のターンオンのタイミングを常に最適 に保つ。
[0062] 第 1 ·第 2の同期整流器 11 , 12のドレイン電圧変化を検出して第 1 ·第 2の同期整流 器 11 , 12のターンオン'ターンオフを行う方法では、第 1 ·第 2の電力スィッチ 4, 5の スイッチング動作が停止した直後に同期整流器が自励発振し、場合によってはコン バータ部品に過大な電圧 ·電流ストレスが加わる。この第 2の実施形態では、第 1 ·第 2のノ ルストランス 9, 10を介するターンオンエッジ信号の受信と同期整流器のドレイ ン電圧変化の検知とのアンド条件で第 1 ·第 2の同期整流器 11 , 12がターンオンする ので、第 1 ·第 2の電力スィッチ 4, 5が停止するとターンオンエッジ信号がなくなって 同期整流器がターンオンしないので、上記自励発振は発生しない。そのため、コンパ ータ部品に過大な電圧 ·電流ストレスが加わることもなレ、。
[0063] なお、第 1 ·第 2の同期整流器 11 , 12のドレイン電圧変化を検出する方法以外に、 主トランス 8のコイル電圧変化、チョークコイル 13の電圧変化を検出するようにしても よい。
[0064] また、同期整流器を用いたコンバータでは、第 1 ·第 2の電力スィッチ 4, 5のスィッチ ング動作中に、コンバータ出力から入力方向に逆流電流が流れる逆流動作モードが 一般に生じうる。逆流動作モードにおいて、第 1 ·第 2の電力スィッチ 4, 5のソースか らドレイン方向に逆流電流が流れる状態では、第 1 ·第 2の電力スィッチ 4, 5のゲート をオフしても、すぐにドレイン電圧が増加しない。すなわち、 2次側回路では第 1 ·第 2 のターンオンエッジ信号 F、 Hを受信しても、第 1 ·第 2の同期整流器のドレイン電圧が すぐには変化しない状態になる。第 1 ·第 2の遅延時間制御回路 46, 47の調整範囲 を大きめに設定しておけば、第 1 ·第 2の同期整流器 11 , 12のドレイン電圧が低下す るまで第 1 ·第 2の同期整流器 11 , 12のターンオンタイミングが遅延され、逆流電流 の増加が自動的に制限される。すなわち、第 1 ·第 2の遅延時間制御回路 46、 47に よって逆流電流自己制限機能が備わることになる。
[0065] 《第 3の実施形態》
図 6は第 3の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。
[0066] このダブルエンド絶縁型 DC— DCコンバータ 103は、コスト低減のために、図 2に 示したハイサイドドライバ 3を削減したものである。そのため、基準電位(ソース)がダラ ンドと非接続の第 2の電力スィッチ 5を第 2のノ ルストランス 10を用いて駆動するよう に構成している。
[0067] 図 6に示すように、第 2の電力スィッチ 5の駆動用電力を確保するために、コンデン サ 56及びダイオード 55からなるブートストラップ回路 54を設けて!/、る。このブートスト ラップ回路 54の出力部と 1次側グランドとの間に、 FET58、 FET59、抵抗 57の直列 回路を接続し、 FET58と FET59の接続点は第 2の電力スィッチ 5のゲートに接続し ている。 FET58と FET59のゲートにはダイオード 60, 61、ツエナーダイオード 63、 抵抗 62からなる回路を接続している。そして、ダイオード 60, 61の接続点と FET58 , 59の接続点との間に第 2のノ ルストランス 10の 3次コイル 10Cを接続している。
[0068] また、抵抗 64と SBD65による第 1の電力スィッチ側遅延回路 78を PWM制御回路
2の第 1の PWM信号出力端子 2Aと第 1の電力スィッチ 4のゲートとの間に設けてい
[0069] このダブルエンド絶縁型 DC— DCコンバータ 103の動作は次のとおりである。
先ず、第 2のノ ルストランス 10の 3次コイルから出力される第 2のターンオフエッジ信 号 Gは PNダイオード 60を通して FET58のゲートに印加され、 FET58がターンオン し、第 2の電力スィッチ 5のゲートに電荷が充電されて第 2の電力スィッチ 5がターンォ ンされる。その後、第 2のターンオンエッジ信号 Hは、 PNダイオード 61を通して FET 59のゲートに印加されて FET59がターンオンし、第 2の電力スィッチ 5のゲートの電 荷が放電され、第 2の電力スィッチ 5がターンオフされる。
[0070] 第 2のノ ルストランス 10の極性に応じて、電力スィッチ 5は PWM制御回路 2が出力 した第 2の PWM信号と同じタイミングで駆動され、第 2の同期整流器 12は反転したタ イミングで駆動されるため、第 2の電力スィッチ 5と第 2の同期整流器 12とはほぼ相補 的なタイミングで駆動される。同様にして、第 1の電力スィッチ 4と第 1の同期整流器 1 1がほぼ相補的なタイミングで駆動される。
なお、第 2の電力スィッチ 5のゲートの充電電流は抵抗 57で制限される。このことに より、第 2の遅延時間 Jが確保される。また、第 1の電力スィッチ側遅延回路 78で電力 スィッチ 4のゲート充電電流が制限される。このことによって第 1の遅延時間 Iが確保さ れる。
[0071] その他の回路構成および動作は第 1の実施形態で示した図 2 ·図 3と同様である。
[0072] 《第 4の実施形態》
図 7は第 4の実施形態のダブルエンド絶縁型 DC— DCコンバータの回路図である。 このダブルエンド絶縁型 DC— DCコンバータは基本的な構成は第 1の実施形態で示 したものと同様である。
[0073] 第 4の実施形態では、第 1〜第 3の実施形態とは異なる回路トポロジーに適用した 例である。第 1〜第 3の実施形態ではハーフブリッジコンバータを構成した力 S、この第 4の実施形態のダブルエンド絶縁型 DC— DCコンバータでは、電力変換をプッシュ プルコンバータ形式とし、整流回路を低電圧出力に適したカレントダブラー整流回路 の形式としている。
[0074] 主トランス 8には第 1の 1次コイル 8A以外に第 2の 1次コイル 8Dを備えていて、この 第 2の 1次コイル 8Dに第 2の電力スィッチ 5を接続している。
[0075] また、 1次側制御回路 90には、抵抗 64および SBD65による第 1の電力スィッチ側 遅延回路 78と、抵抗 67および SBD68による第 2の電力スィッチ側遅延回路 79とを 備えている。そして、第 1の電力スィッチ側遅延回路 78を PWM制御回路 2の第 1の P WM信号出力端子 2Aと第 1の電力スィッチ 4のゲートとの間に設け、第 2の電力スィ ツチ側遅延回路 79を PWM制御回路 2の第 2の PWM信号出力端子 2Bと第 2の電力 スィッチ 5のゲートとの間に設けている。
[0076] このダブルエンド絶縁型 DC— DCコンバータ 104の動作は次のとおりである。
まず、入力直流電源 1から直流電圧が加わると、第 1 ·第 2の電力スィッチ 4, 5が交 互にスイッチング動作をして直流電力を交流電力に変換する。前記交流電力は主ト ランス 8で 1次側回路から 2次側回路に伝送され、第 1 ·第 2の同期整流器 11 , 12で 整流され、チョークコイル 13、 66、出力平滑コンデンサ 14で平滑されて再度直流に 変換され、負荷 15に供給される。
[0077] 第 1 ·第 2の電力スィッチ 4, 5のデューティはほぼ等しぐ第 1の電力スィッチ 4のデ ユーティが狭まると第 2の電力スィッチ 5のデューティも狭まる。第 1の電力スィッチ 4と 第 1の同期整流器 11は、ほぼ相補的なタイミングで駆動され、第 2の電力スィッチ 5と 第 2の同期整流器 12は、ほぼ相補的なタイミングで駆動される。
[0078] 第 1の実施形態の場合とは異なり固有の伝搬遅延を有するハイサイドドライバを用 V、て!/、な!/、ため、第 1の電力スィッチ側遅延回路 78の抵抗 64と SBD65を用いて電 カスイッチ 4のゲート充電電流を制限することによって第 1の遅延時間 Iを確保し、第 2 の電力スィッチ側遅延回路 79の抵抗 67と SBD68を用いて第 2の電力スィッチ 5のゲ ート充電電流を制限することによって第 2の遅延時間 Jを確保している。
その他の回路構成および動作は第 1の実施形態で示した図 2 ·図 3と同様である。 なお、この発明は第 1〜第 4の実施形態以外にも様々な応用形態をとり得る。他の 電力変換回路トポロジーとして、例えばフルブリッジコンバータにも適用可能である。 ターンオンエッジ信号、ターンオフエッジ信号を受信して同期整流器を駆動する回路 も、第 1〜第 4の実施形態とは異なる回路構成が可能であり、例えば、抵抗 28の定数 調整によって FET24と FET25の同時オンが発生しない動作が可能なら、ツエナー ダイオード 29の削減が可能である。同様に、抵抗 31の定数調整によって FET35と F ET36の同時オンが発生しない動作が可能なら、ツエナーダイオード 30の削減が可 能である。また、図 4とは異なる形状の複合トランスでも構成可能であり、また、主トラ ンス 8と第 1 ·第 2のノ ルストランス 9, 10を分離して構成しても回路動作上は何ら問題 がない。

Claims

請求の範囲
[1] 少なくとも 1次コイルおよび 2次コイルを有する主トランスと、該主トランスの 1次側に 接続される第 1 ·第 2の電力スィッチと、第 1 ·第 2の電力スィッチをスィッチング制御す る 1次側制御回路と、前記主トランスの 2次側に接続される第 1 ·第 2の同期整流器と、 少なくとも 1個のチョークコイルと、を備えるダブルエンド絶縁型 DC— DCコンバータ において、
前記 1次側制御回路からの信号に基づいて前記第 1の電力スィッチのターンオン およびターンオフのタイミングにほぼ対応する第 1のターンオフエッジ信号および第 1 のターンオンエッジ信号を発生する第 1のエッジ信号発生回路と、前記 1次側制御回 路からの信号に基づいて前記第 2の電力スィッチのターンオンおよびターンオフのタ イミングにほぼ対応する第 2のターンオフエッジ信号および第 2のターンオンエッジ信 号を発生する第 2のエッジ信号発生回路と、
前記第 1のターンオフエッジ信号および前記第 1のターンオンエッジ信号を 2次側 へ伝送する第 1のノ^レストランスと、前記第 2のターンオフエッジ信号および前記第 2 のターンオンエッジ信号を 2次側へ伝送する第 2のノ ルストランスと、
前記第 1のパルストランスによって伝送された第 1のターンオフエッジ信号で前記第 1の同期整流器をターンオフし、前記第 1のノ レストランスによって伝送された第 1の ターンオンエッジ信号で前記第 1の同期整流器をターンオンする第 1の同期整流器 制御回路と、前記第 2のノ ルストランスによって伝送された第 2のターンオフエッジ信 号で前記第 2の同期整流器をターンオフし、前記第 2のノ ルストランスによって伝送さ れた第 2のターンオンエッジ信号で前記第 2の同期整流器をターンオンする第 2の同 期整流器制御回路と、
を備え、
前記第 1の電力スィッチと、前記第 1の同期整流器がほぼ相補的なタイミングで駆 動され、前記第 2の電力スィッチと、前記第 2の同期整流器がほぼ相補的なタイミング で駆動されることを特徴とするダブルエンド絶縁型 DC— DCコンバータ。
[2] 前記 1次側制御回路は、前記第 1のターンオフエッジ信号の発生後、前記第 1の同 期整流器のターンオフより第 1の電力スィッチのターンオンを遅らせ、前記第 2のター ンオフエッジ信号の発生後、前記第 2の同期整流器のターンオフより第 2の電力スィ ツチのターンオンを遅らせる遅延特性を備えるものである請求項 1に記載のダブルエ ンド絶縁型 DC— DCコンバータ。
[3] 前記第 1のターンオンエッジ信号の発生後、前記第 1の電力スィッチのターンオフよ り第 1の同期整流器のターンオンを遅らせる第 1同期整流器側遅延回路、および前 記第 2の電力スィッチのターンオフより第 2の同期整流器のターンオンを遅らせる第 2 同期整流器側遅延回路を設けた請求項 1または 2に記載のダブルエンド絶縁型 DC — DCコンバータ
[4] 前記第 1同期整流器側遅延回路は、前記第 1の同期整流器のドレイン電圧、前記 主トランスのコイル電圧、前記チョークコイルの電圧のうち少なくともいずれかの変化 を検知して、前記第 1の同期整流器のドレイン電圧が変化するタイミングで前記遅延 を打ち切る第 1の遅延時間制御回路を備え、
前記第 2同期整流器側遅延回路は、前記第 2の同期整流器のドレイン電圧、前記 主トランスのコイル電圧、前記チョークコイルの電圧のうち少なくともいずれかの変化 を検知して、前記第 2の同期整流器のドレイン電圧が変化するタイミングで前記遅延 を打ち切る第 2の遅延時間制御回路を備えたものである請求項 3に記載のダブルエ ンド絶縁型 DC— DCコンノ ータ
[5] 前記第 2の電力スィッチは、基準電位がグランドに対して非接続のハイサイドスイツ チであり、
前記 1次側制御回路は、前記第 2の電力スィッチを前記第 2のターンオフエッジ信 号でターンオンさせ前記第 2のターンオンエッジ信号でターンオフさせる回路を備え た請求項 1〜4のうちいずれ力、 1項に記載のダブルエンド絶縁型 DC— DCコンバータ
[6] 前記主トランスおよび第 1 ·第 2のノ ルストランスは、一対のコアと、それぞれ独立し たコイルを備えて、等価的にそれぞれ独立したトランスとして作用する複合トランスに 設けた請求項;!〜 5のうち!/、ずれか 1項に記載のダブルエンド絶縁型 DC— DCコン バータ。
[7] 前記コアは、中脚と、該中脚を介して対向する少なくとも 1対の外脚とを備えて閉磁 路を構成し、
前記コイルは、前記コアの前記中脚に巻回した少なくとも 2つのコイルを組とする第 1組のコイルと、
前記 1対の外脚の一方を、コイル配線可能な程度の隙間を空けて 2つの外脚部に 分離し、当該分離した 2つの外脚部のそれぞれに巻回方向が互いに逆方向となるよ うに巻回したコイルを組とする第 2組のコイルと、
前記 1対の外脚の他方を、コイル配線可能な程度の隙間を空けて 2つの外脚部に 分離し、当該分離した 2つの外脚部のそれぞれに巻回方向が互いに逆方向となるよ うに巻回したコイルを組とする第 3組のコイルと、
から成り、前記第 1組のコイルと前記コアとで前記主トランスを構成し、前記第 2組のコ ィルと前記コアとで前記第 1のパルストランスを構成し、前記第 3組のコイルと前記コ ァとで前記第 2のノ^レストランスを構成した、請求項 6に記載のダブルエンド絶縁型 D C— DCコンノ ータ。
PCT/JP2007/063714 2006-10-02 2007-07-10 Convertisseur cc-cc d'isolation à double extrémité WO2008041399A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008537421A JP5012807B2 (ja) 2006-10-02 2007-07-10 ダブルエンド絶縁型dc−dcコンバータ
CN2007800342609A CN101517878B (zh) 2006-10-02 2007-07-10 双端绝缘型dc-dc转换器
US12/399,157 US7596009B2 (en) 2006-10-02 2009-03-06 Double-ended isolated DC-DC converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006270976 2006-10-02
JP2006-270976 2006-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/399,157 Continuation US7596009B2 (en) 2006-10-02 2009-03-06 Double-ended isolated DC-DC converter

Publications (1)

Publication Number Publication Date
WO2008041399A1 true WO2008041399A1 (fr) 2008-04-10

Family

ID=39268264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063714 WO2008041399A1 (fr) 2006-10-02 2007-07-10 Convertisseur cc-cc d'isolation à double extrémité

Country Status (4)

Country Link
US (1) US7596009B2 (ja)
JP (1) JP5012807B2 (ja)
CN (1) CN101517878B (ja)
WO (1) WO2008041399A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158145A (ja) * 2008-12-02 2010-07-15 Fuji Electric Systems Co Ltd スイッチング電源装置およびスイッチング電源制御回路
JP2010161917A (ja) * 2008-12-08 2010-07-22 Fuji Electric Systems Co Ltd スイッチング電源装置、およびスイッチング電源制御回路
JP2010178411A (ja) * 2009-01-27 2010-08-12 Murata Mfg Co Ltd 絶縁型スイッチング電源装置
JP2011019317A (ja) * 2009-07-08 2011-01-27 Murata Mfg Co Ltd 絶縁型スイッチング電源
JP2011192724A (ja) * 2010-03-12 2011-09-29 Murata Mfg Co Ltd 複合トランスモジュール
JP2011223726A (ja) * 2010-04-08 2011-11-04 Murata Mfg Co Ltd 半導体集積回路及びそれを用いたdc−dcコンバータ
US8374002B2 (en) 2010-04-08 2013-02-12 Murata Manufacturing Co., Ltd. Isolated switching power supply apparatus
US10790754B2 (en) 2019-02-26 2020-09-29 Analog Devices International Unlimited Company Systems and methods for transferring power across an isolation barrier using an active resonator
US10797609B2 (en) 2019-02-26 2020-10-06 Analog Devices International Unlimited Company Systems and methods for transferring power across an isolation barrier using an active self synchronized rectifier

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595630B (zh) * 2007-11-20 2012-05-16 株式会社村田制作所 绝缘型dc-dc变换器
JP5050874B2 (ja) * 2008-01-22 2012-10-17 富士電機株式会社 スイッチング電源装置
CN102067428B (zh) * 2008-06-23 2014-04-02 爱立信电话股份有限公司 同步整流器的驱动电路及其控制方法
US20110101951A1 (en) * 2009-10-30 2011-05-05 Zhiliang Zhang Zero-Voltage-Switching Self-Driven Full-Bridge Voltage Regulator
CN101728968A (zh) * 2010-01-19 2010-06-09 华为技术有限公司 一种磁集成双端变换器
CN101944853B (zh) * 2010-03-19 2013-06-19 郁百超 绿色功率变换器
CN101847935A (zh) * 2010-05-24 2010-09-29 深圳市核达中远通电源技术有限公司 一种直流到直流变换器
CN103222178A (zh) 2010-10-29 2013-07-24 松下电器产业株式会社 逆变器
CN202340195U (zh) * 2010-10-29 2012-07-18 松下电器产业株式会社 转换器
TWI429195B (zh) * 2010-12-08 2014-03-01 Ind Tech Res Inst 功率電路及其直流對直流轉換器
US8929103B2 (en) 2011-03-23 2015-01-06 Pai Capital Llc Integrated magnetics with isolated drive circuit
CN102810991B (zh) * 2011-06-02 2017-09-15 通用电气公司 同步整流器驱动电路整流器
US9100008B2 (en) * 2011-06-16 2015-08-04 Microchip Technology Inc. Bootstrapped switch with a highly linearized resistance
JP5769886B2 (ja) * 2012-07-18 2015-08-26 三菱電機株式会社 電力変換器
US9071245B2 (en) * 2013-04-24 2015-06-30 Hamilton Sundstrand Corporation Solid state power controller gate control
WO2014188985A1 (ja) * 2013-05-21 2014-11-27 株式会社村田製作所 スイッチング電源装置
KR101696977B1 (ko) * 2014-10-08 2017-01-16 주식회사 엘지화학 절연 스위치 제어 장치 및 방법
US9966837B1 (en) 2016-07-08 2018-05-08 Vpt, Inc. Power converter with circuits for providing gate driving
US10250119B1 (en) * 2018-03-29 2019-04-02 Semiconductor Components Industries, Llc Fast response for current doubling DC-DC converter
CN113162390B (zh) * 2020-12-17 2022-05-10 上海晶丰明源半导体股份有限公司 隔离型电源的控制电路、隔离型电源及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118616A (en) * 1981-01-16 1982-07-23 Mitsumi Electric Co Ltd Compound transformer
JPH0837777A (ja) * 1994-07-27 1996-02-06 Nec Corp スイッチング電源回路
JP2001069756A (ja) * 1999-08-26 2001-03-16 Tdk Corp スイッチング電源装置
JP2004032855A (ja) * 2002-06-24 2004-01-29 Shindengen Electric Mfg Co Ltd 同期整流回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722348B1 (fr) * 1994-07-11 1996-10-11 Aerospatiale Dispositif electronique de connexion a protection contre les inversions de polarite
US5907481A (en) * 1997-10-31 1999-05-25 Telefonaktiebolaget Lm Ericsson Double ended isolated D.C.--D.C. converter
US6069802A (en) * 1998-07-31 2000-05-30 Priegnitz; Robert A. Transformer isolated driver and isolated forward converter
JP3339452B2 (ja) * 1999-03-05 2002-10-28 株式会社村田製作所 絶縁型dcーdcコンバータ
US6111769A (en) * 1999-09-24 2000-08-29 Ericsson, Inc. External driving circuit for bridge type synchronous rectification
US6459600B2 (en) * 2000-01-28 2002-10-01 Ericsson, Inc. Method of connecting synchronous rectifier modules in parallel without output voltage faults
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
JP2005073335A (ja) * 2003-08-21 2005-03-17 Sony Corp スイッチング電源回路
WO2007069403A1 (ja) * 2005-12-16 2007-06-21 Murata Manufacturing Co., Ltd. 複合トランスおよび絶縁型スイッチング電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118616A (en) * 1981-01-16 1982-07-23 Mitsumi Electric Co Ltd Compound transformer
JPH0837777A (ja) * 1994-07-27 1996-02-06 Nec Corp スイッチング電源回路
JP2001069756A (ja) * 1999-08-26 2001-03-16 Tdk Corp スイッチング電源装置
JP2004032855A (ja) * 2002-06-24 2004-01-29 Shindengen Electric Mfg Co Ltd 同期整流回路

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158145A (ja) * 2008-12-02 2010-07-15 Fuji Electric Systems Co Ltd スイッチング電源装置およびスイッチング電源制御回路
JP2010161917A (ja) * 2008-12-08 2010-07-22 Fuji Electric Systems Co Ltd スイッチング電源装置、およびスイッチング電源制御回路
JP2010178411A (ja) * 2009-01-27 2010-08-12 Murata Mfg Co Ltd 絶縁型スイッチング電源装置
EP2211451A3 (en) * 2009-01-27 2010-09-08 Murata Manufacturing Co., Ltd. Insulated switching power supply device
US8315073B2 (en) 2009-01-27 2012-11-20 Murata Manufacturing Co., Ltd. Isolated switching power supply device
JP2011019317A (ja) * 2009-07-08 2011-01-27 Murata Mfg Co Ltd 絶縁型スイッチング電源
JP2011192724A (ja) * 2010-03-12 2011-09-29 Murata Mfg Co Ltd 複合トランスモジュール
JP2011223726A (ja) * 2010-04-08 2011-11-04 Murata Mfg Co Ltd 半導体集積回路及びそれを用いたdc−dcコンバータ
US8374002B2 (en) 2010-04-08 2013-02-12 Murata Manufacturing Co., Ltd. Isolated switching power supply apparatus
US10790754B2 (en) 2019-02-26 2020-09-29 Analog Devices International Unlimited Company Systems and methods for transferring power across an isolation barrier using an active resonator
US10797609B2 (en) 2019-02-26 2020-10-06 Analog Devices International Unlimited Company Systems and methods for transferring power across an isolation barrier using an active self synchronized rectifier

Also Published As

Publication number Publication date
US20090161391A1 (en) 2009-06-25
US7596009B2 (en) 2009-09-29
JP5012807B2 (ja) 2012-08-29
JPWO2008041399A1 (ja) 2010-02-04
CN101517878B (zh) 2012-02-08
CN101517878A (zh) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2008041399A1 (fr) Convertisseur cc-cc d'isolation à double extrémité
JP4803262B2 (ja) 絶縁型スイッチング電源装置
EP1405394B1 (en) Isolated drive circuitry used in switch-mode power converters
US7596007B2 (en) Multiphase DC to DC converter
JP4819902B2 (ja) Dc/dc電力変換装置
US6862195B2 (en) Soft transition converter
US5521807A (en) DC-To-DC converter with secondary flyback core reset
JP3339452B2 (ja) 絶縁型dcーdcコンバータ
Chen Isolated half-bridge gate driver with integrated high-side supply
US20040218406A1 (en) Contactless electrical energy transmission system having a primary side current feedback control and soft-switched secondary side rectifier
US20100328971A1 (en) Boundary mode coupled inductor boost power converter
JPWO2010119761A1 (ja) スイッチング電源装置
JP6241334B2 (ja) 電流共振型dcdcコンバータ
JP3237633B2 (ja) スイッチング電源装置
TWI389442B (zh) 切換驅動電路
Wang et al. The novel quasi-resonant flyback converter with autoregulated structure for parallel/serial input
WO2005076450A1 (en) Zero-voltage switching half-bridge dc-dc converter topology by utilizing the transformer leakage inductance trapped energy
US20040246748A1 (en) Bridge-buck converter with self-driven synchronous rectifiers
JP2000004584A (ja) 直流―直流電力コンバ―タ
US7082043B2 (en) Drive circuit for a synchronous rectifier, method of providing drive signals thereto and power converter incorporating the same
US6903944B2 (en) Active clamp DC/DC converter with resonant transition system
EP2239835B1 (en) Converter device and corresponding method
JP4529181B2 (ja) スイッチング電源装置
US6081435A (en) Cross-conduction limiting circuit, method of operation thereof and DC/DC converter employing the same
Oliveira et al. A lossless commutation PWM two level forward converter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034260.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07790532

Country of ref document: EP

Kind code of ref document: A1