WO2008031229A1 - Procédé et dispositif de purification de matériau en silicium de basse qualité - Google Patents

Procédé et dispositif de purification de matériau en silicium de basse qualité Download PDF

Info

Publication number
WO2008031229A1
WO2008031229A1 PCT/CA2007/001646 CA2007001646W WO2008031229A1 WO 2008031229 A1 WO2008031229 A1 WO 2008031229A1 CA 2007001646 W CA2007001646 W CA 2007001646W WO 2008031229 A1 WO2008031229 A1 WO 2008031229A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon material
melting
purity silicon
melt
purity
Prior art date
Application number
PCT/CA2007/001646
Other languages
English (en)
Inventor
Dominic Leblanc
René BOISVERT
Original Assignee
Silicium Becancour Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UAA200903632A priority Critical patent/UA97488C2/ru
Application filed by Silicium Becancour Inc. filed Critical Silicium Becancour Inc.
Priority to MX2009002808A priority patent/MX2009002808A/es
Priority to CA2660386A priority patent/CA2660386C/fr
Priority to AU2007295860A priority patent/AU2007295860A1/en
Priority to BRPI0716934-5A2A priority patent/BRPI0716934A2/pt
Priority to JP2009527664A priority patent/JP2010503596A/ja
Priority to EP07815840.9A priority patent/EP2074060A4/fr
Priority to CN2007800331820A priority patent/CN101511731B/zh
Priority to EA200970275A priority patent/EA015387B1/ru
Publication of WO2008031229A1 publication Critical patent/WO2008031229A1/fr
Priority to EG2009030274A priority patent/EG25136A/xx
Priority to IL197472A priority patent/IL197472A0/en
Priority to NO20091339A priority patent/NO20091339L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/06Rotary-drum furnaces, i.e. horizontal or slightly inclined adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2083Arrangements for the melting of metals or the treatment of molten metals

Definitions

  • the present invention generally relates to the production of silicon. More particularly, the invention relates to a process and apparatus for purifying low-grade silicon material to obtain higher-grade silicon for use in photovoltaic or electronic applications.
  • Si silicon
  • Metallurgical grade silicon is a silicon of low purity. Typically, metallurgical grade silicon that is about 98% pure silicon is produced via the reaction between carbon (coal, charcoal, pet coke) and silica (SiO 2 ) at a temperature around 1700 0 C in a process known as carbothermal reduction.
  • a small portion of the metallurgical grade Si is diverted to the semiconductor industry for use in the production of Si wafers, etc.
  • the semiconductor industry requires silicon of ultra-high purity, e.g. electronic grade silicon (EG-Si) having approximately a 99.9999999% purity (9N).
  • Metallurgical grade silicon must be purified to produce this electronic grade.
  • the purification process is elaborate resulting in the higher cost of electronic grade silicon.
  • the photovoltaic (PV) industry requires silicon of a relatively high degree of purity for the production of photovoltaic cells, i.e. solar cells.
  • the purity requirements of silicon for best performance in solar cell applications are: boron (B) ⁇ 3 ppm, phosphorus (P) ⁇ 10 ppm, total metallic impurities ⁇ 300 ppm and preferably ⁇ 150 ppm.
  • US Patent Application No. 2005/0074388 describes a medium purity silicon to be used as a raw material for making electronic quality or photovoltaic quality silicon and the process for making this material.
  • the process involves the production of a silicon with a low boron content by carbothermal reduction of silica in a submerged electric arc furnace.
  • the liquid silicon thus produced is poured in ladles, refined by injecting oxygen or chlorine using a graphite rod, placed under a bell housing and treated under reduced pressure with neutral gas injection, and then poured into a mould placed in a furnace to solidify in a controlled fashion and cause segregation of impurities in the residual liquid.
  • the refining of the liquid silicon by oxygen injection cannot take place safely in an electric arc furnace. As such, the refining procedure of the liquid silicon by oxygen injection requires the transfer of the liquid silicon form the furnace to a ladle, adding additional practical steps to the process and thus complexity.
  • US Patent Nos. 3,871 ,872 and 4,534,791 describe the treatment of silicon with a slag to remove calcium (Ca) and aluminum (Al) impurities.
  • US Patent No. 3,871 ,872 describes adding a slag comprising SiO 2 (silica), CaO (lime), MgO (magnesia) and AI 2 O 3 (alumina) to molten silicon metal
  • US Patent No 4,534,791 describes treating silicon with a molten slag comprising SiO 2 (silica), CaO (lime), MgO (magnesia) and AI 2 O 3 (alumina), Na 2 O 1 CaF 2 , NaF, SrO, BaO, MgF 2 , and K 2 O.
  • the experiments made by Suzuki and Sano were carried out by placing 10 g of silicon and 10 g of slag in a graphite crucible, melting the mixture and keeping the mixture molten for two hours.
  • the low distribution coefficient of boron between slag and molten silicon means that a high amount of slag has to be used and that the slag treatment has to be repeated a number of times in order to bring the boron content from 20-100 ppm, which is the normal boron content of metallurgical silicon, down to below 1 ppm, which is the required boron content for solar grade silicon.
  • the process described in the article of Sano and Suzuki is thus both very costly and time consuming.
  • European patent EP 0 756 014 describes a method of smelting aluminum and remainders containing aluminum in a rotary drum furnace having an oxy-fuel burner in order to reduce the volume of waste gases produced and the noxious content thereof.
  • An object of the present invention is to provide a process for purifying silicon that satisfies the above-mentioned needs.
  • a process for purifying low-purity silicon material and obtaining a higher-purity silicon material includes the steps of:
  • step (b) melting the low-purity silicon material in the melting apparatus and obtaining a melt of higher-purity silicon material.
  • the melting apparatus of step (a) includes a rotary drum furnace.
  • the melting of the low-purity silicon material in the melting apparatus may occur under an oxidizing atmosphere provided by the oxy-fuel burner.
  • the melting of step (b) may include setting an oxygen gas to natural gas fuel ratio in the range from 1 :1 to 4: 1.
  • the melting of step (b) may include melting the low-purity silicon material at a temperature in the range from 1410 0 C to 1700 0 C.
  • the melting of step (b) may include adding a synthetic slag.
  • the melting of step (b) may comprise collecting silica fumes produced during the melting of the low-purity silicon material.
  • the process may further include a step of:
  • the separating of the melt preferably includes outpouring the melt into a mould having an insulated bottom wall, insulated side walls, and an open top.
  • the process may further include the steps of: (d) solidifying the melt of higher-purity silicon material by unidirectional solidification from the open top towards the insulated bottom wall of the mould while electromagnetically stirring the melt;
  • the process may further include the steps of:
  • a rotary drum furnace equipped with an oxy-fuel burner for melting and purifying a lower purity silicon material and thereby obtaining a higher-purity silicon material.
  • silica fumes obtained according to the process described above.
  • Figure 1 is a graph of the distribution coefficient of boron with the CaO/SiO 2 ratio of a CaO-CaF 2 -SiO 2 slag system [Suzuki et al (1990) - Prior Art].
  • Figure 2 is a cross-sectional view of a melting apparatus equipped with an oxy-fuel burner according to one embodiment of the present invention.
  • Figure 3 is a graph of enthalpy versus temperature for elemental silicon [Prior Art].
  • Figure 4 is a graph of flame temperature versus oxidizing-agent content of burner fuel.
  • Figure 5 is a graph of oxy-fuel combustion product distribution as a function of oxygen content of oxy-fuel.
  • Figure 6 is a schematic drawing showing an outpouring of a melt of silicon material from a rotary drum furnace into a mould according to one embodiment of the present invention.
  • Figure 7 is a schematic drawing of a melt of silicon undergoing unidirectional solidification with electromagnetic stirring in an insulated open top mould.
  • the present invention relates to the purification of low-grade silicon material to obtain higher-grade silicon for use in photovoltaic or electronic applications. More specifically, in accordance with one aspect of the present invention, there is provided a process for purifying low-purity silicon material and obtaining a higher- purity silicon material. Basically, the process includes the steps of (a) providing a melting apparatus equipped with an oxy-fuel burner, and (b) melting the low-purity silicon material in the melting apparatus and obtaining a melt of higher-purity silicon material. These steps will be discussed more fully hereinafter.
  • melting apparatus refers to any enclosure that gives off heat, and includes a device that produces heat such as a furnace.
  • a “melting apparatus” is any apparatus that may be used to melt material.
  • any appropriate melting apparatus equipped with an oxy-fuel burner may be provided.
  • a rotary drum furnace typically has a refractory lining which can resist damage caused by high temperature and can retain heat.
  • Other examples of an appropriate melting apparatus include an induction furnace or electric arc furnace equipped with an additional oxy-fuel burner providing a desired oxidizing atmosphere.
  • the rotary drum furnace 10 has a rotating cylindrical body. At one end of the rotary drum furnace 10, there is disposed an opening 16 provided with a door 14 through which the low-purity silicon material 22 may be loaded into the rotary drum furnace 10.
  • the loading of the material may be carried out using a loading device, for example a conveyor belt system.
  • the door 14 is sealed closed so as to prevent unwanted air from infiltrating the rotary drum furnace 10.
  • An oxy-fuel burner 12 is disposed in the door 14. The oxy-fuel burner 12 generates a flame 13 that extends far into the rotary drum furnace 10. Waste gases produced during melting exit through a chimney 17 provided in the door 14.
  • a canopy 19 is used to collect and direct the waste gases through an exhaust duct 18 to a waste gas collector 20. While the rotary drum furnace 10 rotates, the oxy-fuel burner 12, the chimney 17, the canopy 19 and the exhaust duct 18 remain fixed. Of course, numerous configurations of the rotary drum furnace are possible, for example, the oxy-fuel burner 12 may not be disposed in the door 14 and may rotate along with the rotary drum furnace 10.
  • the melting apparatus may further include a tap hole along with a tapping spout for tapping the molten material therefrom.
  • a tap hole along with a tapping spout for tapping the molten material therefrom.
  • the rotary drum furnace 10 includes two tap holes with two tapping spouts 24.
  • the tap holes may be sealed closed with carbon paste 25.
  • Low-purity silicon material is loaded into the melting apparatus, e.g. rotary drum furnace, using a loading device, for example a conveyor belt system.
  • a loading device for example a conveyor belt system.
  • the low-purity silicon material may contain any one or any combination of the following elements: Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sn, Sr, Ti, V, Zn, Zr, O, C, and B. It may be a low-grade silicon material such as metallurgical grade silicon, silicon crusher dust, silicon hand-picked from slag, and remainders containing silicon.
  • silicon crusher dust it is preferable to pelletize the dust before loading it into the furnace so as to avoid the risk of explosion and the contamination by the silicon crusher dust of the higher- purity silica fumes produced during the melting thereof, and to increase the thermal transfer of the burner flame and the recovery of silicon.
  • Such pellets can be made by mixing the silicon crusher dust with sodium silicate (liquid glass), lignin liquor, molasses or sugars, lime or any other binding substance (resin), with or without baking.
  • Melting of the low-purity silicon material is preferably carried out at a temperature in the range from about 1410 0 C to 1700 0 C.
  • the energy demand to melt silicon and bring its temperature to 1500 0 C is 88.6 kJ/mol (88.6 kiloJoule per mole) or 0.876 MWhr/mt (MegaWatt Hour per metric tonne), as illustrated in Figure 3.
  • the furnace may be preheated to the desired temperature and then loaded with the low-purity silicon material.
  • the low-purity silicon material is preferably melted at a temperature between 1410 0 C and 1500 0 C to precipitate carbon into a slag and reduce the oxygen content of the melt of higher-purity silicon material obtained.
  • an air-fuel burner is theoretically capable of providing a flame temperature that is high enough to melt silicon, in fact, the large quantity of nitrogen in the air-fuel removes a lot of energy from the flame and the maximum flame temperature reached is more realistically around 1200 0 C.
  • An oxy-fuel burner supplants the inefficient nitrogen in air by injecting pure oxygen directly into the flame (oxy-fuel).
  • the maximum flame temperature provided by an oxy-fuel burner is much higher than that provided by an air-fuel burner, as can be seen in Figure 4.
  • the maximum flame temperature of the oxy-fuel burner is reached with approximately a 2:1 oxygen to natural gas flow.
  • the present method may be used to purify liquid silicon of at least one of Ca, Al, Mg, Na, K, Sr, Ba, Zn, C, O and B by changing the oxygen to fuel ratio accordingly to provide an oxidizing atmosphere.
  • silicon may be purified of boron by melting the silicon in a flow of a weakly oxidizing gas mixture of Ar-H 2 -H 2 O. Therefore, to remove boron from the low-purity silicon material, the melting of the low-purity silicon material in the melting apparatus (e.g. rotary drum furnace) is carried out under an oxidizing atmosphere.
  • the oxy-fuel burner allows to change relatively easily the natural gas to oxygen ratio to provide an oxidizing atmosphere, be it anywhere from weakly to strongly oxidizing, through the combustion gases produced, which may include H 2 O, H 2 , O 2 , CO and CO 2 (see Figure 5).
  • a mixture of oxygen to natural gas in the range from 1 :1 to 4:1 , preferably in the range from 1.5:1 and 2.85:1 so as to also optimize the flame temperature may be selected.
  • the safe, controlled and relatively simple manner of providing the oxidizing atmosphere using a rotary drum furnace equipped with an oxy-fuel burner is yet another advantage of the present invention over the prior art.
  • the melt may also undergo slag treatment.
  • a synthetic slag may be added to the melt to change the chemistry of the melt and purify the melt of specific elements.
  • Numerous slag recipes are known in the art. For example, a synthetic slag that includes SiO 2 , AI 2 O 3 ,
  • CaO, CaCO 3 , Na 2 O, Na 2 CO 3 , CaF, NaF, MgO, MgCO 3 , SrO, BaO, MgF 2 , or K 2 O, or any combination thereof may be added to the molten silicon to remove Al, Ba, Ca 1 K, Mg, Na, Sr 1 Zn, C, or B, or any combination thereof from the melt.
  • the efficiency of slag extraction may be estimated using simplified theoretical arguments.
  • the efficiency of the purification of boron using the slag treatment process where equilibrium is obtained between slag and silicon is given by the distribution coefficient of boron (LB), defined as the ratio between the concentration of B in slag and the concentration of B in the final silicon material:
  • [B]siMe final boron content of the silicon material (ppmw)
  • [B]siag final boron content of the slag (ppmw)
  • msiMe mass of silicon (kg)
  • msiag mass of slag (kg) and ppmw ⁇ parts per million by weight kg ⁇ kilogram.
  • the establishment of equilibrium between slag and silicon is rapid at the interface.
  • the rotary movement of a rotary drum furnace generates new surfaces favourable for the rapid establishment of chemical equilibrium.
  • the rotary movement of the rotary drum furnace continually exposes new surfaces of the molten material to the slag and the oxidizing atmosphere.
  • the boron content of the treated silicon should be less than 3 ppmw.
  • a slag that has low boron content (e.g. a boron content less than 1 ppmw).
  • phosphorous content of solar grade silicon material there are also strict requirements as to phosphorous content of solar grade silicon material. If the slag (for example, a calcium-silicate-based slag) used to remove boron from the low-purity silicon material contains too much phosphorous, the phosphorous content of silicon can be increased during slag treatment. It is thus important to use a slag that also has a low phosphorous content (e.g. a phosphorous content less than 4 ppmw P).
  • a phosphorous content e.g. a phosphorous content less than 4 ppmw P.
  • Treatment 1 (first melt/ impurity extraction): Grounded quartz (SiO 2 ): 700 kg/mt Si
  • Soda ash (Na 2 CO 3 ⁇ Na 2 O + CO 2 ): 342 kg/mt Si
  • a synthetic slag made of pulverized quartz and soda ash exhibits low boron and phosphorous content as required.
  • Table 2 tabulates the chemical analysis of the low-purity silicon material before and after purification treatment according to the process of the present invention. It can be clearly seen that this process is particularly effective at removing aluminum, calcium, carbon and oxygen impurities from silicon.
  • the cost associated with the melting (i.e. with the fuel consumption) of this process is reasonable and not prohibitive, the lower cost of oxygen gas as compared to the cost of natural gas contributing to the cost-efficiency of the process.
  • a rotary furnace equipped with an oxy-fuel burner is charged with 3500 kg of silicon material.
  • the silicon metal is sampled prior to charging and an initial boron content is determined.
  • the silicon material is then melted in the rotary drum furnace and under an oxidizing atmosphere with an oxygen gas to natural gas fuel ratio of approximately 2:1.
  • a liquid sample is taken and a final boron content is determined.
  • Analysis of the samples before and after melting confirms a lower boron concentration in the liquid silicon material following melting in the rotary drum furnace and purification according to the process of the present invention (see Table 3).
  • a rotary furnace equipped with an oxy-fuel burner is charged with 3500 kg of silicon metal.
  • the silicon metal is sampled prior to charging and has a boron content of 8.9 ppmw.
  • the silicon material is then melted in the rotary drum furnace under an oxidizing atmosphere with an oxygen gas to natural gas fuel ratio of approximately 2:1.
  • a liquid sample is taken at time t 0 .
  • Additional samples of the liquid silicon metal are taken from the rotary drum furnace at later times t-i, t 2 , etc.
  • Analysis of the boron content of the samples indicates that the boron content of the liquid silicon metal decreases with time, i.e. the boron content of the liquid silicon metal decreases as the liquid silicon metal is heated (see Table 4). The relationship is given by the following equation:
  • t is the time in minutes; So is the boron concentration in ppmw at time t 0 ; ⁇ (t) is the boron concentration in ppmw at time t.
  • Examples 1 to 3 demonstrate the particular efficiency of the process according to the present invention when it comes to purifying low-purity silicon material (e.g. low- grade silicon such as metallurgical grade silicon) of aluminum (Al), calcium (Ca), carbon (C) oxygen (O) and boron (B) impurities to provide a higher-purity silicon material (e.g. purified metallurgical grade silicon) which can be used as raw material for solar grade silicon and/or electronics grade silicon.
  • low-purity silicon material e.g. low- grade silicon such as metallurgical grade silicon
  • Al aluminum
  • Ca calcium
  • C carbon
  • O oxygen
  • B boron
  • the melt may be outpoured into a receiving vessel such as a mould. This may be accomplished by tapping the melting apparatus, as shown in Figure 6.
  • an oxygen lance may be used to open a tap 24 (sealed with carbon-based mud, i.e carbon paste, in this instance) in the rotary drum furnace 10 and to allow outpouring of the melt of higher-purity silicon material 28 into a mould 26.
  • the flow of the outpouring melt can be controlled by rotating the furnace.
  • the melt of higher-purity silicon material obtained with the process of the present invention thus far can be further purified by unidirectional solidification while electromagnetically stirring the melt of at least one of the following elements: Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni 1 P, Pb, Sb, Sc, Sn, Sr, Ti, V, Zn, Zr, O, C and B.
  • the melt of higher-purity silicon material is outpoured into a mould 26 having an insulated bottom wall 30, insulated side walls 32, and an open top 34.
  • the melt is then solidified by unidirectional solidification from the open top towards the insulated bottom wall of the mould while electromagnetically stirring the melt using an electromagnetic stirrer 40.
  • the rate of unidirectional solidification may be controlled through the type of insulation used to insulate the bottom and side walls.
  • the rate of unidirectional solidification may also be controlled by controlling the temperature gradient from the open top towards the insulated bottom wall of the mould - the free surface of the melt at the open top of the mould may be placed in contact with a cooling medium, for example water or air.
  • the unidirectional solidification is stopped when the melt has partially solidified (say when 40 to 80% of the melt has solidified) to produce an ingot having an exterior shell comprising a solid polycrystalline silicon 36 having a purity higher than the higher-purity silicon material and a center comprising an impurity-enriched liquid silicon 38.
  • An opening in the exterior shell of the ingot is created, by mechanical piercing, thermal lance, etc., to outflow the impurity-enriched liquid silicon and leave behind the exterior shell thereby obtaining solid polycrystalline silicon having a purity higher than the higher-purity silicon material.
  • the melt of higher-purity silicon material is allowed to completely solidify.
  • the first portion of the solid ingot to solidify contains les impurities than the remaining portion. This first portion is therefore separated from the remaining portion, using any appropriate means such as cutting, thus obtaining solid polycrystalline silicon 36 having a purity higher than the higher-purity silicon material.
  • the entire process - from melting in a rotary drum furnace equipped with an oxy-fuel burner to unidirectionally solidifying the melt- may be repeated using the solid polycrystalline silicon as starting material to thereby obtain a final silicon material of an even higher purity.
  • solar grade silicon may be obtained from metallurgical grade silicon.
  • the present invention is also directed to the higher- purity silicon material and the silica fumes obtained by melting low-purity silicon material in a melting apparatus equipped with an oxy-fuel burner according to the process of the present invention.
  • the present invention is directed to the solid polycrystalline silicon obtained following unidirectional solidification with electromagnetic stirring of the melt of the higher purity silicon material of the present process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

procédé et dispositif de purification de matériau en silicium de faible pureté, donnant un matériau en silicium plus pur. Le procédé consiste à fournir un appareil de fusion équipé d'un brûleur à oxy-carburant, et à assurer la fusion du matériau peu pur dans cet appareil pour donner un produit de fusion plus pur. Ledit appareil peut comprendre un four à tambour rotatif et la fusion du produit considéré peut s'effectuer à une température comprise entre 1 410° C et 1 700° C dans une atmosphère d'oxydation ou de réduction. On peut ajouter un laitier synthétique au matériau fondu durant la fusion. Le produit fondu plus pur peut être séparé d'un laitier par versement dans un moule à haut ouvert et fond et parois latérales isolés. Une fois dans le moule, ce produit peut subir une solidification unidirectionnelle contrôlée, donnant un silicium polycristallin solide de pureté encore supérieure.
PCT/CA2007/001646 2006-09-14 2007-09-13 Procédé et dispositif de purification de matériau en silicium de basse qualité WO2008031229A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2009527664A JP2010503596A (ja) 2006-09-14 2007-09-13 低品位シリコン材料の精製方法及び装置
MX2009002808A MX2009002808A (es) 2006-09-14 2007-09-13 Proceso y aparato para purificar silicio de grado bajo de purificacion.
CA2660386A CA2660386C (fr) 2006-09-14 2007-09-13 Procede et dispositif de purification de materiau en silicium de basse qualite
AU2007295860A AU2007295860A1 (en) 2006-09-14 2007-09-13 Process and apparatus for purifying low-grade silicon material
BRPI0716934-5A2A BRPI0716934A2 (pt) 2006-09-14 2007-09-13 processo e aparelho para a purificaÇço de material de sÍlica de baixa qualidade
UAA200903632A UA97488C2 (ru) 2006-09-14 2007-09-13 Способ очистки кремнийсодержащего материала низкой чистоты, применение барабанной печи в нем, расплав кремнийсодержащего материала, отходящие газы и твердый поликристаллический кремний, полученные данным способом
EP07815840.9A EP2074060A4 (fr) 2006-09-14 2007-09-13 Procédé et dispositif de purification de matériau en silicium de basse qualité
CN2007800331820A CN101511731B (zh) 2006-09-14 2007-09-13 用于提纯低级硅材料的方法和装置
EA200970275A EA015387B1 (ru) 2006-09-14 2007-09-13 Способ и устройство очистки низкокачественного кремнийсодержащего материала
EG2009030274A EG25136A (en) 2006-09-14 2009-03-01 Process and apparatus for purifying low-grade silicon material.
IL197472A IL197472A0 (en) 2006-09-14 2009-03-08 Process and apparatus for purifying low-grade silicon material
NO20091339A NO20091339L (no) 2006-09-14 2009-03-31 Fremgangsmate og anordning for rensing av lavkvalitets silisiummateriale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84437206P 2006-09-14 2006-09-14
US60/844,372 2006-09-14

Publications (1)

Publication Number Publication Date
WO2008031229A1 true WO2008031229A1 (fr) 2008-03-20

Family

ID=39183328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2007/001646 WO2008031229A1 (fr) 2006-09-14 2007-09-13 Procédé et dispositif de purification de matériau en silicium de basse qualité

Country Status (17)

Country Link
US (1) US20080253955A1 (fr)
EP (1) EP2074060A4 (fr)
JP (1) JP2010503596A (fr)
KR (1) KR20090053807A (fr)
CN (1) CN101511731B (fr)
AU (1) AU2007295860A1 (fr)
BR (1) BRPI0716934A2 (fr)
CA (1) CA2660386C (fr)
EA (1) EA015387B1 (fr)
EG (1) EG25136A (fr)
GE (1) GEP20115178B (fr)
IL (1) IL197472A0 (fr)
MX (1) MX2009002808A (fr)
NO (1) NO20091339L (fr)
UA (1) UA97488C2 (fr)
WO (1) WO2008031229A1 (fr)
ZA (1) ZA200900898B (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052952A (ja) * 2008-08-26 2010-03-11 Central Glass Co Ltd シリコンの精製方法
WO2010131199A1 (fr) 2009-05-12 2010-11-18 Raysolar S.R.L. Procédé et appareil de purification du silicium
DE102009034317A1 (de) 2009-07-23 2011-02-03 Q-Cells Se Verfahren zur Herstellung durchbruchsicherer p-Typ Solarzellen aus umg-Silizium
WO2011099870A1 (fr) 2010-02-12 2011-08-18 Metallkraft As Procédé de récupération de silicium de qualité solaire
US20130104601A1 (en) * 2009-09-18 2013-05-02 Jan-Erik Eriksson Apparatus And Method For Crystallization Of Silicon
WO2013118249A1 (fr) 2012-02-06 2013-08-15 新日鉄マテリアルズ株式会社 Procédé d'affinage de bain fondu de métal ou de semi-conducteur et dispositif d'affinage sous vide
CN106517212A (zh) * 2016-12-09 2017-03-22 永平县泰达废渣开发利用有限公司 一种利用感应炉熔硅的起炉工艺
CN106744970A (zh) * 2016-12-09 2017-05-31 永平县泰达废渣开发利用有限公司 一种利用感应炉熔硅的铝锭起炉工艺
CN106744978A (zh) * 2016-12-09 2017-05-31 永平县泰达废渣开发利用有限公司 一种利用硅渣进行熔炼生产硅锭的工艺
CN107055545A (zh) * 2016-12-09 2017-08-18 永平县泰达废渣开发利用有限公司 一种利用硅粉进行熔炼生产硅锭的工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO318092B1 (no) * 2002-05-22 2005-01-31 Elkem Materials Kalsium-silikatbasert slagg, fremgangsmate for fremstilling av kalsium-silikatbasert slagg, og anvendelse for slaggbehandling av smeltet silium
RU2445258C2 (ru) * 2006-04-04 2012-03-20 Калисолар Канада Инк. Способ очистки кремния
AU2008260891A1 (en) * 2007-06-08 2008-12-11 Shin-Etsu Chemical Co., Ltd. Method of solidifying metallic silicon
MY143807A (en) * 2007-09-13 2011-07-15 Silicium Becancour Inc Process for the production of medium and high purity silicon from metallurgical grade silicon
US7959730B2 (en) * 2007-10-03 2011-06-14 6N Silicon Inc. Method for processing silicon powder to obtain silicon crystals
TW201033123A (en) * 2009-03-13 2010-09-16 Radiant Technology Co Ltd Method for manufacturing a silicon material with high purity
CN101724900B (zh) * 2009-11-24 2012-05-23 厦门大学 一种多晶硅提纯装置及提纯方法
EP2507170A1 (fr) * 2009-12-01 2012-10-10 Dow Corning Corporation Procédé de coulage par rotation
DE102010001093A1 (de) * 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Verfahren zur Grobentkohlung einer Siliciumschmelze
CN102001661B (zh) * 2010-11-22 2012-07-04 东海晶澳太阳能科技有限公司 一种冶金硅造渣除硼提纯方法
CN103266349B (zh) * 2013-05-31 2015-07-15 大连理工大学 高纯中空硅材料、多晶硅铸锭硅真空固液分离方法及设备
TWI619855B (zh) * 2016-12-21 2018-04-01 Sun Wen Bin 分凝提純高純矽之方法
CN109133069A (zh) * 2018-11-19 2019-01-04 成都斯力康科技股份有限公司 精炼法提纯工业硅的工艺及设备
JP2021192348A (ja) 2020-06-05 2021-12-16 トヨタ自動車株式会社 活物質、電池およびこれらの製造方法
EP4082966A1 (fr) * 2021-04-26 2022-11-02 Ferroglobe Innovation, S.L. Procédé d'obtention de silicium métallique purifié
JP7494800B2 (ja) 2021-06-04 2024-06-04 トヨタ自動車株式会社 ゲストフリーシリコンクラスレートの製造方法、ゲストフリーシリコンクラスレートの製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519764A (en) * 1981-04-30 1985-05-28 Hoxan Corporation Apparatus for fabricating polycrystalline silicon wafer
US20050053539A1 (en) * 2001-07-23 2005-03-10 Gerard Baluais High purity metallurgical silicon and method for preparing same
US20060016289A1 (en) * 2004-06-03 2006-01-26 Norichika Yamauchi Recycling method for scrap silicon
US20060048698A1 (en) * 2002-09-27 2006-03-09 Ge Energy (Usa) Llc Methods and systems for purifying elements
JP2006096599A (ja) * 2004-09-29 2006-04-13 Denki Kagaku Kogyo Kk 球状溶融シリカ粉末の製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1180968A (en) * 1912-09-18 1916-04-25 Carborundum Co Process for purifying silicon.
US2866701A (en) * 1956-05-10 1958-12-30 Vanadium Corp Of America Method of purifying silicon and ferrosilicon
GB1103329A (en) * 1964-09-15 1968-02-14 Gen Trustee Co Ltd Refining of silicon
US3671872A (en) * 1971-03-26 1972-06-20 Telemation High frequency multiple phase signal generator
DE2706175C3 (de) * 1977-02-14 1980-05-29 Wacker-Chemie Gmbh, 8000 Muenchen Verfahren zum Verschmelzen und Reinigen von Silicium
IT1100218B (it) * 1978-11-09 1985-09-28 Montedison Spa Procedimento per la purificazione di silicio
DE3208877A1 (de) * 1982-03-11 1983-09-22 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Verfahren zur entfernung des schlackenanteils aus schmelzmischungen von schlacke und silicium
US4473350A (en) * 1982-06-24 1984-09-25 The Cadre Corporation Oxy-fuel burner
DE3331046A1 (de) * 1983-08-29 1985-03-14 Wacker-Chemie GmbH, 8000 München Verfahren zum behandeln von silicium und ferrosilicium mit schlacke
US5069740A (en) * 1984-09-04 1991-12-03 Texas Instruments Incorporated Production of semiconductor grade silicon spheres from metallurgical grade silicon particles
US4730336A (en) * 1986-06-16 1988-03-08 G & H Oxy-Fuel, Inc. Oxy-fuel burner system
US5126203A (en) * 1987-04-22 1992-06-30 General Electric Company Deactivation of spent silicon powder
DE4122190C2 (de) * 1991-07-04 1995-07-06 Wacker Chemie Gmbh Verfahren und Vorrichtung zum kontinuierlichen Behandeln von Silicium
US5490775A (en) * 1993-11-08 1996-02-13 Combustion Tec, Inc. Forward injection oxy-fuel burner
NO180532C (no) * 1994-09-01 1997-05-07 Elkem Materials Fremgangsmåte for fjerning av forurensninger fra smeltet silisium
GB2303690B (en) * 1995-07-21 1999-05-26 Queenborough Rolling Mill Comp An oxy:fuel melting furnace
DE69522801T3 (de) * 1995-07-27 2008-08-14 Air Products And Chemicals, Inc. Verfahren zum Schmelzen von Aluminium, Schrott und Aluminiumrückständen
US5820842A (en) * 1996-09-10 1998-10-13 Elkem Metals Company L.P. Silicon refining process
KR100263220B1 (ko) * 1996-10-14 2000-09-01 에모토 간지 다결정실리콘의 제조방법과 장치 및 태양전지용실리콘기판의 제조방법
CA2232777C (fr) * 1997-03-24 2001-05-15 Hiroyuki Baba Procede pour la production de silicium destine a la fabrication de photopiles
US5972107A (en) * 1997-08-28 1999-10-26 Crystal Systems, Inc. Method for purifying silicon
JP3497355B2 (ja) * 1997-10-06 2004-02-16 信越フィルム株式会社 シリコンの精製方法
FR2771798B1 (fr) * 1997-12-02 1999-12-31 Air Liquide Bruleur oxy-combustible
US6221123B1 (en) * 1998-01-22 2001-04-24 Donsco Incorporated Process and apparatus for melting metal
WO2002016265A1 (fr) * 2000-08-21 2002-02-28 Astropower, Inc. Procede et appareil permettant de purifier le silicium
US6436337B1 (en) * 2001-04-27 2002-08-20 Jupiter Oxygen Corporation Oxy-fuel combustion system and uses therefor
US6432163B1 (en) * 2001-06-22 2002-08-13 Praxair Technology, Inc. Metal refining method using differing refining oxygen sequence
NO316020B1 (no) * 2001-10-10 2003-12-01 Elkem Materials Anordning for kontinuerlig slaggbehandling av silisium
FR2833937B1 (fr) * 2001-12-26 2004-11-12 Rhodia Chimie Sa Silices a faible reprise en eau
CN100341780C (zh) * 2002-02-04 2007-10-10 夏普株式会社 提纯硅的方法、用于提纯硅的矿渣和提纯的硅
NO333319B1 (no) * 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519764A (en) * 1981-04-30 1985-05-28 Hoxan Corporation Apparatus for fabricating polycrystalline silicon wafer
US20050053539A1 (en) * 2001-07-23 2005-03-10 Gerard Baluais High purity metallurgical silicon and method for preparing same
US20060048698A1 (en) * 2002-09-27 2006-03-09 Ge Energy (Usa) Llc Methods and systems for purifying elements
US20060016289A1 (en) * 2004-06-03 2006-01-26 Norichika Yamauchi Recycling method for scrap silicon
JP2006096599A (ja) * 2004-09-29 2006-04-13 Denki Kagaku Kogyo Kk 球状溶融シリカ粉末の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2074060A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052952A (ja) * 2008-08-26 2010-03-11 Central Glass Co Ltd シリコンの精製方法
WO2010131199A1 (fr) 2009-05-12 2010-11-18 Raysolar S.R.L. Procédé et appareil de purification du silicium
DE102009034317A1 (de) 2009-07-23 2011-02-03 Q-Cells Se Verfahren zur Herstellung durchbruchsicherer p-Typ Solarzellen aus umg-Silizium
US8721789B2 (en) 2009-09-18 2014-05-13 Abb Ab Apparatus and method for crystallization of silicon
US20130104601A1 (en) * 2009-09-18 2013-05-02 Jan-Erik Eriksson Apparatus And Method For Crystallization Of Silicon
US8632632B2 (en) * 2009-09-18 2014-01-21 Abb Ab Apparatus and method for crystallization of silicon
WO2011099870A1 (fr) 2010-02-12 2011-08-18 Metallkraft As Procédé de récupération de silicium de qualité solaire
EP2813471A4 (fr) * 2012-02-06 2015-11-11 Silicio Ferrosolar S L U Procédé d'affinage de bain fondu de métal ou de semi-conducteur et dispositif d'affinage sous vide
WO2013118249A1 (fr) 2012-02-06 2013-08-15 新日鉄マテリアルズ株式会社 Procédé d'affinage de bain fondu de métal ou de semi-conducteur et dispositif d'affinage sous vide
CN106517212A (zh) * 2016-12-09 2017-03-22 永平县泰达废渣开发利用有限公司 一种利用感应炉熔硅的起炉工艺
CN106744970A (zh) * 2016-12-09 2017-05-31 永平县泰达废渣开发利用有限公司 一种利用感应炉熔硅的铝锭起炉工艺
CN106744978A (zh) * 2016-12-09 2017-05-31 永平县泰达废渣开发利用有限公司 一种利用硅渣进行熔炼生产硅锭的工艺
CN107055545A (zh) * 2016-12-09 2017-08-18 永平县泰达废渣开发利用有限公司 一种利用硅粉进行熔炼生产硅锭的工艺
CN106517212B (zh) * 2016-12-09 2018-11-02 成都斯力康科技股份有限公司 一种利用感应炉熔硅的起炉工艺
CN106744978B (zh) * 2016-12-09 2019-03-12 成都斯力康科技股份有限公司 一种利用硅渣进行熔炼生产硅锭的工艺
CN106744970B (zh) * 2016-12-09 2020-01-31 成都斯力康科技股份有限公司 一种利用感应炉熔硅的铝锭起炉工艺

Also Published As

Publication number Publication date
IL197472A0 (en) 2009-12-24
EP2074060A4 (fr) 2015-12-23
BRPI0716934A2 (pt) 2013-09-17
AU2007295860A2 (en) 2009-05-14
KR20090053807A (ko) 2009-05-27
EP2074060A1 (fr) 2009-07-01
MX2009002808A (es) 2009-03-31
NO20091339L (no) 2009-03-31
EA015387B1 (ru) 2011-08-30
UA97488C2 (ru) 2012-02-27
GEP20115178B (en) 2011-03-10
CA2660386C (fr) 2012-05-01
CN101511731A (zh) 2009-08-19
AU2007295860A1 (en) 2008-03-20
CN101511731B (zh) 2012-02-22
EG25136A (en) 2011-09-25
ZA200900898B (en) 2010-06-30
JP2010503596A (ja) 2010-02-04
US20080253955A1 (en) 2008-10-16
CA2660386A1 (fr) 2008-03-20
EA200970275A1 (ru) 2009-10-30

Similar Documents

Publication Publication Date Title
CA2660386C (fr) Procede et dispositif de purification de materiau en silicium de basse qualite
KR101450346B1 (ko) 태양 전지 및 다른 용도를 위한 규소 제조 방법
JP4159994B2 (ja) シリコンの精製方法、シリコン精製用スラグおよび精製されたシリコン
US20110097256A1 (en) Method for preparing high-purity metallurgical-grade silicon
EP3554998B1 (fr) Procédé de production de silicium de qualité commerciale
EP2379758A2 (fr) Procédé et appareil pour le raffinage de silicium métallurgique en silicium de qualité solaire
EP2212249A1 (fr) Procédé de fabrication de silicium de pureté moyenne et de haute pureté à partir de silicium de qualité métallurgique
CN102616787A (zh) 一种去除工业硅中硼磷杂质的方法
JPH101728A (ja) 酸化錫の還元処理方法及び装置
RU2764670C9 (ru) Способ получения технического кремния (варианты)
EP2530051A1 (fr) Corps de four de réduction
CN101423218B (zh) 等离子火焰枪底吹熔化金属硅中难熔元素的方法
RU2173738C1 (ru) Способ получения мульти- и монокристаллического кремния

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033182.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07815840

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2007815840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007815840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2660386

Country of ref document: CA

Ref document number: 528/KOLNP/2009

Country of ref document: IN

Ref document number: 12009500272

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2007295860

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009030274

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 1020097004910

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009527664

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/002808

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200970275

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 11223

Country of ref document: GE

ENP Entry into the national phase

Ref document number: PI0716934

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090313