WO2008029652A1 - Organic electroluminescent device, illuminating device and display - Google Patents

Organic electroluminescent device, illuminating device and display Download PDF

Info

Publication number
WO2008029652A1
WO2008029652A1 PCT/JP2007/066541 JP2007066541W WO2008029652A1 WO 2008029652 A1 WO2008029652 A1 WO 2008029652A1 JP 2007066541 W JP2007066541 W JP 2007066541W WO 2008029652 A1 WO2008029652 A1 WO 2008029652A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
ring
compound
layer
Prior art date
Application number
PCT/JP2007/066541
Other languages
English (en)
French (fr)
Inventor
Rie Katakura
Tatsuo Tanaka
Hideo Taka
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to US12/439,717 priority Critical patent/US8852757B2/en
Priority to JP2008533102A priority patent/JP5332614B2/ja
Publication of WO2008029652A1 publication Critical patent/WO2008029652A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electoluminescence element, a lighting device, and a display device.
  • ELD electoric luminescence display
  • examples of ELD constituent elements include inorganic electoluminescence devices and organic electroluminescence devices (hereinafter also referred to as organic EL devices).
  • Inorganic electroluminescent elements require high alternating current voltage to drive the light-emitting elements that have been used as planar light sources.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode.
  • excitons Is an element that emits light using the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several to several tens of volts. Because it is a self-emitting type, it has a wide viewing angle and is a thin-film type complete solid-state device with high visibility, so it attracts attention from the viewpoint of space saving and portability!
  • Patent No. 309379 6 discloses a technique for doping a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the device.
  • — 264692 discloses a device having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped therein.
  • -Devices having an organic light emitting layer doped with a hydroxyquinoline aluminum complex as a host compound and doped with a quinacridone dye are known.
  • the organic EL element is an all-solid element composed of an organic material film having a thickness of only about 0.1 m between the electrodes, and its emission is relatively low, about 2V to 20V. Because it can be achieved with voltage, it is a promising technology for next-generation flat displays and lighting.
  • organic EL elements are based on a light-emitting phenomenon that utilizes deactivation of an organic material from an excited state to a ground state, the wavelength of blue or blue-green light, etc.
  • a high voltage is required to excite the large gap.
  • the excited state itself is located at a high level, the lifetime tends to be shorter than that of green or red light emission, which is greatly damaged when returning to the ground state, and in particular, light emission from the triplet excited state. This tendency becomes remarkable in phosphorescence emission using the.
  • Patent Document 2 a method of performing irradiation with heat (see, for example, Patent Document 2), a phosphorescent dopant, and a material having a bull group at the end of the phosphorescent dopant as well as a mixture of comonomers having a bull group AIBN (a A manufacturing method in which a polymerization reaction is allowed to proceed during film formation by adding zoisoptyritol (for example, see Patent Document 3), and a manufacturing method in which a dinoless alder reaction is caused between two molecules in the same layer to crosslink ( For example, see Patent Document 4).
  • phosphorescent dopants especially phosphorescent dopants that can be applied to blue, can be used as a host for such dopants, which have a very large band gap, and achieve high luminous efficiency and long life at the same time.
  • the coating method also called wet method.
  • Patent Document 1 JP-A-5-271166
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-297882
  • Patent Document 3 JP 2003-73666 Koyuki
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-86371
  • An object of the present invention is to provide an organic electroluminescence element having a high external extraction quantum efficiency and a long light emission lifetime, and further providing an illumination device and a display device including the organic electoluminescence element. It is.
  • Arl and Ar2 each represent an aromatic ring.
  • Ar represents an aromatic ring.
  • R represents a hydrogen atom or a methyl group
  • Q represents one selected from the group of divalent linking groups consisting of the following general formulas (c), (d) and (e), or It represents a group represented by a combination of a plurality of the divalent linking groups.
  • R and R each represent a hydrogen atom or a methyl group, and Cy represents a 3-membered or 4-membered cyclic group.
  • Z is a hydrocarbon in which a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less is bonded to at least one of the third atoms counted from the nitrogen atom to be bonded.
  • Es value a steric parameter value
  • X and Y represent a carbon atom or a nitrogen atom
  • A represents an atomic group necessary for forming a 56-membered hydrocarbon ring or a heterocyclic ring together with X—C.
  • X -L1 -X represents a bidentate ligand.
  • L1 is a bidentate ligand with XX
  • ml represents an integer of 1 or 2
  • m2 represents a force representing an integer of 0 or 1
  • ml + m2 is 2 or 3
  • the central metal, M represents a group 8 to 10 metal in the periodic table.
  • At least one layer of the compound contains the compound or a polymer of the compound, and the light-emitting layer is formed by a wet method. Machine-elect luminescence element.
  • a display device comprising the organic electoluminescence element according to any one of 1 to 19 above.
  • An illumination device comprising the organic electoluminescence element according to any one of 1 to 19 above.
  • an organic electoluminescence element having a high external extraction quantum efficiency and a long emission lifetime, and further, an illumination device and a display device provided with the organic electoluminescence element. did it.
  • FIG. 1 shows a schematic configuration diagram of an organic EL full-color display device.
  • FIG. 2 is a schematic view of a lighting device.
  • FIG. 3 is a sectional view of the lighting device.
  • the organic electret luminescence device (also referred to as an organic EL device) of the present invention has a configuration described in any one of claims 1 to 19; In addition, it is possible to obtain an organic electoluminescence device having a long emission lifetime.
  • the present inventors have succeeded in obtaining a high-luminance display device and lighting device that include the organic EL element.
  • the polymer obtained by polymerizing the compound A is not limited as long as the compound A is contained in a part of the polymer, and the compound is formed via a reactive group (or polymerizable group). A is overlapping.
  • the compound A or the polymer of the compound A according to the present invention can be prepared as a solution or a dispersion liquid, and the film produced by coating is uniform and sufficiently used as an organic electoluminescence device. Is possible.
  • the compound A or the polymer of the compound A has a sufficiently wide band gap that can be used as a host for the blue phosphorescent light-emitting dopant, has high external extraction quantum efficiency, and An organic electoluminescence element having a long emission lifetime can be provided, and further, an illumination device and a display device including the organic electoluminescence element can be provided.
  • the polymer of the compound A may be incorporated in the state of the compound A, that is, in a state before polymerization (also referred to as a monomer or a monomer). It may be prepared as such and incorporated into the constituent layers of the device.
  • a component layer of an element is formed by a wet method such as coating
  • photopolymerization such as ultraviolet irradiation is performed. It is preferable to provide an electron transport layer or the like on the light emitting layer obtained by forming a polymer through a step of performing thermal polymerization or heating.
  • the compound A according to the present invention can be incorporated into the constituent layers of the organic EL device of the present invention by vapor deposition or the like while remaining in the monomer (state before polymerization).
  • the compound A is polymerized by a polymerization reaction by active species generated by energization.
  • the coating film of compound A After the coating film of compound A is prepared, it is also preferable to put a drying process before the polymerization, for example, heating at a temperature slightly higher than the boiling point of the coating solvent, before the polymerization. In addition, after polymerizing the coating film, the polymer film is rinsed with an appropriate solvent (without dissolving the polymer film) to remove insoluble materials, and then the upper layer is further laminated and applied. It is also preferable to add.
  • the reactive group can include the following examples of substituents S, It is not limited. Among them, preferable reactive substituents include a substituent containing a carbon-carbon double bond, and more preferably a bur group. In addition, compound A preferably has two or more reactive substituents.
  • the reactive groups may be the same or different. It may be.
  • Compound A has a partial structure represented by the general formula (a) and a reactive group.
  • the aromatic rings represented by Arl and Ar2 are aromatic An aromatic hydrocarbon ring or an aromatic heterocycle.
  • the aromatic hydrocarbon rings represented by Arl and Ar2 respectively include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, and a pyrene ring.
  • examples of the aromatic heterocyclic ring represented by Arl and Ar2 include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, and a pyrimidine.
  • These rings have further substituents! /, May! /.
  • Arl and Ar2 are each preferably a condensed ring composed of three rings, and examples of the aromatic hydrocarbon condensed ring in which three or more rings are condensed include , Naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, taricene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, coronene ring , Benzocoronene ring, hexa benzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthperylene ring, pentabenzo
  • These rings may further have a substituent.
  • aromatic heterocyclic ring in which three or more rings are condensed include an atalidine ring, a benzoquinoline ring, a force rubazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, and a phenantorin ring.
  • the aromatic rings represented by Arl and Ar2 are preferably rubazole ring, carboline ring, dibenzofuran ring and benzene ring, respectively. Particularly preferably used are a strong rubazole ring, a carboline ring and a benzene ring.
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, Isopropyl group, tert butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group etc.
  • alkenyl group For example, vinylol group, aranol group, 1 propenyl group, 2 butur group, 1, 3 butagenyl group, 2 penturyl group, isopropenyl group, etc.
  • alkynyl group eg, etulyl group, propargyl group, etc.
  • aromatic Hydrocarbon groups also referred to
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring! /.
  • the reactive group of the compound A according to the present invention is preferably represented by any one of the general formulas (2) to (5) as a preferred embodiment.
  • * indicates the bonding position of the reactive group.
  • Q is one selected from the divalent linking group group consisting of the above general formulas (c), (d) and (e), or the divalent Represents a group represented by a plurality of combinations of linking groups of R, R
  • R represents a hydrogen atom or a methyl group
  • Cv is a 3-membered or
  • the 3-membered or 4-membered cyclic ether may have the above-described substituent.
  • the molecular weight (weight average molecular weight Mw) of the polymer of the compound A according to the present invention is preferably 1000000 or less, more preferably in the range of 10,000 to 200,000. Furthermore, the ratio (molecular weight distribution) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) according to the present invention is preferably 3 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer of Compound A according to the present invention were measured using GPC (gel permeation chromatography) using THF (tetrahydrofuran) as a column solvent. Molecular weight measurements can be made.
  • the molecular weight of the polymer a layer containing only compound A is prepared in advance, and a plurality of photopolymerized samples (for example, about 10 samples) with adjusted ultraviolet irradiation time are prepared.
  • a calibration curve for the molecular weight (weight average, number average molecular weight, etc.) can be prepared in advance, and the molecular weight can be calculated from the ultraviolet irradiation time.
  • the molecular weight of the polymer itself can be measured by a conventionally known method.
  • GPC measurement conditions are measured by stabilizing the column at 40 ° C, flowing THF (tetrahydrofuran) at a flow rate of 1 ml / min, and injecting about 100 ⁇ l of a sample having a concentration of 1 mg / ml.
  • the column it is preferable to use a combination of commercially available polystyrene diel columns.
  • Shodex GPC KF—801, 802, 803, 804, 80 manufactured by Showa Denko A combination of 5, 806, and 807, or a combination of TSKgel G1000H, G2000H, G300H, G4000H, G5000H, G6000H, G7000H, TSK guard column, etc. manufactured by Tosoh Corporation is preferable.
  • RI detector refractive index detector
  • UV detector UV detector
  • molecular weight was measured under the following measurement conditions.
  • the compound A according to the present invention or the polymer of the compound A is a force that can be used even in the layer of the organic EL element of the present invention, which will be described later, or in the misalignment layer. Effects described in the present invention
  • a compound having a phosphorescence 0-0 transition band force of 60 nm or less of the compound A according to the present invention or a polymer of the compound A is mentioned as a preferable compound.
  • a metal complex represented by the general formula (1) is preferable. This will also be described later.
  • Specific examples of Compound A or a polymer of the compound according to the present invention are shown below, but the present invention is not limited thereto.
  • the light emitting maximum wavelength of the blue light emitting layer is preferably from 430 nm to 480 nm.
  • the green light emitting layer preferably has a light emitting maximum wavelength of 510 nm to 550 nm, and the red light emitting layer has a light emitting maximum wavelength of 600 nm.
  • a monochromatic light emitting layer in the range of ⁇ 640 nm is preferred, and a display device using these is preferred.
  • a white light emitting layer may be formed by laminating at least three of these light emitting layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers. It is preferable that the organic EL element of the present invention is a lighting device using these, which is preferably a white light emitting layer.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but it is possible to prevent the application of a high voltage unnecessary during the light emission and the stability of the light emission color against the driving current. From the viewpoint, it is preferable to adjust to the range of 21 111 to 5 111, more preferably to the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.
  • a light emitting dopant or host compound described later is formed by, for example, a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. It ’s the power to do.
  • the light-emitting layer of the organic EL device of the present invention includes at least a light-emitting host compound and a light-emitting dopant (such as a phosphorescent dopant (also known as a phosphorescent dopant! /, U) or a fluorescent dopant). Les, preferably containing one kind.
  • a light-emitting dopant such as a phosphorescent dopant (also known as a phosphorescent dopant! /, U) or a fluorescent dopant.
  • the host compound used in the present invention will be described below.
  • the host compound means that the compound contained in the light-emitting layer has a mass ratio of 20% or more in the layer and emits phosphorescence at room temperature (25 ° C).
  • Phosphorescence Quantum yield is defined as a compound with less than 0.1.
  • the phosphorescence quantum yield is less than 0.01.
  • the mass ratio in the layer is preferably 20% or more.
  • known host compounds may be used alone or in combination of two or more. By using multiple types of host compounds, it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient. In addition, by using multiple types of light emitting dopants, which will be described later, it becomes possible to mix different types of light emission, thereby obtaining the desired light emission color.
  • the light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, which may be a low molecular compound having a polymerizable group such as a bur group or an epoxy group. Even compounds (evaporation polymerizable light-emitting host) are good.
  • the luminescent dopant according to the present invention will be described below.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, etc.
  • Power that can be used From the viewpoint of obtaining an organic EL device with higher luminous efficiency, as a light-emitting dopant used in the light-emitting layer or light-emitting unit of the organic EL device of the present invention (sometimes simply referred to as a light-emitting material) It is preferable to contain a phosphorescent dopant at the same time as containing the above host compound! /.
  • the phosphorescent dopant according to the present invention will be described below.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C).
  • Phosphorescence quantum yield power S a force defined as being a compound of 0.01 or more at 25 ° C.
  • a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 398 (1992, Maruzen).
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but the phosphorescent dopant according to the present invention can be used in any solvent! / And the phosphorescence quantum yield (0. 01 or better) is achieved!
  • the phosphorescent dopant can be appropriately selected from known ones used in the light emitting layer of the organic EL device.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a metal of Group 8 to Group 10 in the periodic table, more preferably an iridium compound (Ir complex).
  • Osmium compounds Osmium compounds, platinum compounds (platinum complex compounds), rare earth complexes, and most preferred are iridium compounds (Ir complexes).
  • the phosphorescent dopant according to the present invention preferably has an ionization potential of 5.5 eV or less, preferably having a 0-0 transition band of the phosphorescence wavelength of 485 nm or less.
  • force S which is a method for obtaining the 0-0 transition band, in the present invention, the 0 0 transition with the maximum emission wavelength appearing on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method. It is defined as a band.
  • the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish between noise and peak when enlarged.
  • the emission spectrum immediately after the excitation light irradiation (for convenience, this is referred to as a steady light spectrum) is enlarged, and the emission spectrum 100 ms after the excitation light irradiation (for convenience, this is referred to as a phosphorescence spectrum) is superimposed.
  • the ionization potential (Ip) of the phosphorescent dopant according to the present invention is preferably a force S of 5.5 eV or less, more preferably 4.5 to 5.5 eV.
  • the ionization potential according to the present invention is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and specifically, the film state. This is the energy required to extract electrons from the (layered state) compound, and these can be directly measured by photoelectron spectroscopy.
  • a straight line that can be used by ESCA 56 00 UPS (ultraviolet photoemission spectroscopy) manufactured by ULVAC-FAI Co., Ltd. is used.
  • a metal complex represented by the general formula (1) is preferable.
  • Z has a substituent having a steric parameter value (Es value) of -0.5 or less to at least one of the third atoms counted from the nitrogen atom to which it is bonded.
  • Es value represents a hydrocarbon ring or a heterocyclic ring (including the respective tautomers).
  • Es value is chemical reaction
  • This is a steric parameter derived from the nature, and the smaller this value is, the more sterically bulky and substituents can be.
  • the Es value is described below! /. In general, it is known that in the hydrolysis reaction of esters under acidic conditions, the influence of substituents on the progress of the reaction may be considered only as steric hindrance. The Es value is a quantification of the steric hindrance of substituents.
  • Es value of substituent X is the following chemical reaction formula
  • Es log (kX / kH)
  • the reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative.
  • the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
  • the Es value as defined in this specification is not defined as that of a methyl group as 0, but is defined as 0 for a hydrogen atom and 0 for a methyl group.
  • the Es value of 1.24 is subtracted.
  • the Es value is not more than 0.5. Preferably it is 1 7.0 or more and 1 0.6 or less. Most preferably, it is 1 7.0 or more and 1 1.0 or less.
  • Es value a steric parameter value
  • R and ketoeenol tautomers may exist
  • the keto moiety is enol.
  • Es value is converted as an isomer of. The same conversion occurs when other tautomerism exists. Convert Es value in the calculation method.
  • substituents having an Es value of ⁇ 0.5 or less are electronically effective! /, And are electron-donating substituents! /.
  • the electron-donating substituent is a substituent having a negative ⁇ ⁇ value as described below, as compared with a hydrogen atom. Easily give electrons to the bonding atom side!
  • substituent exhibiting an electron donating property include a hydroxyl group, an alkoxy group (for example, methoxy group,), an acetyloxy group, an amino group, a dimethylamino group, an acetylamino group, an alkyl group (for example, a methyl group, Ethyl group, propyl group, t-butyl group, etc.) and aryl group (eg, phenyl group, mesityl group, etc.).
  • an alkoxy group for example, methoxy group,
  • acetyloxy group an amino group
  • a dimethylamino group for a acetylamino group
  • an alkyl group for example, a methyl group, Ethyl group, propyl group, t-butyl group, etc.
  • aryl group eg, phenyl group, mesityl group, etc.
  • Hammett's ⁇ ⁇ value refers to Hammett's substituent constant ⁇ ⁇ .
  • Hammett's ⁇ ⁇ value is a substituent constant determined by Hammett et al. From the electronic effects of substituents on the hydrolysis of ethyl benzoate. “Structure-activity relationship of drugs” (Nanedo: 1979), “ The groups described in “Substituent Constants Correlation Analysis in Chemistry and Biology” (C. Hansch and A. Leo, John Wiley & Sons, New York, 1979) can be cited.
  • Y represents a carbon atom or a nitrogen atom, preferably a carbon atom.
  • Preferred examples of the nitrogen-containing heterocyclic group containing Y include 2 imidazolyl group, 2— (1, 3, 4 triazolyl) group, 2— (1, 3, 5 triazolyl) group, 2 tetrazolyl group and the like. Can be mentioned. Of these nitrogen-containing heterocyclic groups, 2-imidazolyl group is most preferred.
  • R 1 and R 2 represent a hydrogen atom or a substituent.
  • substituents include alkyl groups (e.g.
  • aromatic heterocyclic group for example, pyridinole group, pyrimidinyl group, free radical
  • pyrrolyl group imidazolyl group, benzimidazolyl group, virazolyl group, pyrazol group, triazolyl group (for example, 1, 2, 4 triazole-1-yl group, 1, 2, 3-triazole-1-yl group, etc.)
  • oxazolyl group Benzoxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, chenyl, quinolyl Group, benzofuryl group, dibenzofuryl group, benzocenyl group, dibenzocenyl group, indolinole group, carbazolyl group, canolepolyninole group, diazacarbazolyl group (the number of carbon atoms constituting the carboline ring of the carbolinyl group).
  • quinoxalinyl group pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc., heterocyclic group (eg pyrrolidinole group, imidazolidinole group, morpholyl group, oxazolidyl group, etc.)
  • Alkoxy groups for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.
  • cycloalkoxy groups for example, cyclopentyloxy group, cyclohexyloxy group, etc.
  • a ryloxy group eg For example, phenoxy group, naphthyloxy group, etc.
  • alkylthio group eg, methylthio group, ethylthio group, propylthio group, pent
  • silanesulfinyl group dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfier group, 2-pyridylsulfier group, etc.
  • alkylsulfonyl group for example, methinolesnorehoninore group, ethinoresnorehoninore group, butino Resonorephoninole group, cyclohexenoresnoreno 2-nole group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.
  • arylarylsulfonyl group or heteroarylsulfonyl group for example, phenylsulfonyl group, naphthylsulfonyl group, 2 —Pyridyl Sulfonyl group, etc.
  • amino group for example, amino group, ethylamino group,
  • X represents a carbon atom or a nitrogen atom, preferably a carbon atom.
  • A—CX is an aromatic hydrocarbon ring group
  • one hydrogen atom at any position is removed from the 4 ⁇ + 2 ⁇ -type aromatic hydrocarbon compound.
  • Specific examples include phenyl group, 1 naphthyl group, 2 naphthyl group, 9 anthryl group, 1 anthryl group, 9 phenanthryl group, 2 triphenylenyl group, and 3 perylenyl group.
  • the hydrocarbon ring group is substituted with, for example, the substituent described for R 1.
  • a condensed ring for example, a 9-pyrenyl group in which a hydrocarbon ring is condensed to a 9 phenanthryl group, an 8-quinolyl group in which a heterocyclic ring is condensed to a phenyl group, or the like
  • a condensed ring for example, a 9-pyrenyl group in which a hydrocarbon ring is condensed to a 9 phenanthryl group, an 8-quinolyl group in which a heterocyclic ring is condensed to a phenyl group, or the like
  • the aromatic heterocyclic group represented by CX is an aromatic heterocyclic group
  • the aromatic heterocyclic group is a carbon atom at least one adjacent position of the portion bonded to the nitrogen-containing aromatic heterocyclic ring
  • the heterocyclic ring is substituted with, for example, the substituent described for R 1.
  • a condensed ring may be formed.
  • X -L1 -X represents a bidentate ligand, and X and ⁇ are each independently charcoal.
  • L1 forms a bidentate ligand with X and X
  • the bidentate ligand represented by X 1 -L 1 -X represents a specific example of the bidentate ligand represented by X 1 -L 1 -X.
  • ml represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • ml + m2 is 2 or 3.
  • m2 is preferably 0.
  • the central metal M is a group 8 to 10 metal in the periodic table of elements.
  • iridium or platinum is preferable.
  • the power of showing specific examples of the phosphorescent dopant according to the present invention is not limited thereto.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylenes And dyes based on dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. May be.
  • the injection layer is a layer that is provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission.
  • the details of the anode buffer layer (hole injection layer) are described in JP-A-9 45479, JP-A-9 260062, JP-A-8-288069 and the like.
  • Examples include a phthalocyanine buffer layer represented by talocyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide Etc.
  • the thickness of the buffer layer (injection layer) is preferably in the range of 0 ⁇ 11 111 to 5 111, although it depends on the material desired to be a very thin film.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, see pages 237 of JP-A-11-204258, JP-A-11-204359, and “OLEDs and the Forefront of Industrialization (issued on November 30, 1998 by TS Co., Ltd.)”. There is a hole blocking layer described.
  • the hole blocking layer has a function of an electron transport layer, and is composed of a hole blocking material having a function of transporting electrons and an extremely small ability to transport holes, and transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved.
  • the structure of the electron transport layer which will be described later, is used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound.
  • the light emitting layer with the shortest wavelength of light emission is closest to the anode among all light emitting layers.
  • the shortest wave layer and the light emitting layer next to the anode next to the anode It is preferable to additionally provide a hole blocking layer between them.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more with respect to the host compound of the shortest wave emitting layer. Better!/,.
  • the ionization potential is defined by the energy required to emit an electron at the HOMO (highest occupied molecular orbital) level of a compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian98 (Gaussian98, Revision A. IV 1.4, MJ Frisch, et ai, Gaussian, Inc., Pitts ourgh PA, 2002.)
  • the ionization potential can be obtained by rounding off the second decimal place of the value (eV unit conversion value) calculated by structural optimization using B3LYP / 6-31G * as a keyword. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the ionization potential can also be obtained by a method of direct measurement by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports holes.
  • the probability of recombination of electrons and holes can be improved.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 nm to;! OOnm, and more preferably 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole or multiple hole transport layers can be provided.
  • the hole transport material has either injection or transport of holes, electron barrier properties! /, Or a deviation, and may be either an organic substance or an inorganic substance.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, virazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
  • stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • a hole transporting material As a hole transporting material, the above-described ability can be used. It is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N-tetraphenenole 4, A'-diaminophenol; N, N-diphenolinole N, N' — Bis (3-methylphenyl) -1- [1, 1'-biphenyl] -1,4,4'-diamine (TPD); 2,2 Bis (4-di-triphenylaminophenyl) propane; Bis (4 di-l-tri-noraminophenyl) cyclohexane; N, N, N ', N' —tetra-l-trinore 4, A'-diaminobiphenyl; 1, 1-bis (4-di-l p Triphenylamino) 4-Hexanes Hexane; Bis (4-dimethylamino-2-methylphenenyl) phenylmethane; Bis (4-di-p-triaminoaminopheny
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injecting material and hole transporting material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be more powerful to form.
  • the film thickness of the hole transport layer is not particularly limited, but usually
  • This hole transport layer is made of the above material.
  • It may be a single layer structure composed of one kind or two or more kinds.
  • a hole transport layer having a high p property doped with impurities can be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-1021.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or multiple layers.
  • any material having a function of transmitting electrons injected from the electrode to the light emitting layer may be selected and used as a material of any conventionally known compound.
  • Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carpositimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dib mouth mode)
  • the central metal of these metal complexes is 8 quinolinol) anoreminium, tris (2 methinolay 8 -quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc.
  • Metal complexes replacing Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as an electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type Si and n-type SiC Can also be used as an electron transporting material.
  • the electron transport layer is formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. I can do it. Although there is no restriction
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer with high n property doped with impurities can be used.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. The one described in. [0242]
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • Electrode materials include metals such as Au, Cul, and indium tinoxide.
  • Examples thereof include conductive transparent materials such as (ITO), SnO, and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 ZnO) that can produce a transparent conductive film may be used.
  • IDIXO In 2 O 3 ZnO
  • a thin film can be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern of a desired shape can be formed by a single photolithography method. (About 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape during the deposition of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is a force depending on the material. Usually, it is selected in the range of 10 nm to 1000 ⁇ m, preferably 10 nm to 200 nm.
  • a cathode having a small work function, (4 eV or less) metal (referred to as an electron injecting metal), alloy, electrically conductive compound, and a mixture thereof is used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide. (Al 2 O 3) mixture, indium, lithium / aluminum mixture, rare earth metal, and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, magnesium.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium.
  • silver mixture Magnesium / Aluminum mixture, Magnesium / Indu Mixture, aluminum / aluminum oxide (Al 2 O 3) mixture, lithium / aluminum
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / mouth or less.
  • the emission luminance is improved, which is convenient.
  • the transparent transparent or translucent cathode is manufactured by forming the conductive transparent material mentioned in the description of the anode thereon. By applying this, it is possible to produce a device in which both the anode and the cathode are transparent.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. Or opaque. In the case where light is extracted from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellose diacetate, cellulose triacetate, cellulose acetate butyrate, cell mouth acetate acetate.
  • Cellulose esters such as Pionate (CAP), Cellulose Acetate Phthalate (TAC), Cellulose Nitrate or their derivatives, Polyvinylidene Chloride, Polyvinylenorenoreconole, Polyethylene Vinylenorenoreconole, Syndiotactic Pore Restyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyester Polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, Po trimethyl meth Tari rates, acrylic or polyarylates, ARTON (trade name JSR Corporation) Alternatively, there may be mentioned apel (trade name, manufactured by Mitsui Chemicals), les, cycloolefin-based resins, and the like.
  • CAP Pionate
  • TAC Cellulose Acetate Phthalate
  • the surface of the resin film may have an inorganic film, an organic film, or a hybrid film of both.
  • any material that has a function of suppressing intrusion of elements such as moisture and oxygen may be used.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • the inorganic layer and the organic layer are stacked in order! /, But there are no particular restrictions! /, But it is preferable to stack both layers alternately! / ⁇
  • the formation method of the noria film is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, large size method, etc.
  • atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 preferable.
  • the opaque support substrate examples include a metal plate such as aluminum and stainless steel, an opaque resin substrate, a ceramic substrate, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is 1% or more, preferably S, more preferably 5% or more.
  • the number of electrons flowing through the L element is X 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • color When a conversion filter is used, the maximum light emission of the organic EL element is preferably 480 nm or less.
  • sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • the sealing member may be a concave plate or a flat plate as long as it is disposed so as to cover the display region of the organic EL element. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate 'film, a metal plate' film, and the like.
  • the glass plate include soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 X 10— 111 3 / (111 2 ' Hereinafter, it was measured by the method based on JIS K 7129- 1992, the water vapor permeability (25 ⁇ 0. 5 ° C, relative humidity (90 ⁇ 2)% RH) , 1 X 10- 3 g / (m 2 '24h) It is preferable that
  • the sealing member is processed into a concave shape by sandblasting, chemical etching, or the like.
  • the adhesive include photocuring and thermosetting adhesives having a reactive bur group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. Can be mentioned.
  • epoxy-based heat and chemical curing types two-component mixing
  • hot-melt polyamides, polyesters and polyolefins hot-melt polyamides, polyesters and polyolefins.
  • cationic curing type UV curing type An epoxy resin adhesive can be mentioned.
  • the adhesive can be cured from room temperature to 80 ° C.
  • a desiccant may be dispersed in the adhesive.
  • a commercially available dispenser may be used to apply the adhesive to the sealing part, or it may be printed like screen printing.
  • the electrode and the organic layer may be coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film.
  • a material for forming the film any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method.
  • Plasma CVD method, laser C VD method, thermal CVD method, coating method, etc. can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is used in the gas phase or liquid phase. Injecting power S is preferred. A vacuum is also possible. It is also possible to seal hygroscopic compounds inside.
  • Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
  • perchloric acids For example, barium perchlorate, magnesium perchlorate, etc. can be used, and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided outside.
  • the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • the force that can be used for this S The material that can be used for the same glass plate, polymer plate 'film, metal plate' film, etc. used for the sealing, because it is lightweight and thin. It is preferable to use a polymer film.
  • the organic EL element emits light inside a layer with a higher refractive index than air (refractive index of about 1.7 to 2.1), and only 15% to 20% of the light generated in the light emitting layer can be extracted. It is generally said that there is nothing. This is because light incident on the interface (transparent substrate-air interface) at an angle ⁇ greater than the critical angle causes total reflection and cannot be extracted outside the device. This is because the light undergoes total reflection between the light and the light, and the light is guided through the transparent electrode or the light emitting layer.
  • these methods can be used in combination with the organic EL device of the present invention, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter.
  • a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer, and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include air-mouthed gel, porous silica, magnesium fluoride, fluorine-based polymer, and the like. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into the interface or any medium that causes total reflection is characterized by a high effect of improving the light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (inside the transparent substrate or transparent electrode). That is going to take out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index! This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction diffracts only light traveling in a specific direction. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. .
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is a square lattice, a triangular lattice, a honeycomb lattice, etc. 2 It is preferable that the arrangement is repeated dimensionally.
  • the organic EL device of the present invention can be processed on a light extraction side of a substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, in a specific direction, for example, on the device light emitting surface.
  • a specific direction for example, on the device light emitting surface.
  • the brightness in a specific direction can be increased.
  • a quadrangular pyramid with a side of 30 mm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is 10m ⁇ ; 100m is preferred. If it is smaller than this, the effect of diffraction is generated, and if the color is too large, the thickness becomes thick, which is not preferable.
  • the light-condensing sheet for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3EM may be used.
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe with a vertex angle of 90 degrees and a pitch of 50 mm, or a shape with a rounded vertex angle and a pitch. The shape may be changed randomly or other shapes.
  • a light diffusing plate 'film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
  • a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
  • an organic EL thin film of an organic EL element material ie, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer
  • a vapor deposition method, a wet process spin coating method, casting method, ink jet method, printing method
  • a homogeneous film can be obtained immediately.
  • Liquid media for dissolving or dispersing the organic EL material according to the present invention include, for example, ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and halogenated carbonization such as dichlorobenzene. Hydrogen, aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse
  • dispersion methods such as an ultrasonic wave, high shear force dispersion
  • a thin film made of a cathode material is formed thereon with a thickness of 1 ⁇ m or less, preferably 50 nm to 200 nm, for example, by a method such as vapor deposition or sputtering.
  • a method such as vapor deposition or sputtering.
  • the order of preparation may be reversed, and the cathode, electron injection layer, electron transport layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the AC waveform to be applied is arbitrary!
  • the organic EL element of the present invention can be used as a display device, a display, and various light sources.
  • light sources include lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, Examples include, but are not limited to, a light source of an optical sensor. However, it can be used effectively for applications such as a backlight of a liquid crystal display device and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. If patterning is required, the electrode In the production of an element in which only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned, a conventionally known method can be used.
  • the organic EL element of the present invention is a white element
  • the ITO transparent electrode is formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • poly (3,4 ethylene dioxythiophene) polystyrene sulfonate (PEDOT / PSS: Bayer, Baytron P Al 4083) diluted to 70% with pure water was formed by spin coating at 3000 rpm for 30 seconds, and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
  • the substrate was transferred to a nitrogen atmosphere, and 50 mg of compound A was added to the first hole transport layer.
  • a solution dissolved in 0 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds. Irradiated with ultraviolet light for 180 seconds, photopolymerization / crosslinking was carried out to form a second hole transport layer having a film thickness of about 25 nm.
  • Organic EL elements 12 to 18 were prepared in the same manner except that the compounds shown in Table 2 were used as the comparative compound 1 and tBu-PBD in the preparation of the organic EL element 11.
  • the obtained organic EL devices 11 to 18 were evaluated for external extraction quantum efficiency and emission lifetime as follows.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiation luminance meter CS-1000 manufactured by Koni Force Minolta Sensing Co., Ltd. was used.
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used for the measurement. Table 2 shows the results obtained. In addition, the measurement results of the light emission lifetime in Table 2 are expressed as relative values when the organic EL element 1-1 is set to 100.
  • Comparative organic EL device 1 prepared using comparative compound 2 having no reactive group 1
  • each of the organic EL devices 1 3 1 9 of the present invention can be laminated by a coating method because an organic thin film having a high dissolution resistance to a coating solvent and a crosslinking density can be formed.
  • a coating method because an organic thin film having a high dissolution resistance to a coating solvent and a crosslinking density can be formed.
  • this IT ⁇ transparent electrode After putting an ITO (indium tin oxide) lOOnm film on a lOOmmX lOOmm X l. 1mm glass substrate as an anode (NA-45 manufactured by NH Techno Glass), this IT ⁇ transparent electrode is provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, and 50 mg of compound A was added to the first hole transport layer.
  • a solution dissolved in ml of toluene was formed by spin coating under conditions of 1000 rpm and 30 seconds. Irradiated with ultraviolet light for 180 seconds, photopolymerization / crosslinking was carried out to form a second hole transport layer having a film thickness of about 25 nm.
  • the organic EL devices 2-1 and 2-2 produced as follows were evaluated, and the results are not shown in the table below.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiance meter CS-1000 manufactured by Koni Force Minolta Sensing was used.
  • the organic EL of the present invention containing Compound 145 (having as a repeating unit a force rubazole ring and a dibenzofuran ring as a partial structure), which is an embodiment of the polymer of Compound A according to the present invention. It can be seen that device 2-2 is significantly improved in both external extraction quantum efficiency and emission lifetime compared to comparative organic EL device 21.
  • Figure 1 shows a schematic configuration diagram of an organic EL full-color display device. After patterning at a pitch of 100 m on a substrate (NH45 manufactured by NH Techno Glass) with an ITO transparent electrode (102) formed on an ITO transparent electrode (102) on a glass substrate 101 as an anode, the ITO transparent electrode was formed on this glass substrate. In the meantime, a non-photosensitive polyimide partition wall 103 (width 20 m, thickness 2.0 m) was formed by photolithography.
  • a hole injection layer composition having the following composition was discharged and injected between polyimide barrier ribs on the ITO electrode using an ink jet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 30 seconds, 60 ° C, 10 ° C.
  • a hole injection layer 104 having a film thickness of 40 nm was produced by a drying treatment for 30 minutes.
  • the produced organic EL device exhibited blue, green, and red light emission by applying voltage to each electrode, indicating that it can be used as a full-color display device.
  • the ITO transparent electrode was formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • poly (3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT / PSS: Bayer, Baytron P Al 4083) diluted to 70% with pure water was formed by spin coating at 3000 rpm for 30 seconds, and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
  • PEDOT / PSS Bayer, Baytron P Al 4083
  • a solution dissolved in 0 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds. After 180 seconds of ultraviolet light irradiation for photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
  • the film was formed by the spin coat method under the conditions described above. Irradiated with ultraviolet light for 15 seconds to cause photopolymerization and crosslinking, and further heated in a vacuum at 80 ° C. for 1 hour to form a hole blocking layer.
  • this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq was placed in a molybdenum resistance heating boat and attached to the vacuum vapor deposition apparatus. Set the vacuum chamber to 4 X 10— 4 Pa.
  • the heating boat containing Alq is energized and heated to a deposition rate of 0.1 nm /
  • the film was deposited on the electron transport layer in seconds, and an electron transport layer having a thickness of 40 nm was further provided.
  • the substrate temperature during vapor deposition was room temperature.
  • An organic EL device 4-1 was prepared.
  • the ITO transparent electrode is formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PED OT / PSS: Bayer Pal 4083) diluted with pure water to 70% by mass was formed by spin coating at 3000rpm for 30 seconds, and then dried at 200 ° C for 1 hour.
  • a hole injection / transport layer with a thickness of 30 nm was provided.
  • Organic EL device 5-2 was prepared in the same manner as in the preparation of organic EL device 5-1, except that 3 ml of the solution of compound 1 54 was replaced with the following solution [A].
  • the non-light-emitting surface of each organic EL element after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as the sealing substrate.
  • a sealing material an epoxy photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to adhere to the transparent support substrate, and then a glass substrate. UV light was irradiated from the side, cured, sealed, and an illumination device as shown in Fig. 2 and Fig. 3 was formed and evaluated.
  • FIG. 2 shows a schematic diagram of the lighting device, and the organic EL element 201 is covered with a glass cover 202.
  • the glass cover was sealed with a glove box in a nitrogen atmosphere without bringing the organic EL element 201 into contact with the atmosphere (in a high-purity nitrogen gas atmosphere with a purity of 99.999% or more).
  • FIG. 3 is a cross-sectional view showing an embodiment of the lighting device of the present invention.
  • the electrode, 206 is an organic EL layer
  • 207 is a glass substrate with a transparent electrode.
  • the glass cover 202 is filled with nitrogen gas 208 and provided with a water catching agent 209.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiation luminance meter CS-1000 manufactured by Koni Force Minolta Sensing Co., Ltd. was used.
  • the organic EL device 5-1 of the present invention has significantly improved external extraction quantum efficiency, reduced power consumption, and improved emission lifetime, compared with the comparison. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
有機エレクト口ルミネッセンス素子、照明装置及び表示装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、照明装置及び表示装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(ELD)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子や有 機エレクト口ルミネッセンス素子(以下、有機 EL素子ともいう)が挙げられる。無機エレ タトロルミネッセンス素子は平面型光源として使用されてきた力 発光素子を駆動させ るためには交流の高電圧が必要である。
[0003] 一方、有機 EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ 構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(ェ キシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光 ·燐光)を利用し て発光する素子であり、数 V〜数十 V程度の電圧で発光が可能であり、更に自己発 光型であるために視野角に富み、視認性が高ぐ薄膜型の完全固体素子であるため に省スペース、携帯性等の観点から注目されて!/、る。
[0004] 今後の実用化に向けた有機 EL素子の開発としては、更に低消費電力で、効率よく 高輝度に発光する有機 EL素子が望まれているわけであり、例えば、特許第 309379 6号公報には、スチルベン誘導体、ジスチリルァリーレン誘導体またはトリススチリルァ リーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を 達成する技術が開示され、特開昭 63— 264692号公報には、 8—ヒドロキシキノリン アルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光 層を有する素子が開示されており、特開平 3— 255190号公報には、 8—ヒドロキシキ ノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした 有機発光層を有する素子等が知られてレ、る。
[0005] 上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、 一重項励起子と三重項励起子の生成比が 1: 3であるため発光性励起種の生成確率 力 5%であることと、光の取り出し効率が約 20%であるため、外部取り出し量子効率 ( 7] ext)の限界は 5%とされている。
[0006] ところ力 M. A. Baldo et al. , nature, 395巻、 151〜; 154ページ(1998年) により、プリンストン大より、励起三重項からのリン光発光を用いる有機 EL素子の報告 力 Sされて以来、 M. A. Baldo et al. , nature, 403巻、 17号、 750〜753ページ( 2000年)、米国特許第 6, 097, 147号明細書により、室温で燐光を示す材料の研 究が活発になってきている。
[0007] 更に、最近発見されたリン光発光を利用する有機 EL素子では、以前の蛍光発光を 利用する素子に比べ原理的に約 4倍の発光効率が実現可能であることから、その材 料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている 。例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304ページ(2 001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討が なされている。
[0008] また、有機 EL素子は、電極と電極の間を厚さわずか 0. 1 m程度の有機材料の膜 で構成するオールソリッド素子であり、なおかつその発光が 2V〜20V程度の比較的 低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されて いる技術である。
[0009] しかしながら、有機 EL素子は、その発光機構が有機材料の励起状態から基底状態 への失活を利用した発光現象をもとにするものであることから、青色や青緑色等の波 長が短い領域を発光させるには、バンドギャップを大きくする必要があり、従ってその 大きなギャップを励起させるために高い電圧が必要になる。
[0010] 更に、励起状態自体が高いレベルに位置することから基底状態に戻る際のダメー ジが大きぐ緑色や赤色の発光に比べ寿命が短くなる傾向にあり、特に三重項励起 状態からの発光を利用するリン光発光ではその傾向が顕著となる。
[0011] 上記のような問題点を解決する手段としては、種々の技術があるが、例えば、有機 エレクト口ルミネッセンス素子の構成層を製膜した後に、高分子量化するという技術が あり、分子内にビュル基を 2つ有する 2官能性のトリフエニルァミン誘導体が記載され ており、その化合物を製膜した後に紫外線照射により 3次元架橋されたポリマーを形 成する(例えば、特許文献 1参照。)、 2つ以上のビュル基を有する材料を複数の層 に添加する技術が開示され、重合反応は、陰極を積層する前の有機層製膜時点で 紫外線や熱の照射で行う方法 (例えば、特許文献 2参照。)、リン光発光性ドーパント の末端にビュル基を有する材料と同様にビュル基を有するコモノマーの混合物にラ ジカル発生剤である AIBN (ァゾイソプチロュトリル)を添加して製膜時に重合反応を 進行させる製造方法 (例えば、特許文献 3参照。)、同一層内の 2分子間でディーノレ スアルダー反応を起こさせて架橋させる製造方法 (例えば、特許文献 4参照。)等が 挙げられる。
[0012] 上記のように、リン光発光ドーパント、特に青色に適用できるリン光発光ドーパントは バンドギャップが非常に大きぐこのようなドーパントのホストとして使用でき、高い発 光効率と長寿命を同時に達成し、更に、塗布法 (湿式法ともいう)に適用可能な材料 は知られていない。
特許文献 1 :特開平 5— 271166号公報
特許文献 2:特開 2001— 297882号公報
特許文献 3:特開 2003— 73666号公幸
特許文献 4 :特開 2003— 86371号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明の目的は、外部取り出し量子効率が高ぐ且つ、発光寿命が長い有機エレ タトロルミネッセンス素子を提供し、さらに該有機エレクト口ルミネッセンス素子を具備 した照明装置および表示装置を提供することである。
課題を解決するための手段
[0014] 本発明の上記目的は、下記の構成;!〜 21により達成された。
[0015] 1.支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも 1層 の発光層を有する有機エレクト口ルミネッセンス素子において、
下記一般式 (a)で表される部分構造および反応性基を有する化合物 Aを少なくとも 一部として含み、且つ、前記反応性基を介して前記化合物 Aが重合してなる重合体 を含有することを特徴とする、有機エレクト口ルミネッセンス素子。 [0016] [化 1]
Figure imgf000005_0001
[0017] 〔式中、 Arl、 Ar2は各々芳香環を表す。〕
2.前記 Arl、 Ar2が、各々 3つの環からなる縮合環であることを特徴とする前記 1に 記載の有機エレクト口ルミネッセンス素子。
[0018] 3.前記 Arl、 Ar2が、各々力ルバゾール環、カルボリン環、ジベンゾフラン環または ベンゼン環を表すことを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子
[0019] 4.前記一般式 (a)が下記一般式 (b)で表されることを特徴とする前記;!〜 3のいず れカ、 1項に記載の有機エレクト口ルミネッセンス素子。
[0020] [化 2]
'般式 {b)
Figure imgf000005_0002
[0021] 〔式中、 Arは芳香環を表す。〕
5.前記 Arが、カノレバゾール環、カルボリン環、ジベンゾフラン環またはベンゼン環 を表すことを特徴とする前記 1〜4のいずれか 1項に記載の有機エレクト口ルミネッセ ンス素子。
[0022] 6.前記 Ar力 S、力ルバゾール環またはベンゼン環を表すことを特徴とする前記 1〜5 のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0023] 7.前記反応性基が、下記一般式(2)〜(5)のいずれかで表されることを特徴とする 前記 1〜6のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。 [0024] [化 3]
-般式 (2) -般式 (3) 一般式 (4) -般式 (5)
, ο、、
[ Cy ;
Q丄 R
氺 氺
Figure imgf000006_0001
[0025] 〔式中、 Rは、水素原子またはメチル基を表し、 Qは、下記一般式 (c)、(d)及び (e)か らなる 2価の連結基群から選択されるひとつまたは該 2価の連結基の複数の組み合 わせで表される基を表す。〕
[0026] [化 4]
Figure imgf000006_0002
[0027] 〔式中、 R、 Rは、各々水素原子またはメチル基を表し、 Cyは、 3員または 4員の環状
1 2
エーテルを表す。〕
8.前記化合物 Aまたは該化合物 Aの重合体が、発光層に含有されることを特徴と する前記 1〜7のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0028] 9.前記発光層が、前記重合体とリン光発光性ドーパントを含有していることを特徴 とする前記 1〜8のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0029] 10.前記重合体が、前記化合物 Aとリン光発光性ドーパントとの共重合体であるこ とを特徴とする前記 1〜9のいずれか 1項に記載の有機エレクト口ルミネッセンス素子
[0030] 11.前記リン光発光性ドーパントが Ir錯体であることを特徴とする前記 9または 10に 記載の有機エレクト口ルミネッセンス素子。
[0031] 12.前記リン光発光性ドーパントのリン光波長の 0— 0遷移バンドが 485nm以下で あることを特徴とする前記 9または 10に記載の有機エレクト口ルミネッセンス素子。 [0032] 13.前記リン光発光性ドーパントが、下記一般式(1)で表される金属錯体であること を特徴とする前記 12に記載の有機エレクト口ルミネッセンス素子。
[0033] [化 5]
-般式《
Figure imgf000007_0001
[0034] 〔式中、 Zは結合する窒素原子から数えて 3番目の原子の少なくとも 1つに、立体パラ メーター値 (Es値)がー 0. 5以下の置換基を結合している炭化水素環または複素環 を表す。 X及び Yは炭素原子または窒素原子を表し、 Aは X— Cと共に 5 6員の炭 化水素環または複素環を形成するのに必要な原子群を表す。 Bは C (R ) =C (R
01 0 N C (R C (R ) =N—または一 N N を表し、 R 及び R は水
2 02 01 01 02 素原子または置換基を表す。 X -L1 -Xは 2座の配位子を表し、 X Xは各々独
1 2 1 2 立に炭素原子、窒素原子または酸素原子を表す。 L1は X Xと共に 2座の配位子
1 2
を形成する原子群を表す。 mlは 1 2または 3の整数を表し、 m2は 0 1または 2の整 数を表す力 ml +m2は 2または 3である。中心金属である Mは元素周期表におけ る 8〜; 10族の金属を表す。〕
14.前記化合物 Aまたは該化合物 Aの重合体の、リン光波長の 0— 0遷移バンドが 460nm以下であることを特徴とする前記 1〜; 13のいずれ力、 1項に記載の有機エレク トロルミネッセンス素子。
[0035] 15.前記化合物 Aまたは該化合物 Aの重合体を含有する層が、湿式法で形成され たことを特徴とする前記 1〜; 14のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子。
[0036] 16.前記化合物 Aを塗布後、重合することを特徴とする前記;!〜 15のいずれか 1項 に記載の有機エレクト口ルミネッセンス素子。
[0037] 17.構成層として、複数の有機化合物層を有することを特徴とする前記 1〜; 16のい ずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[0038] 18.前記陽極と前記発光層との間に少なくとも 1層の陽極バッファ一層または前記 陰極と前記発光層との間に少なくとも 1層の陰極バッファ一層を有しており、前記発 光層の少なくとも 1層が、前記化合物または該化合物の重合体を含有し、且つ、該発 光層が湿式法で形成されたことを特徴とする前記;!〜 17のいずれか 1項に記載の有 機エレクト口ルミネッセンス素子。
[0039] 19. 白色に発光することを特徴とする前記;!〜 18のいずれか 1項に記載の有機ェ レクト口ルミネッセンス素子。
[0040] 20.前記 1〜19のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を備え たことを特徴とする表示装置。
[0041] 21.前記 1〜19のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子を備え たことを特徴とする照明装置。
発明の効果
[0042] 本発明により、外部取り出し量子効率が高ぐ且つ、発光寿命が長い有機エレクト口 ノレミネッセンス素子を提供し、さらに該有機エレクト口ルミネッセンス素子を具備した照 明装置および表示装置を提供することができた。
図面の簡単な説明
[0043] [図 1]有機 ELフルカラー表示装置の概略構成図を示す。
[図 2]照明装置の概略図である。
[図 3]照明装置の断面図である。
符号の説明
[0044] 101 ガラス基板
102 ITO透明電極
103 隔壁
104 正孔注入層
105B、 105G、 105R 発光層
207 透明電極付きガラス基板
206 有機 EL層 205 陰極
202 ガラスカバー
208 窒素ガス
209 捕水剤
発明を実施するための最良の形態
[0045] 本発明の有機エレクト口ルミネッセンス素子(有機 EL素子ともいう)においては、請 求の範囲 1〜; 19のいずれか 1項に記載の構成を有することにより、外部取り出し量子 効率が高ぐ且つ、発光寿命が長い有機エレクト口ルミネッセンス素子を得ることが出
[0046] また、前記有機 EL素子を具備した、高輝度の表示装置、照明装置を得ることにも 併せて成功した。
[0047] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0048] 《化合物 A、該化合物の重合体》
本発明に係る化合物 A、該化合物 Aの重合体につ!/、て説明する。
[0049] 本発明において、化合物 Aが重合してなる重合体とは、重合体の一部に化合物 A が含有されていればよぐまた、反応性基(或いは重合性基)を介して化合物 Aが重 合しているものである。
[0050] 本発明に係る化合物 Aまたは該化合物 Aの重合体は、溶液または分散液として調 製すること力 Sでき、塗布によって作製された膜は均一であり有機エレクト口ルミネッセ ンス素子として十分利用可能である。
[0051] また、前記化合物 Aまたは該化合物 Aの重合体は青色のリン光発光ドーパントに対 するホストとして利用できる十分に広いバンドギャップを有しており、外部取り出し量 子効率が高ぐ且つ、発光寿命が長い有機エレクト口ルミネッセンス素子を提供する ことができ、更には、該有機エレクト口ルミネッセンス素子を具備した照明装置および 表示装置を提供することが出来る。
[0052] 本発明の有機 EL素子においては、化合物 Aの状態、即ち、重合前の状態(単量体 、モノマーともいう)で素子に組み込まれていてもよぐ予め、該化合物 Aの重合体とし て調製され、素子の構成層に組み込まれていてもよい。 [0053] 特に、塗布等の湿式法により素子の構成層が形成される場合、例えば、該化合物 Aが発光層の形成時に単量体として組み込まれた場合には、紫外線照射等の光重 合や加熱による熱重合等を行う工程を経て重合体を形成して得られた発光層上に、 電子輸送層等を設けることが好ましレ、。
[0054] 一方、本発明に係る化合物 Aを単量体(重合前の状態)のままで、蒸着等により本 発明の有機 EL素子の構成層に組み込むことも可能である。
[0055] その場合は、有機 EL素子が形成された後、通電が行われて発生する活性種等に より、化合物 Aは重合反応により重合体形成が行われる。
[0056] 化合物 Aの塗布膜を作製後、重合前に、例えば塗布溶媒の沸点より少し高い温度 での加熱等、重合前に乾燥プロセスを入れることも好ましい。また、塗布膜を重合し た後、適当な(重合膜を溶解しなレ、)溶媒にて重合膜をリンスして不溶物を除レ、た後 、更に上層を積層塗布する等のプロセスを付加することも好ましい。
[0057] このように素子を使用することにより、重合反応が進行する場合には、発光寿命の 長寿命化という、素子の特性向上効果を得ることが出来る。
[0058] 前記一般式 (a)で表される部分構造および反応性基を有する化合物 Aにお!/、て、 反応性基としては下記のような置換基例が挙げられる力 S、これらに限定されない。中 でも、好ましい反応性置換基としては、炭素 炭素二重結合を含む置換基、更に好 ましくは、ビュル基が挙げられる。また、化合物 Aは、反応性置換基を 2つ以上有して いることが好ましい。
[0059] [化 6]
Figure imgf000010_0001
[0060] 尚、化合物 Αが 2以上の反応性基を有する場合、反応性基は同じであっても異なつ ていてもよい。
[0061] 化合物 Aは、前記一般式 (a)で表される部分構造および反応性基を有し、該一般 式 (a)において、 Arl、 Ar2で、各々表される芳香環としては、芳香族炭化水素環ま たは芳香族複素環が挙げられる。
[0062] 一般式(a)において、 Arl、 Ar2で、各々表される芳香族炭化水素環としては、ベ ンゼン環、ビフエ二ノレ環、ナフタレン環、ァズレン環、アントラセン環、フエナントレン環 、ピレン環、タリセン環、ナフタセン環、トリフエ二レン環、 o—テルフエニル環、 m—テ ルフエ二ル環、 p—テルフエニル環、ァセナフテン環、コロネン環、フルオレン環、フル オラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、 ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に置 換基を有していてもよい。
[0063] 一般式(a)において、 Arl、 Ar2で、各々表される芳香族複素環としては、例えば、 フラン環、ジベンゾフラン環、チォフェン環、ォキサゾール環、ピロール環、ピリジン環 、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサ ジァゾール環、トリァゾール環、イミダゾール環、ピラゾール環、チアゾール環、インド ール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサ ゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フ タラジン環、ナフチリジン環、力ルバゾール環、カルボリン環、ジァザ力ルバゾール環 (カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換され てレ、る環を示す)等が挙げられる。これらの環は更に置換基を有して!/、てもよ!/、。
[0064] 一般式(a)において、 Arl、 Ar2が、各々 3つの環からなる縮合環が好ましい一態 様であり、 3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタ セン環、アントラセン環、テトラセン環、ペンタセン環、へキサセン環、フエナントレン環 、ピレン環、ベンゾピレン環、ベンゾァズレン環、タリセン環、ベンゾクリセン環、ァセナ フテン環、ァセナフチレン環、トリフエ二レン環、コロネン環、ベンゾコロネン環、へキサ ベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環 、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセ ン環、ピラントレン環、コロネン環、ナフトコロネン環、ォバレン環、アンスラアントレン 環等が挙げられる。
[0065] 尚、これらの環は更に、置換基を有していてもよい。
[0066] また、 3環以上が縮合した芳香族複素環としては、具体的には、アタリジン環、ベン ゾキノリン環、力ルバゾール環、カルボリン環、フエナジン環、フエナントリジン環、フエ ナント口リン環、カルボリン環、サイクラジン環、キンドリン環、テぺニジン環、キュンドリ ン環、トリフエノジチアジン環、トリフエノジォキサジン環、フエナントラジン環、アントラ ジン環、ペリミジン環、ジァザ力ルバゾール環 (カルボリン環を構成する炭素原子の任 意の一つが窒素原子で置き換わったものを表す)、フエナント口リン環、ジベンゾフラ ン環、ジベンゾチォフェン環、ナフトフラン環、ナフトチォフェン環、ベンゾジフラン環 アントラジフラン環、アントラチ才フェン環、アントラジチ才フェン環、チアントレン環、フ エノキサチイン環、チォファントレン環(ナフトチォフェン環)等が挙げられる。尚、これ らの環は更に置換基を有して!/、てもよレ、。
[0067] 上記の中でも、一般式(a)において、 Arl、 Ar2で、各々表される芳香環として、好 ましく用いられるのは、力ルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン 環であり、特に好ましく用いられるのは、力ルバゾール環、カルボリン環、ベンゼン環 である。
[0068] ここで、一般式(a)において、 Arl、 Ar2で、各々表される芳香環が有してもよい置 換基としては、アルキル基(例えば、メチル基、ェチル基、プロピル基、イソプロピル基 、 tert ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基 、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基 、シクロへキシル基等)、アルケニル基(例えば、ビニノレ基、ァリノレ基、 1 プロぺニル 基、 2 ブテュル基、 1 , 3 ブタジェニル基、 2 ペンテュル基、イソプロぺニル基等 )、アルキニル基 (例えば、ェチュル基、プロパルギル基等)、芳香族炭化水素基(芳 香族炭素環基、ァリール基等ともいい、例えば、フエニル基、 p クロ口フエ二ル基、メ シチル基、トリル基、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフ テュル基、フルォレニル基、フエナントリル基、インデュル基、ピレニル基、ビフエユリ ル基等)、芳香族複素環基 (例えば、フリル基、チェニル基、ピリジル基、ピリダジニル 基、ピリミジニル基、ピラジュル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チア ゾリノレ基、キナゾリニル基、カルバゾリル基、カノレポリニノレ基、ジァザカルバゾリル基( 前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で 置き換わったものを示す)、フタラジュル基等)、複素環基 (例えば、ピロリジル基、イミ ダゾリジル基、モルホリル基、ォキサゾリジル基等)、アルコキシ基(例えば、メトキシ基 、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォ キシ基、ドデシルォキシ基等)、シクロアルコキシ基(例えば、シクロペンチルォキシ基 、シクロへキシノレオキシ基等)、ァリーノレォキシ基(例えば、フエノキシ基、ナフチノレオ キシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェチルチオ基、プロピルチオ基 、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロア ルキルチオ基(例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリール チォ基(例えば、フエ二ルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例 えば、メチノレ才キシカノレポ二ノレ基、ェチノレ才キシカノレポ二ノレ基、ブチノレ才キシカノレポ 二ノレ基、ォクチルォキシカルボニル基、ドデシルォキシカルボニル基等)、ァリールォ キシカルボニル基(例えば、フエニルォキシカルボニル基、ナフチルォキシカルボ二 ル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、 ジメチルアミノスルホニル基、ブチルアミノスルホニル基、へキシルアミノスルホニル基 、シクロへキシルアミノスルホニル基、ォクチルアミノスルホニル基、ドデシルアミノスル ホニル基、フエニルアミノスルホニル基、ナフチルアミノスルホニル基、 2—ピリジルァ ミノスルホニル基等)、ァシル基(例えば、ァセチル基、ェチルカルボニル基、プロピ ノレカルボニル基、ペンチルカルボニル基、シクロへキシルカルボニル基、ォクチルカ ノレボニノレ基、 2—ェチルへキシルカルボニル基、ドデシルカルボニル基、フエ二ルカ ルポニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、ァシルォキシ基(例 えば、ァセチノレオキシ基、ェチノレカノレポニノレオキシ基、ブチノレカノレポニノレオキシ基、 ォクチルカルボニルォキシ基、ドデシルカルボニルォキシ基、フエニルカルボニルォ キシ基等)、アミド基(例えば、メチルカルボニルァミノ基、ェチルカルボニルァミノ基、 ジメチルカルボニルァミノ基、プロピルカルボニルァミノ基、ペンチルカルボニルァミノ 基、シクロへキシルカルボニルァミノ基、 2—ェチルへキシルカルボニルァミノ基、オタ チルカルボニルァミノ基、ドデシルカルボニルァミノ基、フエニルカルボニルァミノ基、 ナフチルカルボニルァミノ基等)、力ルバモイル基(例えば、ァミノカルボニル基、メチ ノレアミノカルボニル基、ジメチルァミノカルボニル基、プロピルアミノカルボニル基、ぺ ンチルァミノカルボニル基、シクロへキシルァミノカルボニル基、ォクチルァミノカルボ 二ノレ基、 2—ェチルへキシルァミノカルボニル基、ドデシルァミノカルボニル基、フエ ニルァミノカルボニル基、ナフチルァミノカルボニル基、 2—ピリジルァミノカルボニル 基等)、ウレイド基(例えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基 、シクロへキシルウレイド基、ォクチルゥレイド基、ドデシノレウレイド基、フエニルゥレイ ド基ナフチルウレイド基、 2—ピリジルアミノウレイド基等)、スルフィエル基(例えば、メ チノレスノレフィニノレ基、ェチノレスノレフィニノレ基、ブチノレスノレフィニノレ基、シクロへキシノレ スルフィニル基、 2—ェチルへキシルスルフィニル基、ドデシルスルフィニル基、フエ ニルスルフィエル基、ナフチルスルフィエル基、 2—ピリジルスルフィエル基等)、アル キルスルホニル基(例えば、メチルスルホニル基、ェチルスルホニル基、ブチルスル ホニノレ基、シクロへキシノレスノレホニノレ基、 2—ェチノレへキシノレスノレホニノレ基、ドデシ ノレスルホニル基等)、ァリールスルホニル基またはへテロアリールスルホニル基(例え ば、フエニルスルホニル基、ナフチルスルホニル基、 2—ピリジルスルホニル基等)、 アミノ基 (例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、プチルァミノ基、シクロ ペンチルァミノ基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァニリノ基、ナフチ ルァミノ基、 2—ピリジルァミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、 臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリフルォロメチル基、 ペンタフルォロェチル基、ペンタフルオロフェニル基等)、シァノ基、ニトロ基、ヒドロキ シ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロビルシリル基、ト リフエニルシリル基、フエ二ルジェチルシリル基等)、ホスホノ基等が挙げられる。
[0069] これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これ らの置換基は複数が互いに結合して環を形成して!/、てもよレ、。
[0070] また、本発明に係る化合物 Aの反応性基は、好ましい態様としては、前記一般式(2 )〜(5)のいずれかで表されることが好ましい。尚ここにおいて、 *は反応性基の結合 位置を示す。 [0071] 一般式(2)〜(5)の各々において、 Qは、上記一般式 (c)、(d)及び(e)からなる 2 価の連結基群から選択されるひとつまたは該 2価の連結基の複数の組み合わせで表 される基を表し、 R、 R
1、 Rは、各々水素原子またはメチル基を表し、 Cvは、 3員また
2
は 4員の環状エーテルを表す。前記 3員、 4員の環状エーテルは、上記の置換基を 有していてもよい。
[0072] 《化合物 Aの重合体の分子量、分子量分布(Mw/Mn)》
本発明に係る化合物 Aの重合体の分子量 (重量平均分子量 Mw)は、 1000000以 下であることカ好ましく、更に好ましくは、 10000〜200000の範囲である。更に、本 発明に係る、重量平均分子量 (Mw)と数平均分子量 (Mn)との比率(分子量分布) は、 3以下であることが好ましい。
[0073] 本発明に係る化合物 Aの重合体の重量平均分子量 (Mw)、数平均分子量 (Mn) の測定は、 THF (テトラヒドロフラン)をカラム溶媒として用いる GPC (ゲルパーミエ一 シヨンクロマトグラフィー)を用いて分子量測定を行うことができる。
[0074] また、化合物 Aが重合前の状態で、有機 EL素子の発光層等に組み込まれ、その 後、有機 EL素子に通電が行われ、発光層中において重合が進行して得られる重合 体の分子量については、予め、化合物 Aのみを含む層を別途作製しておき、紫外線 照射時間を調整した光重合後の試料を複数 (例えば、 10サンプル程度)作製し、紫 外線照射時間と重合体の分子量 (重量平均、数平均分子量等)の検量線を予め作 成しておき、紫外線照射時間から、分子量の算出をすることが出来る。
[0075] 一方、重合体そのものの分子量の測定は、従来公知の方法により測定できる。
[0076] 具体的には、測定試料を lmgに対して THF (脱気処理を行ったものを用いる)を 1 ml加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる 。ついで、ポアサイズ 0· 45 ^ 111—0. 50 mのメンブランフィルターで処理した後に 、 GPC (ゲルパーミエーシヨンクロマトグラフ)装置に注入する。
[0077] GPC測定条件は、 40°Cにてカラムを安定化させ、 THF (テトラヒドロフラン)を毎分 lmlの流速で流し、 lmg/mlの濃度の試料を約 100 μ 1注入して測定する。
[0078] カラムとしては、市販のポリスチレンジエルカラムを組み合わせて使用することが好 ましい。例えば、昭和電工社製の Shodex GPC KF— 801、 802、 803、 804、 80 5、 806、 807の組み合わせや、東ソ一社製の TSKgelG1000H、 G2000H、 G300 0H、 G4000H、 G5000H、 G6000H、 G7000H、 TSK guard column等の組 み合わせ等が好ましい。
[0079] 検出器としては、屈折率検出器 (RI検出器)、あるいは UV検出器が好ましく用いら れる。
[0080] 本発明では、下記の測定条件にて分子量測定を行った。
[0081] (測定条件)
装置:東ソ一高速 GPC装置 HLC— 8220GPC
カラム: TOSOH TSKgel Super HM— M
検出器: RI及び/または UV
溶出液流速: 0. 6ml/分
試料濃度: 0. 1質量%
試料量: 100〃 1
検量線:標準ポリスチレンにて作製:標準ポリスチレン STK standard ポリスチ レン(東ソ一(株)製) Mw= 1000000〜500迄の 13サンプルを用いて検量線(校正 曲線ともいう)を作成、分子量の算出に使用した。 13サンプルは、ほぼ等間隔にする ことが好ましい。
[0082] 《化合物 Aまたは該化合物 Aの重合体の 0— 0遷移バンド》
本発明に係る化合物 Aまたは該化合物 Aの重合体は、後述する本発明の有機 EL 素子の構成層のレ、ずれの層にお!/、ても用いることが出来る力 本発明に記載の効果
(外部取り出し量子効率の向上、発光寿命の長寿命化)の観点からは、発光層に含 有されることが好ましい。
[0083] また、本発明に係る化合物 Aまたは該化合物 Aの重合体のリン光 0— 0遷移バンド 力 60nm以下の化合物が好ましい化合物として挙げられる。
[0084] 尚、 0— 0遷移バンドの測定方法については、後述する発光ドーパントのところで、 詳細に説明する。
[0085] また、このような発光ドーパントとしては、前記一般式(1)で表される金属錯体が好 ましい。これについても後述する。 [0086] 以下、本発明に係る化合物 Aまたは該化合物の重合体の具体例を示すが、本発明 はこれらに限定されない。
[0087] [化 7]
Figure imgf000017_0001
[0088] [化 8] [6^1 ] [6800]
Figure imgf000018_0001
Figure imgf000019_0001
[0090] [化 10]
Figure imgf000020_0001
[0091] [化 11] Κΐ¾] [Ζ600]
Figure imgf000021_0001
Figure imgf000022_0001
[0093] [化 13]
Figure imgf000023_0001
[0094] [化 14]
Figure imgf000024_0001
[0095] [化 15]
Figure imgf000025_0001
[0096] [化 16]
[ ΐ¾] 600]
Figure imgf000026_0001
l S990/L00ZdT/13d 93 蘭 00Z OAV
Figure imgf000027_0001
[0098] [化 18]
Figure imgf000028_0001
1-S4
Figure imgf000029_0001
[0100] [化 20]
Figure imgf000029_0002
random ca— poi m&r
[0101] [化 21] 1-S6
Figure imgf000030_0001
[0102] [化 22]
Figure imgf000030_0002
[0103] [化 23] -58
Figure imgf000031_0001
]
Figure imgf000031_0002
random co― po!ymer
Figure imgf000032_0001
s星a
Figure imgf000033_0001
Figure imgf000034_0001
random co— poiymer
[0109] [化 29]
Figure imgf000035_0001
r ndom co— olymer]
[τε¾] [ΐΐτο]
Figure imgf000036_0001
l S990/L00Zd /13d 8 蘭 ΟΟΖ OAV
Figure imgf000037_0001
random co— po!vmer
[0112] [化 32]
Figure imgf000037_0002
raidorn co~polvmer
[0113] [化 33]
random co—poiymer
a05311
Figure imgf000039_0001
奮〕〔〕
Figure imgf000040_0001
x:y™18 random o—p iynier
Figure imgf000041_0001
[0117] [化 37]
Figure imgf000042_0001
[0118] [化 38]
Figure imgf000043_0001
[0119] [化 39] S00124
Figure imgf000044_0001
Figure imgf000045_0001
l S990/L00ZdT/13d 蘭 OOZ OAV
Figure imgf000046_0001
-77 匿〕 ¾
Figure imgf000047_0001
Figure imgf000048_0001
[0124] 尚、本発明に係る化合物 A、該化合物の重合体は、新高分子実験学 2 高分子の 合成 ·反応(共立出版株式会社)等に記載の従来公知の文献等を参照して合成する ことが出来る。
[0125] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層について説明する。本発明において、有機 EL素 子の層構成の好ましい具体例を以下に示す力 本発明はこれらに限定されない。 [0126] (i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファ一層 /陰極
(V)陽極/陽極バッファ一層/正孔輸送層/発光層/正孔阻止層/電子輸送層 /陰極バッファー層/陰極
本発明の有機 EL素子においては、青色発光層の発光極大波長は 430nm〜480 nmにあるものが好ましぐ緑色発光層は発光極大波長が 510nm〜550nm、赤色発 光層は発光極大波長が 600nm〜640nmの範囲にある単色発光層であることが好 ましぐこれらを用いた表示装置であることが好ましい。また、これらの少なくとも 3層の 発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光 性の中間層を有していてもよい。本発明の有機 EL素子としては白色発光層であるこ とが好ましぐこれらを用いた照明装置であることが好ましい。
[0127] 本発明の有機 EL素子を構成する各層について説明する。
[0128] 《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよい。
[0129] 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高 電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点 から、 21 111〜5 111の範囲に調整することが好ましぐさらに好ましくは 2nm〜200n mの範囲に調整され、特に好ましくは、 10nm〜20nmの範囲である。
[0130] 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着 法、スピンコート法、キャスト法、 LB法、インクジェット法等の公知の薄膜化法により製 膜して形成すること力でさる。
[0131] 本発明の有機 EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光 発光性ドーパント(リン光発光性ドーパントとも!/、う)や蛍光ドーパント等)の少なくとも 1種類とを含有することが好ましレ、。
[0132] (ホスト化合物 (発光ホスト等ともいう))
本発明に用いられるホスト化合物につ!/、て説明する。
[0133] ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその 層中での質量比が 20%以上であり、且つ室温(25°C)においてリン光発光のリン光 量子収率が、 0. 1未満の化合物と定義される。好ましくはリン光量子収率が 0. 01未 満である。また、発光層に含有される化合物の中で、その層中での質量比が 20%以 上であることが好ましい。
[0134] ホスト化合物としては、公知のホスト化合物を単独で用いてもよぐまたは複数種併 用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整すること が可能であり、有機 EL素子を高効率化することができる。また、後述する発光ドーパ ントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発 光色を得ること力 Sできる。
[0135] また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り 返し単位をもつ高分子化合物でもよぐビュル基やエポキシ基のような重合性基を有 する低分子化合物 (蒸着重合性発光ホスト)でも良レ、。
[0136] 併用してもよい従来公知のホスト化合物としては、正孔輸送能、電子輸送能を有し つつ、且つ、発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合 物が好ましい。
[0137] 従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物 等が挙げられる。
[0138] 特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 313179号 公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786 号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号 公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789 号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10544 5号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352 957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002— 2 31453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 2 7048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2002 — 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等。
[0139] (発光ドーパント)
本発明に係る発光ドーパントにつ!/、て説明する。
[0140] 本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともレ、う)、リン 光発光性ドーパント (リン光発光体、リン光性化合物、リン光発光性化合物等ともいう) を用いることができる力 より発光効率の高い有機 EL素子を得る観点からは、本発明 の有機 EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材 料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光発光性 ドーパントを含有することが好まし!/、。
[0141] (リン光発光性ドーパント)
本発明に係るリン光発光性ドーパントにつ!/、て説明する。
[0142] 本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合 物であり、具体的には、室温(25°C)にてリン光発光する化合物であり、リン光量子収 率力 S、 25°Cにおいて 0. 01以上の化合物であると定義される力 好ましいリン光量子 収率は 0. 1以上である。
[0143] 上記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸 善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用 いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれか にお!/、て上記リン光量子収率(0. 01以上)が達成されればよ!/、。
[0144] リン光発光性ドーパントの発光は原理としては 2種挙げられ、一つはキャリアが輸送 されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成 し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパ ントからの発光を得るというエネルギー移動型、もう一つはリン光発光性ドーパントが キャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こりリン光発 光性ドーパントからの発光が得られるというキャリアトラップ型が挙げられる。 [0145] 上記のいずれの場合においても、リン光発光性ドーパントの励起状態のエネルギ 一はホスト化合物の励起状態のエネルギーよりも低いことが条件である。
[0146] リン光発光性ドーパントは、有機 EL素子の発光層に使用される公知のものの中か ら適宜選択して用いることができる。
[0147] 本発明に係るリン光発光性ドーパントとしては、好ましくは元素周期表で 8族〜 10 族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物 (Ir錯体
)、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、 中でも最も好ましレ、のはイリジウム化合物 (Ir錯体)である。
[0148] 以下に、リン光発光性ドーパントとして用いられる化合物の具体例を示す力 本発 明はこれらに限定されない。これらの化合物は、例えば、 Inorg. Chem. 40巻、 170
4〜; 1711に記載の方法等により合成できる。
[0149] 《0— 0遷移バンド》
本発明に係るリン光発光性ドーパントは、リン光波長の 0— 0遷移バンドが 485nm 以下であることが好ましぐリン光発光性ドーパントのイオン化ポテンシャルが 5. 5eV 以下であることが好ましい。
[0150] (0— 0遷移バンドの測定方法)
本発明に係るリン光発光性ドーパントのリン光の 0— 0遷移バンドの測定方法につ いて説明する。
[0151] まず、リン光スペクトルの測定方法について説明する。
[0152] 測定する化合物(リン光発光性ドーパントでも、ホスト化合物でも同様に測定可能で ある。)を、よく脱酸素されたエタノール/メタノール = 4/1 (vol/vol)の混合溶媒に 溶かし、リン光測定用セルに入れた後液体窒素温度 77Kで励起光を照射し、励起光 照射後 100msでの発光スペクトルを測定する。リン光は蛍光に比べ発光寿命が長い ため、 100ms後に残存する光はほぼリン光であると考えることができる。
[0153] なお、リン光寿命が 100msより短い化合物に対しては遅延時間を短くして測定して も構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうとリン光と蛍光が 分離できな!/、ので問題となるため、その分離が可能な遅延時間を選択する必要があ [0154] また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意 の溶剤を使用してもよい (実質上、上記測定法ではリン光波長の溶媒効果はごくわず かなので問題ない)。
[0155] 次に 0— 0遷移バンドの求め方である力 S、本発明においては、上記測定法で得られ たリン光スペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって 0 0遷移バンドと定義する。
[0156] リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判 別が難しくなるケースがある。このような場合には励起光照射直後の発光スペクトル( 便宜上これを定常光スペクトルと言う)を拡大し、励起光照射後 100ms後の発光スぺ タトル (便宜上これをリン光スペクトルと言う)と重ねあわせリン光スペクトルに由来する 定常光スペクトル部分からピーク波長を読みとることで決定することができる。
[0157] また、リン光スペクトルをスムージング処理することでノイズとピークを分離しピーク波 長を読みとることもできる。なお、スムージング処理としては、 Savitzky&Golayの平 滑化法等を適用することができる。
[0158] 本発明に係るリン光発光性ドーパントのイオン化ポテンシャル (Ip)は、 5. 5eV以下 であること力 S好ましく、更に好ましくは 4. 5〜5. 5eVである。ここで、本発明に係るィ オン化ポテンシャルとは、化合物の HOMO (最高被占分子軌道)レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義され、具体的には膜状態 (層状 態)の化合物から電子を取り出すのに必要なエネルギーであり、これらは光電子分光 法で直接測定することができる。本発明では、アルバック—フアイ (株)製 ESCA 56 00 UPS (ultraviolet photoemission spectroscopy)にて、/則疋 れるィ直を用い ている。
[0159] また、本発明において好ましいリン光発光性ドーパントとして、前記一般式(1)で表 される金属錯体が好ましい。
[0160] ここで、前記一般式(1)で表される金属錯体について説明する。
[0161] 一般式(1)において、 Zは結合する窒素原子から数えて 3番目の原子の少なくとも 1 つに、立体パラメーター値 (Es値)がー 0. 5以下の置換基を結合している炭化水素 環または複素環 (それぞれの互変異性体も含む)を表す。ここで、 Es値とは化学反応 性より誘導された立体パラメーターであり、この値が小さければ小さいほど立体的に 嵩高レ、置換基とレ、うことができる。
[0162] 以下、 Es値につ!/、て説明する。一般に、酸性条件下でのエステルの加水分解反応 にお!/、ては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよ いことが知られており、この事を利用して置換基の立体障害を数値化したものが Es値 である。
[0163] 置換基 Xの Es値は、次の化学反応式
X-CH COORX + H 0→X-CH COOH + RXOH
で表される、酢酸のメチル基の水素原子 1つを置換基 Xで置換した α位モノ置換酢 酸から誘導される α位モノ置換酢酸エステルを酸性条件下で加水分解する際の反 応速度定数 kXと、次の化学反応式
CH COORY + H 0→CH COOH + RYOH
3 2 3
(RXは RYと同じである)で表される、上記の α位モノ置換酢酸エステルに対応する 酢酸エステルを酸性条件下で加水分解する際の反応速度定数 kHから次の式で求 められる。
[0164] Es = log (kX/kH)
置換基 Xの立体障害により反応速度は低下し、その結果 kXく kHとなるので Es値 は通常負となる。実際に Es値を求める場合には、上記の二つの反応速度定数 kXと k Hを求め、上記の式により算出する。
[0165] Esィ直の具体的な例は、 Unger, S. H. , Hansch, C. , Prog. Phys. Org. Che m. , 12, 91 (1976)に詳しく記載されている。また、『薬物の構造活性相関』 (化学 の領域増干|」122号、南江堂)、「八11^ &1 Chemical Society Professional Reference Book, ' Exploring QSAR' p. 81 Table 3— 3」にも、その具体的 な数値の記載がある。次にその一部を表 1に示す。
[0166] [表 1]
Figure imgf000055_0001
[0167] ここで、注意するのは本明細書で定義するところの Es値は、メチル基のそれを 0とし て定義したのではな 水素原子を 0としたものであり、メチル基を 0とした Es値力 1 . 24を差し引いたものである。
[0168] 本発明において Es値は一 0. 5以下である。好ましくは一 7. 0以上一 0. 6以下であ る。最も好ましくは一 7. 0以上一 1. 0以下である。
[0169] ここで、本発明においては、立体パラメーター値 (Es値)がー 0. 5以下の置換基、 例えば、 R及び にケトーエノール互変異性体が存在し得る場合、ケト部分はエノ ールの異性体として Es値を換算している。他の互変異性が存在する場合も同様の換 算方法において Es値を換算する。更に Es値が—0. 5以下の置換基は、電子的効果 にお!/、ては電子供与性の置換基であることが好まし!/、。
[0170] 本発明において、電子供与性の置換基とは下記に記載のノ、メットの σ ρ値が負の 値を示す置換基のことであり、そのような置換基は水素原子と比べて結合原子側に 電子を与えやす!/、特性を有する。
[0171] 電子供与性を示す置換基の具体例としては、ヒドロキシル基、アルコキシ基(例えば 、メトキシ基、 )、ァセチルォキシ基、アミノ基、ジメチルァミノ基、ァセチルァミノ基、ァ ルキル基(例えば、メチル基、ェチル基、プロピル基、 t ブチル基等)、ァリール基( 例えば、フエニル基、メシチル基等)が挙げられる。またハメットの σ ρ値については、 例えば、下記文献等が参照できる。
[0172] 本発明に係るハメットの σ ρ値とはハメットの置換基定数 σ ρを指す。ハメットの σ ρ の値は、 Hammett等によって安息香酸ェチルの加水分解に及ぼす置換基の電子 的効果から求められた置換基定数であり、『薬物の構造活性相関』 (南江堂: 1979年 )、『Substituent Constants ior Correlation Analysis in Chemistry an d Biology』(C. Hansch and A. Leo, John Wiley&Sons, New York, 19 79年)等に記載の基を引用することができる。
[0173] 以下に一般式(1)における Zの好ましい例を挙げる力 S、 Zは以下の例示以外にも更 に置換基を有していてもよいなどこれらの例に限定されない。なお、 *は結合位置を 表す。
[0174] [化 44]
Figure imgf000057_0001
[0175] [化 45] [9 ] [9 Ϊ0]
Figure imgf000058_0001
lt^990/L00Zdr/lDd Z9 蘭 OOZ OAV
Figure imgf000059_0001
[0177] [化 47]
Figure imgf000060_0001
[6 ] [6 Ϊ0]
Figure imgf000061_0001
l S990/L00ZdT/13d 09 蘭 00Z OAV
Figure imgf000062_0001
50]
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000063_0003
[0181] [化 51]
Figure imgf000064_0001
[0182] [化 52] [£ ^] Κ8ΐ0]
Figure imgf000065_0001
l S990/L00ZdT/13d 9 蘭 OOZ OAV [ 8ΐ0]
Figure imgf000066_0001
l S990/L00ZdT/13d 99 蘭 OOZ OAV
Figure imgf000067_0001
25 2S5 2S 257 SB
Figure imgf000067_0002
Figure imgf000067_0003
55] ?6 27? 278 279 280
Figure imgf000068_0001
6]
Figure imgf000069_0001
[0187] [化 57]
Figure imgf000070_0001
[0188] [化 58]
Figure imgf000071_0001
388 389 Z 391
Figure imgf000072_0001
[0190] 一般式(1)において、 Yは炭素原子または窒素原子を表し、好ましくは炭素原子で ある。 Βは C (R ) =C (R ) N = C (R ) C (R ) =N—または N = N
01 02 02 01
を表す。
[0191] Yを含む含窒素複素環基の好ましい例としては、 2 イミダゾリル基、 2— (1 , 3, 4 トリァゾリル)基、 2—(1 , 3, 5 トリァゾリル)基、 2 テトラゾリル基等が挙げられる 。これらの含窒素複素環基で最も好ましくは 2—イミダゾリル基である。
[0192] R 及び R は水素原子または置換基を表す。置換基の例としてはアルキル基 (例え
01 02
ば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert ブチル基、ペンチル基 、へキシル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル 基等)、シクロアルキル基(例えば、シクロペンチル基、シクロへキシル基等)、ァルケ ニル基(例えば、ビュル基、ァリル基等)、アルキニル基(例えば、ェチュル基、プロパ ルギル基等)、芳香族炭化水素環基 (芳香族炭素環基、ァリール基等ともいい、例え ば、フエニル基、 p クロ口フエ二ル基、メシチル基、トリノレ基、キシリノレ基、ナフチル基 、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニル基、フエナントリル基 、インデュル基、ピレニル基、ビフエ二リル基等)、芳香族複素環基 (例えば、ピリジノレ 基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ビラ ゾリル基、ピラジュル基、トリァゾリル基(例えば、 1 , 2, 4 トリァゾールー 1ーィル基、 1 , 2, 3—トリァゾールー 1 ィル基等)、ォキサゾリル基、ベンゾォキサゾリル基、チ ァゾリル基、イソォキサゾリル基、イソチアゾリル基、フラザニル基、チェニル基、キノリ ル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチェ二ル基、ジベンゾチェニル基、 インドリノレ基、カルバゾリル基、カノレポリニノレ基、ジァザカルバゾリル基(前記カルボリ ニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを 示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジ ニル基等)、複素環基(例えば、ピロリジノレ基、イミダゾリジノレ基、モルホリル基、ォキ サゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロピルォキシ基、 ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォキシ基等)、シ クロアルコキシ基(例えば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァ リールォキシ基(例えば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基(例え ば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基、へキシルチオ 基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペン チルチオ基、シクロへキシルチオ基等)、ァリールチオ基(例えば、フエ二ルチオ基、 ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルォキシカルボニル基、 ェチノレ才キシカノレポ二ノレ基、ブチノレ才キシカノレポ二ノレ基、才クチノレ才キシカノレポ二ノレ 基、ドデシルォキシカルボニル基等)、ァリールォキシカルボニル基(例えば、フエ二 ルォキシカルボニル基、ナフチルォキシカルボニル基等)、スルファモイル基(例えば 、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、プチ ルアミノスルホニル基、へキシルアミノスルホニル基、シクロへキシルアミノスルホニル 基、ォクチルアミノスルホニル基、ドデシルアミノスルホニル基、フエニルアミノスルホ ニル基、ナフチルアミノスルホニル基、 2—ピリジルアミノスルホニル基等)、ァシル基( 例えば、ァセチル基、ェチルカルボニル基、プロピルカルボニル基、ペンチルカルボ 二ノレ基、シクロへキシルカルボニル基、ォクチルカルボニル基、 2—ェチルへキシノレ カルボニル基、ドデシルカルボニル基、フエニルカルボニル基、ナフチルカルボニル 基、ピリジルカルボニル基等)、ァシルォキシ基(例えば、ァセチルォキシ基、ェチル カルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボニルォキシ基、ド デシルカルポニルォキシ基、フエ二ルカルポニルォキシ基等)、アミド基(例えば、メチ ルカルボニルァミノ基、ェチルカルボニルァミノ基、ジメチルカルボニルァミノ基、プロ ピルカルボニルァミノ基、ペンチルカルボニルァミノ基、シクロへキシルカルボニルァ ミノ基、 2—ェチルへキシルカルボニルァミノ基、ォクチルカルポニルァミノ基、ドデシ ルカルボニルァミノ基、フエニルカルボニルァミノ基、ナフチルカルボニルァミノ基等) 、力ルバモイル基(例えば、ァミノカルボニル基、メチルァミノカルボニル基、ジメチル ァミノカルボニル基、プロピルアミノカルボニル基、ペンチルァミノカルボニル基、シク 口へキシルァミノカルボニル基、ォクチルァミノカルボニル基、 2—ェチルへキシルァ ミノカルボニル基、ドデシルァミノカルボニル基、フエニルァミノカルボニル基、ナフチ ルァミノカルボニル基、 2—ピリジルァミノカルボニル基等)、ウレイド基(例えば、メチ ルゥレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルウレイド基、オタ チルウレイド基、ドデシノレウレイド基、フエニルウレイド基ナフチルウレイド基、 2—ピリ ジルアミノウレイド基等)、スルフィエル基(例えば、メチルスルフィエル基、ェチルスル フィエル基、ブチルスルフィエル基、シクロへキシルスルフィエル基、 2—ェチルへキ シルスルフィニル基、ドデシルスルフィニル基、フエニルスルフィニル基、ナフチルス ルフィエル基、 2—ピリジルスルフィエル基等)、アルキルスルホニル基(例えば、メチ ノレスノレホニノレ基、ェチノレスノレホニノレ基、ブチノレスノレホニノレ基、シクロへキシノレスノレホ 二ノレ基、 2—ェチルへキシルスルホニル基、ドデシルスルホニル基等)、ァリールスル ホニル基またはへテロアリールスルホニル基(例えば、フエニルスルホニル基、ナフチ ルスルホニル基、 2—ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、ェチルァ ミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァミノ基、 2—ェチルへキシ ノレ ミノ基、ド、デシノレ ミノ基、 二リノ基、ナフチノレアミノ基、 2—ピリジノレ ミノ基等) 、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基( 例えば、フルォロメチル基、トリフルォロメチル基、ペンタフルォロェチル基、ペンタフ ルオロフェニル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例え ば、トリメチルシリル基、トリイソプロビルシリル基、トリフエニルシリル基、フエ二ルジェ チルシリル基等)等が挙げられる。これらの置換基は上記の置換基によって更に置換 されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していて あよい。
一般式(1)の A— C Xで表される炭化水素環基または複素環基において、 Xは炭 素原子または窒素原子を表し、好ましくは炭素原子である。 [0194] A— C Xで表される炭化水素環基が芳香族炭化水素環基のとき、 4η+ 2 π系の 芳香族炭化水素化合物から任意の位置の水素原子を 1つ取り除いたものであり、具 体的にはフエニル基、 1 ナフチル基、 2 ナフチル基、 9 アントリル基、 1 アント リル基、 9 フエナントリル基、 2 トリフエ二レニル基、 3 ペリレニル基等が挙げられ る。更に該炭化水素環基は、例えば、 R で説明した置換基によって置換されていて
01
もよぐ、更に縮合環 (例えば、 9 フエナントリル基に炭化水素環を縮合させた 9ーピレ ニル基、フエニル基に複素環を縮合させた 8—キノリル基等)を形成してもよい。
[0195] Α— C Xで表される複素環基が芳香族複素環基のとき、該芳香族複素環基は含 窒素芳香族複素環に結合する部分の少なくとも片隣接位が炭素原子であり、且つ 4 η + 2 π系の芳香族基であれば特に制限はないが、含窒素芳香族複素環に結合す る部分の両隣接位が炭素原子であることが好ましい。具体的には、 3—ピリジル基、 5 ピリミジル基、 4 ピリダジノレ基、 5—ピリダジノレ基、 4 イソォキサゾリル基、 4 イソ チアゾリル基、 4 ピラゾリル基、 3—ピロ口基、 3—フリル基、 3—チェニル基等が挙 げられる。更に該複素環は、例えば、 R で説明した置換基によって置換されていて
01
もよぐ更に縮合環を形成してもよい。
[0196] 一般式(1)において、 X -L1 -Xは 2座の配位子を表し、 X、Χは各々独立に炭
1 2 1 2
素原子、窒素原子または酸素原子を表す。 L1は X、 Xと共に 2座の配位子を形成す
1 2
る原子群を表す。 X -L1 -Xで表される 2座の配位子の具体例としては、置換また
1 2
は無置換のフエ二ルビリジン、フエ二ルビラゾール、フエ二ルイミダゾール、フエニルト リアゾール、フエ二ルテトラゾール、ビラザボール、ァセチルアセトン、ピコリン酸等が 挙げられる。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表すが、 ml +m2は 2または 3である。中でも、 m2は 0である場合が好ましい。
[0197] 一般式(1)において、中心金属である Mは元素周期表における 8〜; 10族の金属を
1
表すが、中でも好ましくはイリジウムまたは白金である。
[0198] 以下、本発明に係るリン光発光性ドーパントの具体例を示す力 本発明はこれらに 限定されない。
[0199] [化 60]
[ΐ9¾] [ΟΟΖΟ]
Figure imgf000076_0001
Figure imgf000077_0001
[Z9^] [TOZO]
Figure imgf000077_0002
l S990/L00ZdT/13d 9Z 蘭 00Z OAV [0202] [化 63]
Figure imgf000078_0001
[0203] [化 64]
Figure imgf000079_0001
6] lr-17
Figure imgf000080_0001
] [89 ] [LOZO]
Figure imgf000081_0001
[69 ] [80^0]
Figure imgf000082_0001
l S990/L00ZdT/13d !■8 蘭 00Z OAV
Figure imgf000083_0001
[0209] [化 70]
Figure imgf000084_0001
[0210] (蛍光ドーパント (蛍光性化合物とも!/ヽぅ) )
蛍光ドーパント (蛍光性化合物)としては、クマリン系色素、ピラン系色素、シァニン 系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素、 フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチル ベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[0211] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、阻止層、電子輸 送層等について説明する。
[0212] 《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてもよい。
[0213] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線(1998年 11月 30日ェヌ 'ティー.ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。 [0214] 陽極バッファ一層(正孔注入層)は、特開平 9 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア二リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0215] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸化アルミニウムに代表される酸化物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0· 11 111〜5 111の範囲が好ましい。
[0216] 《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11— 204258号公報、同 11— 204359号公報、及 び「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ 'ティー ·エス社発行) 」の 237頁等に記載されている正孔阻止(ホールブロック)層がある。
[0217] 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用い ること力 Sでさる。
[0218] 本発明の有機 EL素子の正孔阻止層は、発光層に隣接して設けられていることが好 ましい。
[0219] 正孔阻止層には、前述のホスト化合物として挙げたァザカルバゾール誘導体を含 有することが好ましい。
[0220] また、本発明にお!/、ては、複数の発光色の異なる複数の発光層を有する場合、そ の発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好 ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔 阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に 含有される化合物の 50質量%以上が、前記最短波発光層のホスト化合物に対しそ のイオン化ポテンシャルが 0. 3eV以上大き!/、ことが好まし!/、。
[0221] イオン化ポテンシャルは化合物の HOMO (最高被占分子軌道)レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような 方法により求めることができる。
[0222] (1)米国 Gaussian社製の分子軌道計算用ソフトウェアである Gaussian98 (Gauss ian98、 Revision A. 丄 1. 4, M. J. Frisch, et ai, Gaussian, Inc. , Pitts ourg h PA, 2002. )を用い、キーワードとして B3LYP/6— 31G *を用いて構造最適 化を行うことにより算出した値 (eV単位換算値)の小数点第 2位を四捨五入した値とし てイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手 法で求めた計算直と実験直の相関が高いためである。
[0223] (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることも できる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC— 1」を 用いて、あるいは紫外光電子分光として知られて!/、る方法を好適に用いることができ
[0224] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明 に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは 3nm〜; !OOnmであり、 更に好ましくは 5nm〜30nmである。
[0225] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けること力 Sでさる。 [0226] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の!/、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。
[0227] 正孔輸送材料としては上記のものを使用することができる力 ポルフィリン化合物、 芳香族第 3級ァミン化合物及びスチリルァミン化合物、特に芳香族第 3級ァミン化合 物を用いることが好ましい。
[0228] 芳香族第 3級ァミン化合物及びスチリルアミン化合物の代表例としては、 N, N, N ' , N ーテトラフエニノレー 4, A' ージァミノフエ二ノレ; N, N ージフエニノレー N, N ' —ビス(3—メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエニル)プロパン; 1 , 1—ビス(4 ジ一 p トリ ノレアミノフエ二ノレ)シクロへキサン; N, N, N' , N' —テトラ一 p トリノレ一 4, A' - ジアミノビフエニル; 1 , 1—ビス(4—ジ一 p トリルァミノフエニル) 4—フエ二ルシク 口へキサン;ビス(4 -ジメチルァミノ一 2 メチルフエ二ノレ)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ二ノレ)フエニルメタン; N, N' —ジフエ二ノレ一 N, N' —ジ(4— メトキシフエ二ル)一 4, 一ジアミノビフエ二ノレ; N, N, N' , N' —テトラフエ二ノレ 4, 4' ージアミノジフエニルエーテル; 4, 4' ビス(ジフエニルァミノ)クオ一ドリフ ェニル; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルァミノ)ー 一〔4—(ジ —p—トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエニルアミノー(2 ジフエ二 ノレビニノレ)ベンゼン; 3—メトキシ一 4' — N, N ジフエ二ルアミノスチルベンゼン; N フエ二ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' —ビス〔N— ( 1—ナ フチル) N フエニルァミノ〕ビフヱニル(NPD)、特開平 4 308688号公報に記 載されているトリフエニルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔N— (3—メチルフエニル) N フエニルァミノ〕トリフエニルァミン(MTD
ATA)等が挙げられる。
[0229] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 p型 Si、 p型 SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。
[0230] また、特開平 1 1— 251067号公報、 J. Huang et. al.著文献 (Applied Physic s Letters 80 (2002) , ρ· 139)に記載されているような、所謂 p型正孔輸送材料 を用いることもできる。本発明においては、より高効率の発光素子が得られることから これらの材料を用いることが好まし!/、。
[0231] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜化することに より形成すること力できる。正孔輸送層の膜厚については特に制限はないが、通常は
51 111〜5 111程度、好ましくは 5nm〜200nmである。この正孔輸送層は上記材料の
1種または 2種以上からなる一層構造であってもよい。
[0232] また、不純物をドープした p性の高い正孔輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、特開 2000— 196140号公報、同 2001— 1021
75号公報の各公報、 J. Appl. Phys . , 95, 5773 (2004)等に記載されたものが挙 げられる。
[0233] 本発明においては、このような ρ性の高い正孔輸送層を用いることが、より低消費電 力の素子を作製することができるため好ましい。
[0234] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けるこ と力 Sできる。
[0235] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中力 任意のものを選択して用いることができる。 [0236] 例えば、ニトロ置換フルオレン誘導体、ジフヱ二ルキノン誘導体、チォピランジオキ シド誘導体、カルポジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及び アントロン誘導体、ォキサジァゾール誘導体等が挙げられる。
[0237] 更に上記ォキサジァゾール誘導体において、ォキサジァゾール環の酸素原子を硫 黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリ ン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこ れらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分 子材料を用いることもできる。
[0238] また、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ二 ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ 口モー 8 キノリノール)ァノレミニゥム、トリス(2 メチノレー 8 -キノリノール)アルミユウ ム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Zn q)等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き換わった金属錯体も、電子輸送材料として用いることができる。
[0239] その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル 基ゃスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いること 力 Sできる。また、発光層の材料として例示したジスチリルビラジン誘導体も、電子輸送 材料として用いること力 Sできるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体も電子輸送材料として用いることができる。
[0240] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜化することに より形成すること力できる。電子輸送層の膜厚については特に制限はないが、通常は 51 111〜5 111程度、好ましくは 5nm〜200nmである。電子輸送層は上記材料の 1種 または 2種以上からなる一層構造であってもよレ、。
[0241] また、不純物をドープした n性の高い電子輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、同 10— 270172号公報、特開 2000— 196140 号公報、同 2001— 102175号公報、 J. Appl. Phys. , 95, 5773 (2004)等に記載 されたものが挙げられる。 [0242] 本発明においては、このような n性の高い電子輸送層を用いることがより低消費電 力の素子を作製することができるため好ましい。
[0243] 《陽極》
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。
[0244] このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォキシド
(ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。
[0245] また、 IDIXO (In O ZnO)等非晶質で透明導電膜を作製可能な材料を用いても ょレ、。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せ、フォトリソグラフィ一法で所望の形状のパターンを形成してもよぐあるいはパター ン精度をあまり必要としなレ、場合は(100 μ m以上程度)、上記電極物質の蒸着ゃス ノ クタリング時に所望の形状のマスクを介してパターンを形成してもよい。
[0246] あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方 式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出 す場合には、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵 抗は数百 Ω /口以下が好ましい。更に膜厚は材料にもよる力 通常 10nm〜; 1000η m、好ましくは 10nm〜200nmの範囲で選ばれる。
[0247] 《陰極》
一方、陰極としては仕事関数の小さレ、(4eV以下)金属(電子注入性金属と称する) 、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。 このような電極物質の具体例としては、ナトリウム、ナトリウム—カリウム合金、マグネシ ゥム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/ アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミ二 ゥム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙 げられる。
[0248] これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属 とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マ グネシゥム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジゥ ム混合物、アルミニウム/酸化アルミニウム (Al O )混合物、リチウム/アルミニウム
2 3
混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリ ング等の方法により薄膜を形成させることにより、作製すること力 sできる。
[0249] また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10nm〜
5 m、好ましくは 50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させる ため、有機 EL素子の陽極または陰極のいずれか一方が透明または半透明であれば 発光輝度が向上し好都合である。
[0250] また、陰極に上記金属を lnm〜20nmの膜厚で作製した後に、陽極の説明で挙げ た導電性透明材料をその上に作製することで、透明または半透明の陰極を作製する ことができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製す ること力 Sでさる。
[0251] 《支持基板》
本発明の有機 EL素子に用いることのできる支持基板(以下、基体、基板、基材、支 持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなぐまた透 明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基 板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス 、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機 EL 素子にフレキシブル性を与えることが可能な樹脂フィルムである。
[0252] 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セル口 ースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セル口 ースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セル ロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリ デン、ポリビニノレアノレコーノレ、ポリエチレンビニノレアノレコーノレ、シンジオタクティックポ リスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケ トン、ポリイミド、ポリエーテルスルホン(PES)、ポリフエ二レンスルフイド、ポリスルホン 類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポ リメチルメタタリレート、アクリルあるいはポリアリレート類、アートン(商品名 JSR社製) あるいはァペル (商品名三井化学社製)とレ、つたシクロォレフイン系樹脂等を挙げら れる。
[0253] 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被 膜が形成されていてもよぐ JIS K 7129— 1992に準拠した方法で測定された、水 蒸気透過度(25 ± 0. 5°C、相対湿度(90 ± 2) %RH)が 0. Olg/ (m2' 24h)以下の ノ リア性フィルムであることが好ましぐ更には、 JIS K 7126— 1987に準拠した方 法で測定された酸素透過度が、 10— 3cm3/ (m2* 24h*MPa)以下、水蒸気透過度が 、 10— 5g/ (m2- 24h)以下の高バリア性フィルムであることが好まし!/、。
[0254] ノ リア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入 を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸化珪素、窒化 珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と 有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積 層順につ!/、ては特に制限はな!/、が、両者を交互に複数回積層させることが好まし!/ヽ
[0255] ノ リア膜の形成方法については特に限定はなぐ例えば、真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー CVD法、熱 CVD法、コーティング法等を用いることができる力 特開 200 4— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましい。
[0256] 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムゃ不 透明樹脂基板、セラミック製の基板等が挙げられる。
[0257] 本発明の有機 EL素子の発光の室温における外部取り出し効率は、 1 %以上である こと力 S好ましく、より好ましくは 5%以上である。
[0258] ここに、外部取り出し量子効率(%) =有機 EL素子外部に発光した光子数/有機 E
L素子に流した電子数 X 100である。
[0259] また、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子から の発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色 変換フィルターを用いる場合においては、有機 EL素子の発光の maxは 480nm以 下が好ましい。
[0260] 《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接 着剤で接着する方法を挙げることができる。
[0261] 封止部材としては、有機 EL素子の表示領域を覆うように配置されておればよぐ凹 板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
[0262] 具体的には、ガラス板、ポリマー板'フィルム、金属板'フィルム等が挙げられる。ガ ラス板としては、特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス 、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げる こと力 Sできる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレ フタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板 としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チ タン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以 上の金属または合金からなるものが挙げられる。
[0263] 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィル ムを好ましく使用することができる。更には、ポリマーフィルムは、 JIS K 7126 - 19 87に準拠した方法で測定された酸素透過度が 1 X 10— 1113/ (1112'
Figure imgf000093_0001
以下 、JIS K 7129— 1992に準拠した方法で測定された、水蒸気透過度(25 ± 0. 5°C 、相対湿度(90 ± 2) %RH)が、 1 X 10— 3g/ (m2' 24h)以下のものであることが好ま しい。
[0264] 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使 われる。
[0265] 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応 性ビュル基を有する光硬化及び熱硬化型接着剤、 2—シァノアクリル酸エステル等 の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学 硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステ ル、ポリオレフインを挙げること力 Sできる。また、カチオン硬化タイプの紫外線硬化型 エポキシ樹脂接着剤を挙げることができる。
[0266] なお、有機 EL素子が熱処理により劣化する場合があるので、室温から 80°Cまでに 接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいても よい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリ ーン印刷のように印刷してもよレ、。
[0267] また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆 し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にで きる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらす ものの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸化 珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これ ら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の 形成方法については、特に限定はなぐ例えば真空蒸着法、スパッタリング法、反応 性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレー ティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法、レーザー C VD法、熱 CVD法、コーティング法等を用いることができる。
[0268] 封止部材と有機 EL素子の表示領域との間隙には、気相及び液相では、窒素、ァ ルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入 すること力 S好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を 封人することあでさる。
[0269] 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム 、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩( 例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属 ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タ ンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩 素酸類 (例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸 塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
[0270] 《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルム の外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよ い。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずし も高くないため、このような保護膜、保護板を設けることが好ましい。これに使用するこ と力 Sできる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板'フィル ム、金属板'フィルム等を用いることができる力 軽量且つ薄膜化ということからポリマ 一フィルムを用いることが好ましレ、。
[0271] 《光取り出し》
有機 EL素子は空気よりも屈折率の高い(屈折率が 1. 7〜2. 1程度)層の内部で発 光し、発光層で発生した光のうち 15%から 20%程度の光しか取り出せないことがー 般的に言われている。これは、臨界角以上の角度 Θで界面(透明基板と空気との界 面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明 電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発 光層を導波し、結果として光が素子側面方向に逃げるためである。
[0272] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸 を形成し、透明基板と空気界面での全反射を防ぐ方法 (米国特許第 4, 774, 435号 明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭 63— 31 4795号公報)、素子の側面等に反射面を形成する方法(特開平 1— 220394号公 報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成 する方法 (特開昭 62— 172691号公報)、基板と発光体の間に基板よりも低屈折率 を持つ平坦層を導入する方法(特開 2001— 202827号公報)、基板、透明電極層 や発光層のいずれかの層間 (含む、基板と外界間)に回折格子を形成する方法 (特 開平 11— 283751号公報)等がある。
[0273] 本発明においては、これらの方法を本発明の有機 EL素子と組み合わせて用いるこ とができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方 法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間) に回折格子を形成する方法を好適に用いることができる。
[0274] 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優 れた素子を得ることができる。 [0275] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成する と、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が 高くなる。
[0276] 低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシウム、フッ 素系ポリマー等が挙げられる。透明基板の屈折率は一般に 1. 5〜; 1. 7程度であるの で、低屈折率層は屈折率がおよそ 1. 5以下であることが好ましい。また、更に 1. 35 以下であることが好ましい。
[0277] また、低屈折率媒質の厚みは媒質中の波長の 2倍以上となるのが望ましい。これは 低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波 が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
[0278] 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光 取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が 1次の回 折や 2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の 向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全 反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基 板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そう とするあのである。
[0279] 導入する回折格子は、二次元的な周期屈折率を持って!/、ること力 S望まし!/、。これは 発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周 期的な屈折率分布を持っている一般的な 1次元回折格子では、特定の方向に進む 光しか回折されず、光の取り出し効率がさほど上がらない。し力もながら、屈折率分 布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り 出し効率が上がる。
[0280] 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透 明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が 望ましい。
[0281] このとき、回折格子の周期は媒質中の光の波長の約 1/2〜3倍程度が好ましい。
[0282] 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、 2 次元的に配列が繰り返されることが好ましい。
[0283] 《集光シート》
本発明の有機 EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の 構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特 定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の 輝度を高めることができる。
[0284] マイクロレンズアレイの例としては、基板の光取り出し側に一辺が 30〃 mでその頂 角が 90度となるような四角錐を 2次元に配列する。一辺は 10 m〜; 100 mが好ま しい。これより小さくなると回折の効果が発生して色付ぐ大きすぎると厚みが厚くなり 好ましくない。
[0285] 集光シートとしては、例えば、液晶表示装置の LEDバックライトで実用化されている ものを用いることが可能である。このようなシートとして、例えば、住友スリーェム社製 輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例 えば、基材に頂角 90度、ピッチ 50〃 mの△状のストライプが形成されたものであって もよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の 形状であってもよい。
[0286] また、発光素子からの光放射角を制御するために、光拡散板'フィルムを集光シー トと併用してもよい。例えば、(株)きもと製拡散フィルム (ライトアップ)等を用いること ができる。
[0287] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 /発光層/電子輸送層/電子注入層/陰極からなる有機 EL素子の作製法を説明 する。
[0288] まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を 1 μ m 以下、好ましくは 10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ陽極を作製する。
[0289] 次に、この上に有機 EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸 送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。 [0290] これら各層の形成方法としては、前記の如く蒸着法、ウエットプロセス (スピンコート 法、キャスト法、インクジェット法、印刷法)等がある力、均質な膜が得られやすぐ且 つ、ピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インク ジェット法、印刷法等の塗布法による製膜が好まし!/、。
[0291] 本発明に係る有機 EL材料を溶解または分散する液媒体としては、例えば、メチル ェチルケトン、シクロへキサノン等のケトン類、酢酸ェチル等の脂肪酸エステル類、ジ クロ口ベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロへ キシルベンゼン等の芳香族炭化水素類、シクロへキサン、デカリン、ドデカン等の脂 肪族炭化水素類、 DMF、 DMSO等の有機溶媒を用いることができる。また分散方 法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散すること ができる。
[0292] これらの層を形成後、その上に陰極用物質からなる薄膜を 1 μ m以下、好ましくは、 50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法 により形成させ、陰極を設けることにより所望の有機 EL素子が得られる。
[0293] また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、 正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の 表示装置に、直流電圧を印加する場合には陽極を +、陰極を一の極性として電圧 2 〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、 印加する交流の波形は任意でよ!/、。
[0294] 《用途》
本発明の有機 EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いる ことができる。発光光源として、例えば、照明装置 (家庭用照明、車内照明)、時計や 液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光 源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するもの ではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用 いること力 Sでさる。
[0295] 本発明の有機 EL素子においては、必要に応じ製膜時にメタルマスクやインクジエツ トプリンティング法等でパターユングを施してもよい。パターユングする場合は、電極 のみをパターユングしてもよいし、電極と発光層をパターユングしてもよいし、素子全 層をパターユングしてもよぐ素子の作製においては、従来公知の方法を用いること ができる。
[0296] 本発明の有機 EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハ ンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁の図 4. 16におい て、分光放射輝度計 CS - 1000 (コニ力ミノルタセンシング社製)で測定した結果を C IE色度座標に当てはめたときの色で決定される。
[0297] また、本発明の有機 EL素子が白色素子の場合には、白色とは、 2度視野角正面輝 度を上記方法により測定した際に、 1000Cd/m2での CIE1931表色系における色 度力 Χ=0. 33 ± 0. 07、Υ = 0. 33 ± 0. 1の領域内にあることを言う。
実施例
[0298] 以下、実施例により本発明を説明するが、本発明の実施形態はこれらに限定され ない。また、以下に実施例で使用する化合物の構造を示す。
[0299] [化 71]
Figure imgf000099_0001
[0300] [化 72]
BCP
Figure imgf000099_0002
[0301] [化 73] tBu-PBD
Figure imgf000100_0001
[0302] [化 74]
Figure imgf000100_0002
比較化合物 1
Figure imgf000100_0003
[0303] [化 75]
Figure imgf000101_0001
[0304] 実施例 1
《有機 EL素子 1 1の作製》:比較例
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0305] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOT/PSS、: Bayer社製、 Baytron P Al 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。
[0306] この基板を窒素雰囲気下に移し、第一正孔輸送層上に、 50mgの化合物 Aを 10
0 mlのトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製 膜した。 180秒間紫外光を照射し、光重合 ·架橋を行い、膜厚約 25nmの第二正孔 輸送層とした。
[0307] この第二正孔輸送層上に、 lOOmgの比較化合物 1と 10mgの化合物 2— 2を 10ml のトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製膜し た。 15秒間紫外光を照射し、光重合 ·架橋を行わせ、さらに真空中 150°Cで 1時間 加熱を行って、膜厚約 50nmの発光層とした。
[0308] 次にこの発光層上に、 50mgの tBu— PBDを 10mlのトルエンに溶解した溶液を 10 00rpm、 30秒の条件下、スピンコート法により製膜し、 60°Cで 1時間真空乾燥し、膜 厚約 25nmの電子輸送層とした。 [0309] これを真空蒸着装置に取付け、次いで、真空槽を 4 X 10— 4Paまで減圧し、陰極バッ ファー層としてフッ化リチウム 1. Onm及び陰極としてアルミニウム l lOnmを蒸着して 陰極を形成し、有機 EL素子 1 1を作製した。
[0310] 《有機 EL素子 1—2〜;! 8の作製》
有機 EL素子 1 1の作製において、比較化合物 1および tBu— PBDを表 2に記載 の化合物を用いた以外は同様にして、有機 EL素子 1 2〜1 8を各々作製した。
[0311] 《有機 EL素子の評価》
得られた有機 EL素子 1 1〜1 8について、下記のようにして、外部取りだし量子 効率及び発光寿命を評価した。
[0312] 《外部取りだし量子効率》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放 射輝度計 CS - 1000 (コニ力ミノルタセンシング社製)を用いた。
[0313] 得られた結果を表 1に示す。外部取りだし量子効率の測定結果は、有機 EL素子 1
—1の測定値を 100とした時の相対値で表した。
[0314] 《発光寿命》
2. 5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 1/2)として 寿命の指標とした。
[0315] 尚、測定には分光放射輝度計 CS— 1000 (コニカミノルタセンシング社製)を用い た。得られた結果を表 2に示す。尚、表 2の発光寿命の測定結果は、有機 EL素子 1 — 1を 100とした時の相対値で表した。
[0316] [表 2] 右爐 化合物
τ¾ ί¾ Fεt ¾^ j- 部取り出し量子効率 5Sf 備 考 発光層 電子輸送濯
1― 1 比較化合物 1 Ρ&β 100 100 比較例
1— 2 比較 ft合物 2 tBu ~ PBD 電子輸¾屠を製膜できず 比較例 t - 3 ト 9 tBu— PBO 440 700 実施例
1一 4 ト 14 tBu -PBO 460 600 実施例 t - 5 i - ? 8 BA i q 400 520 卖施例
1― 6 1,— δ BCP 340 47D 実施例
1 - 7 なし 380 580 実翁例 f ―. 8 1 - 13 1 -39 410 590 実麵
[0317] 表 2から、比較の有機 EL素子 1 1に比べて、本発明の有機 EL素子 1 3〜;!一 8 の各々と比較して、外部取り出し量子効率、発光寿命ともに著しく良好な特性を示す ことが判る。
[0318] また、反応性基を持たない比較化合物 2を用いて作製した、比較の有機 EL素子 1
2では、電子輸送層の塗布時に発光層の構成成分が溶出し、電子輸送層を製膜 することができず、結果的に有機素子を作製することができなかった。
[0319] 一方、本発明の有機 EL素子 1 3 1 9は、各々、塗布溶剤への溶解耐性の高 レ、、架橋密度を持った有機薄膜が形成出来ているため、塗布法にて積層可能であり 、また、素子性能としても、高い外部取り出し量子効率を示すと同時に、発光寿命の 長い素子を得ることができた。
[0320] 実施例 2
《有機 EL素子 2 1の作製》
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(NHテクノグラス社製 NA— 45)にパターユングを行 つた後 この IT〇透明電極を設けた透明支持基板をイソプロピルアルコ ルで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0321] この透明支持基板上に、ボリ(3, 4 エチレンジォキシチォフェン) ボリスチレンス ルホネート(PEDOT/PSS Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。
[0322] この基板を窒素雰囲気下に移し、第一正孔輸送層上に、 50mgの化合物 Aを 10 mlのトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製 膜した。 180秒間紫外光を照射し、光重合 ·架橋を行い、膜厚約 25nmの第二正孔 輸送層とした。
[0323] この第二正孔輸送層上に、 50mgのポリビュル力ルバゾールと 5mgの Ir—lを 10ml のジクロロェタンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により 製膜し発光層とした。
[0324] 次にこの基板を真空蒸着装置に取付け、次いで、真空槽を 4 X 10— 4Paまで減圧し 、陰極バッファ一層としてフッ化リチウム 1. Onm及び陰極としてアルミニウム l lOnm を蒸着して陰極を形成し、有機 EL素子 2— 1を作製した。
[0325] 《有機 EL素子 2— 2の作製》
有機 EL素子 2— 1の作製にお!/、て、ポリビュル力ルバゾールを化合物 1—45 (n = 22000のポリマーを用いた)に置き替えた以外は有機 EL素子 2— 1と同じ方法で 2— 2を作製した。
[0326] 《有機 EL素子の評価》
以下のようにして作製した有機 EL素子 2— 1、 2— 2の評価を行い、その結果を下 記表に不す。
[0327] 《外部取りだし量子効率》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コニ力ミノルタセンシング社製)を用いた。
[0328] 外部取りだし量子効率の測定結果は、有機 EL素子 2— 1の測定値を 100とした時 の相対値で表した。
[0329] 《発光寿命》
2. 5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 1/2)として 寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コニカミノルタセンシ ング社製)を用いた。寿命の測定結果は、有機 EL素子 2—1を 100とした時の相対値 で表した。 [0330] 得られた結果を下記に示す。
[0331] 有機 EL素子 No. 外部取り出し量子効率 発光寿命 備考
2- 1 100 100 比較
2- 2 132 1350 本発明
上記から、本発明に係る化合物 Aの重合体の一態様である、化合物 1 45 (繰り返 し単位として、力ルバゾール環、ジベンゾフラン環を部分構造として有する)を含有す る、本発明の有機 EL素子 2— 2は、比較の有機 EL素子 2 1に比べて、外部取り出 し量子効率、発光寿命共に著しく改善されていることが判る。
[0332] 実施例 3
《有機 ELフルカラー表示装置の作製》
図 1は有機 ELフルカラー表示装置の概略構成図を示す。陽極としてガラス基板 10 1上に ITO透明電極(102)を lOOnm製膜した基板(NHテクノグラス社製 NA45)に 100 mのピッチでパターユングを行った後、このガラス基板上で ITO透明電極の間 に非感光性ポリイミドの隔壁 103 (幅 20 m、厚さ 2· 0 m)をフォトリソグラフィ一で 形成させた。 ITO電極上ポリイミド隔壁の間に下記組成の正孔注入層組成物を、イン クジェットヘッド (エプソン社製; MJ800C)を用いて吐出注入し、紫外光を 30秒間照 射し、 60°C、 10分間の乾燥処理により膜厚 40nmの正孔注入層 104を作製した。
[0333] この正孔注入層上に、各々下記の青色発光層組成物、緑色発光層組成物、赤色 発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、紫外光を 30秒間 照射し、 60°C、 10分間乾燥処理し、それぞれの発光層(105B、 105G、 105R)を形 成させた。最後に発光層 105を覆うように、陰極として AK106)を真空蒸着して有機 EL素子を作製した。
[0334] 作製した有機 EL素子はそれぞれの電極に電圧を印加することにより各々青色、緑 色、赤色の発光を示し、フルカラー表示装置として利用できることがわ力、つた。
[0335] (正孔注入層組成物)
化合物 A 20質量部
0
シクロへキシルベンゼン 50質量部 (青色発光層組成物)
化合物 1 9 0. 7質量部
Ir- 15 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピノレビフエ二ノレ 50質量部
(緑色発光層組成物)
化合物 1 9 0. 7質量部
Ir- 1 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピノレビフエ二ノレ 50質量部
(赤色発光層組成物)
化合物 1 9 0. 7質量部
Ir- 14 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピノレビフエ二ノレ 50質量部
また、 Ir—15、 Ir- 1 , Ir— 14の代りに化合物 2- - 1〜2— 16を、化合物 1—9の代り に化合物 1 1〜1 8または化合物 1 10〜1 - 42を用いて作製した有機 EL素子 でも、同様にフルカラー表示装置として利用できることがわかった。
[0336] 実施例 4
《白色の有機 EL素子 4 1の作製》
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0337] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOT/PSS、: Bayer社製、 Baytron P Al 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。 [0338] この基板を窒素雰囲気下に移し、第一正孔輸送層上に、 50mgの化合物 Aを 10
0 mlのトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製 膜した。 180秒間紫外光を照射し、光重合 ·架橋を行った後、 60°Cで 1時間真空乾 燥し第 2正孔輸送層とした。
[0339] 次に、化合物 1 10 (60mg)、化合物 2— 6 (3. Omg)、化合物 2— 7 (3. Omg)をト ルェン 6mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート法により 製膜した。 15秒間紫外光を照射し、光重合 ·架橋を行わせ、さらに真空中 150°Cで 1 時間加熱を行い、発光層とした。
[0340] 更に、化合物 B (20mg)をトルエン 6mlに溶解した溶液を用い、 lOOOrpm, 30秒
0
の条件下、スピンコート法により製膜した。 15秒間紫外光を照射し、光重合'架橋を 行わせ、さらに真空中 80°Cで 1時間加熱を行い、正孔阻止層とした。
[0341] 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加 熱ボートに Alqを 200mg入れ、真空蒸着装置に取り付けた。真空槽を 4 X 10— 4Paま
3
で減圧した後、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm/
3
秒で前記電子輸送層の上に蒸着して、更に膜厚 40nmの電子輸送層を設けた。
[0342] なお、蒸着時の基板温度は室温であった。
[0343] 引き続き、フッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し
、有機 EL素子 4—1を作製した。
[0344] この素子に通電したところほぼ白色の光が得られ、照明装置として使用出来ること が判った。尚、例示の他の化合物に置き替えても同様に白色の発光が得られること が判った。
[0345] 実施例 5
《有機 EL素子 5 1の作製》:本発明
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基 板上に、ポリ(3, 4—エチレンジォキシチォフェン) ポリスチレンスルホネート(PED OT/PSS、: Bayer社製、 Baytron P Al 4083)を純水で 70質量%に希釈した溶 液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1時間乾燥し、 膜厚 30nmの正孔注入 ·輸送層を設けた。
[0346] この正孔注入'輸送層上に、化合物 1 54を 30mgをトルエン 3mlに溶解した溶液 を、 1000rpm、 30秒の条件下、スピンコート法により製膜し、 60°Cで 1時間真空乾燥 し、膜厚 80nmの発光層とした。
[0347] これを真空蒸着装置に取付け、次いで、真空槽を 4 X 10— 4Paまで減圧し、陰極バッ ファー層としてカルシウム 10nm及び陰極としてアルミニウム l lOnmを蒸着して陰極 を形成し、有機 EL素子 5 1を作製した。
[0348] 《有機 EL素子 5— 2の作製》:比較例
有機 EL素子 5— 1の作製において、 3mlの化合物 1 54の溶液を下記の溶液 [A] に置き替えた以外は全く同様にして、有機 EL素子 5— 2を作製した。
[0349] (溶液 [A]の調製)
従来公知の発光層形成材料である、ポリビュル力ルバゾール(PVCzともいう) 30m gと Ir— 13 (青発光性オルトメタル化錯体) 1. 5mgとをトルエン 3mlに溶解し、調製し た溶液
《有機 EL素子 5—;!〜 5— 2の評価》
得られた有機 EL素子 5—;!〜 5— 2を評価するに際しては、作製後の各有機 EL素 子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板とし て用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラック ストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密 着させ、ガラス基板側から UV光を照射して、硬化させて、封止して、図 2、図 3に示 すような照明装置を形成して評価した。
[0350] 図 2は、照明装置の概略図を示し、有機 EL素子 201は、ガラスカバー 202で覆わ れている。尚、ガラスカバーでの封止作業は、有機 EL素子 201を大気に接触させる ことなく窒素雰囲気下のグローブボックス(純度 99. 999%以上の高純度窒素ガスの 雰囲気下で行った)。
[0351] 図 3は、本発明の照明装置の一態様を示す断面図であり、図 3において、 205は陰 極、 206は有機 EL層、 207は透明電極付きガラス基板を示す。尚、ガラスカバー 20 2内には窒素ガス 208が充填され、捕水剤 209が設けられている。
[0352] 次いで、下記のようにして外部取り出し量子効率および発光寿命を測定した。
[0353] 《外部取りだし量子効率》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放 射輝度計 CS - 1000 (コニ力ミノルタセンシング社製)を用いた。
[0354] 《発光寿命》
23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2の一定電流で駆動したときに、輝 度が発光開始直後の輝度 (初期輝度)の半分に低下するのに要した時間を測定し、 これを半減寿命時間( τン2)として寿命の指標とした。尚、測定には同様に、分光放 射輝度計 CS - 1000 (コニ力ミノルタセンシング社製)を用いた。
[0355] 有機 EL素子 5— ;!〜 5— 2の外部取り出し量子効率、発光寿命の測定結果は、有 機 EL素子 5— 2のデータを 100とした時の相対評価を行った。
[0356] 得られた結果を下記に示す。
[0357] 有機 EL 発光層 外部取りだし 発光寿命 発光色 備考
素子 No. 形成材料 量子効率(%)
(相対値)
5- 1 1 - 54 139 149 青 本発明
5- 2 PVCz 100 100 青 比較例
+ Ir- 13
上記評価結果から、比較に比べて、本発明の有機 EL素子 5— 1は、外部取り出し 量子効率が大幅に向上し、消費電力が抑制され、且つ、発光寿命も改善されること が明らかである。

Claims

請求の範囲
支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも 1層の発 光層を有する有機エレクト口ルミネッセンス素子において、
下記一般式 (a)で表される部分構造および反応性基を有する化合物 Aを少なくとも 一部として含み、且つ、前記反応性基を介して前記化合物 Aが重合してなる重合体 を含有することを特徴とする、有機エレクト口ルミネッセンス素子。
[化 1]
Figure imgf000110_0001
〔式中、 Arl、 Ar2は各々芳香環を表す。〕
[2] 前記 Arl、 Ar2が、各々 3つの環からなる縮合環であることを特徴とする請求の範囲 第 1項に記載の有機エレクト口ルミネッセンス素子。
[3] 前記 Arl、 Ar2が、各々カノレバゾール環、カルボリン環、ジベンゾフラン環またはベン ゼン環を表すことを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセン ス素子。
[4] 前記一般式 (a)が下記一般式 (b)で表されることを特徴とする請求の範囲第 1項〜第
3項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[化 2]
'般式 (b)
Figure imgf000110_0002
〔式中、 Arは芳香環を表す。〕
前記 Arが、力ルバゾール環、カルボリン環、ジベンゾフラン環またはベンゼン環を表 すことを特徴とする請求の範囲第 1項〜第 4項のいずれか 1項に記載の有機エレクト 口ルミネッセンス素子。
[6] 前記 Arが、力ルバゾール環またはベンゼン環を表すことを特徴とする請求の範囲第
1項〜第 5項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[7] 前記反応性基が、下記一般式 (2)〜(5)のいずれかで表されることを特徴とする請 求の範囲第項 1項〜第 6項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素 子。
[化 3コ
Figure imgf000111_0001
〔式中、 Rは、水素原子またはメチル基を表し、 Qは、下記一般式 (c)、(d)及び (e)か らなる 2価の連結基群から選択されるひとつまたは該 2価の連結基の複数の組み合 わせで表される基を表す。〕
[化 4] 一般式 (c〗 一般式 一般式 {e》 t~-C—— ·* *—— O—— # *— S'— *
〔式中、 R、 Rは、各々水素原子またはメチル基を表し、 Cyは、 3員または 4員の環状
1 2
エーテルを表す。〕
[8] 前記化合物 Aまたは該化合物 Aの重合体が、発光層に含有されることを特徴とする 請求の範囲第 1項〜第 7項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子。
[9] 前記発光層が、前記重合体とリン光発光性ドーパントを含有していることを特徴とす る請求の範囲第 1項〜第 8項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子。
[10] 前記重合体が、前記化合物 Aとリン光発光性ドーパントとの共重合体であることを特 徴とする請求の範囲第 1項〜第 9項のいずれ力、 1項に記載の有機エレクト口ルミネッ センス素子。
[11] 前記リン光発光性ドーパントが Ir錯体であることを特徴とする請求の範囲第 9項また は第 10項に記載の有機エレクト口ルミネッセンス素子。
[12] 前記リン光発光性ドーパントのリン光波長の 0— 0遷移バンドが 485nm以下であるこ とを特徴とする請求の範囲第 9項または第 10項に記載の有機エレクト口ルミネッセン ス素子。
[13] 前記リン光発光性ドーパントが、下記一般式(1)で表される金属錯体であることを特 徴とする請求の範囲第 12項に記載の有機エレクト口ルミネッセンス素子。
[化 5]
—殺式 (1}
Figure imgf000112_0001
(式中、 Zは結合する窒素原子から数えて 3番目の原子の少なくとも 1つに、立体パラ メーター値 (Es値)がー 0. 5以下の置換基を結合している炭化水素環または複素環 を表す。 X及び Yは炭素原子または窒素原子を表し、 Aは X— Cと共に 5〜6員の炭 化水素環または複素環を形成するのに必要な原子群を表す。 Bは C (R ) =C (R
01 0
)—、一 N二 C (R )—、一 C (R ) =N—または一 N二 N を表し、 R 及び R は水
2 02 01 01 02 素原子または置換基を表す。 X -L1 -Xは 2座の配位子を表し、 X、 Xは各々独
1 2 1 2 立に炭素原子、窒素原子または酸素原子を表す。 L1は X、 Xと共に 2座の配位子
1 2
を形成する原子群を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整 数を表す力 ml +m2は 2または 3である。中心金属である Mは元素周期表におけ る 8〜; 10族の金属を表す。 )
[14] 前記化合物 Aまたは該化合物 Aの重合体の、リン光波長の 0— 0遷移バンドが 460η m以下であることを特徴とする請求の範囲第 1項〜第 13項のいずれ力、 1項に記載の 有機エレクト口ルミネッセンス素子。
[15] 前記化合物 Aまたは該化合物 Aの重合体を含有する層が、湿式法で形成されたこと を特徴とする請求の範囲第 1項〜第 14項のいずれか 1項に記載の有機エレクトロル ミネッセンス素子。
[16] 前記化合物 Aを塗布後、重合することを特徴とする請求の範囲第 1項〜第 15項のい ずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[17] 構成層として、複数の有機化合物層を有することを特徴とする請求の範囲第 1項〜 第 16項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。
[18] 前記陽極と前記発光層との間に少なくとも 1層の陽極バッファ一層または前記陰極と 前記発光層との間に少なくとも 1層の陰極バッファ一層を有しており、前記発光層の 少なくとも 1層が、前記化合物 Aまたは該化合物 Aの重合体を含有し、且つ、該発光 層が湿式法で形成されたことを特徴とする請求の範囲第 1項〜第 17項のいずれか 1 項に記載の有機エレクト口ルミネッセンス素子。
[19] 白色に発光することを特徴とする請求の範囲第 1項〜第 18項のいずれ力、 1項に記載 の有機エレクト口ルミネッセンス素子。
[20] 請求の範囲第 1項〜第 19項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素 子を備えたことを特徴とする表示装置。
[21] 請求の範囲第 1項〜第 19項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素 子を備えたことを特徴とする照明装置。
PCT/JP2007/066541 2006-09-08 2007-08-27 Organic electroluminescent device, illuminating device and display WO2008029652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/439,717 US8852757B2 (en) 2006-09-08 2007-08-27 Organic electroluminescence element, lighting device and display device
JP2008533102A JP5332614B2 (ja) 2006-09-08 2007-08-27 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-244026 2006-09-08
JP2006244026 2006-09-08
JP2007-019224 2007-01-30
JP2007019224 2007-01-30

Publications (1)

Publication Number Publication Date
WO2008029652A1 true WO2008029652A1 (en) 2008-03-13

Family

ID=39157085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066541 WO2008029652A1 (en) 2006-09-08 2007-08-27 Organic electroluminescent device, illuminating device and display

Country Status (3)

Country Link
US (1) US8852757B2 (ja)
JP (1) JP5332614B2 (ja)
WO (1) WO2008029652A1 (ja)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147011A1 (en) * 2008-06-02 2009-12-10 Basf Se Dibenzofurane polymers for electroluminiscent devices
JP2011509247A (ja) * 2007-12-28 2011-03-24 ユニバーサル ディスプレイ コーポレイション リン光発光ダイオード中の、カルバゾールを含む物質
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
WO2011158592A1 (ja) * 2010-06-18 2011-12-22 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2013163682A (ja) * 2010-03-31 2013-08-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
JP2014509335A (ja) * 2011-01-21 2014-04-17 ユニバーシティ オブ ハル 高分子網状構造
KR20140072021A (ko) * 2011-07-11 2014-06-12 메르크 파텐트 게엠베하 유기 전계발광 소자용 화합물
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2016006243A1 (ja) * 2014-07-10 2016-01-14 株式会社Joled 有機el素子
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
JP2023025007A (ja) * 2018-03-16 2023-02-21 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
JP7513068B2 (ja) 2018-03-16 2024-07-09 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299787B2 (en) * 2006-12-18 2012-10-30 Konica Minolta Holdings, Inc. Multicolor phosphorescent organic electroluminescent element and lighting system
TWI569491B (zh) * 2012-10-11 2017-02-01 Joled Inc Organic EL display device and manufacturing method thereof, ink and electronic machine
WO2015082046A2 (de) * 2013-12-06 2015-06-11 Merck Patent Gmbh Substituierte oxepine
EP3547384B1 (en) 2016-11-23 2022-10-05 Guangzhou Chinaray Optoelectronic Materials Ltd. High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100462A (ja) * 2001-09-21 2003-04-04 Showa Denko Kk 電子輸送材料および該電子輸送材料を用いた有機発光素子
JP2005163036A (ja) * 2003-11-18 2005-06-23 Chi Mei Electronics Corp 発光材料としてのイリジウム錯体および有機発光ダイオードデバイス
JP2005183344A (ja) * 2003-12-24 2005-07-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040235B2 (ja) 2000-04-14 2008-01-30 キヤノン株式会社 有機発光素子
US6893743B2 (en) * 2000-10-04 2005-05-17 Mitsubishi Chemical Corporation Organic electroluminescent device
JP2002302516A (ja) * 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP3969152B2 (ja) 2001-06-21 2007-09-05 昭和電工株式会社 有機発光素子および発光材料
US7250226B2 (en) * 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
JP2003086371A (ja) 2001-09-10 2003-03-20 Fuji Photo Film Co Ltd 発光素子および発光素子の製造方法
KR20050100694A (ko) * 2003-02-20 2005-10-19 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그를 이용한 유기 전기발광소자
DE602004017027D1 (de) * 2003-08-29 2008-11-20 Showa Denko Kk Phosphoreszierende polymerverbindung und darauf basierende organische lichtemittierende vorrichtung
JP2005146022A (ja) * 2003-11-11 2005-06-09 Dainippon Printing Co Ltd 電荷輸送性単量体、電荷輸送性材料およびその製造方法
JP4752220B2 (ja) 2004-09-13 2011-08-17 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
US20070224446A1 (en) * 2006-03-24 2007-09-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100462A (ja) * 2001-09-21 2003-04-04 Showa Denko Kk 電子輸送材料および該電子輸送材料を用いた有機発光素子
JP2005163036A (ja) * 2003-11-18 2005-06-23 Chi Mei Electronics Corp 発光材料としてのイリジウム錯体および有機発光ダイオードデバイス
JP2005183344A (ja) * 2003-12-24 2005-07-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509247A (ja) * 2007-12-28 2011-03-24 ユニバーサル ディスプレイ コーポレイション リン光発光ダイオード中の、カルバゾールを含む物質
JP2014196342A (ja) * 2007-12-28 2014-10-16 ユニバーサル ディスプレイ コーポレイション リン光発光ダイオード中の、カルバゾールを含む物質
US8685541B2 (en) 2008-06-02 2014-04-01 Basf Se Dibenzofurane polymers for electroluminiscent devices
JP2011524086A (ja) * 2008-06-02 2011-08-25 ビーエーエスエフ ソシエタス・ヨーロピア エレクトロルミネセンスデバイスのためのジベンゾフランポリマー
KR20110011665A (ko) * 2008-06-02 2011-02-08 바스프 에스이 전계 발광 디바이스를 위한 디벤조푸란 중합체
WO2009147011A1 (en) * 2008-06-02 2009-12-10 Basf Se Dibenzofurane polymers for electroluminiscent devices
KR101634820B1 (ko) * 2008-06-02 2016-06-29 바스프 에스이 전계 발광 디바이스를 위한 디벤조푸란 중합체
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US9199974B2 (en) 2010-03-31 2015-12-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same
JP2013163682A (ja) * 2010-03-31 2013-08-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US9266865B2 (en) 2010-03-31 2016-02-23 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element, and organic electroluminescent element using same
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
JP5621844B2 (ja) * 2010-06-18 2014-11-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
JPWO2011158592A1 (ja) * 2010-06-18 2013-08-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
WO2011158592A1 (ja) * 2010-06-18 2011-12-22 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2014509335A (ja) * 2011-01-21 2014-04-17 ユニバーシティ オブ ハル 高分子網状構造
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
KR20140072021A (ko) * 2011-07-11 2014-06-12 메르크 파텐트 게엠베하 유기 전계발광 소자용 화합물
JP2014527037A (ja) * 2011-07-11 2014-10-09 メルク パテント ゲーエムベーハー 有機エレクトロルミッセンス素子のための化合物
US9583717B2 (en) 2011-07-11 2017-02-28 Merck Patent Gmbh Compounds for organic electroluminescent devices
KR102008034B1 (ko) * 2011-07-11 2019-08-06 메르크 파텐트 게엠베하 유기 전계발광 소자용 화합물
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2016006243A1 (ja) * 2014-07-10 2016-01-14 株式会社Joled 有機el素子
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
JP2023025007A (ja) * 2018-03-16 2023-02-21 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
JP7513068B2 (ja) 2018-03-16 2024-07-09 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法

Also Published As

Publication number Publication date
JPWO2008029652A1 (ja) 2010-01-21
US20100045171A1 (en) 2010-02-25
JP5332614B2 (ja) 2013-11-06
US8852757B2 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
JP5708781B2 (ja) 有機エレクトロルミネッセンス素子
JP5332614B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5967057B2 (ja) 有機エレクトロルミネッセンス素子とその製造方法、照明装置及び表示装置
JP5648710B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
US8242488B2 (en) Organic electroluminescent element, display device, and illuminating device
JP5018891B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5381103B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、該製造方法により得られた有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5304010B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5201054B2 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、青色燐光発光素子、表示装置及び照明装置
JP5088025B2 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010067746A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP2008311608A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2012096241A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2008072596A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008207520A (ja) 有機薄膜、有機薄膜の製造方法、電子デバイス、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008066569A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5417763B2 (ja) 有機エレクトロルミネッセンス素子用化合物
JPWO2008090795A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007294720A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5577700B2 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5482313B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
WO2013027711A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2009152435A (ja) 白色有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP2009076826A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008047428A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533102

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12439717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07793016

Country of ref document: EP

Kind code of ref document: A1