WO2016006243A1 - 有機el素子 - Google Patents

有機el素子 Download PDF

Info

Publication number
WO2016006243A1
WO2016006243A1 PCT/JP2015/003446 JP2015003446W WO2016006243A1 WO 2016006243 A1 WO2016006243 A1 WO 2016006243A1 JP 2015003446 W JP2015003446 W JP 2015003446W WO 2016006243 A1 WO2016006243 A1 WO 2016006243A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
light emitting
buffer layer
emitting layer
Prior art date
Application number
PCT/JP2015/003446
Other languages
English (en)
French (fr)
Inventor
貴之 三好
島村 隆之
塩田 昭教
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Publication of WO2016006243A1 publication Critical patent/WO2016006243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present invention relates to an organic EL element having a coating type light emitting layer.
  • an organic EL element in which a light emitting layer made of an organic light emitting material is formed between an anode and a cathode is known.
  • the light emitting lifetime and the light emitting efficiency of the element are improved by forming a functional layer in which a hole injection layer, a light emitting layer, an electron transport layer, and the like are laminated between the anode and the cathode.
  • Patent Document 1 Patent Document 2.
  • Carriers are supplied to improve luminous efficiency, and at the same time, deterioration of the light emitting layer due to energization is suppressed.
  • An object of the present invention is to find a method of manufacturing a functional layer and a film thickness in order to achieve both the suppression of the generation of dark spots and the light emission efficiency and light emission lifetime of the device when the light emitting layer is a coating type. .
  • An organic EL device is formed by laminating a first electrode, one or more coating-type buffer layers, a coating-type blue light-emitting layer, and a second electrode in this order, and the average of the one or more buffer layers
  • the total film thickness is 10 nm or more, and the average distance between the surface of the first electrode facing the light emitting layer and the surface of the light emitting layer facing the first electrode is 30 nm or less.
  • An organic EL device includes a first electrode, one or more coating-type buffer layers, a coating-type green light emitting layer, and a second electrode, which are stacked in this order.
  • the total average film thickness of the buffer layers is 20 nm or more.
  • the device performance can be optimized.
  • (A) is sectional drawing which shows the state which has cut
  • (b) is methods other than application
  • coating on the 1st electrode in which a hollow exists 6 is a cross-sectional view showing a state in which the light emitting layer is broken when the buffer layer 34 is formed.
  • (A) is a figure which shows the relationship between the film thickness of a buffer layer, a dark spot suppression effect, and a panel lifetime when a light emitting layer is a blue light emitting layer
  • a hole injection layer is provided between the anode and the light emitting layer, or an electron transport layer is provided between the cathode and the light emitting layer, and the anode, the functional layer including the light emitting layer, and the cathode are arranged in this order.
  • the laminated structure (the cathode and the anode may be interchanged) is performed.
  • Each layer of the functional layer is installed for the purpose of extending the lifetime of the device and improving the light emission efficiency, and the film thickness is set to achieve the performance.
  • the inventors have newly found that the dark spot can be suppressed by the film thickness of each layer constituting the functional layer.
  • suppression of dark spots due to film thickness will be described with reference to the drawings.
  • the step breakage occurs when the coating type layer is formed by a wet process, and the liquid layer material flows into the depression and the upper surface of the layer becomes flatter than the underlying depression. Or a location where the film thickness is extremely small (for example, 20% or less of the average film thickness).
  • a hollow refers to the location where height is lower than the circumference
  • the shape of the depression is typically a sphere, a cone, a polygonal pyramid, a cylinder, a polygonal column, or a part thereof, and the depression has at least an outer peripheral surface connected to the surface, and has a bottom surface depending on the shape.
  • the depression that causes the step breakage has a depth and width of the depression equal to or greater than the film thickness of the layer formed by the wet process, and the surface and the outer peripheral surface of the depression are smoothly connected.
  • a sharp edge of a circle, an ellipse, or a polygon is formed.
  • the light emitting layer is formed by a wet process, and the depth of the depression existing in the first electrode 21 is about 0.1 to 0.2 ⁇ m, the width is about 0.5 ⁇ m, and the thickness of the light emitting layer 32 is 0. It is assumed that it is 1 ⁇ m or less.
  • Such a depression is formed, for example, when a projection is generated and pitting corrosion occurs when the first electrode 21 is formed in a state where there is a foreign substance on the substrate 10, but is not limited to such a cause.
  • FIG. 2A shows the step breaks 21a, 21b, and 21c generated in the light emitting layer 32.
  • the step breaks 21a and 21c are generated corresponding to the edges 24a and 24b of the recesses, respectively, and the step breaks 21b are generated corresponding to the convex portions in the recesses.
  • the light emitting layer 32 does not exist or the film thickness is extremely smaller than the average film thickness, so that the first electrode 21 and the carrier injecting and transporting layer 33 are in contact with each other to cause a short circuit or In FIG. 2, current concentrates at the step-cut portion, and current leakage occurs between the first electrode 21 and the carrier injection / transport layer 33.
  • carriers are not normally supplied to the light emitting layer, such a light emitting element does not emit light, resulting in a defective pixel called “dark spot”.
  • the inventors studied the structure and film thickness of the optimum functional layer for improving the light emission efficiency of the device and maintaining the long life while suppressing the occurrence of dark spots.
  • a structure in which a functional layer 30B is laminated in the order of a coating type buffer layer 31B, a light emitting layer 32B, and a carrier injection / transport layer 33 was examined.
  • substrate of the light emitting layer 32B planarizes the hollow of the 1st electrode 21 which is the foundation
  • the step breaks 25a, 25b, and 25c occur in the buffer layer 31B by making the electric resistivity of the material of the buffer layer 31B lower than the electric resistivity of the material of the light emitting layer 32, the step breaks 25a, 25b 25c, it is difficult to generate a leak current that avoids the buffer layer 31B. Therefore, unlike the disconnection of the light emitting layer 32, the disconnection of the buffer layer 31B is unlikely to cause a dark spot. If the buffer layer is generated by a process that is not a coating type, the required film thickness is larger than that of the coating type buffer layer in order to prevent disconnection. Shortening the service life is a problem. FIG.
  • the buffer layer 34 is formed by vapor deposition or sputtering.
  • the thickness of the buffer layer 34 is small, a recess similar to the recess of the first electrode 21 is formed on the upper surface of the buffer layer 34.
  • the thickness of the buffer layer 34 is substantially uniform regardless of the average film thickness, so that the upper surface of the buffer layer 34 is not flattened, and the first electrode 21 is depressed.
  • the buffer layer 34 does not have the effect of suppressing the occurrence of dark spots.
  • the buffer layer 31B may be disconnected as described above. Since the upper surface of the buffer layer 31B is flatter than the depression of the first electrode 21, it is possible to suppress the disconnection of the light emitting layer 32 formed on the buffer layer 31B regardless of whether the buffer layer 31B is disconnected. it can. That is, the buffer layer 31B has higher flatness on the upper surface than the flatness on the lower surface, that is, the upper surface is smoother with less irregularities than the lower surface, so that light is emitted from the recesses of the first electrode 21, particularly the recess edges 24a and 24b. It becomes a buffer layer which suppresses that the layer 32 raise
  • the buffer layer 31B can suppress the breakage of the light emitting layer 32 regardless of whether or not the buffer layer 31B itself is broken, and can suppress the occurrence of dark spots.
  • the film thickness of the buffer layer 31B may not be set arbitrarily. If the film thickness is too small, the occurrence of dark spots due to disconnection of the light emitting layer 32 cannot be suppressed. However, the light emission efficiency is lowered, for example, the drive voltage of the organic EL element is increased, resulting in a decrease in device performance such as a shortened life of the organic EL element. Therefore, the inventors have studied the optimization of the thickness of the buffer layer 31B, and have reached the present invention.
  • An organic EL device is formed by laminating a first electrode, one or more coating-type buffer layers, a coating-type blue light-emitting layer, and a second electrode in this order, and the average of the one or more buffer layers
  • the total film thickness is 10 nm or more, and the average distance between the surface of the first electrode facing the blue light emitting layer and the surface of the blue light emitting layer facing the first electrode is 30 nm or less. It is.
  • An organic EL device includes a first electrode, one or more coating-type buffer layers, a coating-type green light emitting layer, and a second electrode, which are stacked in this order.
  • the total average film thickness of the buffer layers is 20 nm or more.
  • the device performance can be optimized.
  • a depression is formed on the surface of the first electrode facing the light emitting layer, and the buffer layer has a film thickness of 20% of the average film thickness of the buffer layer at a location corresponding to the edge of the depression.
  • the buffer layer is cut or the thickness of the buffer layer is larger than 20% of the average thickness of the buffer layer, and the buffer layer is opposed to the blue light emitting layer to the green light emitting layer.
  • the flat surface may have higher flatness than the surface of the buffer layer facing the first electrode. Since the performance of the organic EL element is not deteriorated even if the buffer layer is disconnected, this can prevent the light emitting layer from being disconnected due to the buffer layer being disconnected and suppress the performance deterioration of the organic EL element. it can.
  • the material of the buffer layer may have a lower electrical resistivity than the material of the light emitting layer. As a result, it is possible to prevent leakage current from being generated in the region where the buffer layer is disconnected, and it is possible to prevent the buffer layer from being disconnected and causing a decrease in the performance of the organic EL element.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the buffer layer may include at least one of a hole injection layer and a hole transport layer. Accordingly, it is possible to inject an appropriate amount of holes into the light emitting layer while suppressing the occurrence of dark spots due to the coating type light emitting layer being disconnected.
  • At least one of an electron injection layer and an electron transport layer may be provided between the blue light emitting layer or the green light emitting layer and the second electrode.
  • the first electrode may be a cathode
  • the second electrode may be an anode
  • the buffer layer may include at least one of an electron injection layer and an electron transport layer.
  • At least one of a hole injection layer and a hole transport layer may be provided between the blue light emitting layer or the green light emitting layer and the second electrode.
  • a vapor deposition type functional layer may be further provided, and the first buffer layer, the functional layer, and the second buffer layer may be laminated in this order.
  • the carrier injecting and transporting layer composed of the buffer layer and the functional layer can be formed by a method suitable for each material.
  • the material of the first buffer layer may have a lower electrical resistivity than the material of the functional layer. As a result, it is possible to suppress the occurrence of leakage current in the region where the first buffer layer is disconnected, and that the disconnection of the first buffer layer becomes a factor of performance degradation of the organic EL element. Can be prevented.
  • the organic EL element 1 is a so-called top emission type organic EL element.
  • the organic EL element 1 includes a first electrode 21 stacked on the substrate 10, a second electrode 22 provided above the substrate 10 so as to face the first electrode 21, and a bank 40.
  • a functional layer 30 disposed between the first electrode 21 and the second electrode 22.
  • the functional layer 30 has a structure in which a buffer layer 31, a light emitting layer 32, and a carrier injection / transport layer 33 are stacked in this order from the first electrode 21 side.
  • the buffer layer 31 and the light emitting layer 32 have different film thicknesses depending on the light emission color of the light emitting layer 32.
  • the light emitting layer 32 when distinguishing the light emitting layer 32 according to the light emission color, they are referred to as a red light emitting layer 32R, a green light emitting layer 32G, and a blue light emitting layer 32B.
  • the buffer layer 31 immediately below each light emitting layer is referred to as a buffer layer 31R, a buffer layer 31G, and a buffer layer 31B
  • the functional layers are also referred to as a functional layer 30R, a functional layer 30G, and a functional layer 30B, respectively.
  • the organic EL element 1 is a so-called top emission type light emitting element
  • the first electrode 21 is a reflective electrode having light reflectivity
  • the second electrode 22 is a transparent electrode having light transmittance.
  • the organic EL element 1 may be a bottom emission type light emitting element by using the first electrode 21 as a transparent electrode and the second electrode 22 as a reflective electrode. Furthermore, it is good also as the organic EL element 1 which light-emits both surfaces by making both the 1st electrode 21 and the 2nd electrode 22 into a transparent electrode.
  • the substrate 10 is, for example, a rectangular plate-shaped glass substrate.
  • the material for the glass substrate include soda lime glass and non-alkali glass.
  • the arithmetic average roughness Ra specified in JIS B 0606-2001 is preferably 10 nm or less, more preferably several nm or less. .
  • the substrate 10 may be rigid or flexible.
  • substrate 10 is not limited to a rectangular plate shape, For example, plate shape of shapes other than rectangular shapes, such as a polygon, a circle, or an ellipse, may be sufficient.
  • the substrate 10 is not limited to a glass substrate, and may be, for example, a plastic plate.
  • the substrate 10 is a plastic plate, even if the upper surface is not polished with high accuracy, an arithmetic average roughness Ra of the upper surface of several nm or less can be obtained at a low cost.
  • the material for the plastic plate include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, and polycarbonate.
  • the first electrode 21 is, for example, an electrode for injecting a first charge (first carrier) into the functional layer 30.
  • the material of the first electrode 21 include aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys containing at least one of these metals (for example, magnesium-silver alloy, magnesium-indium alloy, (Aluminum-lithium alloy), metal oxide, and a mixture of metal and metal oxide (for example, a laminated film of an ultrathin film made of aluminum oxide and a thin film made of aluminum).
  • the first electrode When the first electrode is an anode, holes as first charges are injected into the functional layer 30.
  • the material for the anode it is preferable to use a metal having a high work function, and it is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (High Occupied Molecular Orbital) level does not become too large.
  • the 1st electrode 21 is a reflective electrode like this Embodiment, the reflectance with respect to the light radiated
  • the second electrode 22 is an electrode for injecting a second charge (second carrier) into the functional layer 30.
  • the material of the second electrode 22 include CuI, ITO, SnO 2 , ZnO, IZO, metal nanoparticles, a permeable material holding metal nanowires, a conductive polymer such as PEDOT and polyaniline, and an arbitrary acceptor.
  • a conductive light-transmitting material such as a conductive polymer doped with a carbon nanotube and a carbon nanotube.
  • the two electrodes 22 can be made light transmissive.
  • the second electrode 22 When the second electrode 22 is a cathode, electrons as second charges are injected into the functional layer 30.
  • the material of the cathode it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a small work function, and the difference from the LUMO (Lowest Unoccupied Molecular Orbital) level is not too large. Thus, it is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less.
  • the 2nd electrode 22 is a transparent electrode like this Embodiment, the transparent material which has electroconductivity is preferable.
  • the bank 40 is made of, for example, an organic material such as an acrylic resin, a polyimide resin, or a novolac type phenol resin, or an inorganic material such as SiO 2 or Si 3 N 4 , and defines an area corresponding to a pixel. .
  • the buffer layer 31 and the light emitting layer 32 of the functional layer 30 are stacked in this order.
  • the carrier injecting and transporting layer 33 and the second electrode 22 are laminated in this order so as to be continuous with those of the adjacent pixels, that is, as a solid film.
  • the functional layer 30 includes, for example, a buffer layer 31, a light emitting layer 32, and a carrier injection / transport layer 33 in order from the first electrode 21 side.
  • the first electrode 21 is an anode
  • the second electrode 22 is a cathode
  • the buffer layer 31 is a hole injection layer
  • the carrier injection / transport layer 33 is an electron transport layer.
  • the buffer layer 31 is an electron transport layer
  • the carrier injection / transport layer 33 is a hole injection layer.
  • the functional layer 30 only needs to include at least the light emitting layer 32 and the buffer layer 31, and may not include the carrier injection / transport layer 33.
  • Examples of the material of the light emitting layer 32 include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, dye bodies, and metal complex light emitting materials. And the like.
  • phosphorescent materials such as iridium complexes, osmium complexes, platinum complexes, europium complexes, compounds or polymers having these as part of the molecule, It can be used suitably. These materials can be appropriately selected and used as necessary.
  • the light emitting layer 32 is formed by a wet process such as a coating method (for example, spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, etc.).
  • a coating method for example, spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, etc.
  • Examples of the material of the buffer layer 31 include an organic material containing thiophene, triphenylmethane, hydrazoline, amiramine, hydrazone, stilbene, triphenylamine and the like in the case of a hole injection layer.
  • PVCz polyvinylcarbazole
  • aromatic amine derivatives eg, TPD (N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine), etc.
  • PEDOT PSS (polyethylenedioxythiophene: polystyrenesulfonate), etc. may be used alone, or two or more of these materials may be used in combination.
  • This type of compound is preferably a metal complex known as an electron transporting material such as Alq3, or a compound having a heterocyclic ring (for example, a phenanthroline derivative, a pyridine derivative, a tetrazine derivative, an oxadiazole derivative, etc.), but is not limited thereto. Instead, any generally known electron transport material can be used.
  • the buffer layer 31 is formed by a wet process such as a coating method (eg, spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, etc.).
  • a coating method eg, spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, etc.
  • the carrier injection / transport layer 33 can be formed by a wet process such as a coating method (spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, or the like).
  • the film thickness T indicates an average film thickness of the buffer layer 31 in a portion where the buffer layer 31 is sandwiched between the first electrode 21 and the light emitting layer 32.
  • the thickness T of the buffer layer 31 differs between the buffer layer 31B, the buffer layer 31G, and the buffer layer 31R.
  • the average film thickness is a value that takes into account minute irregularities on the surface of the buffer layer 31 in a portion where the buffer layer 31 is sandwiched between the first electrode 21 and the light emitting layer 32. Substantially coincides with the film thickness T.
  • the film thickness T of the buffer layer 31B with respect to the blue light emitting layer 32B is changed. It is the graph which showed the number of dark spots in a panel, and panel lifetime in the case.
  • the first electrode 21 is an anode
  • the second electrode 22 is a cathode
  • the buffer layer 31B is a hole injection layer.
  • the number of dark spots decreases as the film thickness T of the buffer layer 31B increases. This is because the greater the thickness T of the buffer layer 31B, the greater the effect of suppressing the breakage of the blue light emitting layer 32B caused by the unevenness of the first electrode 21.
  • the panel life is shortened. This is because when the film thickness T of the buffer layer 31B is excessive, the balance between the holes supplied by the buffer layer 31B and the electrons supplied by the carrier injection / transport layer 33 is lost, and the light emission efficiency of the organic EL element is reduced. This is to make it easier for the current supply deterioration of 32 to proceed. Since the number of dark spots per panel is preferably 10 or less and the panel life is preferably 30000 hours or more, in order to achieve both, the film thickness T of the buffer layer 31B is preferably 10 nm or more and 30 nm or less. .
  • FIG. 3 (b) is a graph showing the number of dark spots in the panel and the panel life when the thickness T of the buffer layer 31G with respect to the green light emitting layer 32G is changed in the same 4k2k panel.
  • the first electrode 21 is an anode
  • the second electrode 22 is a cathode
  • the buffer layer 31G is a hole injection layer.
  • the thickness T of the buffer layer 31G increases and the number of dark spots decreases. Since the number of dark spots per panel is preferably 10 or less, and the panel life is preferably 30000 hours or more, the film thickness T of the buffer layer 31G is preferably 20 nm or more. In view of the influence on the panel lifetime, the film thickness T of the buffer layer 31G is preferably 60 nm or less.
  • the intermediate layer 37 is formed by laminating a coating type first buffer layer 371, a vapor deposition type second carrier injection transport layer 372, and a coating type second buffer layer 373 in this order.
  • the first electrode 21 is an anode
  • the second electrode 22 is a cathode
  • the first buffer layer 371 is a hole injection layer
  • the second carrier injection / transport layer 372 is a hole transport layer.
  • the second buffer layer 373 is an interlayer.
  • the 1st buffer layer 371 and the 2nd buffer layer 373 have a function which controls the breakage of the light emitting layer 32 as a coating type layer, and the improvement of the luminous efficiency of the light emitting layer 32 is achieved. Contribute to.
  • a low molecular material or a polymer material having a low LUMO (Low Unoccupied Molecular Orbital) level can be used.
  • LUMO Low Unoccupied Molecular Orbital
  • PVCz aromatic amine derivatives (for example, polyarylene derivatives having an aromatic amine in the side chain or main chain (for example, polypyridine derivatives, polyaniline derivatives, etc.)) and the like can be mentioned.
  • ⁇ -NPD (4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl), TPD, MTDATA (2-TNATA, 4,4 ′, 4 ′′ -Tris (N -(3-methylphenyl) N-phenylamino) triphenylamine), CBP (4,4′-N, N′-dicarbazolebiphenyl), spiro-NPD, spiro-TPD, spiro-TAD, TNB, etc.
  • MTDATA (2-TNATA
  • 4 ′, 4 ′′ -Tris N -(3-methylphenyl) N-phenylamino) triphenylamine
  • CBP (4,4′-N, N′-dicarbazolebiphenyl)
  • spiro-NPD spiro-TPD
  • spiro-TAD spiro-TAD
  • TNB etc.
  • the interlayer is a carrier blocking function (here, an electron barrier) that suppresses leakage of second carriers (here, electrons) from the light emitting layer 32 side to the first electrode 21 side.
  • a carrier blocking function here, an electron barrier
  • the interlayer functions as an electron blocking layer that suppresses leakage of electrons from the light emitting layer 32 side. By providing the interlayer, it is possible to improve the light emission efficiency and extend the life.
  • the element contributing to the lifetime in the panel is the film thickness Ta of the entire intermediate layer 37.
  • the total value of the film thicknesses of the respective layers constituting the intermediate layer 37 in other words, the average distance Ta between the surface of the first electrode 21 on the light emitting layer 32 side and the surface of the light emitting layer 32 on the first electrode 21 side. It is.
  • the average distance is a value that takes into account minute irregularities between the surface of the first electrode 21 facing the light emitting layer 32 and the surface of the light emitting layer 32 facing the first electrode 21.
  • the distance between the surface of the first electrode 21 on the light emitting layer 32 side and the surface of the light emitting layer 32 on the first electrode 21 side is substantially equal to the average distance Ta.
  • the element contributing to the lifetime in the panel is the film thickness Ta of the entire intermediate layer 37 because each layer constituting the intermediate layer 37 contributes to the light emission efficiency of the light emitting layer 32 regardless of the generation method. .
  • the panel life is preferably 30000 hours or more, and in the case of the intermediate layer 37B immediately below the blue light emitting layer 32B, the film thickness Ta is preferably 30 nm or less, in other words, the blue light emitting layer 32B of the first electrode 21.
  • the average distance Ta between the surface on the side and the surface on the first electrode 21 side of the blue light emitting layer 32B is preferably 30 nm or less.
  • each layer constituting the intermediate layer 37 contributes to the panel life regardless of the generation method, and thus the surface of the first electrode 21 on the green light emitting layer 32G side and the first light emitting layer 32G first.
  • the average distance Ta to the surface on the electrode 21 side is preferably 60 nm or less.
  • the non-coating type (evaporation type) second carrier injecting and transporting layer 372 has a smaller effect of flattening the depression than the first buffer layer 371 and the second buffer layer 373, which are of the coating type.
  • the second carrier injecting and transporting layer 372 hardly contributes to suppression of the dark spot.
  • the dark spot is preferably 10 or less.
  • the total value of the film thickness T1 of the first buffer layer 371B and the film thickness T2 of the second buffer layer 373B is preferably 10 nm or more.
  • the total value of the film thickness T1 of the first buffer layer 371G and the film thickness T2 of the second buffer layer 373G is preferably 20 nm or more.
  • the carrier injecting and transporting layer 33 is present between the light emitting layer 32 and the second electrode 22 in the first embodiment and the modification, the present invention is not necessarily limited to this case.
  • another arbitrary layer such as an interlayer may exist between the light emitting layer 32 and the second electrode 21, or the carrier injection / transport layer 33 may not exist.
  • the carrier injecting and transporting layer 33 and the second electrode 22 are solid films in the first embodiment and the modification, the present invention is not necessarily limited to this case.
  • the carrier injection / transport layer 33 may be provided on a one-to-one basis with the light-emitting layer 32, and the second electrode 22 may also be provided on the one-on-one basis with the light-emitting layer 32.
  • the buffer layer 31 is a hole injection layer or an electron transport layer in the first embodiment, the present invention is not necessarily limited to this case.
  • the buffer layer 31 may be an arbitrary layer other than the light emitting layer as long as it is a layer generated by a wet process such as coating.
  • the material of the buffer layer 31 is preferably higher in electrical conductivity than the material of the light emitting layer 32 directly above.
  • the first electrode 21 is an anode and the second electrode 22 is a cathode.
  • the first electrode 21 is a cathode and the second electrode 22 is an anode.
  • the first buffer layer 371 is an electron injection layer
  • the second carrier injection transport layer 372 is an electron transport layer
  • the second buffer layer 373 is an interlayer having a hole blocking function.
  • each of the first buffer layer 371, the second carrier injecting and transporting layer, and the second buffer layer 373 is not limited to the above example, and may be any layer other than the light emitting layer.
  • the material is preferably a material having higher electrical conductivity than the material of the layer immediately above.
  • the intermediate layer 37 has a three-layer structure and includes two buffer layers.
  • the intermediate layer 37 may have any number of layers, and the number of buffer layers is not limited to two.
  • the film thickness of the buffer layer (the total when there are a plurality of them) is 10 nm or more, and the film thickness of the entire intermediate layer 37B is 30 nm or less. Is preferred.
  • the film thickness of the buffer layer (the total when there are a plurality of layers) is preferably 20 nm or more.
  • the organic EL element according to one embodiment of the present invention can be widely used, for example, in the general field of passive matrix type or active matrix type EL display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

第1電極、塗布型のバッファ層、1以上の塗布型の発光層、第2電極の順に積層されてなる有機EL素子であって、発光層は青色発光層であり、バッファ層の平均膜厚の合計は10nm以上であり、前記第1電極の発光層側の面と発光層の第1電極側の面との平均距離は30nm以下である。同様に、第1電極、1以上の塗布型のバッファ層、塗布型の発光層、第2電極の順に積層されてなる有機EL素子であって、発光層は緑色発光層であり、バッファ層の平均膜厚の合計は20nm以上である。

Description

有機EL素子
 本発明は、塗布型の発光層を具備する有機EL素子に関する。
 表示装置として、陽極と陰極との間に有機発光材料からなる発光層を形成した、有機EL素子が知られている。有機EL素子では、陽極と陰極との間を、正孔注入層、発光層、電子輸送層などを積層した機能層とすることにより、素子の発光寿命や発光効率等を改善させることが行われている(特許文献1、特許文献2)。具体的には、正孔や電子(以下、まとめてキャリアと呼ぶ)を発光層に円滑に注入するためのキャリア注入輸送層を発光層と電極との間に設けることで、発光層により多くのキャリアを供給して発光効率を向上させ、併せて、発光層の通電による劣化を抑止している。
特開2013-222506号公報 特開2006-191040号公報 特許第4645064号公報
 機能層を構成する発光層以外の各層の膜厚については、厚すぎる場合には有機EL素子の駆動電圧が上昇する、薄すぎる場合に層が機能を十分に果たさない、との課題が知られている。しかしながら、膜厚が素子の発光効率、発光寿命以外の性能である滅点発生の抑止について与える影響については、従来考慮されていない。
 本発明は、発光層が塗布型である場合において、滅点発生の抑止と素子の発光効率、発光寿命とを両立するための、機能層の製造方法と膜厚とを見出すことを目的とする。
 本発明の一態様に係る有機EL素子は、第1電極、1以上の塗布型のバッファ層、塗布型の青色発光層、第2電極の順に積層されてなり、前記1以上のバッファ層の平均膜厚の合計は10nm以上であり、前記発光層と対向している前記第1電極の面と前記第1電極と対向している前記発光層の面との間の平均距離は30nm以下である。
 また、本発明の他の一態様に係る有機EL素子は、第1電極、1以上の塗布型のバッファ層、塗布型の緑色発光層、第2電極の順に積層されてなり、前記1以上のバッファ層の平均膜厚の合計は20nm以上である。
 以上の構成によれば、塗布型の発光層が段切れすることによる滅点発生を抑止しつつ、機能層の膜厚が厚すぎることによる有機EL素子の性能低下を防ぐことができ、有機EL素子の性能を最適化することができる。
実施の形態に係る有機EL素子の断面を示した図である。 (a)は窪みが存在する第1電極上に形成された発光層が段切れを起こしている状態を示す断面図であり、(b)は窪みが存在する第1電極上に塗布以外の方法でバッファ層34が形成された場合に、発光層が段切れを起こしている状態を示す断面図である。 (a)は発光層が青色発光層である場合にバッファ層の膜厚と滅点抑制効果およびパネル寿命との関係を示す図であり、(b)発光層が緑色発光層である場合にバッファ層の膜厚と滅点抑制効果およびパネル寿命との関係を示す図である。 変形例に係る有機EL素子を示す断面図である。
 <発明者の知見>
 従来、有機EL素子において、陽極と発光層との間に正孔注入層、あるいは、陰極と発光層との間に電子輸送層などを設け、陽極、発光層を含んだ機能層、陰極の順の積層構造(陰極と陽極は入れ替えてもよい)とすることが行われている。機能層の各層は、素子の長寿命化や発光効率の向上を図る目的で設置され、その性能を果たすための膜厚が設定されている。
 機能層の膜厚について、発明者らは、機能層を構成する各層の膜厚によって滅点の抑止が可能であるという知見を新たに得た。以下、膜厚による滅点抑制について図面を用いて説明する。発光層を塗布によって形成する場合、発光層の下地に微小な凹凸、特に、窪みが存在すると、発光層に段切れが生じる危険性がある。ここで、段切れとは、塗布型の層が湿式プロセスによって形成される際に、液状の層材料が窪みに流れ込み、層の上面が下地の窪みより平坦になることによって発生する、層が切れた箇所、ないし、膜厚が極度に小さい(例えば、平均膜厚の20%以下である)箇所を呼ぶ。また、窪みとは、電極等の表面の一部が欠けているなどにより高さがその周囲より低くなっている箇所を指す。窪みの形状は、典型的には、球、円錐、多角錐、円柱、多角柱、またはその一部であり、窪みは少なくとも表面とつながっている外周面を有し、形状によっては底面を有する。特に、段切れの原因となる窪みは、窪みの深さと幅とが湿式プロセスによって形成される層の膜厚と同程度かそれ以上であり、かつ、表面と窪みの外周面とが滑らかに繋がっておらず、円形、楕円形、または、多角形状の尖った縁が形成されているものである。
 窪みが存在する第1電極21の上に、発光層32とキャリア注入輸送層33とで構成されある機能層35を形成し、機能層35上に第2電極22を形成した場合の断面を図2(a)に示す。ここで、発光層は湿式プロセスで形成されており、第1電極21に存在する窪みの深さは凡そ0.1~0.2μm、幅は0.5μm程度で、発光層32の厚みは0.1μm以下であるとする。このような窪みは、例えば、基板10上に異物がある状態で第1電極21を形成した場合に突起が生じ、孔食が起こることで形成されるが、このような原因に限るものではない。このような場合、窪みの深さと発光層32の膜厚とが近いため、主として窪みの縁24a、24cに対応する位置で発光層32の膜厚が薄くなり、段切れが生じることがある。図2(a)に発光層32に生じた段切れ21a、21b、21cを示す。段切れ21a、21cはそれぞれ窪みの縁24a、24bに対応して発生したものであり、段切れ21bは窪み中の凸部に対応して発生したものである。段切れ21a、21b、21cでは発光層32が存在しないかその膜厚が平均膜厚より極度に小さいため、第1電極21とキャリア注入輸送層33が接して短絡が発生したり、発光層32において段切れ部分に電流が集中し、第1電極21とキャリア注入輸送層33の間で電流のリークが発生したりする。結果として、発光層に正常にキャリアが供給されなくなるため、このような発光素子は発光が起こらない、「滅点」と呼ばれる不良ピクセルとなってしまう。
 そこで、発明者らは、滅点の発生抑止を行いつつも、素子の発光効率の向上やそれによる高寿命化を維持するための最適な機能層の構造と膜厚について検討を行った。
 滅点の発生抑止については、図1に示すように、機能層30Bを塗布型のバッファ層31B、発光層32B、キャリア注入輸送層33の順に積層した構造を検討した。このようにすることで、発光層32Bの下地となるバッファ層31Bが、バッファ層31Bの下地である第1電極21の窪みを平坦化するため、発光層32の段切れを防ぐことができる。このとき、バッファ層31Bの材料の電気抵抗率を発光層32の材料の電気抵抗率より低くすることで、バッファ層31Bに段切れ25a、25b、25cが発生したとしても、段切れ25a、25b、25cにバッファ層31Bを避けるようなリーク電流が発生しにくくなるため、発光層32の段切れとは異なり、バッファ層31Bの段切れは滅点の原因とはなり難い。なお、バッファ層を塗布型でないプロセスで生成しようとすると、段切れを防ぐためには塗布型のバッファ層と比べて必要な膜厚が大きくなるため、バッファ層が厚すぎることによる発光効率の低下とそれによる短寿命化が課題となる。図2(b)は、第1電極21上にバッファ層34、発光層32、キャリア注入輸送層33からなる機能層36を形成し、さらに第2電極22を形成した場合の断面図である。ここで、バッファ層34は蒸着またはスパッタリングで形成される。この場合、バッファ層34の膜厚が小さいと、バッファ層34の上面に第1電極21の窪みと同様の窪みが形成される。特に、バッファ層34が蒸着で作成される場合、バッファ層34の膜厚はその平均膜厚にかかわらずほぼ均一となるため、バッファ層34の上面が平坦化されず、第1電極21の窪みと同様の窪みがバッファ層34の上面に形成され、バッファ層34の上面に窪みの縁24a、24bと同様の窪みの縁が形成される。そのため、バッファ層34は滅点の発生抑止効果を奏しない。
 なお、バッファ層31Bは、上述したように段切れが発生しても構わない。バッファ層31Bの上面は第1電極21の窪みより平坦となるため、バッファ層31Bの段切れの有無にかかわらず、バッファ層31Bの上に形成される発光層32の段切れを抑止することができる。すなわち、バッファ層31Bは、下面の平坦度より上面の平坦度が高い、つまり、上面が下面より凹凸が少なく滑らかであることにより、第1電極21の窪み、特に窪みの縁24a、24bによって発光層32が段切れを起こすことを抑止する緩衝層となる。また、バッファ層31Bに段切れが発生しても、発光層32の膜厚の薄い個所が発生しない、すなわち発光層32が段切れしないため、短絡や電流のリークが発生しない。そのため、バッファ層31Bは、バッファ層31B自身が段切れしているか否かにかかわらず発光層32の段切れを抑止し、滅点の発生を抑止することができる。
 もっとも、バッファ層31Bの膜厚は任意に設定してよいものではなく、膜厚が小さすぎると発光層32の段切れによる滅点発生を抑止できず、膜厚が大きすぎるとキャリアの注入バランスが悪くなる、有機EL素子の駆動電圧が大きくなるなど発光効率が低下するため、有機EL素子の短寿命化などデバイス性能の低下を招くこととなる。そのため、発明者らは、バッファ層31Bの厚みの最適化について検討を行い、本発明に至った。
 <本発明の一態様の概要>
 本発明の一態様に係る有機EL素子は、第1電極、1以上の塗布型のバッファ層、塗布型の青色発光層、第2電極の順に積層されてなり、前記1以上のバッファ層の平均膜厚の合計は10nm以上であり、前記青色発光層と対向している前記第1電極の面と前記第1電極と対向している前記青色発光層の面との間の平均距離は30nm以下である。
 また、本発明の他の一態様に係る有機EL素子は、第1電極、1以上の塗布型のバッファ層、塗布型の緑色発光層、第2電極の順に積層されてなり、前記1以上のバッファ層の平均膜厚の合計は20nm以上である。
 以上の構成によれば、塗布型の発光層が段切れすることによる滅点発生を抑止しつつ、機能層の膜厚が厚すぎることによる有機EL素子の性能低下を防ぐことができ、有機EL素子の性能を最適化することができる。
 また、前記第1電極の前記発光層と対向している面は窪みが形成され、前記バッファ層は、前記窪みの縁に対応した箇所において、膜厚が前記バッファ層の平均膜厚の20%以下であるか、前記バッファ層が切れており、当該箇所以外では、膜厚が前記バッファ層の平均膜厚の20%より大きく、前記バッファ層の前記青色発光層ないし前記緑色発光層に対向している面は、前記バッファ層の前記第1電極と対向している面より平坦度が高い、としてもよい。バッファ層は段切れしても有機EL素子の性能低下を伴わないことから、これにより、バッファ層が段切れすることにより発光層の段切れを防ぎ、有機EL素子の性能低下を抑止することができる。
 また、前記バッファ層の材料は、前記発光層の材料より電気抵抗率が低い、としてもよい。これにより、バッファ層が段切れしている領域にリーク電流が発生することを抑止することができ、バッファ層の段切れが有機EL素子の性能低下の要因となることを防ぐことができる。
 また、前記第1電極は陽極であり、前記第2電極は陰極であり、前記バッファ層は、正孔注入層、正孔輸送層のうち、少なくとも1つを含む、としてもよい。これにより、塗布型の発光層が段切れすることによる滅点発生を抑止しつつ、適量の正孔を発光層に注入することができる。
 また、さらに、電子注入層、電子輸送層のうち少なくとも1つを、前記青色発光層ないし前記緑色発光層と前記第2電極との間に備える、としてもよい。これにより、発光層に注入される正孔と電子とのバランスを最適化することができ、有機EL素子の性能を最適化することができる。
 また、前記第1電極は陰極であり、前記第2電極は陽極であり、前記バッファ層は、電子注入層、電子輸送層のうち、少なくとも1つを含む、としてもよい。これにより、塗布型の発光層が段切れすることによる滅点発生を抑止しつつ、適量の電子を発光層に注入することができる。
 また、さらに、正孔注入層、正孔輸送層のうち少なくとも1つを、前記青色発光層ないし前記緑色発光層と前記第2電極との間に備える、としてもよい。これにより、発光層に注入される正孔と電子とのバランスを最適化することができ、有機EL素子の性能を最適化することができる。
 また、蒸着型の機能層をさらに備え、第1のバッファ層、前記機能層、第2のバッファ層がこの順に積層されている、としてもよい。これにより、バッファ層と機能層とからなるキャリア注入輸送層をそれぞれ材料に適した方法で製膜することができる。
 また、前記第1のバッファ層の材料は、前記機能層の材料より電気抵抗率が低い、としてもよい。これにより、第1のバッファ層が段切れしている領域にリーク電流が発生することを抑止することができ、第1のバッファ層の段切れが有機EL素子の性能低下の要因となることを防ぐことができる。
 <実施の形態>
 本発明の本実施形態に係る有機EL素子について説明する。有機EL素子1は、いわゆる、トップエミッション型の有機EL素子である。有機EL素子1は、図1に示すように、基板10上に積層された第1電極21と、基板10の上方に第1電極21と対向して設けられた第2電極22と、バンク40と、第1電極21と第2電極22との間に配置された機能層30とを備える。機能層30は、第1電極21側から順に、バッファ層31、発光層32、キャリア注入輸送層33が積層された構造を有する。なお、バッファ層31と発光層32とは、発光層32の発光色によって膜厚が異なる。そのため、発光層32をその発光色によって区別する際は、赤色発光層32R、緑色発光層32G、青色発光層32Bと称する。また、各発光層直下のバッファ層31をそれぞれ、バッファ層31R、バッファ層31G、バッファ層31Bと称し、機能層についてもそれぞれ機能層30R、機能層30G、機能層30Bと称する。
 有機EL素子1はいわゆるトップエミッション型の発光素子であるため、第1電極21は光反射性を有する反射電極であって、第2電極22は光透過性を有する透明電極である。なお、第1電極21を透明電極とし、第2電極22を反射電極とすることで、有機EL素子1をボトムエミッション型の発光素子としてもよい。さらに、第1電極21および第2電極22を両方とも透明電極とすることで、両面発光する有機EL素子1としてもよい。
 (基板)
 基板10は、例えば、矩形板状のガラス基板である。ガラス基板の材料としては、例えば、ソーダライムガラス、無アルカリガラス等があげられる。基板10がガラス基板である場合は、上面に凹凸があるとその凹凸が上述したような滅点の原因となりうる。そのため、上面の表面粗さが小さくなるように、高精度に研磨された素子形成用のガラス基板であることが好ましい。基板10の上面の表面粗さについては、JIS B 0606-2001(ISO 4287-1997)で規定されている算術平均粗さRaが10nm以下であることが好ましく、数nm以下であることがより好ましい。
 なお、基板10は、リジッドなものでもよいし、フレキシブルなものでもよい。また、基板10は矩形板状に限定されず、例えば、多角形、円形、または、楕円形等の矩形状以外の形の板状であってもよい。
 また、基板10は、ガラス基板に限定されず、例えば、プラスチック板等であってもよい。基板10がプラスチック板である場合は、上面が高精度に研磨されていなくても、上面の算術平均粗さRaが数nm以下のものを低コストで得ることができる。さらに、基板10がプラスチック板である場合は、表面にSiON膜、SiN膜等の保護膜が成膜されたものを用いて、水分の投下を抑えることが好ましい。プラスチック板の材料としては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリカーボネート等が挙げられる。
 (第1電極)
 第1電極21は、例えば、機能層30中に第1電荷(第1キャリア)を注入するための電極である。第1電極21の材料としては、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫、これら金属を少なくとも1つ含む合金(例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム―リチウム合金)、金属酸化物、金属と金属酸化物との混合物(例えば、酸化アルミニウムからなる極薄膜とアルミニウムからなる薄膜との積層膜)等が挙げられる。また、例えば、CuI、ITO、SnO2、ZnO、IZO、金属ナノ粒子、金属ナノワイヤーを保持する透過性物質、PEDOT(ポリエチレンジオキシチオフェン)、ポリアニリン等の導電性高分子、任意のアクセプタ等でドープした導電性高分子、カーボンナノチューブ等の導電性光透過性材料が挙げられる。
 第1電極が陽極の場合、機能層30中に第1電荷としての正孔(ホール)を注入する。陽極の材料としては、仕事関数の大きい金属を用いることが好ましく、HOMO(Highest Occupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が4eV以上6eV以下のものを用いることが好ましい。本実施の形態のように第1電極21が反射電極である場合には、発光層32から放射される光に対する反射率が高く、かつ、抵抗率の低い金属が好ましい。
 (第2電極)
 第2電極22は、例えば、機能層30中に第2電荷(第2キャリア)を注入するための電極である。第2電極22の材料としては、例えば、CuI、ITO、SnO2、ZnO、IZO、金属ナノ粒子、金属ナノワイヤーを保持する透過性物質、PEDOT、ポリアニリン等の導電性高分子、任意のアクセプタ等でドープした導電性高分子、カーボンナノチューブ等の導電性光透過性材料が挙げられる。また、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫、これら金属を少なくとも1つ含む合金(例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金)、金属酸化物、金属と金属酸化物との混合物(例えば、酸化アルミニウムからなる極薄膜とアルミニウムからなる薄膜との積層膜)等が挙げられ、これらの材料の場合も非常に薄く成膜することで第2電極22に光透過性を持たせることができる。
 第2電極22が陰極の場合、機能層30中に第2電荷としての電子を注入する。陰極の材料としては、仕事関数の小さい金属、合金、電気伝導性化合物、これらの混合物からなる電極材料等を用いることが好ましく、LUMO(Lowest Unoccupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いることが好ましい。本実施の形態のように第2電極22が透明電極である場合は、導電性を有する光透過性材料が好ましい。
 (バンク)
 バンク40は、例えば、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等の有機材料、または、SiO2、Si34等の無機材料等からなり、画素に対応する領域を規定している。画素に対応する領域、すなわちバンク40に規定された領域内には、機能層30のうちバッファ層31と発光層32とがこの順で積層されており、さらに、バンク40で規定された領域を超えて隣の画素のものと連続するように、すなわち、べた膜として、キャリア注入輸送層33と第2電極22とがこの順で積層されている。
 (機能層)
 機能層30は、例えば、第1電極21側から順に、バッファ層31、発光層32、キャリア注入輸送層33を備える。本実施の形態では、第1電極21が陽極であり第2電極22が陰極であり、バッファ層31は正孔注入層であり、キャリア注入輸送層33は電子輸送層である。なお、第1電極21が陰極であり第2電極22が陽極である場合、バッファ層31が電子輸送層であり、キャリア注入輸送層33が正孔注入層である。このようにすることで、バッファ層31は、塗布型の層として発光層32の段切れを抑制する機能を有するとともに、発光層32の発光効率の改善に寄与する。
 機能層30は、少なくとも発光層32とバッファ層31とを含んでいればよく、キャリア注入輸送層33を含んでいなくてもよい。
 発光層32の材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体など、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、色素体、金属錯体系発光材料を高分子化したもの等が挙げられる。また、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、これらの誘導体、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、これらの発光性化合物からなる基を分子の一部分に有する化合物等が挙げられる。また、当該化合物に代表される蛍光色素由来の化合物のみならず、いわゆる燐光発光材料、例えば、イリジウム錯体、オスミウム錯体、白金錯体、ユーロピウム錯体、これらを分子の一部分に有する化合物又は高分子等も、好適に用いることができる。これらの材料は、必要に応じて適宜選択して用いることができる。
 発光層32は、塗布法(例えば、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法、スクリーン印刷法等)のような湿式プロセスによって成膜される。
 バッファ層31の材料としては、正孔注入層である場合、例えば、チオフェン、トリフェニルメタン、ヒドラゾリン、アミールアミン、ヒドラゾン、スチルベン、トリフェニルアミン等を含む有機材料等が挙げられる。具体的には、PVCz(ポリビニルカルバゾール)、芳香族アミン誘導体(例えば、TPD(N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン)等)、PEDOT:PSS(ポリエチレンジオキシチオフェン:ポリスチレンスルホネート)等の材料を単独で用いてもよいし、これら材料を2種類以上組み合わせて用いてもよい。一方、電子輸送層である場合、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体、ヘテロ環を有する化合物(例えば、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体等)が好ましいが、これらに限定されず、一般に知られる任意の電子輸送材料を用いることができる。
 バッファ層31は、塗布法(例えば、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法、スクリーン印刷法等)のような湿式プロセスによって成膜される。
 キャリア注入輸送層33の材料としては、電子輸送層である場合、上述の電子輸送層の材料として挙げた材料を用いることができる。また、正孔注入層である場合、上述の正孔注入層の材料として挙げた材料を用いることができる。それらの材料の場合、キャリア注入輸送層33は、塗布法(スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法、スクリーン印刷法等)のような湿式プロセスによって成膜することができる。
 <バッファ層31の膜厚>
 次に、バッファ層31の膜厚Tと、有機EL素子の性能との関係について説明する。なお、ここで膜厚Tとは、バッファ層31が第1電極21と発光層32とに挟まれている部分における、バッファ層31の平均膜厚を指す。なお、後述するように、バッファ層31の膜厚Tは、バッファ層31Bとバッファ層31G、バッファ層31Rとでそれぞれ異なる。また、平均膜厚とは、バッファ層31が第1電極21と発光層32とに挟まれている部分におけるバッファ層31の表面の微小な凹凸を考慮したものであり、バッファ層31の膜厚は膜厚Tと略一致する。
 図3(a)は、すべての発光素子を本実施の形態に係る有機EL素子で構成した4k2kパネル(4000×2000ピクセル)において、青色発光層32Bに対するバッファ層31Bの膜厚Tを変化させた場合の、パネル内の滅点数とパネル寿命とを示したグラフである。ここで、第1電極21は陽極で第2電極22は陰極であり、バッファ層31Bは正孔注入層である。
 図3(a)に示すように、バッファ層31Bの膜厚Tが大きくなるとともに、滅点数は減少する。これは、バッファ層31Bの膜厚Tが大きいほど、第1電極21の凹凸に起因する青色発光層32Bの段切れを抑止する効果が大きいからである。一方で、バッファ層31Bの膜厚Tが大きくなるとともに、パネル寿命が短くなってしまう。これは、バッファ層31Bの膜厚Tが過大になるとバッファ層31Bが供給する正孔とキャリア注入輸送層33が供給する電子とのバランスが崩れ、有機EL素子の発光効率が低下し、発光層32の通電劣化が進行しやすくするためである。パネルあたりの滅点数は10以下が好ましく、パネル寿命は30000時間以上であることが好ましいため、これらを両立するためには、バッファ層31Bの膜厚Tは、10nm以上30nm以下であることが好ましい。
 なお、図3(b)は、同様の4k2kパネルにおいて、緑色発光層32Gに対するバッファ層31Gの膜厚Tを変化させた場合の、パネル内の滅点数とパネル寿命とを示したグラフである。同様に、第1電極21は陽極で第2電極22は陰極であり、バッファ層31Gは正孔注入層である。
 バッファ層31Bと同様に、バッファ層31Gの膜厚Tが大きくなるとともに、滅点数は減少する。パネルあたりの滅点数は10以下が好ましく、パネル寿命は30000時間以上であることが好ましいため、バッファ層31Gの膜厚Tは、20nm以上であることが好ましい。なお、パネル寿命に与える影響から、バッファ層31Gの膜厚Tは、60nm以下であることが好ましい。
 <変形例>
 実施の形態1では、発光層と第1電極との間にバッファ層のみが存在する場合について説明した。
 本変形例では、図4に示すように、機能層38が中間層37、発光層32、キャリア注入輸送層33の順に積層された場合について説明する。中間層37は、塗布型の第1バッファ層371、蒸着型の第2キャリア注入輸送層372、塗布型の第2バッファ層373がこの順に積層してなる。本変形例では、第1電極21が陽極であり第2電極22が陰極であり、第1のバッファ層371は正孔注入層であり、第2キャリア注入輸送層372は正孔輸送層であり、第2のバッファ層373はインターレイヤーである。このようにすることで、第1のバッファ層371と第2のバッファ層373とは、塗布型の層として発光層32の段切れを抑制する機能を有するとともに、発光層32の発光効率の改善に寄与する。
 正孔輸送層の材料としては、LUMO(Lowest Unoccupied Molecular Orbital)準位が小さい低分子材料や高分子材料を用いることができる。例えば、PVCz、芳香族アミン誘導体(例えば、側鎖や主鎖に芳香族アミンを有するポリアリーレン誘導体(例えば、ポリピリジン誘導体、ポリアニリン誘導体等))等が挙げられる。具体的には、α-NPD(4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル)、TPD、MTDATA(2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン)、CBP(4,4’-N,N’-ジカルバゾールビフェニル)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNB等が挙げられるが、これらに限定されない。
 インターレイヤーは、発光層32側からの第1電極21側への第2キャリア(ここでは、電子)の漏れを抑制する第1キャリア障壁(ここでは、電子障壁)としてのキャリアブロッキング機能(ここでは、電子ブロッキング機能)を有することが好ましく、さらに、第1キャリア(ここでは、正孔)を発光層32へ輸送する機能、発光層32の励起状態の消光を抑制する機能などを有していることが好ましい。発光層32と正孔輸送層372との間にインターレイヤーを設けた場合は、インターレイヤーが、発光層32側からの電子の漏れを抑制する電子ブロッキング層として機能する。インターレイヤーを設けることにより、発光効率の向上および長寿命化を図ることができる。
 <中間層37の膜厚>
 次に、中間層37の膜厚Taと、有機EL素子の性能との関係について説明する。
 すべての発光素子を本実施の形態に係る有機EL素子で構成した4k2kパネルにおいて、パネル内の寿命に寄与する要素は、中間層37全体の膜厚Taである。言い換えれば、中間層37を構成する各層の膜厚の合計値、さらに言い換えれば、第1電極21の発光層32側の表面と、発光層32の第1電極21側の表面との平均距離Taである。なお、平均距離とは、第1電極21の発光層32と対向している表面と、発光層32の第1電極21と対向している表面との微小な凹凸を考慮したものであり、第1電極21の発光層32側の表面と、発光層32の第1電極21側の表面との距離は平均距離Taと略一致する。パネル内の寿命に寄与する要素が中間層37全体の膜厚Taであるのは、中間層37を構成する各層がその生成方法に関係なく発光層32の発光効率に寄与しているからである。パネル寿命は30000時間以上であることが好ましく、青色発光層32Bの直下の中間層37Bの場合、その膜厚Taは30nm以下であることが好ましく、言い換えれば、第1電極21の青色発光層32B側の表面と、青色発光層32Bの第1電極21側の表面との平均距離Taは30nm以下であることが好ましい。また、上述したようにパネル寿命に寄与するのは生成方法に関係なく中間層37を構成する各層であるから、第1電極21の緑色発光層32G側の表面と、緑色発光層32Gの第1電極21側の表面との平均距離Taは60nm以下であることが好ましい。
 一方、上述のパネル内の滅点数の抑制に寄与する要素は、第1バッファ層371の膜厚T1と第2バッファ層373の膜厚T2の合計値(=T1+T2)である。なぜならば、塗布型でない(蒸着型の)第2キャリア注入輸送層372は、塗布型である、第1バッファ層371および第2バッファ層373と比べて、窪みを平坦化する効果が小さく、上述したように中間層37全体の膜厚が30nm以下である場合、第2キャリア注入輸送層372は滅点の抑制にはほとんど寄与しないからである。上述のパネルでは滅点数が10以下であることが好ましく、青色発光層32Bの直下の中間層37Bの場合、第1バッファ層371Bの膜厚T1と第2バッファ層373Bの膜厚T2の合計値が10nm以上であることが好ましい。同様に、緑色発光層32Gの直下の中間層37Gの場合、第1バッファ層371Gの膜厚T1と第2バッファ層373Gの膜厚T2の合計値が20nm以上であることが好ましい。
 <実施の形態に係るその他の変形例>
 (1)実施の形態1および変形例では、発光層32と第2電極22との間にキャリア注入輸送層33が存在するものとしたが、本発明は必ずしもこの場合に限られない。例えば、発光層32と第2電極21との間にインターレイヤー等、他の任意の層が存在してもよいし、キャリア注入輸送層33が存在しない、としてもよい。
 (2)実施の形態1および変形例では、キャリア注入輸送層33と第2電極22とはべた膜であるとしたが、本発明は必ずしもこの場合に限られない。例えば、キャリア注入輸送層33は発光層32と1対1で設けられてもよいし、併せて第2電極22も発光層32と1対1で設けられてもよい。
 (3)実施の形態1では、バッファ層31は正孔注入層または電子輸送層であるとしたが、本発明は必ずしもこの場合に限られない。バッファ層31は、塗布など湿式プロセスで生成される層であれば、発光層以外の任意の層であってよい。なお、バッファ層31の材料は、直上の発光層32の材料より電気伝導率が高いことが好ましい。
 (4)変形例では、第1電極21が陽極で第2電極22が陰極であるとしたが、実施の形態1と同様に、第1電極21が陰極で第2電極22が陽極であるとしてもよい。この場合、例えば、第1のバッファ層371は電子注入層であり、第2キャリア注入輸送層372は電子輸送層であり、第2のバッファ層373は正孔ブロッキング機能を有するインターレイヤーである。なお、第1のバッファ層371、第2キャリア注入輸送層、第2のバッファ層373のそれぞれは上述の例に限られず発光層以外の任意の層であってよい。なお、第1のバッファ層371、および第2のバッファ層373において、段切れの可能性がある場合、その材料は直上の層の材料より電気伝導率が高い材料であることが好ましい。
 (5)変形例では、中間層37が3層構造でバッファ層を2層含んでいるものとしたが、中間層37は何層構造でもよいし、バッファ層の数は2に限られない。この場合、青色発光層32Bに対して、中間層37Bのうち、バッファ層の膜厚(複数ある場合はその合計)が10nm以上であって、中間層37B全体の膜厚が30nm以下であることが好ましい。同様に、緑色発光層32Gに対して、中間層37Gのうち、バッファ層の膜厚(複数ある場合はその合計)が20nm以上であることが好ましい。
 本発明の一態様に係る有機EL素子は、例えば、パッシブマトリクス型、あるいは、アクティブマトリクス型のEL表示装置の分野全般等で広く利用できる。
 1 有機EL素子
 10 基板
 21 第1電極
 22 第2電極
 30、38 機能層
 31 バッファ層
 32 発光層
 33 キャリア注入輸送層
 37 中間層
 371 第1バッファ層
 372 第2キャリア注入輸送層
 373 第2バッファ層

Claims (18)

  1.  第1電極、1以上の塗布型のバッファ層、塗布型の青色発光層、第2電極の順に積層されてなり、
     前記1以上のバッファ層の平均膜厚の合計は10nm以上であり、
     前記青色発光層と対向している前記第1電極の面と前記第1電極と対向している前記青色発光層の面との間の平均距離は30nm以下である
     有機EL素子。
  2.  前記第1電極の前記発光層と対向している面は窪みが形成され、
     前記バッファ層は、前記窪みの縁に対応した箇所において、膜厚が前記バッファ層の平均膜厚の20%以下であるか、前記バッファ層が切れており、当該箇所以外では、膜厚が前記バッファ層の平均膜厚の20%より大きく、
     前記バッファ層の前記青色発光層に対向している面は、前記バッファ層の前記第1電極と対向している面より平坦度が高い
     請求項1に記載の有機EL素子。
  3.  前記バッファ層の材料は、前記発光層の材料より電気抵抗率が低い
     請求項1に記載の有機EL素子。
  4.  前記第1電極は陽極であり、
     前記第2電極は陰極であり、
     前記バッファ層は、正孔注入層、正孔輸送層のうち、少なくとも1つを含む
     請求項1に記載の有機EL素子。
  5.  さらに、電子注入層、電子輸送層のうち少なくとも1つを、前記青色発光層と前記第2電極との間に備える
     請求項4に記載の有機EL素子。
  6.  前記第1電極は陰極であり、
     前記第2電極は陽極であり、
     前記バッファ層は、電子注入層、電子輸送層のうち、少なくとも1つを含む
     請求項1に記載の有機EL素子。
  7.  さらに、正孔注入層、正孔輸送層のうち少なくとも1つを、前記青色発光層と前記第2電極との間に備える
     請求項6に記載の有機EL素子。
  8.  蒸着型の機能層をさらに備え、
     第1のバッファ層、前記機能層、第2のバッファ層がこの順に積層されている
     請求項1に記載の有機EL素子。
  9.  前記第1のバッファ層の材料は、前記機能層の材料より電気抵抗率が低い
     請求項8に記載の有機EL素子。
  10.  第1電極、1以上の塗布型のバッファ層、塗布型の緑色発光層、第2電極の順に積層されてなり、
     前記1以上のバッファ層の平均膜厚の合計は20nm以上である
     有機EL素子。
  11.  前記第1電極の前記発光層と対向している面は窪みが形成され、
     前記バッファ層は、前記窪みの縁に対応した箇所において、膜厚が前記バッファ層の平均膜厚の20%以下であるか、前記バッファ層が切れており、当該箇所以外では、膜厚が前記バッファ層の平均膜厚の20%より大きく、
     前記バッファ層の前記緑色発光層に対向している面は、前記バッファ層の前記第1電極と対向している面より平坦度が高い
     請求項10に記載の有機EL素子。
  12.  前記バッファ層の材料は、前記緑色発光層の材料より電気抵抗率が低い
     請求項10に記載の有機EL素子。
  13.  前記第1電極は陽極であり、
     前記第2電極は陰極であり、
     前記バッファ層は、正孔注入層、正孔輸送層のうち、少なくとも1つを含む
     請求項10に記載の有機EL素子。
  14.  さらに、電子注入層、電子輸送層のうち少なくとも1つを、前記緑色発光層と前記第2電極との間に備える
     請求項13に記載の有機EL素子。
  15.  前記第1電極は陰極であり、
     前記第2電極は陽極であり、
     前記バッファ層は、電子注入層、電子輸送層のうち、少なくとも1つを含む
     請求項10に記載の有機EL素子。
  16.  さらに、正孔注入層、正孔輸送層のうち少なくとも1つを、前記緑色発光層と前記第2電極との間に備える
     請求項15に記載の有機EL素子。
  17.  蒸着型の機能層をさらに備え、
     第1のバッファ層、前記機能層、第2のバッファ層がこの順に積層されている
     請求項10に記載の有機EL素子。
  18.  前記第1のバッファ層の材料は、前記機能層の材料より電気抵抗率が低い
     請求項17に記載の有機EL素子。
PCT/JP2015/003446 2014-07-10 2015-07-08 有機el素子 WO2016006243A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142516 2014-07-10
JP2014142516 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006243A1 true WO2016006243A1 (ja) 2016-01-14

Family

ID=55063894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003446 WO2016006243A1 (ja) 2014-07-10 2015-07-08 有機el素子

Country Status (1)

Country Link
WO (1) WO2016006243A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352956A (ja) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp 薄膜型発光体及びその製造方法
JP2006257409A (ja) * 2005-02-21 2006-09-28 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機電界発光素子用薄膜、有機電界発光素子用薄膜転写用部材、有機電界発光素子及び有機電界発光素子の製造方法
JP2007220318A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 電気光学装置及び電気光学装置の製造方法
WO2008029652A1 (en) * 2006-09-08 2008-03-13 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device and display
WO2008108162A1 (ja) * 2007-03-05 2008-09-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP2009064642A (ja) * 2007-09-05 2009-03-26 Sharp Corp 有機エレクトロルミネッセンス表示装置の製造方法、および製造装置
WO2009133753A1 (ja) * 2008-04-30 2009-11-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2010003797A (ja) * 2008-06-19 2010-01-07 Rohm Co Ltd 有機el素子及び有機el素子の製造方法
JP2010045221A (ja) * 2008-08-13 2010-02-25 Fuji Xerox Co Ltd 有機電気デバイス及びその製造方法
WO2011070841A1 (ja) * 2009-12-11 2011-06-16 コニカミノルタホールディングス株式会社 有機el素子の製造方法
WO2012002401A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 組成物、並びに、該組成物を用いた膜、電荷輸送層、有機電界発光素子、及び電荷輸送層の形成方法
WO2012085982A1 (ja) * 2010-12-24 2012-06-28 パナソニック株式会社 有機el素子およびその製造方法
JP2012188637A (ja) * 2011-02-25 2012-10-04 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP2013214496A (ja) * 2012-03-08 2013-10-17 Seiko Epson Corp 有機el装置の製造方法、有機el装置、電子機器

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352956A (ja) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp 薄膜型発光体及びその製造方法
JP2006257409A (ja) * 2005-02-21 2006-09-28 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機電界発光素子用薄膜、有機電界発光素子用薄膜転写用部材、有機電界発光素子及び有機電界発光素子の製造方法
JP2007220318A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 電気光学装置及び電気光学装置の製造方法
WO2008029652A1 (en) * 2006-09-08 2008-03-13 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device and display
WO2008108162A1 (ja) * 2007-03-05 2008-09-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP2009064642A (ja) * 2007-09-05 2009-03-26 Sharp Corp 有機エレクトロルミネッセンス表示装置の製造方法、および製造装置
WO2009133753A1 (ja) * 2008-04-30 2009-11-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2010003797A (ja) * 2008-06-19 2010-01-07 Rohm Co Ltd 有機el素子及び有機el素子の製造方法
JP2010045221A (ja) * 2008-08-13 2010-02-25 Fuji Xerox Co Ltd 有機電気デバイス及びその製造方法
WO2011070841A1 (ja) * 2009-12-11 2011-06-16 コニカミノルタホールディングス株式会社 有機el素子の製造方法
WO2012002401A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 組成物、並びに、該組成物を用いた膜、電荷輸送層、有機電界発光素子、及び電荷輸送層の形成方法
WO2012085982A1 (ja) * 2010-12-24 2012-06-28 パナソニック株式会社 有機el素子およびその製造方法
JP2012188637A (ja) * 2011-02-25 2012-10-04 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP2013214496A (ja) * 2012-03-08 2013-10-17 Seiko Epson Corp 有機el装置の製造方法、有機el装置、電子機器

Similar Documents

Publication Publication Date Title
JP5237541B2 (ja) 有機エレクトロルミネッセンス素子
WO2009110186A1 (ja) 発光素子及びディスプレイデバイス
US8710735B2 (en) Organic electroluminescence element
JP2010118509A (ja) 発光素子
WO2013118462A1 (ja) El表示装置およびその製造方法
GB2570789A (en) Electroluminescence display apparatus
JP2010092741A (ja) 有機エレクトロルミネッセンス素子
JP5991626B2 (ja) 有機エレクトロルミネッセンス素子
US9214641B2 (en) Organic electroluminescence element
JP2013161682A (ja) 有機エレクトロルミネッセンス素子
JP5991627B2 (ja) 有機エレクトロルミネッセンス素子
JP2012186079A (ja) 面状発光装置
JP2010033973A (ja) 有機エレクトロルミネッセンス素子
WO2016006243A1 (ja) 有機el素子
JP2013191276A (ja) 有機エレクトロルミネッセンス素子
JP5075027B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2012243622A (ja) 有機エレクトロルミネッセンス素子
JP2010040444A (ja) 有機エレクトロルミネッセンス素子
JP2012243623A (ja) 有機エレクトロルミネッセンス素子
JP2013030306A (ja) 有機エレクトロルミネッセンス素子
WO2012160924A1 (ja) 有機エレクトロルミネッセンス素子
WO2012161113A1 (ja) 有機エレクトロルミネッセンス素子
WO2012161057A1 (ja) 有機エレクトロルミネッセンス素子
JP2011204646A (ja) 有機エレクトロルミネッセンス素子
WO2012176584A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15819747

Country of ref document: EP

Kind code of ref document: A1