WO2013027711A1 - 有機エレクトロルミネッセンス素子、照明装置及び表示装置 - Google Patents

有機エレクトロルミネッセンス素子、照明装置及び表示装置 Download PDF

Info

Publication number
WO2013027711A1
WO2013027711A1 PCT/JP2012/071022 JP2012071022W WO2013027711A1 WO 2013027711 A1 WO2013027711 A1 WO 2013027711A1 JP 2012071022 W JP2012071022 W JP 2012071022W WO 2013027711 A1 WO2013027711 A1 WO 2013027711A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
layer
light emitting
transport layer
Prior art date
Application number
PCT/JP2012/071022
Other languages
English (en)
French (fr)
Inventor
秀雄 ▼高▲
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to US14/238,886 priority Critical patent/US20140197399A1/en
Priority to JP2013530018A priority patent/JP6160485B2/ja
Publication of WO2013027711A1 publication Critical patent/WO2013027711A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to an organic electroluminescence element, an illumination device using the same, and a display device.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) is an all-solid-state element composed of an organic material film having a thickness of only about 0.1 ⁇ m between electrodes and emits light of 2 to Since it can be achieved at a relatively low voltage of about 20 V, it is a technology expected as a next-generation flat display and illumination.
  • the organic EL device using phosphorescence emission is greatly different from the organic EL device using fluorescence emission, and the method for controlling the position of the emission center, particularly the emission layer, is particularly different.
  • An important technical issue in capturing the efficiency and lifetime of the device is how to recombine inside to stably emit light.
  • the present invention has been made in view of the above-described problems and situations, and its problems are high charge injection / transport performance, high external extraction quantum efficiency, little change in drive voltage over time when driven at constant voltage, and It is to provide a long-life organic electroluminescence element, a lighting device and a display device.
  • an organic electroluminescence device having a plurality of organic compound layers including a hole transport layer, a light emitting layer and an electron transport layer sandwiched between an anode and a cathode, (1) The hole transport layer and the electron transport layer are adjacent to the light emitting layer, (2) Among the hole transport materials constituting the hole transport layer, the glass transition point (Tg) of the hole transport material having the highest composition ratio is Tg (HT), and among the host materials constituting the light emitting layer When the glass transition point (Tg) of the host material having the highest composition ratio is Tg (EM), Tg (HT)> Tg (EM).
  • the glass transition point (Tg) of the electron transport material having the highest composition ratio is Tg (ET), and the most composed of the host materials composing the light emitting layer.
  • Tg (EM) glass transition point of the host material having a high ratio
  • EM glass transition point of the host material having a high ratio
  • EM organic electroluminescence device
  • P and Q represent a carbon atom or a nitrogen atom
  • A1 represents an atomic group which forms an aromatic hydrocarbon ring or an aromatic heterocycle with PC
  • A2 represents an aromatic heterocycle together with QN.
  • P1-L1-P2 represents a bidentate ligand
  • P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom
  • L1 together with P1 and P2 is a bidentate
  • r represents an integer of 1 to 3
  • s represents an integer of 0 to 2
  • r + s is 2 or 3.
  • M1 is a group 8 to 10 in the periodic table Represents a metal element.
  • An illuminating device comprising the organic electroluminescence element according to any one of 1 to 6 above.
  • a display device comprising the organic electroluminescence element as described in any one of 1 to 6 above.
  • an organic electroluminescence element a lighting device, and a display device that have a high external extraction quantum efficiency, a small change in driving voltage with time when driven at a constant voltage, and a long lifetime.
  • Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram of display part A Schematic diagram of pixels
  • Schematic diagram of passive matrix type full color display device Schematic of lighting device
  • Schematic diagram of lighting device Schematic configuration diagram of organic EL full-color display device
  • Organic compound layer (also referred to as organic layer) >> The organic compound layer according to the present invention will be described.
  • the organic EL element of the present invention preferably has a plurality of organic compound layers as a constituent layer.
  • the organic compound layer examples include a hole transport layer, a light emitting layer, and an electron transport layer in the above-described layer configuration.
  • a layer containing an organic compound constituting another constituent layer of the organic EL element such as a hole injection layer and an electron injection layer is also defined as the organic compound layer according to the present invention.
  • an organic compound is used for the anode buffer layer, the cathode buffer layer, etc.
  • the anode buffer layer, the cathode buffer layer, etc. each form an organic compound layer.
  • the blue light emitting layer preferably has a light emission maximum wavelength in the range of 430 to 480 nm, and the green light emitting layer has a light emission maximum wavelength.
  • the red light emitting layer is preferably a monochromatic light emitting layer having an emission maximum wavelength in the range of 600 to 640 nm, and a display device using these is preferable.
  • a white light emitting layer may be formed by laminating at least three of these light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 to 200 nm, and particularly preferably in the range of 10 to 20 nm.
  • a light-emitting dopant or a host material is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.
  • the light emitting layer of the organic EL device of the present invention contains a host material (also referred to as a host compound) and a phosphorescent organometallic complex compound as a light emitting material (also referred to as a light emitting dopant). Moreover, you may mix and use the hole transport material and electron transport material which are mentioned later.
  • the host material refers to a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • a known host compound may be used in combination, or a plurality of types may be used in combination.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the hole transport layer and the electron transport layer are adjacent to the light emitting layer, respectively.
  • the glass transition point of the hole transport material having the highest composition ratio is Tg (HT), and among the host materials similarly constituting the light emitting layer, When the glass transition point of the host material having the highest composition ratio is Tg (EM), Tg (HT)> Tg (EM), and (3)
  • the glass transition point of the electron transport material having the highest composition ratio is Tg (ET), and, similarly, the most composed of the host materials constituting the light emitting layer.
  • the glass transition point of the host material having the highest composition ratio is 70 ° C. or higher and 130 ° C. or lower.
  • the material with the highest composition ratio in the hole transport layer, the electron transport layer, the light emitting layer, etc. determines the Tg (glass transition point) of each layer
  • the material with the highest composition ratio in each of the layers will be described below.
  • the Tg of the hole transport layer, the Tg of the light emitting layer, and the Tg of the electron transport layer are described.
  • the hole transport layer and the electron transport layer are adjacent to the light emitting layer containing the phosphorescent organometallic complex compound, respectively, and more than the Tg (HT) of the hole transport layer and the Tg (ET) of the electron transport layer,
  • Tg (EM) of the light emitting layer containing the phosphorescent organometallic complex compound is small, the charge injection / transport performance is high, the light emission efficiency is improved, the drive voltage change with time is small, and the life is long.
  • the hole transport layer and the electron transport layer are layers adjacent to the light emitting layer.
  • the light emitting layer has the highest component ratio among the materials constituting the light emitting layer.
  • the glass transition point of the host material is 70 ° C. or higher and 130 ° C. or lower, the glass transition point of the light emitting layer is not increased so much that the glass transition point of the hole transport layer or the electron transport layer is that of the light emitting layer. It is preferable for designing larger.
  • the hole transport layer and the electron transport layer preferably contain a polymer material so that the Tg is higher than that of the light emitting layer.
  • the hole transport material and the electron transport material are polymers. It is preferable.
  • both the hole transport layer and the electron transport layer are composed of a polymer.
  • the polymer is a compound having a weight average molecular weight of 10,000 or more. Details of the measurement of the weight average molecular weight are shown below.
  • the molecular weight (weight average molecular weight (Mw)) of the polymer according to the present invention can be measured using GPC (gel permeation chromatography) using THF (tetrahydrofuran) as a column solvent.
  • GPC measurement conditions are measured by stabilizing the column at 40 ° C., flowing THF (tetrahydrofuran) at a flow rate of 1 ml / min, and injecting about 100 ⁇ L of a sample having a concentration of 1 mg / ml.
  • the column it is preferable to use a combination of commercially available polystyrene gel columns.
  • Shodex GPC KF-801, 802, 803, 804, 805, 806, 807, etc. manufactured by Showa Denko KK
  • a refractive index detector (RI detector) or a UV detector is preferably used.
  • the molecular weight distribution of the sample is calculated using a calibration curve created using monodisperse polystyrene standard particles. About 10 points are preferably used as polystyrene for preparing a calibration curve.
  • the glass transition point can be measured using a differential scanning calorimeter “DSC-7” (manufactured by PerkinElmer) and a thermal analyzer controller “TAC7 / DX” (manufactured by PerkinElmer).
  • DSC-7 differential scanning calorimeter
  • TAC7 / DX thermal analyzer controller
  • DSC-7 differential scanning calorimeter
  • the reference used an empty aluminum pan.
  • the measurement conditions were a measurement temperature of 0 to 200 ° C., a temperature increase rate of 10 ° C./min, a temperature decrease rate of 10 ° C./min, and heat-cool-heat temperature control. Analysis was performed based on the data in Heat.
  • the glass transition point is the extension of the baseline before the rise of the first endothermic peak and the first peak to the peak apex. A tangent line showing the maximum inclination is drawn between them, and the intersection is shown as the glass transition point.
  • Luminescent dopant The light emitting dopant used together with the host material in the light emitting layer of the present invention will be described.
  • a phosphorescent dopant also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like
  • a phosphorescent organometallic complex compound is used as the phosphorescent dopant.
  • the light-emitting layer and light-emitting unit of the organic EL device of the present invention contain the host compound and, at the same time, contain a phosphorescent organometallic complex compound as a light-emitting dopant (sometimes simply referred to as a light-emitting material). Is done.
  • the phosphorescent dough will be described.
  • the phosphorescent compound according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield.
  • the phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting compound according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
  • phosphorescent compounds There are two types of emission of phosphorescent compounds in principle. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is phosphorescently emitted. Energy transfer type to obtain light emission from the phosphorescent compound by transferring to the phosphorescent compound, the other is that the phosphorescent compound becomes a carrier trap, carrier recombination occurs on the phosphorescent compound, Examples include a carrier trap type in which light emission from a phosphorescent compound can be obtained.
  • the phosphorescent organometallic complex compound used in the present invention as the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer of the organic EL device.
  • the phosphorescent organometallic complex compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table, more preferably an iridium compound (Ir complex) or a platinum compound ( Platinum complex compounds), and most preferred among these are iridium compounds (Ir complexes).
  • Phosphorescent Organometallic Complex Compound Represented by General Formula (1) As the phosphorescent organometallic complex compound according to the present invention, a compound represented by the general formula (1) is preferably used.
  • the aromatic hydrocarbon ring represented by A1 includes a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, Examples include a pyranthrene ring and anthraanthrene ring. These rings may further have a substituent described later.
  • examples of the aromatic heterocycle represented by A1 include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, and a benzimidazole.
  • Examples of the substituent that the aromatic hydrocarbon ring or aromatic heterocyclic ring represented by A1 may have an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group) Pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.) Alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc.), for example, phenyl group,
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • the aromatic heterocycle represented by A2 has the same meaning as the aromatic heterocycle represented by A1 in the general formula (1).
  • examples of the bidentate ligand represented by P1-L1-P2 include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone And picolinic acid.
  • M1 is a group 8-10 transition metal element (also referred to simply as a transition metal) in the periodic table of elements. Among them, iridium and platinum are preferable, and iridium is particularly preferable.
  • phosphorescent organometallic complex compound represented by the general formula (1) used as the phosphorescent dopant are shown below, but the present invention is not limited thereto. These compounds are described, for example, in Inorg. Chem. 40, 1704 to 1711, and the like.
  • the light emitting layer according to the present invention may use a fluorescent dopant together with the phosphorescent organometallic complex compound.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes Examples thereof include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the hole transport layer and the electron transport layer used as the constituent layers of the organic EL device of the present invention will be described, and in addition, the injection layer, the blocking layer, and the like will be described.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the cathode buffer layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • the buffer layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 to 10 nm, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
  • the ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
  • JP-A-11-251067 J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. However, in the present invention, it is preferably produced by a coating method (wet process).
  • the film thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the hole transport layer preferably contains an acceptor material.
  • An acceptor material includes an n-type semiconductor material.
  • n-type semiconductor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, inorganic materials such as vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and TCNQ.
  • Preferred examples include cyano groups and fluorine-containing compounds such as (7,7,8,8-tetracyanoquinodimethane) and F4-TCNQ (tetrafluorotetracyanoquinodimethane).
  • TBPAH tris (4-bromophenyl) aluminum hexachloroantimonate
  • fullerene octaazaporphyrin
  • p-type semiconductor perfluoro compounds perfluoropentacene, perfluorophthalocyanine, etc.
  • naphthalenetetracarboxylic anhydride naphthalenetetra
  • polymer compounds containing an aromatic carboxylic acid anhydride such as carboxylic acid diimide, perylene tetracarboxylic acid anhydride, and perylene tetracarboxylic acid diimide, or an imidized product thereof as a skeleton.
  • Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Examples thereof include a polymer compound having a skeleton.
  • a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.
  • fullerene-containing polymers are roughly classified into polymers in which fullerene is pendant from a polymer main chain and polymers in which fullerene is contained in the polymer main chain. Fullerene is contained in the polymer main chain. Are preferred.
  • the hole transport material contained in the hole transport layer may be selected from a light emitting layer or a material having a Tg higher than the Tg of the host compound used in the light emitting layer. It is a preferable form to have a Tg higher than that of the light emitting layer.
  • the electron transport material described later is also preferably a polymer, and both the hole transport material and the electron transport material are more preferably a polymer.
  • the hole transport material preferably used in the present invention is exemplified below, but is not limited thereto.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • Any material may be used as long as it has a function of transferring electrons to the light-emitting layer, and any material can be selected from conventionally known compounds.
  • Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • the electron transport layer preferably contains a donor material.
  • An example of the donor material is a p-type semiconductor material.
  • Examples of p-type semiconductor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, organic and inorganic alkali metal salts, alkaline earth metal salts, and aniline, phenylenediamine, Examples include arylamines such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, various condensed polycyclic aromatic compounds, and conjugated compounds.
  • condensed polycyclic aromatic compound for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.
  • conjugated compound examples include polythiophene and its oligomer, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, tetrathiafulvalene compound, quinone Compounds, cyano compounds such as tetracyanoquinodimethane, fullerenes and derivatives or mixtures thereof.
  • thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3- An oligomer such as butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • polymer p-type semiconductor examples include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like.
  • JP-A 2006-36755 and other substituted-unsubstituted alternating copolymer polythiophenes JP-A 2007-51289, JP-A 2005-76030, J. Org. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc.
  • porphyrin copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTTF-iodine complex, TCNQ-iodine complex, etc.
  • Organic molecular complexes such as C60, C70, C76, C78, and C84, carbon nanotubes such as SWNT, dyes such as merocyanine dyes and hemicyanine dyes, and ⁇ -conjugated polymers such as polysilane and polygerman Organic / inorganic hybrid materials described in 2000-260999 can also be used.
  • conjugated materials at least one selected from the group consisting of condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic acid diimides, metal phthalocyanines, and metal porphyrins is preferable. Further, pentacenes are more preferable.
  • pentacenes examples include substituents described in International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, JP-A-2004-107216, etc.
  • Examples thereof include substituted acenes described in No. 14.4986 and the like and derivatives thereof.
  • Such compounds include those described in J. Org. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. Acene-based compounds substituted with trialkylsilylethynyl groups described in US Pat. No. 9,2706, etc., pentacene precursors described in US Patent Application Publication No. 2003/136964, etc., and Japanese Patent Application Laid-Open No. 2007-224019 Examples include precursor type compounds (precursors) such as porphyrin precursors.
  • the electron transport material having the highest component ratio among the electron transport materials constituting the electron transport layer according to the present invention has a Tg higher than the Tg of the host material having the highest component ratio among the host materials constituting the light emitting layer. Choose what you have.
  • the electron transport material that is preferably used is exemplified below, but is not limited thereto.
  • the electron transport material contained in the electron transport layer is preferably a polymer in order to have a higher Tg than the light emitting layer.
  • both the hole transport material and the electron transport material are polymers.
  • anode As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • Electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness is usually selected within the range of 10 to 1000 nm, preferably within the range of 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al2O3) mixture. , Indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably within the range of 50 to 200 nm.
  • the film thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably within the range of 50 to 200 nm.
  • a transparent or translucent cathode can be manufactured by forming the above metal on the cathode with a film thickness in the range of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode thereon.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent.
  • the transparent support substrate that can be used include glass, quartz, and a transparent resin film.
  • a particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (PC), norbornene resin, polymethylpentene, polyether Ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, police Cycloolefins such as phons, polyether imides, polyether ketone imides, polyamides, fluororesins, nylon, polymethyl methacrylate, acrylics or polyarylates, Arton (trade name, manufactured by JSR) or
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ MPa) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • ⁇ Sealing> As a sealing means used for this invention, the method of adhere
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ MPa) or less, and conforms to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by the method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • heat- and chemical-curing types such as epoxy type can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be a material having a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, plasma CVD method, laser CVD method, thermal CVD method, coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • a material that can be used for this the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), light emission from a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention can be processed to provide, for example, a microlens array-like structure on the light extraction side of the substrate, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface.
  • luminance in a specific direction can be raised by condensing in a front direction.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a thin film made of a desired electrode material for example, an anode material, is formed on a suitable substrate so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, thereby producing an anode.
  • an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, which is an organic EL element material
  • a method for forming each of these layers there are a vapor deposition method, a wet method (coating method, wet process), etc., but a wet method is preferable.
  • wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, etc., and a precise thin film can be formed.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable. Different film forming methods may be applied for each layer.
  • the total number of layers (the constituent layers of the organic EL element) existing between the anode and the cathode 50% or more of the total number of layers is preferably formed by a coating method.
  • the hole injection layer / hole transport layer When the total number of layers of light emitting layer / electron transport layer / electron injection layer is 5, it is preferable that at least three layers are formed by a coating method.
  • examples of the liquid medium for dissolving or dispersing various organic EL materials used for coating include ketones such as methyl ethyl ketone and cyclohexanone, and fatty acid esters such as ethyl acetate.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate.
  • Halogenated hydrocarbons such as dichlorobenzene, aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO be able to.
  • dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • a desired organic EL element can be obtained.
  • the production of the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • the electrode In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention comprises the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but is preferably a vapor deposition method, an inkjet method, a spin coating method, or a printing method.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not) When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • FIG. 7 is a schematic configuration diagram of an organic EL full-color display device.
  • a partition wall 103 is formed between the ITO transparent electrodes on the glass substrate.
  • a hole injection layer composition is injected between the ITO electrode partition walls, and a hole injection layer 104 is produced by a drying process.
  • a blue light emitting layer composition, a green light emitting layer composition, and a red color are formed on the hole injection layer, respectively.
  • the light emitting layer composition is injected to form each light emitting layer 105B, light emitting layer 105G, and light emitting layer 105R.
  • the cathode 106 is vacuum-deposited so as to cover the light emitting layers 105B, 105G, and 105R, and an organic EL element is manufactured.
  • the lighting device of the present invention has the said organic EL element.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of an optical sensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • the organic EL material of the present invention can be applied as an illumination device to an organic EL element that emits substantially white light.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
  • the elements themselves are luminescent white.
  • luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • LC0629B is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
  • FIG. 5 shows a schematic view of a lighting device, and the organic EL element of the present invention is covered with a glass cover 202 (note that the sealing operation with the glass cover is performed without bringing the organic EL element into contact with the atmosphere. This was performed in a glove box under an atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • 205 denotes a cathode
  • 206 denotes an organic EL layer
  • 207 denotes a transparent electrode
  • 201 denotes a glass substrate.
  • the glass cover 202 is filled with nitrogen gas 208 and a water catching agent 209 is provided.
  • Example 1 Production of organic EL element >> (Preparation of organic EL device 1-1) Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • the substrate provided with the first hole transport layer is fixed to a substrate holder of a commercially available vacuum deposition apparatus, each organic EL material described later is set on a resistance heating boat made of molybdenum or tantalum, and the vacuum chamber is set to 4 ⁇ .
  • the pressure was reduced to 10 ⁇ 4 Pa.
  • the heating boat containing HT-1 (hole transport material) was energized and heated, and deposited at a deposition rate of 0.1 nm / second to provide a 20 nm second hole transport layer.
  • the heating boat containing OC-3 (host material) and PD-1 (phosphorescent dopant) is energized and heated, and the deposition rate is 0.1 nm / second and 0.006 nm / second, respectively.
  • a 40 nm light emitting layer was provided by co-evaporation on the two-hole transport layer.
  • ET-4 electron transport material
  • ET-4 electron transport material
  • the heating boat was energized and heated, and was deposited on the first electron transport layer at a deposition rate of 0.1 nm / second to provide a second electron transport layer having a thickness of 20 nm.
  • lithium fluoride 0.5 nm was vapor-deposited as a cathode buffer layer, and aluminum 110 nm was vapor-deposited to form a cathode, thereby producing an organic EL device 1-1.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Film formation conditions for the second hole transport layer HT-19 After preparing a 0.5% dichlorobenzene solution of HT-19, this solution was formed into a film by spin coating at 1500 rpm for 30 seconds, and then dried at 200 ° C. for 1 hour to give a second hole having a thickness of 30 nm. A transport layer was provided. The weight average molecular weight of HT-19 measured by the following measurement method was 70,000.
  • PVK polyvinylcarbazole
  • PD-1 PD-1-phosphate-semiconductor-semiconductor
  • 10 mg of polyvinylcarbazole (PVK) and 0.3 mg of PD-1 were dissolved in 3 ml of toluene. This solution was formed into a film by spin coating at 1000 rpm for 30 seconds and then dried at 120 ° C. for 1 hour to provide a light emitting layer having a thickness of 40 nm.
  • the weight average molecular weight of PVK measured by the following measurement method was 120,000.
  • Film formation conditions for the first electron transport layer ET-16 After preparing a 0.2% toluene: hexafluoroisopropanol (HFIP) (5:95) solution of ET-16, this solution was formed into a film by spin coating at 1500 rpm for 30 seconds, and then at 120 ° C. for 1 hour. It dried and provided the 1st electron carrying layer with a film thickness of 20 nm.
  • the weight average molecular weight of ET-16 measured by the following measurement method was 28,000.
  • GPC measurement conditions are measured by stabilizing the column at 40 ° C. and flowing THF (tetrahydrofuran).
  • Tables 2 to 4 show the glass transition points of the constituent materials used in the examples.
  • the glass transition point was measured using a differential scanning calorimeter “DSC-7” (Perkin Elmer) and a thermal analyzer controller “TAC7 / DX” (Perkin Elmer).
  • the non-light-emitting surface of each organic EL device after production was covered with a glass case, a glass substrate having a thickness of 300 ⁇ m was used as a sealing substrate, and an epoxy was used as a sealing material around.
  • a photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied, and this is stacked on the cathode and brought into intimate contact with the transparent support substrate.
  • the glass substrate side is irradiated with UV light, cured, and sealed.
  • the lighting device as shown in FIGS. 5 and 6 was formed and evaluated.
  • Luminescent life When driving at a constant current of 2.5 mA / cm 2 in a dry nitrogen gas atmosphere at 23 ° C., the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured. was used as an index of life as half-life time ( ⁇ 0.5).
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used in the same manner. The results are shown as relative values when the organic EL element 1-1 is 100.
  • the glass transition point (Tg) generally referred to so far is not necessarily high, and the relationship between Tg of three layers including two adjacent layers on both sides of the light emitting layer is important. It is clear that there is. This is because when the Tg relationship between the light emitting layer and the adjacent layer takes the relationship of the present invention, the carrier trapping capability in the light emitting layer is increased, the exciton confinement effect can be exhibited, and deterioration near an undesirable interface is suppressed. Therefore, it is considered that not only the external quantum efficiency is improved, but also a remarkable effect is exerted on the voltage change during constant current driving. Furthermore, as a result, a great improvement in the light emission lifetime was recognized.
  • Example 2 Production of organic EL element >> (Preparation of organic EL elements 2-1 to 2-4) Organic EL devices 2-1 to 2-4 were produced in exactly the same manner except that the material of each layer in Example 1-1 was replaced with that in Table 6. The film forming conditions for the coating material are exactly the same as in Example 1.
  • Example 2 it is clear that the relationship between the Tg of the three layers including the two adjacent layers on both sides of the light emitting layer is important. Furthermore, the results suggest that there is an optimum Tg of the host material. This is because the smaller the Tg or the larger the Tg difference between the two adjacent layers, the better, in order to make the best use of the carrier trapping capability, which is the aim of the present invention, but as has been said so far. From the standpoint of the contradiction, it is desirable that the Tg of the host material itself is desirably larger from the viewpoint of thermal and temporal thin film stability. From these points, the Tg of the host material more preferable in the present invention is 70 ° C. or higher and 130 ° C. or lower.
  • Example 3 Provide of full-color display device> (Blue light emitting organic EL device) The organic EL element 2-3 produced in Example 2 was used.
  • the produced organic EL element showed blue, green, and red light emission by applying a voltage to each electrode, and was found to be usable as a full-color display device.
  • Example 4 Preparation of white light emitting lighting device ⁇ Similarly, the white light-emitting organic EL element 2-3W was changed except that PD-13 of the organic EL element 2-3 produced in Example 2 was changed to a ternary mixture of PD-1, PD-13, and PD-10. Was made. The obtained organic EL element 2-3W was covered with a glass case on the non-light emitting surface to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
  • a full-color display device can be manufactured by arranging blue light-emitting organic EL elements, green light-emitting organic EL elements, and red light-emitting organic EL elements in a pattern.
  • a white light-emitting organic EL element can be produced by combining phosphorescent light-emitting organometallic complex compounds having different emission colors, and the white light-emitting organic EL element is used as a backlight of a lighting device or a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 電荷注入・輸送性能が高く、経時的な駆動電圧変化が少なく、かつ長寿命の有機エレクトロルミネッセンス素子、製造方法、照明装置及び表示装置を提供する。 本発明の有機EL素子は、正孔輸送層、発光層及び電子輸送層を含む複数の有機化合物層を有する有機EL素子において、(1)前記正孔輸送層及び電子輸送層は発光層にそれぞれ隣接し、該発光層はリン光発光性有機金属錯体化合物を含有し、(2)前記正孔輸送層を構成する最も構成比の高い正孔輸送材料のTgが、前記発光層を構成する最も構成比の高いホスト材料のTgより高く、(3)前記電子輸送層を構成する最も構成比の高い電子輸送材料のTgが、前記発光層を構成する最も構成比の高いホスト材料のTgより高いことを特徴とする。

Description

有機エレクトロルミネッセンス素子、照明装置及び表示装置
 本発明は、有機エレクトロルミネッセンス素子、それを用いた照明装置及び表示装置に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)は、電極と電極の間を厚さわずか0.1μm程度の有機材料の膜で構成する全固体素子であり、かつ、その発光が2~20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。
 リン光発光を利用した有機EL素子の発見により、以前の蛍光発光を利用するそれに比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成に関する研究開発が世界中で行われている(例えば、特許文献1、非特許文献1~3参照)。
 このように大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用する有機ELデバイスとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捕らえる上で重要な技術的な課題となっている。
 そこで近年、機能の分離、とりわけ発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層と、発光層の陰極側に位置する電子輸送層を備えた多層積層型の素子が用いられるようになってきた(例えば、特許文献2参照)。
 しかしながら、電荷注入・輸送性の経時変化、特に定電流駆動時の電圧変化等の観点から、いまだ十分とは言えず、更なる改良が求められている。
米国特許第6,097,147号明細書 特開2005-112765号公報
M.A.Baldo et al.,Nature、395巻、151~154頁(1998年) M.A.Baldo et al.,Nature、403巻、17号、750~753頁(2000年) S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)
 本発明は、上記問題・状況に鑑みなされたものであり、その課題は電荷注入・輸送性能が高く、外部取り出し量子効率が高く、定電圧駆動したときの経時的な駆動電圧変化が少なく、かつ長寿命の有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することである。
 本発明の上記課題は、以下の構成により解決される。
 1.陽極と陰極との間に挟持された正孔輸送層、発光層及び電子輸送層を含む複数の有機化合物層を有する有機エレクトロルミネッセンス素子において、
(1)前記正孔輸送層及び電子輸送層は発光層にそれぞれ隣接し、
(2)前記正孔輸送層を構成する正孔輸送材料のうち、最も構成比の高い正孔輸送材料のガラス転移点(Tg)をTg(HT)、前記発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点(Tg)をTg(EM)とした場合、Tg(HT)>Tg(EM)であり、
(3)前記電子輸送層を構成する電子輸送材料のうち、最も構成比の高い電子輸送材料のガラス転移点(Tg)をTg(ET)、前記発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点(Tg)をTg(EM)とした場合、Tg(ET)>Tg(EM)であり、
(4)前記発光層を構成する材料として、リン光発光性有機金属錯体化合物を含有する、ことを特徴とする有機エレクトロルミネッセンス素子。
 2.前記発光層に含有されるホスト材料のガラス転移点Tgが、70℃以上、130℃以下であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
 3.前記正孔輸送層に含有される正孔輸送材料は、高分子であることを特徴とする前記1又は2に記載の有機エレクトロルミネッセンス素子。
 4.前記電子輸送層に含有される電子輸送材料は、高分子であることを特徴とする前記1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 5.前記正孔輸送層に含有される正孔輸送材料及び前記電子輸送層に含有される電子輸送材料が、共に高分子であることを特徴とする前記1又は2に記載の有機エレクトロルミネッセンス素子。
 6.前記リン光発光性有機金属錯体化合物の少なくとも1種が、下記一般式(1)で表される化合物であることを特徴とする前記1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000002
(式中、P及びQは炭素原子又は窒素原子を表し、A1はP-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。A2はQ-Nと共に芳香族複素環を形成する原子群を表す。P1-L1-P2は2座の配位子を表し、P1及びP2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はP1及びP2と共に2座の配位子を形成する原子群を表す。rは1~3の整数を表し、sは0~2の整数を表すが、r+sは2又は3である。M1は元素周期表における8~10族の金属元素を表す。)
 7.白色に発光することを特徴とする前記1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 8.前記1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
 9.前記1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えることを特徴とする表示装置。
 本発明により、外部取り出し量子効率が高く、定電圧駆動したときの経時的な駆動電圧変化が少なく、かつ長寿命の有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供できる。
有機EL素子から構成される表示装置の一例を示した模式図 表示部Aの模式図 画素の模式図 パッシブマトリクス方式フルカラー表示装置の模式図 照明装置の概略図 照明装置の模式図 有機ELフルカラー表示装置の概略構成図
 以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 以下、本発明に係る各構成要素の詳細について、順次説明する。
 《有機EL素子の構成層及び有機化合物層》
 本発明の有機EL素子の構成層及び有機化合物層等について説明する。本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
 (iii)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
 《有機化合物層(有機層ともいう。)》
 本発明に係る有機化合物層について説明する。本発明の有機EL素子は、構成層として複数の有機化合物層を有することが好ましく、該有機化合物層としては、例えば、上記の層構成の中で、正孔輸送層、発光層、電子輸送層等が挙げられるが、その他、正孔注入層、電子注入層等、有機EL素子のその他の構成層を構成する有機化合物が含有される層についても本発明に係る有機化合物層として定義される。
 さらに、陽極バッファー層、陰極バッファー層等に有機化合物が用いられる場合には、陽極バッファー層、陰極バッファー層等も、各々有機化合物層を形成していることになる。
 本発明の有機EL素子が青色発光層、緑色発光層又は赤色発光層を有する場合、青色発光層の発光極大波長は430~480nmの範囲内にあるものが好ましく、緑色発光層は発光極大波長が510~550nmの範囲内にあるものが好ましく、赤色発光層は発光極大波長が600~640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。
 また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。さらに、発光層間には非発光性の中間層を有していてもよい。
 本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
 本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、さらに好ましくは2~200nmの範囲に調整され、特に好ましくは10~20nmの範囲である。
 発光層の作製には、後述する発光ドーパントやホスト材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。
 本発明の有機EL素子の発光層には、ホスト材料(ホスト化合物ともいう。)と、発光材料(発光ドーパントともいう。)としてリン光発光性有機金属錯体化合物が含有される。また、後述する正孔輸送材料や電子輸送材料を混合して用いてもよい。
 (ホスト材料)
 本発明に用いられるホスト材料について説明する。ここで、本発明においてホスト材料とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。
 本発明でのホスト材料としては、公知のホスト化合物を併用で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 併用してもよい従来公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつTg(ガラス転移点)が、正孔輸送層を構成する正孔輸送材料及び電子輸送層を構成する電子輸送材料と、後述の関係にあることが望ましい。
 即ち、
(1)正孔輸送層、及び電子輸送層は発光層にそれぞれ隣接し、
(2)前記正孔輸送層を構成する正孔輸送材料のうち、最も構成比の高い正孔輸送材料のガラス転移点をTg(HT)、同様に前記発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点をTg(EM)とした場合、Tg(HT)>Tg(EM)、且つ、
(3)前記電子輸送層を構成する電子輸送材料のうち、最も構成比の高い電子輸送材料のガラス転移点をTg(ET)、前記同様に、発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点(Tg)をTg(EM)とした場合、Tg(ET)>Tg(EM)である。
 さらに好ましくは、発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点が、70℃以上、130℃以下である。
 なお、正孔輸送層、電子輸送層、また発光層等において最も構成比の高い材料がそれぞれの層のTg(ガラス転移点)を決めるとみてよいため、以下、それぞれにおいて最も構成比の高い材料のTgを、便宜的に、正孔輸送層のTg、発光層のTg、電子輸送層のTgというように記載した。
 正孔輸送層及び電子輸送層がそれぞれリン光発光性有機金属錯体化合物を含有する発光層に隣接し、かつ、正孔輸送層のTg(HT)及び電子輸送層のTg(ET)よりも、リン光発光性有機金属錯体化合物を含有する発光層のTg(EM)が小さいとき何故に、電荷注入・輸送性能が高く、発光効率があがり、経時的な駆動電圧変化が少なく、かつ長寿命な有機エレクトロルミネッセンス素子が得られるのかについては、以下の様に考えている。
 有機EL素子の有機化合物層において、Tgが低い方が、相対的に再配向エネルギーが大きくなり、キャリアトラップされやすくなるため、キャリア移動度は小さくなる。
 一方、逆にTgが高いと再配向エネルギーは相対的に小さく、キャリアのトラップされにくくなるため、移動度は大きくなる。
 従って、Tgが大きい正孔輸送層、また電子輸送層にこれよりもTgが小さい発光層が挟まれている場合、発光層にキャリアを閉じこめる効果が期待できるので、発光効率があがるものと考えている。
 従って、ここで正孔輸送層また電子輸送層等が複数ある場合、ここでいう正孔輸送層、電子輸送層とは発光層にそれぞれ隣接した層のことをさす。
 このような構成にするには、後述する各材料の中から上記の関係となるようそれぞれ材料を選択すればよいが、発光層については、発光層を構成する材料のうち、最も構成比の高いホスト材料のガラス転移点が、70℃以上、130℃以下であることが、発光層のガラス転移点を余り大きくせず、正孔輸送層、また電子輸送層のガラス転移点を発光層のそれよりも大きく設計するために好ましい。
 また、正孔輸送層、また電子輸送層においては、発光層よりも高いTgとするため、高分子材料を含有していることが好ましく、正孔輸送材料、また電子輸送材料は高分子であることが好ましい。
 更に、正孔輸送層及び電子輸送層の両方について高分子で構成されることがより好ましい。ここで、高分子とは、重量平均分子量が10000以上の化合物である。前記重量平均分子量の測定の詳細を以下に示す。
 (重量平均分子量の測定)
 本発明に係る高分子の分子量(重量平均分子量(Mw))の測定は、THF(テトラヒドロフラン)をカラム溶媒として用いるGPC(ゲルパーミエーションクロマトグラフィー)を用いて分子量測定を行うことができる。
 具体的には、測定試料を1mgに対してTHF(脱気処理を行ったものを用いる)を1ml加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる。ついで、ポアサイズ0.45~0.50μmのメンブランフィルターで処理した後に、GPC(ゲルパーミエーションクロマトグラフ)装置に注入する。
 GPC測定条件は、40℃にてカラムを安定化させ、THF(テトラヒドロフラン)を毎分1mlの流速で流し、1mg/mlの濃度の試料を約100μL注入して測定する。
 カラムとしては、市販のポリスチレンジェルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社製のShodex GPC KF-801、802、803、804、805、806、807等の組合せや、東ソー社製のTSKgelG1000H、G2000H、G3000H、G4000H、G5000H、G6000H、G7000H、TSK guard column等の組合せ等が好ましい。
 検出器としては、屈折率検出器(RI検出器)、あるいはUV検出器が好ましく用いられる。試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて作成した検量線を用いて算出する。検量線作成用のポリスチレンとしては10点程度用いることが好ましい。
 (ガラス転移点の測定)
 上記においてガラス転移点は、示差走査カロリーメーター「DSC-7」(パーキンエルマー社製)、熱分析装置コントローラー「TAC7/DX」(パーキンエルマー社製)を用いて測定することが出来る。
 例えば、示差走査カロリーメーター「DSC-7」(パーキンエルマー社製)を私用する場合、測定手順として、材料4.5~5.0mgを小数点以下2桁まで精秤し、アルミニウム製パンに封入し、DSC-7サンプルホルダーにセットする。
 リファレンスは空のアルミニウム製パンを使用した。測定条件としては、測定温度0~200℃、昇温速度10℃/分、降温速度10℃/分で、Heat-Cool-Heatの温度制御で行い、その2nd.Heatにおけるデータをもとに解析を行った。
 ガラス転移点は、横軸に温度、縦塾に吸熱量をとりプロットしたときに、第1の吸熱ピークの立ち上がり前のベースラインの延長線と、第1のピークの立ち上がり部分からピーク頂点までの間で最大傾斜を示す接線を引き、その交点をガラス転移点として示す。
 本発明において用いられる従来公知のホスト材料(ホスト化合物)の具体例としては、以下に示した従来公知の化合物及び以下の文献に記載されている化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 (発光ドーパント)
 本発明の発光層においてホスト材料と共に用いられる発光ドーパントについて説明する。
 本発明に係る発光ドーパントとしては、より発光効率の高い有機EL素子を得る観点から、リン光発光性ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう。)が用いられ、リン光発光性ドーパントとしてリン光発光性有機金属錯体化合物が用いられる。本発明の有機EL素子の発光層や発光ユニットには、前記ホスト化合物が含有されると同時に、発光ドーパント(単に、発光材料ということもある)としては、リン光発光性有機金属錯体化合物が含有される。
 リン光発光性ドーパンについて説明する。
 本発明に係るリン光発光性化合物は、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性化合物は、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性化合物の発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型、もう一つはリン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が起こり、リン光発光性化合物からの発光が得られるというキャリアトラップ型が挙げられる。
 上記のいずれの場合においても、リン光発光性化合物の励起状態のエネルギー準位はホスト化合物の励起状態のエネルギー準位よりも低いことが条件である。
 リン光発光性化合物として本発明で用いられるリン光発光性有機金属錯体化合物は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に係るリン光発光性有機金属錯体化合物としては、好ましくは元素周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物(Ir錯体)、又は白金化合物(白金錯体系化合物)であり、中でも最も好ましいのはイリジウム化合物(Ir錯体)である。
 《一般式(1)で表されるリン光発光性有機金属錯体化合物》
 本発明に係るリン光発光性有機金属錯体化合物としては、前記一般式(1)で表される化合物が好ましく用いられる。
 一般式(1)において、A1で表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環はさらに、後述する置換基を有してもよい。
 一般式(1)において、A1で表される芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。これらの環はさらに後述する置換基を有していてもよい。
 (置換基)
 上記のA1で表される芳香族炭化水素環又は芳香族複素環が有していてもよい置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す。)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 また、これらの置換基は上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 一般式(1)において、A2で表される芳香族複素環は、一般式(1)において、A1で表される芳香族複素環と同義である。
 一般式(1)において、P1-L1-P2で表される2座の配位子としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
 一般式(1)において、M1は、元素周期表における8~10族の遷移金属元素(単に遷移金属ともいう。)が用いられるが、中でもイリジウム、白金が好ましく、特にイリジウムが好ましい。
 以下に、リン光発光性ドーパントとして用いられる、一般式(1)で表されるリン光発光性有機金属錯体化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.,40巻、1704~1711に記載の方法等により合成できる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 (蛍光ドーパント(蛍光性化合物ともいう。))
 本発明に係る発光層は、リン光発光性有機金属錯体化合物と共に、蛍光ドーパントを用いてもよい。
 蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
 次に、本発明の有機EL素子の構成層として用いられる正孔輸送層及び電子輸送層について説明し、加えて、注入層、阻止層等について説明する。
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1~10nmの範囲が好ましい。
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。
 さらには、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 さらに、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることが好ましい。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができるが、本発明においては塗布法(ウェットプロセス)により作製されることが好ましい。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μmの範囲内程度、好ましくは5~200nmの範囲内である。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
 正孔輸送層はアクセプター材料を含有することが好ましい。アクセプター材料としてはn型半導体材料が挙げられる。n型半導体材料の例としては、Au、Pt、W、Ir、POCl、AsF、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8-テトラシアノキノジメタン)、F4-TCNQ(テトラフルオロテトラシアノキノジメタン)等のシアノ基及びフッ素含有化合物が好ましい例として挙げられる。また、TBPAH(トリス(4-ブロモフェニル)アルミニウムヘキサクロロアンチモネート)、フラーレン、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物又はそのイミド化物を骨格として含む高分子化合物が挙げられる。
 中でも、フラーレン含有高分子化合物が好ましい。フラーレン含有高分子化合物としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等を骨格に持つ高分子化合物が挙げられる。フラーレン含有高分子化合物では、フラーレンC60を骨格に持つ高分子化合物(誘導体)が好ましい。
 フラーレン含有ポリマーとしては、大別してフラーレンが高分子主鎖からペンダントされたポリマーと、フラーレンが高分子主鎖に含有されるポリマーとに大別されるが、フラーレンがポリマーの主鎖に含有されている化合物が好ましい。
 本発明においては、正孔輸送層に含有される正孔輸送材料は発光層又は発光層に用いられるホスト化合物のTgよりも高いTgをもつものを選択すればよいが、なかでも高分子材料で構成されることが発光層のTgよりも高いTgをもたせる上で好ましい形態である。
 後述の電子輸送材料についても高分子であることが好ましく、正孔輸送材料、電子輸送材料共に高分子であることが更に好ましい。
 本発明において好ましく用いられる正孔輸送材料について以下に例示するが、これにより限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
 さらに上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることができる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μmの範囲内程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
 電子輸送層はドナー材料を含有することが好ましい。ドナー材料としてはp型半導体材料が挙げられる。p型半導体材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、有機・無機のアルカリ金属塩、アルカリ土類金属塩、及びアニリン、フェニレンジアミン、N,N′-ジ(ナフタレン-1-イル)-N,N′-ジフェニル-ベンジジン等のアリールアミン類や、種々の縮合多環芳香族化合物や共役系化合物が挙げられる。
 縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、及びこれらの誘導体や前駆体が挙げられる。
 共役系化合物としては、例えば、ポリチオフェン及びそのオリゴマー、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物、キノン化合物、テトラシアノキノジメタン等のシアノ化合物、フラーレン及びこれらの誘導体あるいは混合物を挙げることができる。
 また、特にポリチオフェン及びそのオリゴマーのうち、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 その他、高分子p型半導体の例としては、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリパラフェニレンスルフィド、ポリチオフェン、ポリフェニレンビニレン、ポリカルバゾール、ポリイソチアナフテン、ポリヘプタジイン、ポリキノリン、ポリアニリン等が挙げられ、さらには特開2006-36755号公報等の置換-無置換交互共重合ポリチオフェン、特開2007-51289号公報、特開2005-76030号公報、J.Amer.Chem.Soc.,2007,p4112、J.Amer.Chem.Soc.,2007,p7246等の縮環チオフェン構造を有するポリマー、WO2008/000664、Adv.Mater.,2007,p4160、Macromolecules,2007,Vol.40,p1981等のチオフェン共重合体等を挙げることができる。
 さらに、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQ-ヨウ素錯体、等の有機分子錯体、C60、C70、C76、C78、C84等のフラーレン類、SWNT等のカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類等の色素等、さらにポリシラン、ポリゲルマン等のσ共役系ポリマーや特開2000-260999号に記載の有機・無機混成材料も用いることができる。
 これらの共役系材料のうちでも、ペンタセン等の縮合多環芳香族化合物、フラーレン類、縮合環テトラカルボン酸ジイミド類、金属フタロシアニン、金属ポルフィリンよりなる群から選ばれた少なくとも1種が好ましい。また、ペンタセン類がより好ましい。
 ペンタセン類の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986等に記載の置換アセン類及びその誘導体等が挙げられる。
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。そのような化合物としては、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物、及び米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、特開2007-224019号公報等に記載のポルフィリンプレカーサー等のような、プレカーサータイプの化合物(前駆体)等が挙げられる。
 本発明に係る電子輸送層を構成する電子輸送材料のうちの最も構成比の高い電子輸送材料は、発光層を構成するホスト材料のうちの最も構成比の高いホスト材料のTgよりも高いTgをもつものを選択する。
 好ましく用いられる電子輸送材料について以下に例示するが、これにより限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 これらの中でも電子輸送層に含有される電子輸送材料は高分子であることが、発光層よりも高いTgをもたせる上で好ましい形態である。
 正孔輸送材料及び電子輸送材料が共に高分子であることは更に好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。
 このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。
 この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nmの範囲内、好ましくは10~200nmの範囲で選ばれる。
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μmの範囲内、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの範囲内の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。
 好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルム等を挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3cm/(m・24h・MPa)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。
 無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3cm/(m・24h・MPa)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
 また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。
 これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。
 特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。
 これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、さらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。
 この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍の範囲内程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 《有機EL素子の製造方法》
 有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極からなる素子の製造方法について説明する。
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように形成させ、陽極を作製する。
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層等の有機化合物を含有する薄膜を形成させる。
 これら各層の形成方法としては、蒸着法、湿式法(塗布法、ウェットプロセス)等があるが、湿式法が好ましい。湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法等があるが、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式適性の高い方法が好ましい。また、層ごとに異なる製膜法を適用してもよい。
 また、陽極と陰極の間に存在する層(有機EL素子の構成層である)の全層数を100%とした時、該全層数の50%以上が塗布法で形成されることが好ましい。
 例えば、上記の有機EL素子の一例として挙げられた、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極においては、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層という全層数が5の場合には、少なくとも3層が塗布法により形成されることが好ましい。
 本発明の有機EL素子の構成層を塗布により形成する場合、塗布に用いる各種の有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。
 パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
 《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を具備したものである。
 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法又は印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
 得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図2は表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。
 図3は画素の模式図である。
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
 図7は有機ELフルカラー表示装置の概略構成図である。陽極としてガラス基板101上にITO透明電極102を成膜した基板にパターニングを行った後、このガラス基板上でITO透明電極の間に隔壁103を形成する。ITO電極上隔壁の間に正孔注入層組成物を注入し、乾燥処理により正孔注入層104を作製し、この正孔注入層上にそれぞれ青色発光層組成物、緑色発光層組成物、赤色発光層組成物を注入しそれぞれの発光層105B、発光層105G、発光層105Rを各々形成させる。最後に発光層105B、105G、105Rを覆うように、陰極106を真空蒸着して有機EL素子を作製する。
 《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザ発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
 発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
 図5は、照明装置の概略図を示し、本発明の有機EL素子はガラスカバー202で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図6は、照明装置の断面図を示し、図6において、205は陰極、206は有機EL層、207は透明電極、201はガラス基板を示す。なお、ガラスカバー202内には窒素ガス208が充填され、捕水剤209が設けられている。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《有機EL素子の作製》
 (有機EL素子1-1の作製)
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
 この第1正孔輸送層を設けた基板を市販の真空蒸着装置の基板ホルダーに固定し、後述するそれぞれの有機EL材料をモリブデン製あるいはタンタル製の抵抗加熱ボートにセットし、真空槽を4×10-4Paまで減圧した。HT-1(正孔輸送材料)の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で蒸着し20nmの第2正孔輸送層を設けた。
 次いで、OC-3(ホスト材料)、PD-1(リン光発光性ドーパント)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.006nm/秒で前記第2正孔輸送層上に共蒸着して40nmの発光層を設けた。
 さらに、ET-4(電子輸送材料)を蒸着速度0.1nm/秒で前記発光層上に蒸着して膜厚20nmの第1電子輸送層、トリス(8-キノリナート)アルミニウム(Alq)の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層上に蒸着して膜厚20nmの第2電子輸送層を設けた。
 引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、さらにアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1-1を作製した。なお、蒸着時の基板温度は室温であった。
 (有機EL素子1-2~1-8の作製)
 有機EL素子1-1で使用した各層を構成する材料を表1のものに変更した以外は全く同様にして、真空蒸着成膜を行い、有機EL素子1-2~1-8を作製した。ただし、高分子材料であるHT-19(正孔輸送材料)、ポリビニルカルバゾール(PVK)及びET-16(電子輸送材料)を用いた成膜は、塗布で行なった。塗布成膜条件については、以下の通りである。
 第2正孔輸送層HT-19の成膜条件:
 HT-19の0.5%ジクロロベンゼン溶液を調整した後、この溶液を1500rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第2正孔輸送層を設けた。なお、下記測定方法で測定したHT-19の重量平均分子量は70,000であった。
 発光層PVKの成膜条件:
 10mgのポリビニルカルバゾール(PVK)と0.3mgのPD-1を3mlのトルエンに溶解した。この溶液を1000rpm、30秒でスピンコート法により成膜した後、120℃にて1時間乾燥し、膜厚40nmの発光層を設けた。なお、下記測定方法で測定したPVKの重量平均分子量は120,000であった。
 第1電子輸送層ET-16の成膜条件:
 ET-16の0.2%トルエン:ヘキサフルオロイソプロパノール(HFIP)(5:95)溶液を調整した後、この溶液を1500rpm、30秒でスピンコート法により成膜した後、120℃にて1時間乾燥し、膜厚20nmの第1電子輸送層を設けた。なお、下記測定方法で測定したET-16の重量平均分子量は28,000であった。
 (重量平均分子量の測定方法)
 測定試料を1mgに対してTHF(脱気処理を行ったものを用いる)を1mL加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる。ついで、ポアサイズ0.45~0.50μmのメンブランフィルターで処理した後に、GPC(ゲルパーミエーションクロマトグラフ)装置に注入する。
 GPC測定条件は、40℃にてカラムを安定化させ、THF(テトラヒドロフラン)を流し、測定する。
 (測定条件)
装置:東ソー高速GPC装置 HLC-8220GPC
カラム:TOSOH TSKgel Super HM-M
検出器:RI及び/またはUV
溶出液流速:0.6ml/分
試料濃度:0.1質量%
試料量:100mL
検量線:標準ポリスチレンにて作製:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルを用いて検量線(校正曲線ともいう)を作成、分子量の算出に使用した。13サンプルは、ほぼ等間隔にする。
Figure JPOXMLDOC01-appb-T000024
 尚、実施例で使用した各構成材料のガラス転移点を表2~4に示す。ガラス転移点は、示差走査カロリーメーター「DSC-7」(パーキンエルマー社製)、熱分析装置コントローラー「TAC7/DX」(パーキンエルマー社製)を用いて測定した。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 《有機EL素子の評価》
 前述のように作製した有機EL素子1-1~1-8について、以下の評価を行った。結果を表5に示す。
 得られた有機EL素子を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5、図6に示すような照明装置を形成して評価した。
 (外部取り出し量子効率)
 作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm定電流を印加した時の外部取り出し量子効率(%)を測定した。なお、測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。外部取り出し量子効率は、有機EL素子1-1を100とした時の相対値で示す。
 (定電流駆動時の電圧変化)
 温度23℃、乾燥窒素ガス雰囲気下での2.5mA/cm定電流駆動時の電圧を測定した。後述の発光寿命測定条件下で、初期輝度時の電圧値(DV)とし、初期輝度から30%低下した時の電圧値(DV70)、初期輝度から50%低下(半減)した時の電圧値(DV50)とした時、(DV70)-(DV)をΔ、(DV50)-(DV)をΔとして経時的な駆動電圧変化の指標とした。Δ、Δは、有機EL素子1-1を100とした時の相対値で示す。
 (発光寿命)
 23℃、乾燥窒素ガス雰囲気下で2.5mA/cmの一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。なお、測定には同様に分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。結果を、有機EL素子1-1を100とした時の相対値で示す。
Figure JPOXMLDOC01-appb-T000028
 上記結果から明らかなように、これまで一般に言われてきたガラス転移点(Tg)が高ければ良い訳ではなく、発光層の両側に隣接する2層を含めた3層のTgの関係が重要であることが明らかである。これは、発光層と隣接層のTg関係が、本発明の関係をとったとき、発光層内のキャリアトラップ能力が大きくなり、励起子閉じ込め効果を発揮でき、望ましくない界面付近での劣化が抑えられるため、外部量子効率の向上のみならず、定電流駆動時の電圧変化に対して著しい効果が現れているものと考える。さらには、その結果として発光寿命の大きな改善が認められた。
 実施例2
 《有機EL素子の作製》
 (有機EL素子2-1~2-4の作製)
 実施例1-1の各層材料を表6のもとに置き換えた以外は全く同様にして、有機EL素子2-1~2-4を作製した。尚、塗布材料の成膜条件は実施例1と全く同様である。
Figure JPOXMLDOC01-appb-T000029
 《有機EL素子の評価》
 作製した有機EL素子2-1~2-4について、実施例1で行った方法と全く同様にして有機EL素子の評価を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000030
 実施例2の結果からも、発光層の両側に隣接する2層を含めた3層のTgの関係が重要であることが明らかである。さらには、ホスト材料の最適なTgがあることが示唆される結果となった。これは、前述した本発明の狙いであるキャリアトラップ能力を最大限活用するためにはTgは小さい程、もしくは両隣接層とのTg差が大きい程好ましい反面、これまでに言われて来た通り、熱的、経時的薄膜安定性から、ホスト材料自身のTgは大きい程望ましいことが、相反するためと考える。これらの点から、本発明においてより好ましいホスト材料のTgは70℃以上130℃以下である。
 実施例3
 《フルカラー表示装置の作製》
 (青色発光有機EL素子)
 実施例2で作製した有機EL素子2-3を用いた。
 (緑色発光有機EL素子)
 実施例1で作製した有機EL素子1-8を用いた。
 (赤色発光有機EL素子)
 実施例1で作製した有機EL素子1-8において、発光層に用いたPD-1をPD-10に変更した以外は全く同様にして作製した有機EL素子1-8Rを製造して、これを用いた。
 作製した有機EL素子は、各々の電極に電圧を印加することにより各々青色、緑色、赤色の発光を示し、フルカラー表示装置として利用できることが分かった。
 実施例4
 《白色発光照明装置の作製》
 実施例2で作製した有機EL素子2-3のPD-13をPD-1、PD-13、PD-10の三者混合体に変更した以外は同様して、白色発光有機EL素子2-3Wを作製した。得られた有機EL素子2-3Wを、非発光面をガラスケースで覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発する薄型の照明装置として使用することができた。
 青色発光有機EL素子、緑色発光有機EL素子及び赤色発光有機EL素子をパターン状に配置して、フルカラー表示装置を作製することができる。また、発光色の異なるリン光発光性有機金属錯体化合物を組み合わせて含有させることにより、白色発光有機EL素子を作製することができ、白色発光有機EL素子は、照明装置や液晶表示装置のバックライトに利用できる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスタ
 12 駆動トランジスタ
 13 コンデンサ
 A 表示部
 B 制御部
 101 ガラス基板
 102 ITO透明電極
 103 隔壁
 104 正孔注入層
 105B、105G、105R 発光層
 106 陰極
 201 ガラス基板
 207 透明電極付きガラス基板
 206 有機EL層
 205 陰極
 202 ガラスカバー
 208 窒素ガス
 209 捕水剤
 L 光

Claims (9)

  1.  陽極と陰極との間に挟持された正孔輸送層、発光層及び電子輸送層を含む複数の有機化合物層を有する有機エレクトロルミネッセンス素子において、
    (1)前記正孔輸送層及び電子輸送層は発光層にそれぞれ隣接し、
    (2)前記正孔輸送層を構成する正孔輸送材料のうち、最も構成比の高い正孔輸送材料のガラス転移点(Tg)をTg(HT)、前記発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点(Tg)をTg(EM)とした場合、Tg(HT)>Tg(EM)であり、
    (3)前記電子輸送層を構成する電子輸送材料のうち、最も構成比の高い電子輸送材料のガラス転移点(Tg)をTg(ET)、前記発光層を構成するホスト材料のうち、最も構成比の高いホスト材料のガラス転移点(Tg)をTg(EM)とした場合、Tg(ET)>Tg(EM)であり、
    (4)前記発光層を構成する材料として、リン光発光性有機金属錯体化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記発光層に含有されるホスト材料のガラス転移点Tgが、70℃以上、130℃以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記正孔輸送層に含有される正孔輸送材料は、高分子であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記電子輸送層に含有される電子輸送材料は、高分子であることを特徴とする請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5.  前記正孔輸送層に含有される正孔輸送材料及び前記電子輸送層に含有される電子輸送材料が、共に高分子であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  6.  前記リン光発光性有機金属錯体化合物の少なくとも1種が、下記一般式(1)で表される化合物であることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、P及びQは炭素原子又は窒素原子を表し、A1はP-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を表す。A2はQ-Nと共に芳香族複素環を形成する原子群を表す。P1-L1-P2は2座の配位子を表し、P1及びP2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はP1及びP2と共に2座の配位子を形成する原子群を表す。rは1~3の整数を表し、sは0~2の整数を表すが、r+sは2又は3である。M1は元素周期表における8~10族の金属元素を表す。)
  7.  白色に発光することを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
  9.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えることを特徴とする表示装置。
PCT/JP2012/071022 2011-08-23 2012-08-21 有機エレクトロルミネッセンス素子、照明装置及び表示装置 WO2013027711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/238,886 US20140197399A1 (en) 2011-08-23 2012-08-21 Organic electroluminescent element, lighting device and display device
JP2013530018A JP6160485B2 (ja) 2011-08-23 2012-08-21 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-181304 2011-08-23
JP2011181304 2011-08-23

Publications (1)

Publication Number Publication Date
WO2013027711A1 true WO2013027711A1 (ja) 2013-02-28

Family

ID=47746450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071022 WO2013027711A1 (ja) 2011-08-23 2012-08-21 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Country Status (3)

Country Link
US (1) US20140197399A1 (ja)
JP (1) JP6160485B2 (ja)
WO (1) WO2013027711A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681741A (zh) * 2013-11-26 2015-06-03 剑桥显示技术有限公司 有机发光器件和方法
JP2016012551A (ja) * 2014-06-04 2016-01-21 住友化学株式会社 発光素子
JP2016225575A (ja) * 2015-06-03 2016-12-28 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073157A1 (ja) 2015-10-28 2017-05-04 ソニー株式会社 光学装置及び表示装置、並びに、発光素子の製造方法
KR20220047458A (ko) * 2020-10-08 2022-04-18 삼성디스플레이 주식회사 헤테로고리 화합물, 이를 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034588A1 (ja) * 2003-10-03 2005-04-14 Pioneer Corporation 有機エレクトロルミネッセンス素子
JP2011103194A (ja) * 2009-11-10 2011-05-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2011146144A (ja) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc 発光素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098641B2 (ja) * 2005-04-27 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法
NO20052929L (no) * 2005-06-15 2006-12-18 Tandberg Telecom As Fremgangsmate for nedjustering av datarate i et IP-nett
JPWO2009063757A1 (ja) * 2007-11-14 2011-03-31 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
DE102009053382A1 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
TW201121946A (en) * 2009-12-18 2011-07-01 China Petrochemical Dev Corp Novel quinoxaline derivate and organic light emitting diode device applying the same.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034588A1 (ja) * 2003-10-03 2005-04-14 Pioneer Corporation 有機エレクトロルミネッセンス素子
JP2011103194A (ja) * 2009-11-10 2011-05-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2011146144A (ja) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc 発光素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681741A (zh) * 2013-11-26 2015-06-03 剑桥显示技术有限公司 有机发光器件和方法
GB2526388A (en) * 2013-11-26 2015-11-25 Cambridge Display Tech Ltd Organic light-emitting device and method
GB2526388B (en) * 2013-11-26 2016-06-29 Cambridge Display Tech Ltd Organic light-emitting device and method
JP2016012551A (ja) * 2014-06-04 2016-01-21 住友化学株式会社 発光素子
US10431760B2 (en) 2014-06-04 2019-10-01 Sumitomo Chemical Company, Limited Light emitting device
JP2016225575A (ja) * 2015-06-03 2016-12-28 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器

Also Published As

Publication number Publication date
US20140197399A1 (en) 2014-07-17
JPWO2013027711A1 (ja) 2015-03-19
JP6160485B2 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
JP5533652B2 (ja) 白色発光有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5387563B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP5609641B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5697856B2 (ja) 有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010044342A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6015451B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5853964B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2010095564A1 (ja) 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP6056884B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2014068027A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5417763B2 (ja) 有機エレクトロルミネッセンス素子用化合物
JP2008311608A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010205815A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2008120611A1 (ja) 有機エレクトロルミネセンス素子
JP6160485B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5218185B2 (ja) 有機エレクトロルミネッセンス素子、それを用いた表示装置及び照明装置
JP5707873B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5556602B2 (ja) 有機エレクトロニクス素子用材料、有機エレクトロニクス素子、照明装置及び表示装置
JP2010040967A (ja) 有機エレクトロルミネッセンス素子、重合膜の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5834457B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置
JP2008047428A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
JP5833201B2 (ja) 有機エレクトロルミネッセンス素子その製造方法、照明装置及び表示装置
JP5603195B2 (ja) 有機エレクトロルミネッセンス素子その製造方法、照明装置及び表示装置
JP2011054876A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530018

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14238886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826023

Country of ref document: EP

Kind code of ref document: A1