WO2008026728A1 - Silicium métallique et son procédé de fabrication - Google Patents

Silicium métallique et son procédé de fabrication Download PDF

Info

Publication number
WO2008026728A1
WO2008026728A1 PCT/JP2007/067024 JP2007067024W WO2008026728A1 WO 2008026728 A1 WO2008026728 A1 WO 2008026728A1 JP 2007067024 W JP2007067024 W JP 2007067024W WO 2008026728 A1 WO2008026728 A1 WO 2008026728A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
metal silicon
silicon
purity
rate
Prior art date
Application number
PCT/JP2007/067024
Other languages
English (en)
French (fr)
Inventor
Kouji Tsuzukihashi
Hiroshi Ikeda
Atsuo Yanagimachi
Saburo Wakita
Original Assignee
Mitsubishi Materials Corporation
Jemco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation, Jemco Inc. filed Critical Mitsubishi Materials Corporation
Priority to US12/438,763 priority Critical patent/US7955583B2/en
Priority to EP07806497A priority patent/EP2058279A4/en
Priority to CN2007800316981A priority patent/CN101506097B/zh
Publication of WO2008026728A1 publication Critical patent/WO2008026728A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to metal silicon having a purity and strength suitable as general industrial materials or solar cell materials, and a method for producing the same. More specifically, it is made of a metal silicon ingot having a purity of 3N to 6N and an average crystal grain size of 1mm or more obtained by melting and purifying crude metal silicon, and is suitable for general industrial materials or solar cell materials.
  • the present invention relates to a genus silicon and a method for producing the same.
  • Metallic silicon is used in various materials depending on its purity. For example, 2% -purity metallic silicon is used as a raw material for alloys or semiconductor materials, and a metallic silicon of 6% or more is used for semiconductor devices, target materials, heat treatments, and the like. In addition, high purity polycrystalline silicon from 10N is used as a material for semiconductor materials and solar cells, and high purity single crystal silicon of 11N or higher is used as a semiconductor device material.
  • metal silicon is lighter in weight and has better thermal conductivity than stainless steel, and thus can be used as a substitute for a stainless steel member in various devices.
  • conventional metal silicon used as a semiconductor material has a purity of about 6% or more, and is generally used as an industrial material, for example, an alternative material for a stainless steel member or an alternative material for a quartz member. Purity is too high for use as a material, resulting in high cost.
  • 2% purity metallic silicon used for alloy raw materials is not suitable as a general industrial material because its crystallinity is poor and it is difficult to obtain a reliable material strength.
  • metallic silicon having an average crystal grain size force of less than S 1 mm has a low material strength and is not suitable as a substitute for a stainless steel member or a quartz member.
  • metal silicon having a purity of about 2N generally has a low average life time, so its photoelectric conversion efficiency is low and it is not suitable for solar cell materials.
  • Metal silicon with a purity of 6N or higher has high photoelectric conversion efficiency, but its purity is too high and the cost is high.
  • Patent Documents 1 and 2 a method is known in which crude metal silicon is melted, unidirectionally solidified and purified to produce high-purity metal silicon (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 it is easy to melt and refine crude metal silicon to produce metal silicon having a purity of about 3N to 5N unless the solidification rate after melting and the cooling rate after solidification are appropriately controlled.
  • the ingot is broken, it cannot be used as a general industrial material. For this reason, it has not been generally known to use metal silicon having a purity of about 3 N to 5 N as a general industrial material.
  • Patent Document 1 JP-A-5-254817
  • Patent Document 2 Japanese Patent Laid-Open No. 10-182135
  • the present invention solves the above-described conventional problems, and relates to metal silicon having a purity suitable as a general industrial material, a solar cell material, and the like, and a method for producing the same.
  • An object of the present invention is to obtain a metal silicon ingot having a suitable purity and an average crystal grain size by melting and purifying crude metal silicon.
  • a low-purity metallic silicon and a method for manufacturing the same which solves the above-described problems, are provided by the following configuration.
  • the metal silicon of the present invention is produced by refining molten crude metal silicon by unidirectional solidification, has a purity of 3N to 6N, and has an average crystal grain size of 1 mm or more.
  • the molten crude silicon silicon contained in a container containing fine silica in the inner circumferential layer is unidirectionally solidified at a speed of lmm / min or less and then cooled to 200 ° C or less at a speed of 2 ° C / min or less. It may have a purity of 3N to 6N and an average crystal grain size of 1 mm or more.
  • the content of iron and aluminum may be 0.05 to 0.00005 wt%, and the total content of other metal elements may be 0.03 wt% or less. The total content of the other metal elements may be preferably 0.01 wt% or less. Can be used as general industrial material or solar cell material.
  • the molten crude metal silicon contained in a container containing fine silica in the inner peripheral layer is unidirectionally solidified at a speed of 1 mm / min or less, and further at a speed of 2 ° C / min or less.
  • metallic silicon having a purity of 3N or more and 6N or less and an average crystal grain size of 1 mm or more is produced.
  • the solidification rate may be 0.;! To lmm / min, and the cooling rate may be 0.;! To 2 ° C / min.
  • the metal silicon of the present invention is manufactured by refining molten crude metal silicon by unidirectional solidification, and has a purity of 3N or more and 6N or less, so that it is relatively inexpensive unlike high-purity silicon for semiconductor materials. It can be obtained or manufactured in general, and can be suitably used for general industrial materials.
  • the metal silicon of the present invention has, for example, a content of iron and aluminum of 0.05 to 0.00005 wt%, and a total content of other metal elements of 0.03 wt% or less, preferably 0. Since it is 01 wt% or less and below the purity for semiconductor materials, it can be produced at a lower cost than high-purity silicon for semiconductor materials and can be obtained at a relatively low cost.
  • the metallic silicon of the present invention is produced by purifying molten crude metallic silicon by unidirectional solidification. Since the solidification rate and the cooling rate are controlled within a certain range, it is possible to obtain a metal silicon ingot without cracking! By processing this, it is possible to obtain a metal silicon member having a strength that can be used as a general industrial member in place of a stainless steel member or quartz member.
  • the method for producing metal silicon according to the present invention uses a container for ingot containing fine silica in the inner peripheral layer, and melted crude metal silicon at a solidification rate of 1 mm / min or less, preferably 0 .;! To lmm / min.
  • Metallic silicon is produced by solidification in one direction and further cooling to 200 ° C. or less at a cooling rate of 2 ° C./min or less, preferably 0.;! To 2 ° C / min.
  • metallic silicon having characteristics suitable as general industrial materials or solar cell materials can be produced.
  • the metallic silicon of the present invention is produced by refining molten crude metallic silicon by unidirectional solidification, has a purity of 3N (99.9%) or more and 6 to 99 (9999%) or less, and has an average grain size of 1 It is more than mm.
  • molten crude metal silicon placed in a container containing fine silica in the inner peripheral layer is unidirectionally solidified at a speed of lmm / min or less, and subsequently 200 ° C at a speed of 2 ° C / min or less. It is manufactured by cooling to the following, and is a metallic silicon having a purity of 3N to 6N and an average crystal grain size of 1 mm or more.
  • Molten crude metal silicon is generally used as an alloy material or a semiconductor material! /, And metal silicon having a purity of about 2N (99%) can be used.
  • This metal silicon is put into an ingot container and heated and melted to form molten crude metal silicon.
  • a container containing fine silica for example, fine fused silica sand having a particle size of 50 to 300 m
  • fine silica for example, fine fused silica sand having a particle size of 50 to 300 m
  • an ingot container provided with silicon nitride as a mold release agent on the inner peripheral surface is often used.
  • High-purity metallic silicon used for semiconductor materials is easy to react with silicon nitride and has good peelability.
  • Metallic silicon with a purity of about 3N to 6N decreases the peelability when impurities in the silicon react with silicon nitride.
  • the problem is that the molten crude metal silicon sticks to the container at the part where the peelability is lowered, and the ingot is solidified during forging to cause a stress that prevents the shrinkage when the volume shrinks. There is.
  • a crucible for producing an ingot having an inner layer containing fine fused silica sand on the inner surface is known (Japanese Patent Laid-Open Nos. 11-248363, 11-244988, and 2001-198648). Publication). These crucibles can prevent the silicon ingot from cracking due to the peeling of the inner surface due to the stress of silicon solidifying.
  • JP-A-11 248363 discloses an inner silica layer containing fine fused silica particles having an average particle diameter of 50 to 300 m and an average particle diameter of 500 to 15 formed on the outer side thereof.
  • a crucible for producing an ingot having a laminated structure with an outer silica layer containing 11 m of coarse fused silica particles is described.
  • the fine fused silica particles in the inner layer and the coarse fused silica particles in the outer layer are bonded in the inner layer and in the outer layer by using a colloidal silica-containing slurry.
  • JP-A-11-244988 describes a crucible for producing an ingot in which an inner silica layer containing fine fused silica particles having an average particle size of 50 to 300 m is formed on the inner surface of a graphite cage. Yes.
  • the metal silicon of the present invention has an inner silica layer containing fine fused silica particles having an average particle diameter of 50 to 300 m as described above. Manufactured using a got container. In addition, when melt purification is performed using a container coated with a release agent containing silicon nitride, the silicon ingot breaks even if the solidification rate and cooling rate are controlled within the scope of the present invention (Comparative Example). Five).
  • the metal silicon of the present invention is produced by controlling the solidification rate and cooling rate of the molten crude metal silicon to prevent cracking of the ingot. Specifically, the solidification rate is controlled to 1 mm / min or less, preferably 0. Further, the cooling rate is controlled to 2 ° C / min or less, preferably 0.;! ⁇ 2 ° C / min, and cooled to 200 ° C or less.
  • the metal silicon of this invention is manufactured by the above.
  • the ingot breaks (Comparative Example 3). Furthermore, even when the cooling rate is 2 ° C / min or less, the ingot breaks when the removal temperature is higher than 200 ° C, for example, 300 ° C (Comparative Example 4).
  • the molten crude metal silicon is solidified unidirectionally at a solidification rate of lmm / min or less, preferably 0.;! ⁇ Lmm / min, and further a cooling rate of 2 ° C / min
  • a solidification rate of lmm / min or less preferably 0.;! ⁇ Lmm / min
  • a cooling rate of 2 ° C / min By cooling to 200 ° C. or less at min., preferably 0.;! to 2 ° C./min, an unbroken metal silicon ingot having a purity of 3N to 6N can be obtained.
  • the total content of the other metal elements is preferably 0.01 wt% or less.
  • Example 1 For example, in Example 1, 0.03 wt% of iron, 0.03 wt% of aluminum, 0.01 wt% of calcium, nao !; Kumu 0.001 wt%, Kajikumu 0.001 wt%, Kuguchimu 0. Metallic silicon containing 001 wt%, 0.
  • Olw t% in Example 2, iron 0.003 wt%, aluminum 0.003 wt% %, Calcium 0.001 wt%, sodium 0.0001 wt%, potassium 0.0001 wt%, chromium 0.0001 wt%, metallic silicon containing 0.001 wt% copper, in Example 3, iron 0.0000 3 wt%, anoreminium 0.00003 wt%, Metallic silicon containing 0.001 wt% calcium, 0.0000 lwt% sodium, 0.00001 wt% potassium, 0.00001 wt% chromium, and 0.0001 wt% copper was obtained.
  • the average lifetime of the metal silicon crystal is 2 mm, 4 mm, and 10 mm. sec, 0. S ⁇ sec, 1.0 sec, and the percentage of measured values in each part within the range of 20% to + 20% of the average lifetime is 55%, 60%, and 70%. Therefore, the photoelectric conversion efficiency is gradually increasing to 5%, 7%, and 10%.
  • a container having an inner layer (thickness: 5 mm) containing fine fused silica particles of 50-30011 m and an internal volume of 1 liter (length lOcm ⁇ width lOcm ⁇ height 10 cm) was used.
  • the internal volume is The same container containing silicon nitride on the inner surface was used.
  • the molten crude metal silicon was solidified and cooled.
  • the state of the metal silicon surface in the container was observed to determine the completion time of solidification, followed by cooling, and the surface temperature was measured to determine the take-out temperature.
  • the cross section of the manufactured metal ingot was observed with a microscope, and the average crystal grain size was measured.
  • Lifetime was measured in the height direction for metal silicon ingots using a lifetime measurement system (SEMILAB model WT-2000), and the average value was obtained. This average value is the average of the measured values of the central measurement part, which is distributed almost evenly for the metal ingot.
  • Sunlight was applied, current and voltage were measured using a current / voltage measuring device, and the photoelectric conversion efficiency was obtained from the following formula.
  • Isc Short circuit current (current when the voltage is 0V)
  • Voc Open-circuit voltage (voltage when current is OA)
  • Jsc Short-circuit current density (Isc divided by the area of the solar cell substrate)
  • Comparative Example 1 the purity of the metal silicon is 2N, and the purification effect cannot be obtained.
  • the average crystal grain size is as small as 0.5 mm
  • the average life time is as short as 0 ⁇ 05 sec
  • the proportion within the range of ⁇ 20% to + 20% of the average life time is also 20%. poor.
  • the photoelectric conversion efficiency is also low at 1%.
  • Comparative Examples 2 to 5 cracks occur in the metal silicon ingot in the solidification cooling step, and metal silicon having the desired physical properties cannot be obtained. Industrial applicability
  • the metal silicon of the present invention has a purity of 3N or more and 6N or less, and has an average crystal grain size of 1 mm or more and no cracks.
  • the average crystal grain size is large, it is highly suitable for use as a solar cell material and the like because photoelectric conversion efficiency can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Silicon Compounds (AREA)

Description

明 細 書
金属シリコンとその製造方法
技術分野
[0001] 本発明は、一般工業材料あるいは太陽電池材料等として好適な純度および強度を 有する金属シリコンとその製造方法に関する。より詳しくは、粗金属シリコンを溶融精 製してなる純度 3N以上〜 6N以下および平均結晶粒径 lmm以上の割れの無い金 属シリコンインゴットからなり、一般工業材料あるいは太陽電池材料等として好適な金 属シリコンとその製造方法に関する。
本願 (ま、 2006年 8月 31曰 ίこ出願された曰本国特許出願第 2006— 235775号 (こ 対し優先権を主張し、その内容をここに援用する。
背景技術
[0002] 金属シリコンは純度に応じて各種材料に用いられている。例えば、 2Ν純度の金属 シリコンは合金の原料または半導体材料の原料として用いられ、 6Ν以上の金属シリ コンは半導体装置用、ターゲット材用、熱処理用などに用いられている。また、 10N 〜; UNの高純度多結晶シリコンは半導体材料や太陽電池の材料として用いられて おり、 11N以上の高純度単結晶シリコンは半導体デバイス材料などに用いられてい
[0003] 一方、金属シリコンはステンレスに比べて熱伝導性が良ぐ軽量であるので、各種 機器においてステンレス製部材に代わる材料として利用できる。しかし、従来の金属 シリコンは、半導体材料として用いられるものは概ね 6Ν以上の純度を有しており、一 般工業用材料、例えば、ステンレス製部材の代替材料、あるいは石英部材の代替材 料などの材料として用いるには純度が高すぎてコスト高になる。また、合金原料など に用いられる 2Ν純度の金属シリコンは結晶性が悪ぐ信頼性のある材料強度が得難 いため、一般工業用材料として適当ではない。具体的には、例えば、平均結晶粒径 力 S lmm未満の金属シリコンは材料強度が低くなり、ステンレス製部材ゃ石英部材な どに代わるものとしては適さない。また、純度が 2N程度の金属シリコンは一般にライ フタイム平均値が小さいため光電変換効率が小さく太陽電池材料にも不向きである。 また、純度 6N以上の金属シリコンは光電変換効率が高いが、純度が高すぎてコスト 高になる。
[0004] 一方、粗金属シリコンを溶融し、一方向凝固させて精製し、高純度の金属シリコンを 製造する方法が知られている(特許文献 1および 2)。しかし、この方法によって、粗金 属シリコンを溶融精製して 3N〜5N程度の純度を有する金属シリコンを製造するには 、溶融後の凝固速度や凝固後の冷却速度が適切に制御されないと、容易にインゴッ トが割れるので一般工業材料として使用できるものが得られない。このため、従来、 3 N〜5N程度の純度を有する金属シリコンを一般工業材料として用いることは一般に fiわれていない。
特許文献 1 :特開平 5— 254817号公報
特許文献 2:特開平 10— 182135号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、従来の上記課題を解決したものであり、一般工業材料および太陽電池 材料等として好適な純度を有する金属シリコンとその製造方法に関する。本発明は、 粗金属シリコンを溶融精製することによって、適度な純度と平均結晶粒径を有する割 れの無!/、金属シリコンインゴットを得ることを目的とする。
課題を解決するための手段
[0006] 本発明によれば、以下の構成によって上記課題を解決した低純度金属シリコンとそ の製造方法が提供される。
本発明の金属シリコンは、溶融粗金属シリコンを一方向凝固によって精製して製造 され、 3N以上〜 6N以下の純度を有し、平均結晶粒径 lmm以上である。
微細シリカを内周層に含む容器に入れた溶融粗金属シリコンを lmm/min以下の 速度で一方向凝固させ、引き続き 2°C/min以下の速度で 200°C以下に冷却して製 造され、 3N以上〜 6N以下の純度を有し、平均結晶粒径 lmm以上であってもよい。 鉄およびアルミニウムの含有量がおのおの 0. 05—0. 00005wt%であり、その他 の金属元素の合計含有量が 0. 03wt%以下であってもよい。前記その他の金属元 素の合計含有量は、好ましくは 0. 01wt%以下であってもよい。 一般工業材料または太陽電池材料として用いられてもよレ、。
本発明の金属シリコンの製造方法は、微細シリカを内周層に含む容器に入れた溶 融粗金属シリコンを、 lmm/min以下の速度で一方向凝固させ、さらに 2°C/min 以下の速度で 200°C以下に冷却することによって、 3N以上〜 6N以下の純度を有し 、平均結晶粒径 lmm以上の金属シリコンを製造する。
凝固速度が 0.;!〜 lmm/min、冷却速度が 0.;!〜 2°C/minであってもよい。 発明の効果
[0007] 本発明の金属シリコンは、溶融粗金属シリコンを一方向凝固によって精製して製造 され、 3N以上〜 6N以下の純度を有するので、半導体材料用の高純度シリコンとは 異なり、比較的安価に入手ないし製造でき、一般工業材料用として好適に利用でき る。本発明の金属シリコンは、具体的には、例えば、鉄およびアルミニウムの含有量 がおのおの 0. 05—0. 00005wt%、その他の金属元素の合計含有量が 0. 03wt %以下、好ましくは 0. 01wt%以下であり、半導体材料用の純度以下であるので、半 導体材料用の高純度シリコンよりも低コストで製造でき、比較的安価に入手できる。
[0008] また、本発明の金属シリコンは、溶融粗金属シリコンを一方向凝固によって精製し て製造される。凝固速度および冷却速度を一定範囲に制御して製造されるので、割 れのな!/、金属シリコンインゴットを得ることができる。これを加工してステンレス部材ゃ 石英部材などに代わる一般工業用部材として使用できる強度の金属シリコン部材を 得ること力 Sでさる。
[0009] 本発明の金属シリコンの製造方法は、微細シリカを内周層に含むインゴット用容器 を用い、溶融粗金属シリコンを凝固速度 lmm/min以下、好ましくは 0.;!〜 lmm/ minで一方向凝固させ、さらに冷却速度 2°C/min以下、好ましくは 0.;!〜 2°C/mi nで 200°C以下に冷却して金属シリコンを製造する。この製造方法によって一般工業 材料ないし太陽電池材料として好適な特性を有する金属シリコンを製造できる。 発明を実施するための最良の形態
[0010] 以下、本発明を実施例と共に詳細に説明する。
本発明の金属シリコンは、溶融粗金属シリコンを一方向凝固によって精製して製造 され、 3N (99. 9%)以上〜 6Ν (99· 9999%)以下の純度を有し、平均結晶粒径 1 mm以上である。具体的には、例えば、微細シリカを内周層に含む容器に入れた溶 融粗金属シリコンを lmm/min以下の速度で一方向凝固させ、引き続き 2°C/min 以下の速度で 200°C以下に冷却して製造され、 3N以上〜 6N以下の純度を有し、平 均結晶粒径 lmm以上の金属シリコンである。
[0011] 溶融粗金属シリコンは、合金材料用あるいは半導体材料用として一般に使用され て!/、る 2N (99%)程度の純度を有する金属シリコンを用いることができる。この金属シ リコンをインゴット用容器に入れ、加熱溶融して溶融粗金属シリコンにする。インゴット 用容器としては、微細シリカ(例えば粒径 50〜300 mの微細溶融シリカ砂)を内周 層に含むものが好ましい。
[0012] 従来は、窒化珪素を離型剤として内周面に設けたインゴット用容器が多く用いられ ている。半導体材料に用いる高純度の金属シリコンは窒化珪素と反応し難いので剥 離性が良い。し力、し、純度 3N〜6N程度の金属シリコンはシリコン中の不純物が窒化 珪素と反応して剥離性が低下する。この剥離性が低下した部分で溶融粗金属シリコ ンが容器に張り付き、铸造中にインゴットが凝固して体積収縮が生じたときに収縮を 妨げる応力を生じる原因になり、インゴットが割れ易くなると云う問題がある。
[0013] そこで、内表面に微細溶融シリカ砂を含む内層を有するインゴット製造用ルツボが 知られている(特開平 11— 248363号公報、特開平 11— 244988号公報、特開 20 01— 198648号公報)。これらのルツボはシリコンが凝固する際の応力によって内周 面が剥離してシリコンインゴットの割れを防止できる。
[0014] 具体的には、特開平 11 248363号公報には、平均粒径 50〜300 mの微細溶 融シリカ粒子を含有する内層シリカ層と、その外側に形成された平均粒径 500〜15 00 11 mの粗粒溶融シリカ粒子を含有する外層シリカ層との積層構造を有するインゴ ット製造用ルツボが記載されて!/、る。上記内層の微細溶融シリカ粒子および外層の 粗粒溶融シリカ粒子はおのおのコロイダルシリカ含有スラリーを用いて内層内および 外層内で結合されている。また、特開平 11— 244988号公報には、黒鉛铸型の内表 面に平均粒径 50〜300 mの微細溶融シリカ粒子を含有する内層シリカ層を形成し たインゴット製造用ルツボが記載されている。本発明の金属シリコンは、以上のような 平均粒径 50〜300 mの微細溶融シリカ粒子を含有する内層シリカ層を有するイン ゴット用容器を用いて製造される。なお、窒化珪素を含む離型剤を塗布した容器を用 V、て溶融精製を行った場合には、上記凝固速度および冷却速度を本発明の範囲に 制御してもシリコンインゴットが割れる(比較例 5)。
[0015] さらに、本発明の金属シリコンは、溶融粗金属シリコンの凝固速度および冷却速度 を制御しインゴットの割れを防止して製造される。具体的には、凝固速度を lmm/m in以下、好ましくは 0. ;!〜 lmm/minに制御して一方向凝固させる。さらに冷却速 度 2°C/min以下、好ましくは 0. ;!〜 2°C/minに制御して 200°C以下に冷却する。 以上によって本発明の金属シリコンが製造される。
[0016] 微細シリカを内周層に含む容器を用いても、凝固速度力 mm/minより大きぐ例 えば 2mm/minで凝固させ、かつ冷却速度 l°C/minで 200°Cまで冷却させた場 合、割れの無いインゴットが得られるものの、インゴットの純度は原料とほぼ同等であ つて精製効果が得られない(比較例 1)。さらに、凝固速度が 2mm/minの場合、冷 却速度を 2°C/minにしても、凝固速度が速すぎるため、表面の凝固が進まないうち に最初の凝固部分の冷却が始まるのでインゴットが割れる(比較例 2)。また、冷却速 度が 2°C/minより高ぐ例えば 3°C/minの場合、インゴットが割れる(比較例 3)。さ らに、冷却速度が 2°C/min以下でも取り出し温度が 200°Cより高ぐ例えば 300°C の場合、インゴットが割れる(比較例 4)。
[0017] 微細シリコンを内周層に有する容器を用い、溶融粗金属シリコンを凝固速度 lmm /min以下、好ましくは 0. ;!〜 lmm/minで一方向凝固させ、さらに冷却速度 2°C /min以下、好ましくは 0. ;!〜 2°C/minで 200°C以下に冷却することによって、割 れのない 3N以上〜 6N以下の純度を有する金属シリコンインゴットを得ることができる 。具体的には、鉄およびアルミニウムの含有量がおのおの 0. 05—0. 00005wt% ( 重量%)であり、その他の金属元素の合計含有量が 0. 03wt%以下の金属シリコン を得ること力 Sできる。前記その他の金属元素の合計含有量は、好ましくは 0. 01wt% 以下である。
[0018] 例えば、実施例 1では、鉄 0. 03wt%、アルミニウム 0. 03wt%、カルシウム 0. 01 wt%、ナ卜!;クム 0. 001wt%、カジクム 0. 001wt%、ク口ム 0. 001wt%、 同 0. Olw t%を含有する金属シリコン、実施例 2では、鉄 0. 003wt%、アルミニウム 0. 003wt %、カルシウム 0.001wt%、ナトリウム 0.0001wt%、カリウム 0. 0001wt%、クロム 0. 0001wt%、銅 0.001wt%を含有する金属シリコン、実施例 3では、鉄 0.0000 3wt%,ァノレミニゥム 0. 00003wt%,カルシウム 0. 0001wt%,ナトリウム 0.0000 lwt%、カリウム 0. 00001wt%、クロム 0.00001wt%、銅 0.0001wt%を含有す る金属シリコンをそれぞれ得ている。
[0019] また、凝固速度が lmm/minより早い場合、十分に結晶が成長せず、平均結晶粒 径 lmm以上の金属シリコンを得るのが難し!/、(比較例 1)。凝固速度が lmm/minよ り遅ければ結晶成長時間が十分に確保されるので、平均結晶粒径の大きい金属シリ コンが得られる。具体的には、凝固速度力 mm/min、 0. lmm/min, 0.05mm /minでは、おのおの平均結晶粒径は 2mm、 4mm、 10mmとなり、凝固速度が遅 いほど平均結晶粒径の大きな金属シリコンを得ることができる(実施例 1〜3)。
[0020] さらに、平均結晶粒径の大きなものはライフタイム(キャリアの寿命)が長ぐまた、ィ ンゴットの各測定部分についてライフタイム平均値の 20%〜 + 20%の範囲内にな る割合が高くなり、均質性に優れる。従って、光電変換効率の高い金属シリコンを得 ること力 Sでさる。
[0021] 具体的には、例えば、表 1の実施例 1〜3に示すように、金属シリコン結晶の平均結 晶粒径カ 2mm、 4mm、 10mmにおいて、ライフタイム平均値はおのおの 0· 3 μ sec 、 0. S^sec, 1.0 secであり、各部分の測定値がライフタイム平均値の 20%〜 + 20%の範囲内になる割合は 55%、 60%、 70%である。従って、光電変換効率も 5 %、 7%、 10%と次第に高くなつている。
実施例
[0022] 本発明の実施例を比較例と共に以下に示す。
〔原料〕
原料の粗金属シリコンとして、 2N純度(Fe:0. 3%、Α1:0· 3%、 Ca:0. l%、Na:0 . 01%、K:0. 01%、 Cr:0.01%、 Cu:0. l%)5000gを用いた。
〔インゴット製造容器〕
50-30011 mの微細溶融シリカ粒子を含む内層(厚さ 5mm)を有し、内容積 1リット ノレ (縦 lOcmX横 lOcmX高さ 10cm)の容器を用いた。なお、比較例 5は内容積が 同一であって内表面に窒化珪素を含有する容器を用いた。
〔凝固 ·冷却条件〕
表 1に示す条件に従って溶融粗金属シリコンを凝固し、冷却した。凝固は容器内の 金属シリコン表面の状態を観察して凝固終了時間を定め、引き続き冷却を行い、表 面温度を測定して取り出し温度を定めた。
〔平均結晶粒径〕
製造した金属インゴットの断面を顕微鏡観察して平均結晶粒径を測定した。
[0023] 〔ライフタイム平均ィ直〕
ライフタイム測定システム(SEMILAB社製モデル WT-2000)を用いて金属シリコンィ ンゴットについて、高さ方向にライフタイムを測定して平均値を求めた。この平均値は 金属インゴットについてほぼ均等に分散した中心の測定部分について、その測定ィ直 を平均したものである。
〔ライフタイム平均値の - 20%〜 + 20%の範囲内になる割合〕
各測定個所について、測定値カラィフタイム平均値の— 20%〜+ 20%の範囲内 である測定個所の数 (L1)を全測定個所数 (L0)に対する割合(%) (L0/L1 X 100) で示した。
〔光電変換効率〕
太陽光を当て、電流 電圧測定装置を用いて電流、電圧を測定し下記計算式から 光電変換効率を求めた。
計算式:光電変換効率(%) =Jsc XVoc X FF
Isc:短絡電流(電圧が 0Vの時の電流)
Voc:開放電圧(電流が OAの時の電圧)
FF:曲線因子(Voc X Iscを太陽電池基盤の面積で割った値)
Jsc:短絡電流密度(Iscを太陽電池基盤の面積で割った値)
[0024] 製造条件および結果を表 1に示した。なお、比較例 2〜5は冷却時に金属シリコン に割れが発生したので、純度および平均結晶粒径は測定していない。また、割れた ものはライフタイム平均値等、光電変換効率を測定できないので、これらの値も未測 疋である。 D¾0052
Figure imgf000010_0001
[0026] 表 1に示すように、本発明の製造方法によれば、 3N以上〜 6N以下の純度を有す る割れのなレ、金属シリコンを得ることができた。この金属シリコンはステンレスよりも熱 伝導性が良ぐまた、平均結晶粒径 2mm以上であって十分な強度を有するので一 般工業用材料として好適である。さらに、光電変換効率も高いので太陽電池材料とし て好適である。
[0027] 一方、比較例 1は、金属シリコンの純度が 2Nであり、精製効果が得られない。さらに 、平均結晶粒径が 0· 5mmと小さく、ライフタイム平均 は 0· 05 secと短く、ライフ タイム平均値の— 20%〜+ 20%の範囲内の割合も 20%であって均質性に乏しい。 光電変換効率も低く 1 %である。また、比較例 2〜5は、凝固冷却工程で金属シリコン インゴットに割れが発生し、 目的の物性を有する金属シリコンを得ることができない。 産業上の利用可能性
[0028] 本発明の金属シリコンは、 3N以上〜 6N以下の純度を有し、かつ平均結晶粒径 1 mm以上で割れが無いため、比較的安価に製造でき、一般工業用材料、例えば、ス テンレス製部材の代替材料、ある!/、は石英部材の代替材料などの材料として好適に 用いられる。また平均結晶粒径が大きレ、ために高!/、光電変換効率が得られるため太 陽電池材料等としても好適に用いられる。

Claims

請求の範囲
[1] 溶融粗金属シリコンを一方向凝固によって精製して製造され、 3N以上〜 6N以下 の純度を有し、平均結晶粒径 lmm以上であることを特徴とする金属シリコン。
[2] 微細シリカを内周層に含む容器に入れた溶融粗金属シリコンを Imm/min以下の 速度で一方向凝固させ、引き続き 2°C/min以下の速度で 200°C以下に冷却して製 造され、 3N以上〜 6N以下の純度を有し、平均結晶粒径 lmm以上である請求項 1 に記載の金属シリコン。
[3] 鉄およびアルミニウムの含有量がおのおの 0· 05—0. 00005wt%であり、その他 の金属元素の合計含有量が 0. 03wt%以下である請求項 1または請求項 2に記載 の金属シリコン。
[4] 一般工業材料または太陽電池材料として用いられる請求項 1に記載の金属シリコン
[5] 微細シリカを内周層に含む容器に入れた溶融粗金属シリコンを、 Imm/min以下 の速度で一方向凝固させ、さらに 2°C/min以下の速度で 200°C以下に冷却するこ とを特徴とする 3N以上〜 6N以下の純度を有し、平均結晶粒径 lmm以上の金属シ リコンの製造方法。
[6] 凝固速度が 0.;!〜 Imm/min、冷却速度が 0.;!〜 2°C/minである請求項 5に記 載の金属シリコンの製造方法。
PCT/JP2007/067024 2006-08-31 2007-08-31 Silicium métallique et son procédé de fabrication WO2008026728A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/438,763 US7955583B2 (en) 2006-08-31 2007-08-31 Metallic silicon and method for manufacturing the same
EP07806497A EP2058279A4 (en) 2006-08-31 2007-08-31 METAL SILICON AND METHOD FOR MANUFACTURING THE SAME
CN2007800316981A CN101506097B (zh) 2006-08-31 2007-08-31 金属硅及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006235775 2006-08-31
JP2006-235775 2006-08-31

Publications (1)

Publication Number Publication Date
WO2008026728A1 true WO2008026728A1 (fr) 2008-03-06

Family

ID=39136009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067024 WO2008026728A1 (fr) 2006-08-31 2007-08-31 Silicium métallique et son procédé de fabrication

Country Status (5)

Country Link
US (1) US7955583B2 (ja)
EP (1) EP2058279A4 (ja)
KR (1) KR101074304B1 (ja)
CN (1) CN101506097B (ja)
WO (1) WO2008026728A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178195A1 (en) * 2007-06-08 2010-07-15 Motoyuki Yamada Method of solidifying metallic silicon

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110102301A (ko) * 2008-12-01 2011-09-16 스미또모 가가꾸 가부시끼가이샤 n 형 태양 전지용 실리콘 및 인 첨가 실리콘의 제조 방법
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
JP5676900B2 (ja) * 2010-03-26 2015-02-25 三菱マテリアル株式会社 多結晶シリコンインゴットの製造方法
EP3919441B1 (en) * 2019-03-05 2023-07-26 Tokuyama Corporation Chlorosilane producing method
CN111591996B (zh) * 2020-07-13 2022-11-29 昆明理工大学 一种利用硅铁合金制备工业硅的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120493A (ja) * 1996-10-14 1998-05-12 Kawasaki Steel Corp 太陽電池用シリコンの鋳造方法
JPH10182135A (ja) 1996-12-20 1998-07-07 Kawasaki Steel Corp シリコンの凝固精製方法
JPH10236816A (ja) * 1997-02-28 1998-09-08 Sinto Brator Co Ltd 多結晶シリコン残留体の再生方法
WO1999033749A1 (fr) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCEDE DE PREPARATION DE Si EXTREMEMENT PUR, ET EQUIPEMENT POUR LA MISE EN OEUVRE DE CE PROCEDE
JPH11248363A (ja) 1998-02-26 1999-09-14 Mitsubishi Materials Corp シリコンインゴット製造用積層ルツボおよびその製造方法
JPH11244988A (ja) 1998-02-27 1999-09-14 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2001198648A (ja) 2000-01-11 2001-07-24 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2002080215A (ja) * 2000-09-04 2002-03-19 Sharp Corp 多結晶半導体インゴットの製造方法
JP2005303045A (ja) * 2004-04-13 2005-10-27 Mitsubishi Materials Corp シリコン部材およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298423A (en) * 1976-12-16 1981-11-03 Semix Incorporated Method of purifying silicon
DE3220285A1 (de) * 1982-05-28 1983-12-01 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen polykristalliner, fuer nachfolgendes zonenschmelzen geeigneter siliciumstaebe
NO152551C (no) * 1983-02-07 1985-10-16 Elkem As Fremgangsmaate til fremstilling av rent silisium.
US4612179A (en) * 1985-03-13 1986-09-16 Sri International Process for purification of solid silicon
JPH05254817A (ja) 1992-03-12 1993-10-05 Kawasaki Steel Corp 多結晶シリコン鋳塊の製造方法
CA2232777C (en) * 1997-03-24 2001-05-15 Hiroyuki Baba Method for producing silicon for use in solar cells
EP0949358B1 (en) * 1998-02-26 2003-11-12 Mitsubishi Materials Corporation Mold for producing silicon ingot and method for fabricating the same
FR2827592B1 (fr) * 2001-07-23 2003-08-22 Invensil Silicium metallurgique de haute purete et procede d'elaboration

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120493A (ja) * 1996-10-14 1998-05-12 Kawasaki Steel Corp 太陽電池用シリコンの鋳造方法
JPH10182135A (ja) 1996-12-20 1998-07-07 Kawasaki Steel Corp シリコンの凝固精製方法
JPH10236816A (ja) * 1997-02-28 1998-09-08 Sinto Brator Co Ltd 多結晶シリコン残留体の再生方法
WO1999033749A1 (fr) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCEDE DE PREPARATION DE Si EXTREMEMENT PUR, ET EQUIPEMENT POUR LA MISE EN OEUVRE DE CE PROCEDE
JPH11248363A (ja) 1998-02-26 1999-09-14 Mitsubishi Materials Corp シリコンインゴット製造用積層ルツボおよびその製造方法
JPH11244988A (ja) 1998-02-27 1999-09-14 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2001198648A (ja) 2000-01-11 2001-07-24 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2002080215A (ja) * 2000-09-04 2002-03-19 Sharp Corp 多結晶半導体インゴットの製造方法
JP2005303045A (ja) * 2004-04-13 2005-10-27 Mitsubishi Materials Corp シリコン部材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178195A1 (en) * 2007-06-08 2010-07-15 Motoyuki Yamada Method of solidifying metallic silicon

Also Published As

Publication number Publication date
EP2058279A1 (en) 2009-05-13
KR20090048474A (ko) 2009-05-13
CN101506097A (zh) 2009-08-12
KR101074304B1 (ko) 2011-10-17
CN101506097B (zh) 2011-06-29
US20090297425A1 (en) 2009-12-03
EP2058279A4 (en) 2012-01-25
US7955583B2 (en) 2011-06-07

Similar Documents

Publication Publication Date Title
WO2008026728A1 (fr) Silicium métallique et son procédé de fabrication
WO2005123583A1 (ja) 多結晶シリコンの製造方法およびその製造方法によって製造される太陽電池用多結晶シリコン
US9039833B2 (en) Method for the production of solar grade silicon
CN104030291A (zh) 一种用合金法高效去除硅中的磷的方法
EP2430222A1 (en) Methods of making an article of semiconducting material on a mold comprising semiconducting material
JP5218934B2 (ja) 金属シリコンとその製造方法
US9617618B2 (en) Silicon purification mold and method
WO2011120598A1 (en) Method for production of semiconductor grade silicon ingots, reusable crucibles and method for manufacturing them
JP5201446B2 (ja) ターゲット材およびその製造方法
CN104071790A (zh) 电磁搅拌硅合金熔体硅提纯装置及方法
WO2012111850A1 (ja) 多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法
WO2011113338A1 (zh) 一种提纯硅的方法
WO2013132629A1 (ja) 高純度シリコンの製造方法、及びこの方法で得られた高純度シリコン、並びに高純度シリコン製造用シリコン原料
CN101863476B (zh) 一种去除硅中硼元素的方法
JPH0132165B2 (ja)
JPS5899115A (ja) 多結晶シリコンインゴツトの鋳造方法
JP2004351489A (ja) 鋳造装置
CN117778743A (zh) 一种定向区域熔炼高纯铝的制备方法
JP5118268B1 (ja) 高純度シリコンの製造方法および高純度シリコン
JP2012012275A (ja) 保持容器、保持容器の製造方法および太陽電池用シリコンの製造方法。
Kraaijveld et al. New Applications of Sheet Casting of Silicon and Silicon Composites
WO2013080575A1 (ja) 高純度シリコンの製造方法および高純度シリコン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031698.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12438763

Country of ref document: US

Ref document number: 1020097003936

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU