WO2008010591A1 - Procédé de formation d'un film isolant poreux - Google Patents

Procédé de formation d'un film isolant poreux Download PDF

Info

Publication number
WO2008010591A1
WO2008010591A1 PCT/JP2007/064407 JP2007064407W WO2008010591A1 WO 2008010591 A1 WO2008010591 A1 WO 2008010591A1 JP 2007064407 W JP2007064407 W JP 2007064407W WO 2008010591 A1 WO2008010591 A1 WO 2008010591A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
insulating film
group
formula
forming
Prior art date
Application number
PCT/JP2007/064407
Other languages
English (en)
French (fr)
Inventor
Hironori Yamamoto
Fuminori Ito
Munehiro Tada
Yoshihiro Hayashi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to CN2007800277667A priority Critical patent/CN101495674B/zh
Priority to JP2008525919A priority patent/JP4812838B2/ja
Priority to US12/374,390 priority patent/US8790785B2/en
Publication of WO2008010591A1 publication Critical patent/WO2008010591A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • H01L21/3124Layers comprising organo-silicon compounds layers comprising polysiloxane compounds layers comprising hydrogen silsesquioxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31633Deposition of carbon doped silicon oxide, e.g. SiOC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/1042Formation and after-treatment of dielectrics the dielectric comprising air gaps
    • H01L2221/1047Formation and after-treatment of dielectrics the dielectric comprising air gaps the air gaps being formed by pores in the dielectric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a method for forming a porous insulating film, and more particularly to a method for forming a porous insulating film that can be used in a semiconductor device having a damascene wiring structure mainly composed of Cu.
  • the low dielectric constant film is, for example, an HSQ (Hydrogen Silsesquioxane) film, a CDO (Carbon doped oxide) or an organic film. Then, it is formed by a spin coating method or a vapor phase method.
  • HSQ Hydrophilicity Quadrature Silica
  • CDO Carbon doped oxide
  • Japanese Patent Application Laid-Open No. 2004-289105 describes a technique for forming a porous insulating film using a plasma CVD method.
  • Japanese Patent Publication No. 2002-526 916 discloses a technique for forming a porous insulating film using cyclic organosiloxane.
  • an object of the present invention is to provide a method for forming an insulating film using a siloxane raw material monomer, which forms the insulating film at a high rate and a film forming speed.
  • Another object of the present invention is to provide an insulating film formed by using the above insulating film method and a semiconductor device (semiconductor device) having the insulating film.
  • the present invention in the first preferred embodiment, is a method for forming an organic silica film in which a gas of two or more raw materials having a cyclic organic silica structure is formed by a plasma reaction, and the main skeleton has three members.
  • An insulating film comprising a material having a ring SiO ring structure and a material having a four-membered ring SiO ring structure, and at least one of these materials has at least one unsaturated hydrocarbon group in a side chain.
  • a forming method is provided.
  • the present invention provides a plasma reaction between one or more source gases having a cyclic organic silica structure and one or more source gases having a linear organic silica structure.
  • the raw material with a cyclic organic silica structure has a three-membered SiO cyclic structure in the main skeleton and the elemental composition ratio of the raw material with a straight-chain organic silica structure.
  • FIG. 1A is a sectional view showing a conventional dual damascene wiring structure
  • FIG. 1B is a sectional view showing a wiring structure with a lower effective relative dielectric constant.
  • FIG. 2A is a diagram schematically showing a porous insulating film forming apparatus used in the method of the present invention.
  • FIG. 2B is a schematic view showing a part of the film forming apparatus in FIG. 2A.
  • FIG. 3 is a graph showing k values for the first exemplary embodiment of the present invention and the film strengths of Comparative Examples 1 and 2.
  • FIG. 4 is a graph showing the pore size and distribution of the first exemplary embodiment and comparative examples 1 and 2.
  • FIG. 5 is a graph showing an example of the results of FTIR spectroscopy measurement of Si—O—Si bonds of a film manufactured in the first exemplary embodiment.
  • FIG. 6 is a graph showing an FTIR peak intensity ratio between a network structure of Si—O—Si bonds and a Cage structure in the first exemplary embodiment.
  • FIG. 7 shows the relationship between the k value of the second exemplary embodiment of the present invention and the film strength of the comparative example.
  • FIG. 8 is a graph showing the relationship between the straightness W and the adhesion strength of the second exemplary embodiment and the comparative example.
  • FIG. 9 is a graph showing the results of Raman spectroscopy measurement of the film in the second exemplary embodiment.
  • a low dielectric constant insulating film is, for example, a film (interlayer insulating film) that insulates and separates wiring materials, and a silicon oxide film (relative dielectric constant 4. 2) A material with a lower relative dielectric constant.
  • a silicon oxide film is made porous to reduce the relative dielectric constant, an HSQ (Hydrogen Silsesquioxane) film, or SiOCH, SiOC (for example, Black Diam ondTM, CORALTM, AuroraTM, etc.) There is. It is desirable to further lower the dielectric constant of these films!
  • the metal wiring material is a metal wiring material mainly composed of Cu.
  • metal elements other than Cu may be included in the members made of Cu.
  • Metal elements other than Cu are formed on the upper surface or side surface of Cu! / Good!
  • Damascene wiring is an embedding formed by embedding a metal wiring material in a groove of a previously formed interlayer insulating film and removing excess metal other than in the groove by, for example, CMP. Point to the wiring.
  • a wiring structure is generally used in which the side and periphery of the Cu wiring are covered with a barrier metal, and the upper surface of the Cu wiring is covered with an insulating barrier film.
  • CMP Chemical Mechanical Polishing
  • a polishing pad that is rotated while flowing a polishing liquid over the wafer surface. It is a method of flattening. In wiring formation by the damascene method, it is used to obtain a flat wiring surface by removing excess metal after embedding metal in wiring trenches or via holes.
  • the non-metal is, for example, a conductive film having a barrier property that covers the side and bottom surfaces of the wiring in order to prevent a metal element constituting the wiring from diffusing into the interlayer insulating film or the lower layer.
  • a refractory metal such as tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), tungsten carbonitride (WCN) or its A nitride or the like or a laminated film thereof is used.
  • An insulating NOR film is formed on the upper surface of a Cu wiring, and has a function of preventing Cu oxidation and diffusion of Cu into the insulating film, and also serves as an etching stop layer during processing.
  • SiC film, SiCN film, SiN film, etc. are used.
  • a semiconductor substrate is a substrate on which a semiconductor device is formed.
  • a semiconductor device is formed.
  • the substrate for example, the substrate.
  • a hard mask refers to an insulating film that plays a role in laminating and protecting an interlayer insulating film when it is difficult to perform direct CMP due to a decrease in strength due to the lower dielectric constant of the interlayer insulating film.
  • the noxious film is formed on the uppermost layer of the semiconductor element, and is water from the outside. Have a role of protecting the semiconductor element.
  • a silicon oxynitride film (SiON) formed by a plasma CVD method, a polyimide film, or the like is used.
  • a gaseous raw material is continuously supplied to a reaction chamber under reduced pressure.
  • molecules are excited by plasma energy and a continuous film is formed on the substrate by vapor phase reaction or substrate surface reaction.
  • the PVD method may be a normal sputtering method.
  • the long throw sputtering method is a collimated sputtering method. It is also possible to use a highly oriented sputtering method such as ionized sputtering.
  • the metal film can be made into an alloy film by previously containing a metal other than the main component in the metal target at a solid solution limit or less. In the present invention, it can be used mainly for forming a Cu seed layer or a barrier metal layer when forming a damascene Cu wiring.
  • a method for forming an insulating film according to the first aspect of the present invention is a method for forming an organic silica film in which a gas of two or more raw materials having a cyclic organic silica structure is formed by a plasma reaction. It consists of a raw material with a three-membered ring SiO cyclic structure in the main skeleton and a raw material with a four-membered ring cyclic ring structure, and at least one of these raw materials is directed to a method having at least one unsaturated hydrocarbon group in the side chain .
  • a method for forming an insulating film according to the second preferred embodiment of the present invention comprises a gas of one or more raw materials having a cyclic organic silica structure and a gas of one or more raw materials having a linear organic silica structure.
  • the raw material having a cyclic organic silica structure is a raw material having a three-membered ring SiO cyclic structure in the main skeleton and a linear organic silica structure.
  • raw materials having a silica structure are gasified by different vaporizers and introduced into the reaction vessel. Furthermore, it is preferable that the raw material having a silica structure is gasified by the same vaporizer and introduced into the reaction vessel.
  • a cyclic organic silica compound has a structure represented by the following formula 1, and Rl and R2 are not suitable. It is preferably a saturated carbon compound or a saturated carbon compound and any one of a buyl group, a allyl group, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • R1 is an unsaturated carbon compound
  • R2 is a saturated carbon compound
  • R1 is a buyl group or a allyl group
  • R2 is one of a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group. I like it! /
  • the cyclic organic silica compound is at least one of compounds having a structure represented by the following formulas 2, 3, 4, and 5.
  • the cyclic organic silica compound has a structure represented by the following formula 6, wherein R3 and R4 are an unsaturated carbon compound, a saturated carbon compound, or hydrogen, and hydrogen, a bur group, a aralkyl group, a methyl bur group, a methyl group, It is preferably any one of an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • R3 is an unsaturated carbon compound
  • R4 is a saturated carbon compound or hydrogen
  • R3 is a buyl group, a allyl group or a methyl bulu group
  • R4 is hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, or butyl. It is preferably any one of the groups.
  • the cyclic organic silica compound is at least one of compounds having a structure represented by the following formulas 7, 8, 9, and 10.
  • the linear organic silica compound has a structure represented by the following formula 11, R5 is an unsaturated carbon compound, R6, R7, R8 is a saturated carbon compound, R5 is a bur group or an aryl group, R6, R7 and R8 are preferably any one of a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • the linear organic silica compound is preferably a compound having a structure represented by the following formula 12.
  • the insulating film formed by the above-described insulating film forming method preferably includes at least amorphous force. Further, it is preferable that the amorphous force included in the insulating film has both the Sp2 structure and the Sp3 structure.
  • a semiconductor device using these insulating films preferably has two or more insulating films formed by changing the ratio of the raw material having the organic silica structure.
  • the dielectric constant of the interlayer insulating film can be reduced, and the performance of the wiring can be improved. This makes it possible to form LSIs with low power consumption.
  • the organic siloxane raw material is a compound represented by Formulas 1, 6, and 11. Alky of formula 1, 6, 11
  • the R groups R1 to R8 are hydrogen, methyl group, ethyl group, propyl group, isopropyl group, bur group, allyl group, methyl butyl group, butyl group and the like.
  • an insulating film suitable as an interlayer insulating film can be formed by a plasma vapor deposition method by supplying at least one organic siloxane raw material to a reaction chamber.
  • FIG. 2A is a schematic diagram showing an example of a plasma CVD apparatus that can be used when forming (forming) a porous insulating film based on the method of the present invention.
  • the plasma CV D apparatus 50 shown in the figure includes a reaction chamber 10, a gas supply unit 20, a vacuum pump 30, and a high-frequency power source 40.
  • the gas supply unit 20 is connected to the reaction chamber 10 by a gas supply pipe 22, and the vacuum pump 30 is connected to the reaction chamber 10 by a gas discharge pipe 36 in which a valve 32 and a cooling trap 34 are arranged in the middle.
  • the high frequency power supply 40 is connected to the reaction chamber 10 by a high frequency cable 44 in which a matching box 42 is disposed in the middle.
  • a film-forming member 1 such as a semiconductor substrate is held, and a substrate heating unit 3 for heating and a shower head that is connected to one end of a gas supply pipe 22 and functions as a gas ejection unit 5 are arranged so as to face each other.
  • a ground wire 7 is connected to the substrate heating unit 3, and a high-frequency cable 44 is connected to the shower head 5. Therefore, the gas supply unit 20 supplies the raw material gas and the like to the shower head 5 through the gas supply pipe 22, and the high frequency power generated by the high frequency power source 40 is a matching box arranged in the middle of the high frequency cable 44.
  • the gas supply pipe 22 is connected with a tallying gas supply pipe 28 in which a flow controller 24 and a valve 26 are arranged in the middle, and the valve 32 and the cooling trap 34 in the gas discharge pipe 36 are connected. Waste liquid piping 38 branches from between the two.
  • a heater (not shown) is preferably provided around the gas supply pipe 22 in order to prevent each gas from being liquefied during the transfer process, and the gas supply pipe 22 is preferably heated. Similarly, it is preferable to provide a heater (not shown) around the reaction chamber 10 to heat the reaction chamber 10.
  • the interior of the gas supply unit 20 is shown in FIG. 2B.
  • the vaporization control units VU1 and VU2 include a raw material tank 102 that stores liquid cyclic organosiloxane raw materials 101 and 103, and a pressurized gas supply device 106 that supplies a pressurized gas into the raw material tank 102 via a pressurized gas supply pipe 104.
  • the raw material transfer pipe 108 having one end inserted into the raw material tank 102, the liquid flow rate control unit 110 provided in the middle of the raw material transfer pipe 108, and the vaporization section disposed on the other end side of the raw material transfer pipe 108 112.
  • the liquid flow controller 110 includes two valves 110a and 110b and a liquid flow controller 110c disposed between the valves 110a and 110b.
  • the vaporizer 112 includes a raw material transfer pipe 108. And a vaporizer 112b connected to the other end of the raw material transfer pipe 108.
  • each vaporization control unit VU1, VU2 includes a gas supply tank 114 for carrier gas or dilution gas (hereinafter referred to as "carrier gas supply tank 114"), and a carrier gas supply tank 114.
  • a pipe 116 for supplying the carrier gas or the dilution gas to the raw material compound transfer pipe 108 between the liquid flow rate control unit 110 and the vaporization unit 112 is provided.
  • a gas flow control unit 118 having two norebs 118a and 118b and a gas flow controller 118c placed between the norebs 118a and 118b! /, The
  • the vaporization control unit VU1 supplies pressurized gas into the raw material tank 102 from the pressurized gas supply device 106 via the pressurized gas supply pipe 104, the internal pressure of the raw material tank 102 increases, and the liquid in the raw material tank 102 increases.
  • the first organosiloxane raw material 101 is transferred to the vaporization section 112 through the raw material transfer pipe 108 and reaches the vaporization section 112 by joining with the carrier gas or the dilution gas on the way.
  • the liquid cyclic organosiloxane raw material 101 that has reached the vaporization section 112 is vaporized by pressure reduction at the introduction section of the vaporization section 112 and heating by a heater (not shown).
  • the vaporization control unit VU2 when the pressurized gas is supplied from the pressurized gas supply device 106 to the raw material tank 102 via the pressurized gas supply pipe 104, the internal pressure of the raw material tank 102 increases, The liquid second organosiloxane raw material 103 is transferred to the vaporizing section 112 through the raw material transfer pipe 108, and merges with the carrier gas or dilution gas and reaches the vaporizing section 112 on the way.
  • the liquid cyclic organosiloxane raw material 101 that has reached the vaporization section 112 is vaporized by pressure reduction at the introduction section of the vaporization section 112 and heating by a heater (not shown). To do.
  • a heater is provided around the raw material compound transfer pipe 108 downstream of the valve 110c in the liquid flow rate control unit 110, and the raw material compound transfer pipe 108 is provided. Is preferably heated. Similarly, in order to prevent each gas from being liquefied, it is preferable to provide a heater around each of the gas discharge pipes 120, 124, 152 and the mixer 140 to heat them.
  • a film-forming member 1 such as a semiconductor substrate is disposed on the substrate heating unit 3, and the vacuum pump is opened with the valve 32 opened. Operate 30 to bring the initial vacuum in the reaction chamber 10 to several Torr. The water in the gas exhausted from the reaction chamber 10 is removed by the cooling trap 34.
  • a source gas gaseous cyclic organosiloxane gas
  • the high frequency power supply 40 and the matching box 42 are operated to operate at a predetermined frequency. Supply high-frequency power to the reaction chamber 10.
  • the flow rate of each gas is controlled by the corresponding flow rate control units 110 and 118, and is supplied to the reaction chamber 10 as a mixed gas having a predetermined composition by the mixer 140.
  • the partial pressure of the raw material gas in the reaction chamber 10 is preferably selected as appropriate within a range of about 0.;! To 3 Torr.
  • the atmospheric pressure in the reaction chamber 10 during film formation is preferably set within a range of about 1 to 6 Torr by controlling the operation of the vacuum pump 30.
  • the surface temperature of the film-forming member 1 at the time of film formation can be appropriately set within a range of 100 to 400 ° C by heating the film-forming member 1 by the substrate heating unit 3, and particularly 250 to 350. ° C is preferred.
  • it is supplied to the reaction chamber 10 prior to the supply of the raw material gas.
  • the molecules of the cyclic organosiloxane raw material that is the raw material gas are excited by the plasma and reach the surface of the film forming member 1 in an activated state.
  • an insulating film is formed.
  • the molecules of the organosilicon compound activated by the plasma reach the surface of the film-forming member 1 and receive more heat energy from the substrate heating unit 3, so that the unsaturated bond in the above group is opened. Then, a thermal polymerization reaction proceeds between molecules, and an insulating film grows.
  • the reaction chamber 10 is cleaned with a gas such as nitrogen trifluoride (NF3), sulfur hexafluoride (SF6), tetrafluoromethane (CF4), hexafluoroethane (C2F6), or the like. These gases may be used, and may be used as a mixed gas with oxygen gas, ozone gas or the like, if necessary.
  • the cleaning gas is supplied to the reaction chamber 10 through the cleaning gas supply pipe 28.
  • the reaction chamber 10 is cleaned by applying high-frequency power between the shower head 5 and the substrate heating unit 3 to induce plasma. It is also effective to use a cleaning gas that has been in a plasma state using remote plasma or the like.
  • a raw material having a three-membered ring SiO annular structure is used in the raw material tank 102 of the vaporization control unit VU1, and a raw material having a four-membered ring SiO cyclic structure is used in the raw material tank 102 of the vaporization control unit VU2. Then, film formation was performed.
  • the measurement of the k-value is a mercury probe
  • the measurement of the film strength is a nano-indenter
  • the measurement of pore size is a small angle X-ray measurement
  • the measurement of the film structure and composition is FTIR 'Ran spectroscopy was used.
  • a raw material represented by Formula 1 (Formula 3) consisting of R 1 in the first organosiloxane raw material 101 and R2 in the R1 group and R2 in the isopropyl group, a second organic siloxane raw material 103 in the R3 and B4 in the R4 methyl group.
  • the raw material represented by the formula 6 (formula 7) was used.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 1: 9 to 9: 1.
  • FIG. 3 shows the film strength against the ratio of the first organosiloxane raw material to the second organosiloxane raw material.
  • Fig. 4 shows the force S indicating the pore size distribution, the three-membered SiO ring that is the first organosiloxane raw material
  • the pore size is larger and the pore size is larger. The distribution is broader.
  • Figure 5 shows the peak of Si-O-Si bonds in the organosiloxane film measured by Raman spectroscopy. These peaks are Cage type bonds on the high wavenumber side and network type bonds on the low wavenumber side. Can be separated. Similar to Fig. 3, the peak intensity of the Si-O-Si Cage type bond and the network type peak intensity obtained by Raman spectroscopy with respect to the ratio (molar ratio) of the first organosiloxane raw material to the second organosiloxane raw material. The ratio is shown in Figure 6. From this result, the addition of a raw material with a 4-membered SiO cyclic structure, which is the second organic siloxane raw material, increases the network type Si-0-Si structure.
  • a raw material with a 4-membered SiO ring structure forms a network structure by opening part of the ring structure and cross-linking Si-O-Si bonds during film formation. Therefore, it is considered that the film strength increases.
  • the three-membered SiO structure is planar, whereas the four-membered SiO structure is not planar and Si and O do not exist on the plane.
  • the raw material with a cyclic structure is easier to open than the raw material with a three-membered SiO cyclic structure.
  • the first organic siloxane raw material 101 is composed of a R1 butyl group and R2 is composed of a ethyl group.
  • the second organosiloxane raw material 103 is composed of a R3 butyl group and R4 is composed of a methyl group.
  • the raw material shown by Formula 6 (Formula 7) was used.
  • the ratio (molar ratio) of the first organosiloxane raw material to the second organic siloxane raw material is 8: 2.
  • a raw material represented by Formula 1 (Formula 4) consisting of R 1 in the first organosiloxane raw material 101 and isopropyl group in R 2 and a isopropyl group in R 2, a Bule group in R 3 and a methyl group in R 4 as the second organic siloxane raw material 103.
  • the raw material represented by the formula 6 (formula 7) was used.
  • the ratio (molar ratio) of the first organosiloxane raw material to the second organosiloxane raw material is 7: 3.
  • the first organosiloxane raw material 101 is composed of R1 butyl group and R2 is n-butyl group.
  • the raw material represented by Formula 1 (Formula 5) was used as the second organosiloxane raw material 103, and the raw material represented by Formula 6 (Formula 7) consisting of a butyl group in R3 and a methyl group in R4 was used.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 6: 4.
  • a raw material represented by Formula 1 (Formula 3) consisting of R 1 in the first organosiloxane raw material 101 and R2 and isopropyl group in R2, and a second organic siloxane raw material 103 in R3 and R4 in hydrogen.
  • a raw material represented by Formula 6 (Formula 8) consisting of The ratio (molar ratio) of the first organosiloxane raw material to the second organosiloxane raw material is 5: 5.
  • the first organosiloxane raw material 101 is a raw material represented by Formula 1 (Formula 3) consisting of R1 as a buyl group and R2 is an isopropyl group
  • the second organosiloxane raw material 103 is a R3 as a methylvinyl group
  • R4 A raw material represented by Formula 6 (Formula 10) consisting of hydrogen was used.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 3: 7.
  • the first organosiloxane raw material 101 is a raw material represented by Formula 1 (Formula 3) consisting of R1 as a buyl group and R2 is an isopropyl group
  • the second organosiloxane raw material 103 is a R3 as a methylvinyl group
  • R4 A raw material represented by Formula 6 (Formula 9) consisting of a methyl group was used.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 1: 9.
  • Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 and 2.
  • a low k-value can be obtained, which is the film formation of only a raw material having a three-membered SiO cyclic structure, whereas the film strength is weak at 3 GPa.
  • Comparative Example 2 was found to have a high k value, although a high film strength was obtained.
  • Ak and ⁇ Modulus are primary organosiloxanes. This is an increased value compared to the value when the film was formed using only the raw material 101 (Comparative Example 1).
  • a film having a three-membered ring SiO ring structure is used in the raw material tank 102 of the vaporization control unit VU1, and a raw material having a linear SiO structure is used in the raw material tank 102 of the vaporization control unit VU2. went.
  • the other conditions were the same as those in the first embodiment.
  • the first organosiloxane raw material 101 is a raw material represented by Formula 1 (Formula 3) consisting of R1 as a buyl group and R2 is an isopropyl group
  • the second organosiloxane raw material 103 is as a butyl group as R5, and an isopropyl as R6.
  • the raw material represented by Formula 11 (Formula 12) consisting of a methyl group in R7 R8 was used.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 1: 9 9: 1.
  • FIG. 7 is a graph showing changes in film strength with respect to k value
  • FIG. 8 is a graph showing adhesion strength (Adhesi 0 n (MP a 'ml / 2)). Black squares indicate this embodiment, and white circles indicate comparative examples described later. In the portion with a low k value, no difference was observed in the film strength between Example 8 and Comparative Example, but Example 8 showed a higher value regarding the adhesion strength. On the other hand, Example 8 showed higher film strength and adhesion strength at the high k value.
  • the first organic siloxane raw material 101 is a raw material represented by Formula 1 (Formula 2) consisting of R1 as a bur group and R2 as a methyl group
  • the second organic siloxane raw material 103 is a butyl group as R5 and isopropyl as R6.
  • a raw material represented by Formula 11 (Formula 12) consisting of a methyl group in R7 and R8 was used.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 2: 8.
  • a raw material represented by Formula 1 (Formula 4) consisting of R 1 in the first organosiloxane raw material 101 and isopropyl group in R 2 and an isopropyl group in R 2, a Bule group in R 5 and an isopropyl in R 6 in the second organic siloxane raw material 103.
  • the raw material represented by Formula 11 (Formula 12) consisting of methyl groups in R7 and R8 was used.
  • the ratio of the first organic siloxane raw material to the second organic siloxane raw material (molar ratio) is 3: 7.
  • the first organosiloxane raw material 101 is made of a raw material represented by Formula 1 (Formula 5) consisting of R1 and a b-group in R2, and the second organosiloxane raw material 103 is made of a Bulle group in R5.
  • the ratio (molar ratio) of the first organic siloxane raw material to the second organic siloxane raw material is 4: 6.
  • an AuroraTM film As a comparative example, an AuroraTM film, a SiOCH film, was fabricated and its film strength and adhesion strength were measured. Set.
  • a Black Diamond TM film which is a SiOCH film, was prepared, and the film strength and adhesion strength were measured.
  • Table 2 shows increased film strength / adhesion strength compared to the case of using only the first organosiloxane raw material 101 (Comparative Example 1), FIG. 7 shows the change in film strength with respect to k value, and FIG. 8 shows the adhesion strength.
  • a cap film (SiCN) 202 In the conventional dual damascene wiring structure shown in FIG. 1A, a cap film (SiCN) 202, a via interlayer low dielectric constant film 203, an etching stopper film 204, a wiring interlayer low dielectric constant film 205, a hard mask 206, A cap film (SiCN) 207 is laminated, and a barrier film 209 is formed around the via in the via interlayer low dielectric constant film 203 and the wiring trench in the wiring interlayer low dielectric constant film 205 to form copper 208. Is embedded.
  • the dual damascene structure in Figure 1B is a structure in which the effective permittivity is lowered from the structure in Figure 1.
  • the interlayer insulating film as shown in Fig. 1A and Fig. IB is laminated, if it is continuously formed in the same device, the effect of contamination, adsorption, etc. due to increased throughput and release to the atmosphere Can be avoided, and the improvement in adhesion between the layers can be expected.
  • a structure as shown in Fig. 1B is adopted. In this structure, the etching stopper film 204 in the via interlayer low dielectric constant film 203 and the wiring interlayer low dielectric constant film 205 is omitted, and the hard mask 206 ′ is reduced in dielectric constant.
  • the via interlayer low dielectric constant film 203 is a film made of the first organic siloxane raw material 101 and the second organic siloxane raw material 103
  • the wiring interlayer low dielectric constant film 205 is a film made of the first organic siloxane raw material 101
  • a hard A film made of the second organosiloxane raw material 103 was applied to the mask 206 ′.
  • the first organosiloxane raw material 101 is a raw material represented by Formula 1 (Formula 3) consisting of R1 as a buyl group and R2 is an isopropyl group
  • the second organosiloxane raw material 103 is as a butyl group as R5, and an isopropyl as R6.
  • the raw material represented by Formula 11 (Formula 12) consisting of a methyl group in R7 and R8 was used.
  • the first organic siloxane raw material and the second organic siloxane raw material were mixed at a molar ratio of 2: 8, and the film was formed in the chamber.
  • the valves 110a and 118a of VU2 are closed, and only the first organosiloxane material is used! /, And the wiring interlayer low dielectric constant film 205 is formed.
  • the valves 110a and 118a of VU1 were closed, and a hard mask 206 ′ was formed using only the second organic siloxane raw material.
  • the end point detection during the groove etching was performed by emission spectroscopy due to the difference in composition.
  • the change in the emission spectrum at 440 nm showing SiF is different.
  • the force S that can detect the end point by monitoring this change S the time change of the spectrum of 440nm is larger as the C / Si ratio is lower, so the low dielectric constant of the interlayer between the interconnects is low. It is necessary to reduce the C / Si ratio of the rate film 203.
  • the C / Si of the low dielectric constant film 203 between the via layers is 1.2
  • the C / Si of the low dielectric constant film 205 between the wiring layers is 2.7
  • light is emitted without the etching stopper film. Since the end point can be detected by spectroscopy, this example is effective from the viewpoint of the etching process.
  • the effective dielectric constant keff of the device obtained in this example was 2.9, which was less than 3.
  • a raw material represented by Formula 1 (Formula 3) consisting of R 1 in the first organosiloxane raw material 101 and R2 in the R1 group and R2 in the isopropyl group, a second organic siloxane raw material 103 in the R3 and B4 in the R4 methyl group.
  • the raw material represented by formula 6 (formula 7) was used.
  • the first organic siloxane raw material and the second organic siloxane raw material were mixed at a molar ratio of 3: 7 to form a film in the chamber, and then the second organic siloxane raw material was formed.
  • valves 110a and 118a of VU2 are closed, and the wiring interlayer low dielectric constant film 205 is formed using only the first organosiloxane raw material.
  • VU1 110a and 118a valves were closed to stop the supply of the first organosiloxane raw material, and a hard mask 206 ′ was formed using only the second organic siloxane raw material.
  • the effective dielectric constant keff of the device obtained in this example was 2.94, which was less than 3.
  • the effective dielectric constant keff of the device obtained in this comparative example was 3.24, which exceeded 3.
  • a high deposition rate can be obtained by the crosslinking reaction of unsaturated hydrocarbon groups, and an improvement in throughput can be expected.
  • the method for forming a porous insulating film according to the present invention is not limited to the configuration of the above embodiments, and is not limited to the above embodiments. Those in which various modifications and changes have been made to the configuration are also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書
多孔質絶縁膜の形成方法
技術分野
[0001] 本発明は、多孔質絶縁膜の形成方法に関し、特に、 Cuを主成分とするダマシン配 線構造を有する半導体装置に使用できる多孔質絶縁膜の形成方法に関する。
背景技術
[0002] シリコン半導体集積回路 (LSI)にお!/、て、従来、導電材料には、アルミニウム (A1) または A1合金が広く用いられてきた。そして、 LSIの製造方法の微細化の進行に伴 い、配線における配線抵抗の低減と高信頼化のために、導電材料に銅(Cu)が使用 されるようになつてきた。 Cuはシリコン酸化膜中に容易に拡散するため、 Cu配線の側 面および底面には、 Cuの拡散を防止する導電性バリアメタル膜が用いられ、 Cu配線 の上面には、絶縁性バリア膜が用いられてきた。
[0003] 近年の LSIの微細化の進展に伴って、配線寸法の微細化が更に進み、配線間容 量の増大が問題となってきており、層間絶縁膜へ多孔質低誘電率膜の導入が進めら れている。これは、半導体素子に多層配線を用いることで高速かつ低電力で接続す るためには、微細化だけでなぐ層間絶縁膜の低誘電率化が有効であり、これら双方 を両立することが求められていたためである。
[0004] 層間絶縁膜の低誘電率化には、ポロジェンを導入しそれを抜くことで膜質の空孔率 を上げ、或いは、ハイド口カーボンの導入が試みられている。低誘電率膜は、例えば HSQ (ノヽイドロゲンシルセスキォキサン(Hydrogen Silsesquioxane) )膜、 CDO (カー ボンド一ブトオキサイド(Carbon doped oxide) )あるいは有機膜などである。そして、回 転塗布法や気相法などにより形成される。特開 2004— 289105号公報ではプラズ マ CVD法を用いた、多孔質絶縁膜の形成技術が記載されている。特表 2002— 526 916号公報では環状有機シロキサンを用いて多孔質絶縁膜を形成する技術が記載 されている。
[0005] 発明者は、従来技術について以下のように考えた。特開 2004— 289105号公報 に記載の技術を用いた場合、原料モノマーはプラズマ中で分解される、切断一再結 合型の成膜方法である。そのため、原料モノマーに結合していた炭化水素成分が脱 離してしまうため、比誘電率が低減できないという問題を有していた。また特表 2002 526916号公報に記載の、環状シロキサン原料モノマーを用いた技術では、シロ キサンの環状構造が骨格となり、比誘電率 2. 6程度が得られ、さらに側鎖にイソプロ ピル基を有することで、立体障害を形成し、側鎖にビュル基を有することでモノマー の付加反応を促進させ、比誘電率 2. 5程度を得ることができることになる力 膜強度 の面で問題があった。
[0006] さらに膜の低誘電率化が進むに連れ、膜の空孔率が上がり、その結果として膜強 度の低下を招いて!/、る。この膜強度の低下に伴!/、層間の密着性も低下しデバイスの 信頼性を低下させている。
発明の概要
[0007] そこで、本発明は、シロキサン原料モノマーを用いた絶縁膜の形成方法であって、 高レ、成膜速度で絶縁膜を形成する絶縁膜の形成方法を提供することを目的とする。 また、本発明は、及び、上記絶縁膜の方法を用いて形成される絶縁膜及び当該絶縁 膜を有する半導体装置 (半導体デバイス)を提供することをも目的とする。
[0008] 本発明は、第 1の好ましい態様において、環状有機シリカ構造を持つ 2種以上の原 料の気体をプラズマ反応によって成膜させた有機シリカ膜の形成方法であり、主骨格 に 3員環 SiO環状構造を持つ原料と 4員環 SiO環状構造をもつ原料からなり、かっこ れら原料の少なくとも 1種は側鎖に少なくとも 1つの不飽和炭化水素基を持つことを 特徴とする絶縁膜の形成方法を提供する。
[0009] 本発明は、第 2の好ましい態様において、環状有機シリカ構造を持つ 1種以上の原 料の気体と、直鎖状有機シリカ構造を持つ 1種以上の原料の気体とを、プラズマ反応 によって成膜させた有機シリカ膜の形成方法であり、環状有機シリカ構造を持つ原料 は主骨格に 3員環 SiO環状構造を持ち、かつ直鎖状有機シリカ構造を持つ原料の元 素組成比が H/C≥l . 6、 C/Si≥5, H/S 8であり、かつこれら原料の側鎖に 少なくとも 1つの不飽和炭化水素基を持つことを特徴とする絶縁膜の形成方法を提 供する。
[0010] 本発明の前記目的及び他の目的、特徴及び利点は、添付の図面を参照しての以 下の記述により明らかになる。
図面の簡単な説明
[0011] [図 1]図 1Aは、従来のデュアルダマシン配線構造を、図 1Bは、より実効比誘電率を 下げた配線構造を、それぞれ示す断面図である。
[図 2A]本発明方法で用いる多孔質絶縁膜の成膜装置の概略を示す図である。
[図 2B]図 2Aの成膜装置の一部を示す概略図である。
[図 3]本発明の第 1の例示的な実施形態と比較例 1、 2の膜強度とについて、 k値を示 したグラフである。
[図 4]例示的な第 1の実施形態と比較例 1、 2のポアサイズと分布を示したグラフであ
[図 5]例示的な第 1の実施形態で製造された膜の Si— O— Si結合の FTIR分光測定 結果の一例を示したグラフである。
[図 6]例示的な第 1の実施形態における、 Si— O— Si結合の Network構造と Cage構造 の FTIRピーク強度比を示したグラフである。
[図 7]本発明の例示的な第 2の実の形態と比較例の膜強度とについて、 k値の関係を
[図 8]例示的な第 2の実施の形態と比較例の密着強度とについて、 W直の関係を示し たグラフである。
[図 9]例示的な第 2の実施形態における膜の Raman分光測定結果を示したグラフであ 発明を実施するための最良の形態
[0012] 本発明を詳細に説明する前に、本願明細書における用語の意味を説明する。低誘 電率絶縁膜とは、例えば配線材を絶縁分離する膜 (層間絶縁膜)であり、半導体素 子を接続する多層配線間の容量を低減するため、シリコン酸化膜 (比誘電率 4. 2)よ りも比誘電率の低い材料を指す。特に、多孔質絶縁膜としては、例えば、シリコン酸 化膜を多孔化して、比誘電率を小さくした材料や、 HSQ (ハイドロゲンシルセスキォ キサン(Hydrogen Silsesquioxane) )膜、もしくは SiOCH、 SiOC (例えば、 Black Diam ondTM、 CORALTM, AuroraTM)などを多孔化して、比誘電率を小さくした材料など がある。これらの膜のさらなる低誘電率化が望まれて!/、るところである。
[0013] 金属配線材とは、 Cuを主成分とする金属配線材料である。金属配線材の信頼性を 向上させるため、 Cu以外の金属元素が Cuからなる部材に含まれていても良ぐ Cu 以外の金属元素が Cuの上面や側面などに形成されて!/、ても良!/、。
[0014] ダマシン配線とは、あらかじめ形成された層間絶縁膜の溝に、金属配線材を埋め込 み、溝内以外の余剰な金属を、例えば CMPなどにより除去することで形成される埋 め込み配線をさす。 Cuによりダマシン配線を形成する場合には、 Cu配線の側面およ び外周をバリアメタルで覆い、 Cu配線の上面を絶縁性バリア膜で覆う配線構造が一 般に用いられる。
[0015] CMP (Chemical Mechanical Polishing)法とは、多層配線形成プロセス中に生じるゥ ェハ表面の凹凸を、研磨液をウェハ表面に流しながら回転させた研磨パッドに接触さ せて研磨することによって平坦化する方法である。ダマシン法による配線形成におい ては、特に、配線溝あるいはビアホールに対し金属を埋設した後に、余剰の金属部 分を除去し、平坦な配線表面を得るために用いる。
[0016] ノ リアメタルとは、例えば、配線を構成する金属元素が層間絶縁膜や下層へ拡散 することを防止するために、配線の側面および底面を被覆する、バリア性を有する導 電性膜を示す。例えば、配線が Cuを主成分とする金属元素からなる場合には、タン タル (Ta)、窒化タンタル (TaN)、窒化チタン (TiN)、炭窒化タングステン (WCN)の ような高融点金属やその窒化物等、またはそれらの積層膜が使用される。
[0017] 絶縁性ノ リア膜とは Cu配線の上面に形成され、 Cuの酸化や絶縁膜中への Cuの 拡散を防ぐ機能、および加工時にエッチングストップ層としての役割を有する。例え ば、 SiC膜、 SiCN膜、 SiN膜などが用いられている。
[0018] 半導体基板とは、半導体装置がその上に形成される基板であり、特に単結晶シリコ ン基板上だけでなぐ SOI (Silicon on Insulator)基板や、 TFT (Thin film transistor) などの液晶製造用基板などを含む。
[0019] ハードマスクとは、層間絶縁膜の低誘電率化による強度低下により、直接 CMPを 行うのが困難な場合に、層間絶縁膜上に積層し、保護する役割の絶縁膜をさす。
[0020] ノ クシべーシヨン膜とは、半導体素子の最上層に形成され、外部からの水分などか ら半導体素子を保護する役割を有する。本発明ではプラズマ CVD法で形成したシリ コン酸窒素化膜(SiON)や、ポリイミド膜などが用いられる。
[0021] プラズマ CVD法とは、例えば、気体状の原料を減圧下の反応室に連続的に供給し
、プラズマエネルギーによって、分子を励起状態にし、気相反応、あるいは基板表面 反応などによって基板上に連続膜を形成する手法である。
[0022] PVD法とは、通常のスパッタリング法でもよいが、埋め込み特性の向上や、膜質の 向上や、膜厚のウェハ面内均一性を図る上では、例えばロングスロースパッタリング 法ゃコリメートスパッタリング法、ィォナイズドスパッタリング法、などの指向十生の高いス ノ クタリング法を用いることもできる。合金をスパッタする場合には、あらかじめ金属タ 一ゲット内に主成分以外の金属を固溶限以下で含有させることで、成膜された金属 膜を合金膜とすること力できる。本発明中では、主にダマシン Cu配線を形成する際 の Cuシード層や、バリアメタル層を形成する際に使用することができる。
[0023] 本発明の好適な第 1の態様の絶縁膜の形成方法は、環状有機シリカ構造を持つ 2 種以上の原料の気体をプラズマ反応によって成膜させた有機シリカ膜の形成方法で あり、主骨格に 3員環 SiO環状構造を持つ原料と 4員環 SiO環状構造をもつ原料から なり、かつこれら原料の少なくとも 1種は側鎖に少なくとも 1つの不飽和炭化水素基を 持つ方法に向けられる。
[0024] 本発明の好適な第 2の態様の絶縁膜の形成方法は、環状有機シリカ構造を持つ 1 種以上の原料の気体と、直鎖状有機シリカ構造を持つ 1種以上の原料の気体とを、 プラズマ反応によって成膜させた有機シリカ膜の形成方法であり、環状有機シリカ構 造を持つ原料は主骨格に 3員環 SiO環状構造を持ち、かつ直鎖状有機シリカ構造を 持つ原料の元素組成比が H/C≥l . 6、 C/Si≥5, H/Si≥8であり、かつこれら 原料の側鎖に少なくとも 1つの不飽和炭化水素基を持つことを特徴とする方法に向 けられる。
[0025] 本発明の絶縁膜の形成方法では、シリカ構造を持つ原料が、それぞれ異なる気化 器により気体化し反応容器に導入されることが好ましい。さらにはシリカ構造を持つ原 料が同一の気化器により気体化し反応容器に導入されることが好ましい。また有機シ リカ原料としては環状有機シリカ化合物が、下記式 1に示す構造であり、 Rl、 R2は不 飽和炭素化合物または飽和炭素化合物であり、かつ、ビュル基、ァリル基、メチル基 、ェチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることが好ましい 。特に、 R1は不飽和炭素化合物、 R2は飽和炭素化合物であり、 R1はビュル基又は ァリル基、 R2はメチル基、ェチル基、プロピル基、イソプロピル基、ブチル基のいず れか一つであることが好まし!/、。
[化 1]
Figure imgf000008_0001
(式 1 )
さらに、環状有機シリカ化合物が下記式 2、 3、 4、 5に示す構造を有する化合物の 少なくともいずれ力、 1つであることが好ましい。
[化 2]
Figure imgf000008_0002
(式 2 ) [化 3] ect
Figure imgf000009_0001
(式 3)
[0028] [化 4]
Figure imgf000009_0002
(式 4)
[0029] [化 5]
Figure imgf000010_0001
(式 5 )
また環状有機シリカ化合物が、下記式 6に示す構造であり、 R3、 R4は不飽和炭素 化合物、飽和炭素化合物または水素であり、かつ、水素、ビュル基、ァリル基、メチル ビュル基、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基のいずれかで あること力 S好ましい。特に、 R3は不飽和炭素化合物、 R4は飽和炭素化合物または水 素であり、 R3はビュル基、ァリル基又はメチルビュル基、 R4は水素、メチル基、ェチ ル基、プロピル基、イソプロピル基、ブチル基のいずれか一つであることが好ましい。
[化 6]
Figure imgf000010_0002
(式 6 ) さらに環状有機シリカ化合物が下記式 7、 8、 9、 10に示す構造を有する化合物の 少なくともいずれ力、 1つであることが好ましい。
[化 7]
Figure imgf000011_0001
式 7
[0032] [化 8]
Figure imgf000011_0002
(式 8 )
[0033] [化 9]
Figure imgf000012_0001
ぱ 9 )
[化 10]
H 〜
H,C
Figure imgf000012_0002
{i 0 )
また、前記直鎖状有機シリカ化合物が、下記式 11に示す構造であり、 R5は不飽和 炭素化合物、 R6、 R7、 R8は飽和炭素化合物であり、 R5は、ビュル基又はァリル基、 R6、 R7、 R8はメチル基、ェチル基、プロピル基、イソプロピル基、ブチル基のいずれ かであることが好ましい。 R8— O— Si— O— R7
Figure imgf000013_0001
(式 1 1 )
[0036] また直鎖状有機シリカ化合物が下記式 12に示す構造を有する化合物であることが 好ましい。
[化 12]
CH3
MeO -S i -CH
O Me
(式] 2 )
[0037] また、上記絶縁膜の形成方法により形成される絶縁膜は、少なくともアモルファス力 一ボンが含まれることが好ましい。さらに前記絶縁膜において含まれるアモルファス力 一ボンが Sp2構造と Sp3構造を兼ね備えることが好ましい。
[0038] またこれら絶縁膜を使用した半導体デバイスとしては上記有機シリカ構造を持つ原 料の比を変化させて形成された 2層以上の絶縁膜をもつことが好ましい。
[0039] 本発明の多孔質絶縁膜の形成方法、絶縁膜および半導体装置(半導体デバイス) を用いることにより、層間絶縁膜の低誘電率化を達成し、ひいては配線の性能を向 上させ、高速、低消費電力な LSIの形成が可能となる。
[0040] 以下、本発明の絶縁膜の形成方法に用いてもよい環状有機シリカ化合物(シロキサ ン)原料および直鎖状有機シリカ化合物 (シロキサン)原料につ!/、て説明する。
[0041] 有機シロキサン原料は、式 1、 6、 11で示される化合物である。式 1、 6、 11のアルキ ル基 R1〜R8は、水素、メチル基、ェチル基、プロピル基、イソプロピル基、ビュル基 、ァリル基、メチルビュル基、ブチル基等である。
[0042] [化 13]
Figure imgf000014_0001
[0043] [化 14]
R3
Figure imgf000014_0002
(式 6)
[0044] [化 15]
Figure imgf000014_0003
Rs— 0— Si— 0"R7
Re
(式 1 1) [0045] (第 1の例示的な実施形態)
本発明を用いて、層間絶縁膜として好適な絶縁膜を、少なくとも 1種以上の有機シ ロキサン原料を反応室に供給し、プラズマ気相成長法によって絶縁膜を形成すること ができる。
[0046] 以下に気体化した原料を反応室に供給し、絶縁膜を形成する例示的な第 1の実施 の形態について図 2A、 2Bを参照して説明する。
[0047] 図 2Aは、本発明の方法に基づいて多孔質絶縁膜を形成 (成膜)する際に使用する ことができるプラズマ CVD装置の一例を示す概略図である。同図に示すプラズマ CV D装置 50は、反応室 10、ガス供給部 20、真空ポンプ 30、及び高周波電源 40を備え ている。ガス供給部 20はガス供給管 22により反応室 10と接続されており、真空ボン プ 30は、バルブ 32及び冷却トラップ 34が途中に配置されたガス排出管 36により反 応室 10に接続されている。そして、高周波電源 40はマッチングボックス 42が途中に 配置された高周波ケーブル 44により反応室 10に接続されている。
[0048] 反応室 10内には、半導体基板等の被成膜部材 1を保持し、加熱する基板加熱部 3 と、ガス供給管 22の一端が接続されてガスの噴出部として機能するシャワーヘッド 5 とが互いに対向した状態で配置されている。基板加熱部 3にはアース線 7が接続され 、シャワーヘッド 5には高周波ケーブル 44が接続されている。したがって、ガス供給 部 20からガス供給管 22を介してシャワーヘッド 5に原料ガス等を供給すると共に、高 周波電源 40で作り出された高周波電力を高周波ケーブル 44の途中に配置されたマ ツチングボックス 42により所定の周波数にしてシャワーヘッド 5に供給することにより、 基板加熱部 3とシャワーヘッド 5との間の空間のガスをプラズマ化させることができる。
[0049] なお、ガス供給管 22には、途中に流量制御器 24とバルブ 26とが配置されたタリー ユングガス供給管 28が接続されており、ガス排出管 36におけるバルブ 32と冷却トラ ップ 34との間からは廃液配管 38が分岐している。ガス供給管 22の周囲には、各ガス が移送過程で液化するのを防止するためにヒータ(図示せず。)を設け、ガス供給管 22を加温することが好ましい。同様に、反応室 10の周囲にもヒータ(図示せず。)を 設けて、当該反応室 10を加温することが好ましい。 [0050] ガス供給部 20の内部を図 2Bに示す。気化制御ユニット VU1、 VU2は、液体の環 状有機シロキサン原料 101、 103を収容する原料タンク 102と、圧送ガス供給管 104 を介して原料タンク 102内に圧送ガスを供給する圧送ガス供給装置 106と、原料タン ク 102内に一端が揷入された原料移送管 108と、原料移送管 108の途中に設けられ た液体流量制御部 110と、原料移送管 108の他端側に配置された気化部 112とを 有している。上記の液体流量制御部 110は、 2つのバルブ 110a、 110bと当該ノ ル ブ 110a、 110b間に配置された液体流量制御器 110cとを備えており、上記の気化 部 112は、原料移送管 108の上記他端側に設けられたバルブ 112aと、原料移送管 108の上記他端に接続された気化器 112bとを備えて!/、る。
[0051] さらに、各気化制御ユニット VU1、 VU2は、キャリアガス用もしくは希釈ガス用のガ ス供給タンク 114 (以下、 「キャリアガス供給タンク 114」という。)と、キャリアガス供給タ ンク 114内のキャリアガスもしくは希釈ガスを液体流量制御部 110と気化部 112との 間において原料化合物移送管 108に供給する配管 116とを備えている。配管 116の 途中には、 2つのノ ノレブ 118a、 118bと当該ノ ノレブ 118a、 118b間に酉己置された気 体流量制御器 118cとを備えた気体流量制御部 118が設けられて!/、る。
[0052] 気化制御ユニット VU1は、圧送ガス供給装置 106から圧送ガス供給管 104を介し て原料タンク 102内に圧送ガスを供給すると、原料タンク 102の内圧が高まり、当該 原料タンク 102内の液体の第一有機シロキサン原料 101が原料移送管 108を介して 気化部 112へ向けて移送され、途中でキャリアガスもしくは希釈ガスと合流して気化 部 112に達する。気化部 112に達した液体の環状有機シロキサン原料 101は、気化 部 112の導入部での圧力減少と、ヒータ(図示せず。)による加熱とによって気化する
[0053] 気化制御ユニット VU2も同様に、圧送ガス供給装置 106から圧送ガス供給管 104 を介して原料タンク 102内に圧送ガスを供給すると、原料タンク 102の内圧が高まり、 当該原料タンク 102内の液体の第二有機シロキサン原料 103が原料移送管 108を 介して気化部 112へ向けて移送され、途中でキャリアガスもしくは希釈ガスと合流して 気化部 112に達する。気化部 112に達した液体の環状有機シロキサン原料 101は、 気化部 112の導入部での圧力減少と、ヒータ(図示せず。)による加熱とによって気化 する。
[0054] また気化制御ユニット VU1の原料タンク 102内に 2種類以上の有機シリカ材料を導 入し、気化制御ユニット VU2を使わず気化制御ユニット VU1の気化部 112にて同時 に気化することも可能である。
[0055] 各気化器 112bでの気化を円滑に行ううえからは、液体流量制御部 110におけるバ ルブ 110cよりも下流側の原料化合物移送管 108の周囲にヒータを設け、当該原料 化合物移送管 108を加温することが好ましい。同様に、各ガスが液化するのを防止 するために、各ガス排出管 120、 124、 152、及び混合器 140それぞれの周囲にもヒ ータを設けて、これらを加温することが好ましい。
[0056] プラズマ CVD装置 50によって有機シリコン系膜を形成するにあたっては、まず、基 板加熱部 3上に半導体基板等の被成膜部材 1を配置し、バルブ 32を開にした状態 で真空ポンプ 30を動作させて反応室 10内の初期真空度を数 Torrにまでする。反応 室 10力も排出されたガス中の水分は、冷却トラップ 34により除去される。次いで、ガ ス供給部 20から原料ガス(気体の環状有機シロキサンガス)をキャリアガスもしくは希 釈ガスと一緒に反応室 10に供給すると共に、高周波電源 40及びマッチングボックス 42を動作させて所定周波数の高周波電力を反応室 10に供給する。
[0057] このとき、個々のガスは、対応する流量制御部 110、 118によりその流量を制御され 、混合器 140で所定の組成の混合ガスとなって反応室 10に供給される。反応室 10 での原料ガスの分圧は 0. ;!〜 3Torr程度の範囲内で適宜選定することが好ましい。 そして、成膜時の反応室 10の雰囲気圧は、真空ポンプ 30の動作を制御して、 1〜6 Torr程度の範囲内に設定することが好ましい。成膜時における被成膜部材 1の表面 温度は、基板加熱部 3により当該被成膜部材 1を加熱して、 100〜400°Cの範囲内 で適宜設定することができ、特に 250〜350°Cが好ましい。既に説明したように、使 用する化合物原料の種類によっては、原料ガスの供給に先立って反応室 10に供給 される。
[0058] 上記のような条件の下に成膜を行うと、原料ガスである環状有機シロキサン原料の 分子がプラズマによって励起され、活性化された状態で被成膜部材 1の表面へ到達 し、ここで絶縁膜を形成する。絶縁膜が不飽和結合を有する基を備えていた場合に は、プラズマにより励起されて活性化した有機シリコン化合物の分子が被成膜部材 1 の表面へ到達して基板加熱部 3から更に熱エネルギーを受けとるので、上記の基に ある不飽和結合が開環し、分子間で熱重合反応が進行して、絶縁膜が成長する。
[0059] なお、反応室 10のクリーニングには、三フッ化窒素(NF3)、六フッ化硫黄(SF6)、 テトラフルォロメタン(CF4)、へキサフルォロェタン(C2F6)等のガスを用いることが でき、これらのガスは、必要に応じて酸素ガス、オゾンガス等との混合ガスとして用い てもよい。クリーニングガスは、クリーニングガス供給管 28を介して反応室 10へ供給 される。成膜時と同様に、シャワーヘッド 5と基板加熱部 3との間に高周波電力を印加 し、プラズマを誘起させることで反応室 10のクリーニングを行う。リモートプラズマ等を 用いて予めプラズマ状態としたクリーニングガスを用いることも有効である。
[0060] 本実施の形態では気化制御ユニット VU1の原料タンク 102内に 3員環 SiO環状構 造を持つ原料、気化制御ユニット VU2の原料タンク 102内に 4員環 SiO環状構造を 持つ原料を使い、成膜を行った。
[0061] 以下の実施例にお!/、て k値の測定は水銀プローブ、膜強度の測定にはナノインデ ンター、ポアサイズの測定には微小角 X線測定、膜構造 ·組成の測定には FTIR'R匪 an分光測定を用いた。
[0062] (実施例 1)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R3にビュル基、 R4にメチル基からなる式 6 (式 7)で示される原料を使用した。第一有機シロキサン原 料と第二有機シロキサン原料比(モル比)は 1: 9〜9: 1である。
[0063] 図 3は第一有機シロキサン原料と、第二有機シロキサン原料の比に対する、膜強度
(Modulus(GPa))と k値(k-value)の変化を示した図である。横軸の 0は第一有機シロ キサン原料からのみ成膜される膜、横軸の 1は第二有機シロキサン原料からのみ成 膜される膜の特性を示す。第一有機シロキサン原料力 の k値の変化と、膜強度の変 化を示し原料比 1 : 9〜8 : 2の間では、 k値はほとんど増加しないのに対し、膜強度は 増加していくことが判明した。
[0064] 図 4にはポアサイズ分布を示す力 S、第一有機シロキサン原料である 3員環 SiO環状 構造を持つ原料のみの場合シャープなポア分布を示すのに対し、第二有機シロキサ ン原料である 4員環 SiO環状構造を持つ原料を用いた場合、ポアサイズが大きくなり 、かつ、ポアサイズの大きいほうに向かいその分布がブロードになっている。
[0065] 図 5には Raman分光測定にて測定した有機シロキサン膜の Si— O— Si結合のピー クを示し、これらピークは高波数側に Cageタイプの結合、低波数側に networkタイプの 結合に分離できる。図 3と同様に第一有機シロキサン原料と第二有機シロキサン原料 比(モル比)に対する、 Raman分光分析で得られた Si— O— Siの Cageタイプの結合の ピーク強度と、 networkタイプのピーク強度比を図 6に示す。この結果から第二有機シ ロキサン原料である 4員環 SiO環状構造を持つ原料が加わることで、 networkタイプの Si— 0— Si構造が増加する。図 5と図 6の結果から 4員環 SiO環状構造を持つ原料 は成膜の際、環状構造の一部が開環し Si— O— Si結合のクロスリンクにより、ネットヮ ーク構造を作ることから膜強度が増加すると考えられる。 3員環 SiO構造が平面であ るのに対し、 4員環 SiO構造は平面ではなく Siと Oが平面上に存在しないためまた 4 員環 SiO
環状構造を持つ原料が 3員環 SiO環状構造を持つ原料と比較し開環しやすいと考え られる。
[0066] (実施例 2)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にェチル基からなる 式 1で示される原料を、第二有機シロキサン原料 103には R3にビュル基、 R4にメチ ル基からなる式 6 (式 7)で示される原料を使用した。第一有機シロキサン原料と第二 有機シロキサン原料比(モル比)は 8: 2である。
[0067] (実施例 3)
成膜には第一有機シロキサン原料 101に R1にェチル基、 R2にイソプロピル基から なる式 1 (式 4)で示される原料を、第二有機シロキサン原料 103には R3にビュル基、 R4にメチル基からなる式 6 (式 7)で示される原料を使用した。第一有機シロキサン原 料と第二有機シロキサン原料比(モル比)は 7: 3である。
[0068] (実施例 4)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2に n—ブチル基からな る式 1 (式 5)で示される原料を、第二有機シロキサン原料 103には R3にビュル基、 R 4にメチル基からなる式 6 (式 7)で示される原料を使用した。第一有機シロキサン原料 と第二有機シロキサン原料比(モル比)は 6: 4である。
[0069] (実施例 5)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R3にビュル基、 R4に水素からなる式 6 (式 8)で示される原料を使用した。第一有機シロキサン原料と 第二有機シロキサン原料比(モル比)は 5: 5である。
[0070] (実施例 6)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R3にメチルビ二 ル基、 R4に水素からなる式 6 (式 10)で示される原料を使用した。第一有機シロキサ ン原料と第二有機シロキサン原料比(モル比)は 3: 7である。
[0071] (実施例 7)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R3にメチルビ二 ル基、 R4にメチル基からなる式 6 (式 9)で示される原料を使用した。第一有機シロキ サン原料と第二有機シロキサン原料比(モル比)は 1: 9である。
[0072] (比較例 1)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料のみを使用した。
[0073] (比較例 2)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にメチル基からなる式 6 (式 7)で示される原料のみを使用した。
[0074] 実施例 1〜7及び比較例 1〜2の結果を表 1に示す。表 1と図 3を参照すると、比較 例 1では 3員環 SiO環状構造を持つ原料のみの成膜である力 低い k値が得られるの に対し、膜強度は 3GPaと弱い。それに対し比較例 2は高い膜強度が得られているも のの k値が高いことが判明した。表 1における A kと Δ Modulusは第一有機シロキサン 原料 101のみで成膜したとき(比較例 1)の値と比較して増加した値である。
[表 1]
Figure imgf000021_0001
[0076] (第 2の例示的な実施形態)
本実施の形態では気化制御ユニット VU1の原料タンク 102内に 3員環 SiO環状構 造を持つ原料、気化制御ユニット VU2の原料タンク 102内に直鎖状 SiO構造を持つ 原料を使い、成膜を行った。それ以外の条件は第 1の実施の形態と同じとした。
[0077] (実施例 8)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R5にビュル基、 R6にイソプロピル基、 R7 R8にメチル基からなる式 11 (式 12)で示される原料を使 用した。第一有機シロキサン原料と第二有機シロキサン原料比(モル比)は 1 : 9 9: 1である。
[0078] 図 7は k値に対する膜強度の変化、図 8は密着強度 (Adhesi0n(MPa'ml/2))をそれ ぞれ示した図である。黒四角が本実施の形態を示し、白丸は後述する比較例を示し たものである。 k値の低い部分では、実施例 8と比較例の膜強度に関して、差は認め られないが、密着強度に関しては実施例 8のほうが高い値を示した。一方、 k値の高 い部分では実施例 8のほうが高い膜強度と密着強度を示した。
[0079] そこでこれら膜を R讓 an分光分析にて評価を行ったところ、図 9に見られるようなピ ークが観察された。 1200〜: 1600cm— 1にかけてはアモルファスカーボン起因と見 られるブロードなピークと 2重結合及びハイド口カーボンのピークが存在し、 500cm- 1付近にはポリシロキサンに起因するピークが存在している。ポリシロキサンは Si— O 構造のクロスリンクしたものであり、高い膜強度が得られる一因と考えられる。ァモルフ ァスカーボンのピークは 1400cm— 1と 1600cm— 1付近にピークがあり、一般的に 1 400cm— 1付近のピークは Sp2構造の炭素、 1600cm— 1付近のピークは Sp3構造 の炭素に起因してレ、るとレ、われてレ、る。 Sp3構造の炭素はダイヤモンドに代表される ように強度が高いため、これらの膜は高い膜強度と、密着強度を持つと考えられる。 炭素の Sp3構造に関しては Raman分光分析のほかに EELS (Electron Energy Loss Sp ectrscopy)を使い、確認することも可能である。このような硬いアモルファスカーボン の作製には側鎖の炭素原子の存在もさることながら、水素原子の存在も重要であり、 特にプラズマ中におけるメチルラジカルの存在により硬いアモルファスカーボンが得 られること力 S判明している。その結果、直鎖状 SiO構造をもつ原料の原子比は H/C ≥1. 6、 C/Si≥5, H/Si≥8を実現することで、膜強度の向上が図れることが判明 した。
[0080] (実施例 9)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にメチル基からなる式 1 (式 2)で示される原料を、第二有機シロキサン原料 103には R5にビュル基、 R6に イソプロピル基、 R7、 R8にメチル基からなる式 11 (式 12)で示される原料を使用した 。第一有機シロキサン原料と第二有機シロキサン原料比(モル比)は 2: 8である。
[0081] (実施例 10)
成膜には第一有機シロキサン原料 101に R1にェチル基、 R2にイソプロピル基から なる式 1 (式 4)で示される原料を、第二有機シロキサン原料 103には R5にビュル基、 R6にイソプロピル基、 R7、 R8にメチル基からなる式 11 (式 12)で示される原料を使 用した。第一有機シロキサン原料と第二有機シロキサン原料比(モル比)は 3: 7であ
[0082] (実施例 11)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2に n—ブチル基からな る式 1 (式 5)で示される原料を、第二有機シロキサン原料 103には R5にビュル基、 R 6にイソプロピル基、 R7、 R8にメチル基からなる式 11 (式 12)で示される原料を使用 した。第一有機シロキサン原料と第二有機シロキサン原料比(モル比)は 4: 6である。
[0083] (比較例 3)
比較例として SiOCH膜である AuroraTM膜を作製し、その膜強度と密着強度を測 定した。
[0084] (比較例 4)
比較例として SiOCH膜である Black DiamondTM膜を作製し、その膜強度と密着強 度を測定した。
[0085] 表 2には第一有機シロキサン原料 101のみを用いた場合(比較例 1)と比較し増加 した膜強度 ·密着強度、図 7は k値に対する膜強度の変化、図 8は密着強度をそれぞ れ示した図である。比較例 3、 4と比較すると、本発明の実施例 8— 11のような 3員環 SiO構造を持つ原料と直鎖状 SiO構造を持つ原料を使うことで、同一 k値にもかかわ らず強度 ·高密着強度を実現できる。
[0086] [表 2]
Figure imgf000023_0001
[0087] (第 3の実施の形態)
次に本発明における第 3の実施の形態について説明する。図 1Aに示す従来のデ ユアルダマシン配線構造は、下層配線 201上に、キャップ膜(SiCN) 202、ビア層間 低誘電率膜 203、エッチングストッパー膜 204、配線層間低誘電率膜 205、ハードマ スク 206、キャップ膜(SiCN) 207が積層されており、ビア層間低誘電率膜 203中の ビア及び配線層間低誘電率膜 205中の配線溝には、周囲にバリア膜 209が形成さ れて、銅 208が埋め込まれている。図 1Bのデュアルダマシン構造は、図 1の構造から 実効被誘電率を下げた構造である。
[0088] 図 1A、図 IBに示すような層間絶縁膜が積層される部分において、同一装置内で 連続的に成膜されれば、スループットの向上や大気解放による汚染 ·吸着等の影響 を回避でき、それによる層間の密着性向上が期待できる。デバイスの実効誘電率を 更に下げるためには、図 1Bに示すような構造を採用する。こ構造では、ビア層間低 誘電率膜 203と配線層間低誘電率膜 205にある、エッチングストッパー膜 204の省 略を行い、また、 206 'のハードマスクの低誘電率化を行う。そこで本実施の形態では ビア層間低誘電率膜 203に第一有機シロキサン原料 101と第二有機シロキサン原料 103からなる膜、配線層間低誘電率膜 205に第一有機シロキサン原料 101からなる 膜、ハードマスク 206 'には第二有機シロキサン原料 103からなる膜を適用した。
[0089] (実施例 12)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R5にビュル基、 R6にイソプロピル基、 R7、 R8にメチル基からなる式 11 (式 12)で示される原料を使 用レた。
[0090] まずビア層間低誘電率膜 203成膜のために第一有機シロキサン原料と第二有機シ ロキサン原料をモル比で 2: 8に混合しチャンバ一内で成膜を行った後、第二有機シ ロキサン原料の供給を止めるため VU2の 110aと 118aのバルブをクローズし、第一 有機シロキサン原料のみを使!/、配線層間低誘電率膜 205を形成する。次に第一有 機シロキサン原料の供給を止めるため VU1の 110aと 118aのバルブをクローズし、 第二有機シロキサン原料のみを使いハードマスク 206 'を形成した。
[0091] エッチングストッパー膜 204の省略により溝エッチングの際の終点検出は組成の違 いによる発光分光により行った。溝エッチングの際 Ar/N2/CF4/〇2系のガスに より C/Siの異なる層間絶縁膜をエッチングすると SiFを示す 440nmの発光スぺタト ルの変化が異なる。この変化をモニタすることで終点検出可能である力 S、 440nmの スペクトルの時間変化は C/Si比が低いほど大きいため配線層間低誘電率膜 205の C/Si比を大きぐビア層間低誘電率膜 203の C/Si比を小さくすることが必要であ る。本実施例ではビア層間低誘電率膜 203の C/Siが 1. 2であるのに対し、配線層 間低誘電率膜 205の C/Siは 2· 7であり、エッチングストッパー膜なしに発光分光に よる終点検出が可能であるため、エッチングプロセスという観点からも本実施例は有 効であった。 [0092] 本実施例で得られた、デバイスの実効誘電率 keffは 2. 9であり、 3を下回った。
[0093] (実施例 13)
成膜には第一有機シロキサン原料 101に R1にビュル基、 R2にイソプロピル基から なる式 1 (式 3)で示される原料を、第二有機シロキサン原料 103には R3にビュル基、 R4にメチル基からなる式 6 (式 7)でされる原料を使用した。ビア層間低誘電率膜 203 成膜のために第一有機シロキサン原料と第二有機シロキサン原料をモル比で 3: 7に 混合しチャンバ一内で成膜を行った後、第二有機シロキサン原料の供給を止めるた め VU2の 110aと 118aのバルブをクローズし、第一有機シロキサン原料のみを使い 配線層間低誘電率膜 205を形成する。次に第一有機シロキサン原料の供給を止め るため VU1の 110aと 118aのバルブをクローズし、第二有機シロキサン原料のみを 使いハードマスク 206 'を形成した。
[0094] 本実施例で得られた、デバイスの実効誘電率 keffは 2. 94であり、 3を下回った。
[0095] (比較例 5)
比較例 5としてビア層間低誘電率膜 203に Aurora、エッチングストッパー膜 204に は Si〇2、配線層間低誘電率膜 205に第一有機シロキサン原料、ハードマスク 206に Si〇2を使った(図 1A参照)。
[0096] 本比較例で得られた、デバイスの実効誘電率 keffは 3. 24であり、 3を上回った。前 述と同様不飽和炭化水素基の架橋反応により、高い成膜速度が得られ、スループッ トの向上が期待できる。
[0097] 以上、本発明をその好適な実施例に基づいて説明したが、本発明の多孔質の絶縁 膜の形成方法は、上記実施例の構成にのみ限定されるものではなぐ上記実施例の 構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
[0098] 本出願は、 2006年 7月 21日出願に係る日本特許出願 2006— 199273号を基礎 とし且つその優先権を主張するものであり、引用によってその開示の内容の全てを本 出願の明細書中に加入する。

Claims

請求の範囲 [1] 環状有機シリカ構造を持つ 2種以上の原料の気体をプラズマ反応によって成膜さ せた有機シリカ膜の形成方法であり、主骨格に 3員環 SiO環状構造を持つ原料と 4員 環 SiO環状構造をもつ原料からなり、かつこれら原料の少なくとも 1種は側鎖に少なく とも 1つの不飽和炭化水素基を持つこと特徴とする絶縁膜の形成方法。 [2] 環状有機シリカ構造を持つ 1種以上の原料の気体と、直鎖状有機シリカ構造を持 つ 1種以上の原料の気体とを、プラズマ反応によって成膜させた有機シリカ膜の形成 方法であり、前記環状有機シリカ構造を持つ原料は主骨格に 3員環 SiO環状構造を 持ち、かつ前記直鎖状有機シリカ構造を持つ原料の元素組成比が H/C≥l . 6、 C /Si≥5, H/Si≥8であり、かつこれら原料の少なくとも 1種は、側鎖に少なくとも 1 つの不飽和炭化水素基を持つこと特徴とする絶縁膜の形成方法。 [3] 前記シリカ構造を持つ原料が、それぞれ異なる気化器により気体化し反応容器に 導入されることを特徴とする請求項 1又は 2に記載の絶縁膜の形成方法。 [4] 前記シリカ構造を持つ原料が同一の気化器により気体化し反応容器に導入される ことを特徴とする請求項 1又は 2に記載の絶縁膜の形成方法。 [5] 前記 3員環 SiO環状構造を持つ原料の環状有機シリカ化合物が、下記式 1に示す 構造であり、 Rl、 R2は不飽和炭素化合物または飽和炭素化合物であり、かつ、ビニ ル基、ァリル基、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基のいず れかであることを特徴とする請求項 1乃至 4のいずれか一項に記載の絶縁膜の形成 方法。 [化 1] 〇z
(式 1 ) 前記 3員環 SiO環状構造を持つ原料の環状有機シリカ化合物が下記式 2、式 3、式 4、式 5に示す構造を有する化合物の少なくともいずれ力、 1つであることを特徴とする 請求項 1乃至 5のいずれか一項に記載の絶縁膜の形成方法。
[化 2]
H3C
Figure imgf000027_0001
(式 2 )
[化 3]
Figure imgf000027_0002
(式 3 )
[化 4]
Figure imgf000028_0001
(式 4 )
[化 5]
Figure imgf000028_0002
(式 5 )
前記 4員環 SiO環状構造を持つ原料の環状有機シリカ化合物が、下記式 6に示す 構造であり、 R3、 R4は不飽和炭素化合物、飽和炭素化合物または水素であり、かつ 、水素、ビニノレ基、ァリノレ基、メチルビュル基、メチノレ基、ェチル基、プロピル基、イソ プロピル基、ブチル基のいずれかであることを特徴とする請求項 1又は 3乃至 6のい ずれか一項に記載の絶縁膜の形成方法。 [化 6]
Figure imgf000029_0001
(式 6 )
[8] 前記 4員環 SiO環状構造を持つ原料の環状有機シリカ化合物が下記式 7、式 8、式
9、式 10に示す構造を有する化合物の少なくともいずれ力、 1つであることを特徴とす る請求項 1又は 3乃至 7のいずれか一項に記載の絶縁膜の形成方法。
[化 7]
Figure imgf000029_0002
式 7
[化 8]
Figure imgf000030_0001
(式 8)
Figure imgf000030_0002
( 9)
[化 10]
/ s
H H
H
Figure imgf000031_0001
C
(式 1 0 )
[9] 前記直鎖状有機シリカ構造を持つ原料の直鎖状有機シリカ化合物が、下記式 11 に示す構造であり、 R5は不飽和炭素化合物、 R6、 R7、 R8は飽和炭素化合物であり 、 R5はビュル基又はァリル基、 R6、 R7、 R8はメチル基、ェチル基、プロピル基、イソ プロピル基、ブチル基の!/、ずれかであることを特徴とする請求項 2乃至 8の!/、ずれか 一項に記載の絶縁膜の形成方法。
[化 11]
Rs— 0— Si— O— R7 Re
(式 1 1 )
[10] 前記直鎖状有機シリカ構造を持つ原料の直鎖状有機シリカ化合物が、下記式 12 に示す構造を有する化合物であることを特徴とする請求項 2乃至 9のいずれか一項 に記載の絶縁膜の形成方法。
[化 12] CH3
eO — S i _CH、
O Me ゝ。 H3
(式] 2 )
[11] 請求項 1乃至 10のいずれか一項に記載の絶縁膜の形成方法により形成される絶 縁膜であって、
前記絶縁膜において少なくともアモルファスカーボンが含まれることを特徴とする絶 縁膜。
[12] 請求項 1乃至 10のいずれか一項に記載の絶縁膜の形成方法により形成される絶 縁膜を含む半導体デバイスであって、
前記絶縁膜にアモルファスカーボンが含まれ、かつ、前記アモルファスカーボンが Sp2構造と Sp3構造を兼ね備えることを特徴とする半導体デバイス。
[13] 請求項 11に記載の絶縁膜を含む半導体デバイスであって、
前記絶縁膜に含まれるアモルファスカーボンが Sp2構造と Sp3構造を兼ね備えるこ とを特徴とする半導体デバイス。
[14] 請求項 12又は 13に記載の半導体デバイスであって、
前記絶縁膜において有機シリカ構造を持つ原料の比を変化させて形成された絶縁 膜を 2層以上持つことを特徴とする半導体デバイス。
PCT/JP2007/064407 2006-07-21 2007-07-23 Procédé de formation d'un film isolant poreux WO2008010591A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800277667A CN101495674B (zh) 2006-07-21 2007-07-23 多孔质绝缘膜的形成方法
JP2008525919A JP4812838B2 (ja) 2006-07-21 2007-07-23 多孔質絶縁膜の形成方法
US12/374,390 US8790785B2 (en) 2006-07-21 2007-07-23 Method of forming a porous insulation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-199273 2006-07-21
JP2006199273 2006-07-21

Publications (1)

Publication Number Publication Date
WO2008010591A1 true WO2008010591A1 (fr) 2008-01-24

Family

ID=38956918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064407 WO2008010591A1 (fr) 2006-07-21 2007-07-23 Procédé de formation d'un film isolant poreux

Country Status (4)

Country Link
US (1) US8790785B2 (ja)
JP (1) JP4812838B2 (ja)
CN (1) CN101495674B (ja)
WO (1) WO2008010591A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182259A (ja) * 2008-01-31 2009-08-13 Nec Corp 半導体デバイス及びその製造方法
JP2010093235A (ja) * 2008-09-11 2010-04-22 Nec Electronics Corp 半導体装置および半導体装置の製造方法
JP2010153824A (ja) * 2008-11-18 2010-07-08 Renesas Electronics Corp 多孔質絶縁膜の製造方法、半導体装置の製造方法、及び半導体装置
JP2010278330A (ja) * 2009-05-29 2010-12-09 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
JP2011192962A (ja) * 2010-02-18 2011-09-29 Renesas Electronics Corp 半導体装置の製造方法及び半導体装置
JP2011199059A (ja) * 2010-03-19 2011-10-06 Renesas Electronics Corp 半導体装置およびその製造方法
JP2012074651A (ja) * 2010-09-30 2012-04-12 Renesas Electronics Corp 半導体装置、及び、その製造方法
US8367559B2 (en) 2010-01-26 2013-02-05 Renesas Electronics Corporation Method of manufacturing a semiconductor device
JP2014065699A (ja) * 2011-12-22 2014-04-17 Tosoh Corp 環状シロキサン化合物の製造方法およびジシロキサン化合物
US9034740B2 (en) 2012-05-08 2015-05-19 Renesas Electronics Corporation Method for manufacturing a porous insulation film and a method for manufacturing a semiconductor device comprising a porous insulation film
JP2016129259A (ja) * 2016-03-15 2016-07-14 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252113B2 (en) * 2005-03-24 2012-08-28 Ulvac, Inc. Method for producing component for vacuum apparatus, resin coating forming apparatus and vacuum film forming system
JP2011166106A (ja) * 2010-01-13 2011-08-25 Renesas Electronics Corp 半導体装置の製造方法及び半導体装置
TW201348496A (zh) * 2012-02-15 2013-12-01 Renesas Electronics Corp 多孔性絕緣膜的製造方法以及包含該膜的半導體裝置
FR2987626B1 (fr) * 2012-03-05 2015-04-03 Commissariat Energie Atomique Procede de collage direct utilisant une couche poreuse compressible
US10170308B1 (en) * 2017-10-11 2019-01-01 International Business Machines Corporation Fabricating semiconductor devices by cross-linking and removing portions of deposited HSQ
JP7126381B2 (ja) * 2018-05-21 2022-08-26 東京エレクトロン株式会社 成膜装置および成膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032199A (ja) * 1996-07-17 1998-02-03 Toshiba Corp 半導体装置
JPH1187340A (ja) * 1997-09-05 1999-03-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2003019645A1 (fr) * 2001-08-30 2003-03-06 Tokyo Electron Limited Procede et appareil de formation d'un film
JP2004047873A (ja) * 2002-07-15 2004-02-12 Nec Corp 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置
WO2005053009A1 (ja) * 2003-11-28 2005-06-09 Nec Corporation 多孔質絶縁膜及びその製造方法並びに多孔質絶縁膜を用いた半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068884A (en) * 1998-04-28 2000-05-30 Silcon Valley Group Thermal Systems, Llc Method of making low κ dielectric inorganic/organic hybrid films
US6974766B1 (en) 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
JP4746829B2 (ja) 2003-01-31 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032199A (ja) * 1996-07-17 1998-02-03 Toshiba Corp 半導体装置
JPH1187340A (ja) * 1997-09-05 1999-03-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2003019645A1 (fr) * 2001-08-30 2003-03-06 Tokyo Electron Limited Procede et appareil de formation d'un film
JP2004047873A (ja) * 2002-07-15 2004-02-12 Nec Corp 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置
WO2005053009A1 (ja) * 2003-11-28 2005-06-09 Nec Corporation 多孔質絶縁膜及びその製造方法並びに多孔質絶縁膜を用いた半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAYASHI Y. ET AL.: "PECVD-SiOCH-maku no Pore-Kozo Seigyo Gijutsu", PROCEEDINGS OF THE SYMPOSIUM ON SEMICONDUCTORS AND INTEGRATED CIRCUITS TECHNOLOGY, vol. 67TH, 9 December 2004 (2004-12-09), pages 22 - 25, XP003020427 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182259A (ja) * 2008-01-31 2009-08-13 Nec Corp 半導体デバイス及びその製造方法
JP2010093235A (ja) * 2008-09-11 2010-04-22 Nec Electronics Corp 半導体装置および半導体装置の製造方法
US8937023B2 (en) 2008-11-18 2015-01-20 Renesas Electronics Corporation Method of manufacturing porous insulating film
JP2010153824A (ja) * 2008-11-18 2010-07-08 Renesas Electronics Corp 多孔質絶縁膜の製造方法、半導体装置の製造方法、及び半導体装置
JP2010278330A (ja) * 2009-05-29 2010-12-09 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
US8367559B2 (en) 2010-01-26 2013-02-05 Renesas Electronics Corporation Method of manufacturing a semiconductor device
JP2011192962A (ja) * 2010-02-18 2011-09-29 Renesas Electronics Corp 半導体装置の製造方法及び半導体装置
US8426322B2 (en) 2010-02-18 2013-04-23 Renesas Electronics Corporation Method for producing semiconductor device and semiconductor device
JP2011199059A (ja) * 2010-03-19 2011-10-06 Renesas Electronics Corp 半導体装置およびその製造方法
JP2012074651A (ja) * 2010-09-30 2012-04-12 Renesas Electronics Corp 半導体装置、及び、その製造方法
JP2014065699A (ja) * 2011-12-22 2014-04-17 Tosoh Corp 環状シロキサン化合物の製造方法およびジシロキサン化合物
US9034740B2 (en) 2012-05-08 2015-05-19 Renesas Electronics Corporation Method for manufacturing a porous insulation film and a method for manufacturing a semiconductor device comprising a porous insulation film
US9236430B2 (en) 2012-05-08 2016-01-12 Renesas Electronics Corporation Porous insulation film, and a semiconductor device including such porous insulation film
JP2016129259A (ja) * 2016-03-15 2016-07-14 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
US20090246538A1 (en) 2009-10-01
US8790785B2 (en) 2014-07-29
JPWO2008010591A1 (ja) 2009-12-17
CN101495674A (zh) 2009-07-29
JP4812838B2 (ja) 2011-11-09
CN101495674B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4812838B2 (ja) 多孔質絶縁膜の形成方法
US7964442B2 (en) Methods to obtain low k dielectric barrier with superior etch resistivity
JP4216768B2 (ja) 有機ケイ酸塩ガラス膜及びその作製方法並びに有機ケイ酸塩ガラス膜作製のための混合物
US7354873B2 (en) Method for forming insulation film
JP5567588B2 (ja) 酸素含有前駆体を用いる誘電体バリアの堆積
US20140017904A1 (en) Flowable film dielectric gap fill process
US20110206857A1 (en) Ultra low dielectric materials using hybrid precursors containing silicon with organic functional groups by plasma-enhanced chemical vapor deposition
JP5006428B2 (ja) 窒素含有前駆物質を用いる誘電体バリアの堆積
JP2001185547A (ja) 極限低誘電率膜のためのキャッピング層
JP2004006822A (ja) ポロゲン、ポロゲン化された前駆体および低誘電率をもつ多孔質有機シリカガラス膜を得るためにそれらを使用する方法
JP2004320005A (ja) 有機シリカ多孔性膜製造のための化学気相成長方法
US7855123B2 (en) Method of integrating an air gap structure with a substrate
JP2011166106A (ja) 半導体装置の製造方法及び半導体装置
US20060258176A1 (en) Method for forming insulation film
JP2011228717A (ja) 低k誘電体と導電材料との接着改善
JP2011119770A (ja) 半導体デバイスの層内または層間誘電体としての超低誘電率材料
TW201823257A (zh) 用於緻密osg膜的橋接甲矽基之烷基化合物的用途
US20050059258A1 (en) Structures with improved interfacial strength of SiCOH dielectrics and method for preparing the same
JP3882914B2 (ja) 多相低誘電率材料およびその堆積方法
JP2008147644A (ja) ウェットエッチングアンダカットを最小にし且つ超低k(k<2.5)誘電体をポアシーリングする方法
TW202012419A (zh) 矽化合物及使用其沉積膜的方法
JP2022153428A (ja) アルコキシシラ環式又はアシルオキシシラ環式化合物及びそれを使用してフィルムを堆積させるための方法
KR20220044839A (ko) 규소 화합물 및 이를 사용한 필름의 증착 방법
US20060115980A1 (en) Method for decreasing a dielectric constant of a low-k film
JP2002305242A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027766.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525919

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12374390

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07791140

Country of ref document: EP

Kind code of ref document: A1