WO2008010497A1 - Film retard, film améliorant la luminance, plaque de polarisation, procédé de fabrication d'un film retard et dispositif d'affichage à cristaux liquides - Google Patents

Film retard, film améliorant la luminance, plaque de polarisation, procédé de fabrication d'un film retard et dispositif d'affichage à cristaux liquides Download PDF

Info

Publication number
WO2008010497A1
WO2008010497A1 PCT/JP2007/064119 JP2007064119W WO2008010497A1 WO 2008010497 A1 WO2008010497 A1 WO 2008010497A1 JP 2007064119 W JP2007064119 W JP 2007064119W WO 2008010497 A1 WO2008010497 A1 WO 2008010497A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optically anisotropic
retardation
layer
liquid crystal
Prior art date
Application number
PCT/JP2007/064119
Other languages
English (en)
French (fr)
Inventor
Runa Nakamura
Hiroki Nakagawa
Takashi Kuroda
Yuya Inomata
Masanori Fukuda
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to JP2008525867A priority Critical patent/JPWO2008010497A1/ja
Priority to US12/374,113 priority patent/US20090251642A1/en
Publication of WO2008010497A1 publication Critical patent/WO2008010497A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/14Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose characterised by containing special compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • Retardation film brightness enhancement film, polarizing plate, production method of retardation film, and liquid crystal display device
  • the present invention relates to a retardation film, a brightness enhancement film, a polarizing plate, a method for producing a retardation film, and the like that are suitably used as a polarizing plate protective film.
  • Liquid crystal display devices have features such as power saving, light weight, thinness, and the like, and are rapidly spreading in recent years in place of conventional CRT displays.
  • a liquid crystal display device As a general liquid crystal display device, as shown in FIG. 15, a liquid crystal display device having an incident-side polarizing plate 102A, an outgoing-side polarizing plate 102B, and a liquid crystal cell 101 can be exemplified.
  • the polarizing plates 102A and 102B are configured so as to selectively transmit only linearly polarized light having a vibration surface having a predetermined vibration direction, and are cross-linked so that the respective vibration directions are perpendicular to each other. They are placed facing each other in the coll state.
  • the liquid crystal cell 101 includes a large number of cells corresponding to the pixels, and is disposed between the polarizing plates 102A and 102B.
  • Such liquid crystal display devices are known that use various drive systems depending on the arrangement of the liquid crystal material used in the liquid crystal cell.
  • the main liquid crystal display devices that are popular today are classified into TN, STN, MVA, IPS, and OCB. Among them, today, those having the above MVA and IPS drive systems have become widespread.
  • the liquid crystal display device has a problem of viewing angle dependency due to the refractive index anisotropy of the liquid crystal cell and the polarizing plate as a specific problem.
  • This problem of viewing angle dependency is a problem that the color and contrast of an image that is visually recognized change when the liquid crystal display device is viewed from the front and when viewed from an oblique direction.
  • Such a problem of viewing angle characteristics is becoming more serious as the liquid crystal display device has recently been enlarged.
  • the method using the phase difference film has a problem of viewing angle dependency by disposing the phase difference film 103 having predetermined optical characteristics between the liquid crystal cell 101 and the polarizing plates 102A and 102B. It is a method to improve. Since this method can improve the viewing angle dependency problem only by incorporating the retardation film 103 in the liquid crystal display device, it can be widely used as a method for easily obtaining a liquid crystal display device having excellent viewing angle characteristics. It has been used.
  • the retardation film for example, a film having a configuration in which a retardation layer containing regularly arranged liquid crystal materials is formed on a transparent substrate, or a film made of a stretched film is generally used.
  • a film having a configuration in which a retardation layer containing regularly arranged liquid crystal materials is formed on a transparent substrate, or a film made of a stretched film is generally used.
  • a general liquid crystal display device has a configuration in which polarizing plates 102A and 102B are arranged on both sides of a liquid crystal cell 101.
  • the polarizing plates 102A and 102B are usually A polarizer 111 is sandwiched between two polarizing plate protective films 1 12a and 112b (FIG. 17 (a)) (Here, for convenience of explanation, it is disposed on the liquid crystal cell 101 side.
  • the polarizing plate protective film 112a is referred to as an “inner polarizing plate protective film”, and the other polarizing plate protective film 112b is referred to as an “outer polarizing plate protective film.)
  • a liquid crystal display device using the retardation film 103 In order to improve the viewing angle characteristics, the retardation film 103 was used as the inner polarizing plate protective film 112a out of the two polarizing plate protective films 112a and 112b, as illustrated in FIG. 17 (b). Using polarizing plates 102A, 102B ' Has become the mainstream in recent years.
  • the polarizing plate protective film used for the polarizing plate a film having a cellulose derivative strength represented by cellulose triacetate and a film comprising a cycloolefin-based resin represented by norbornene-based resin.
  • cellulose derivative Since the cellulose derivative is excellent in water permeability, it has an advantage that moisture contained in the polarizer can be volatilized through the film in the production process of the polarizing plate.
  • the adhesiveness to the polarizing film using PVA as a main raw material is also good, and there is an advantage that workability and yield are good.
  • a polarizing plate protective film made of a cellulose derivative has a poor gas noria property. For this reason, if a polarizing plate protective film having a cellulose derivative strength is used on both sides, there is a problem that durability of optical properties of the polarizing plate is lowered.
  • the cycloolefin-based resin is a hydrophobic resin, it has the advantage that the dimensional change due to moisture absorption and the change in optical properties are relatively small in a high-temperature and high-humidity atmosphere.
  • it has a drawback that the moisture contained in the polarizer in the manufacturing process of the polarizing plate cannot be volatilized through the film. For this reason, when a polarizing plate protective film made of cycloolefin-based resin is used on both sides, there is a problem in that the polarization characteristics deteriorate with time.
  • a polarizing plate protective film having a cellulose derivative power is used as the inner polarizing plate protective film, and a polarizing plate protective film made of shibu reiin-based resin as the outer polarizing plate protective film. It is desirable to be used. This is because the advantages of both can be shared and the disadvantages of both can be offset, so that a polarizing plate with excellent durability can be obtained. Therefore, when the above retardation film is used, it is desirable to use it in such a mode (for example, Patent Document 4).
  • the retardation of the retardation film depends on the driving method of the liquid crystal display device for which the viewing angle characteristics are improved, and in particular, the IPS (In-Plane Switching) method.
  • a liquid crystal display device uses a phase difference film having a property as a positive C plate.
  • Patent Documents 1 to 3 as a retardation film used in such an IPS liquid crystal display device, a retardation layer having a property as a positive C plate on a transparent substrate made of cycloolefin-based resin. The one having a configuration in which is formed is disclosed.
  • the retardation film having the configuration disclosed in the above Patent Documents 1 to 3 uses a transparent substrate made of a cycloolefin-based resin having a low hygroscopic property, and therefore absorbs moisture even in a high-temperature and high-humidity atmosphere. Less swells and good optical properties It has the advantage that
  • the retardation film using the transparent substrate made of such a cycloolefin-based resin has a cellulose derivative as the outer polarizing plate protective film when used as the inner polarizing plate protective film.
  • a strong polarizing plate protective film has to be used, and there is a problem that it is impossible to realize the above-described desirable usage of the polarizing plate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-174725
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-121853
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-70098
  • Patent Document 4 Japanese Patent No. 3132122
  • the present invention has been made in view of such problems, and by using it as a polarizing plate protective film, it is possible to obtain a polarizing plate having excellent durability and a viewing angle compensation function.
  • the main object is to provide a retardation film.
  • the present invention provides a relationship of nx> ny between the refractive index nx in the slow axis direction in the in-plane direction and the refractive index ny in the fast axis direction in the in-plane direction.
  • the optically anisotropic film having a transparent substrate having cellulose derivative strength is used, so that the retardation film of the present invention is converted into an inner polarizing film.
  • a polarizing plate protective film made of cycloolefin-based resin can be used as the outer polarizing plate protective film, a polarizing plate having excellent durability can be obtained.
  • the retardation layer satisfies the relationship of nx ⁇ ny and nz
  • the optical anisotropic film satisfies the relationship of nx> ny.
  • a retardation film that can provide a polarizing plate that is excellent in durability and has a viewing angle compensation function. it can.
  • the optically anisotropic film preferably has the transparent substrate and an optically anisotropic layer formed on the transparent substrate and containing urethane-based resin. . This is because, when the optically anisotropic film has such a configuration, it becomes easy to make the wavelength dependence of the retardation of the optically anisotropic film reverse dispersion type.
  • the optically anisotropic film is formed on the transparent substrate and the transparent substrate, and the wavelength dependence of the cellulose derivative and lettering constituting the transparent substrate is a positive dispersion type. And an optically anisotropic layer containing the optically anisotropic material shown. Even if the optically anisotropic film has such a configuration, the wavelength dependency of the retardation of the optically anisotropic film can be reversed. Also, by having such a configuration, it becomes easy to adjust the wavelength dependency of the retardation of the optical anisotropic film to a desired mode.
  • the cellulose derivative is preferably triacetyl cellulose. Since triacetyl cellulose has a reverse dispersion type wavelength dependence, the use of such triacetyl cellulose makes the wavelength dependence of the optical anisotropic film the reverse dispersion type reverse dispersion type. It is because it becomes easy to do. Also, triacetyl cellulose is excellent in optical isotropy and adhesiveness with a polarizer.
  • the optically anisotropic material includes a monofunctional polymerizable liquid crystal compound having a single polymerizable functional group in the molecule. This is because the optically anisotropic film can be made excellent in optical anisotropy.
  • the present invention includes the retardation film according to the present invention, and a cholesteric liquid crystal layer that is formed on the retardation layer of the retardation film and includes a cholesteric aligned liquid crystal material.
  • a brightness enhancement film is provided.
  • the retardation film according to the present invention since the retardation film according to the present invention is used, a brightness enhancement film excellent in brightness enhancement function can be obtained by using it as a polarizing plate protective film.
  • the present invention provides the retardation film according to the present invention, and the optically anisotropic film provided in the retardation film, the surface opposite to the side on which the retardation layer is formed.
  • a polarizing plate having a polarizer formed on the polarizing plate and a polarizing plate protective film formed on the polarizer.
  • the retardation film according to the present invention since the retardation film according to the present invention is used as one polarizing plate protective film, it has excellent durability and a viewing angle with respect to an IPS liquid crystal display device. A polarizing plate having a compensation function can be obtained.
  • the present invention provides the brightness enhancement film according to the present invention and the optically anisotropic film provided in the brightness enhancement film, on the side opposite to the side on which the retardation layer is formed.
  • a polarizing plate comprising: a polarizer formed on a surface; and a polarizing plate protective film formed on the polarizer.
  • the brightness enhancement film according to the present invention by using the brightness enhancement film according to the present invention as one polarizing plate protective film, a polarizing plate having excellent durability and a brightness enhancement function is obtained. Can do.
  • the polarizing plate protective film strength is preferably made of cycloolefin-based resin or acrylic resin. This is because the polarizing plate of the present invention can be made excellent in durability of optical characteristics.
  • the present invention also provides an optically anisotropic layer in which a transparent substrate having cellulose derivative power is used, and an optically anisotropic material in which the wavelength dependency of the retardation shows a positive dispersion type is dissolved in a solvent on the transparent substrate.
  • a phase difference layer forming step for forming a phase difference layer in which a relationship of nx ⁇ ny and nz is established between refractive indexes nx and ny in arbitrary x and y directions perpendicular to each other and refractive index nz in the thickness direction;
  • Retardation film characterized by having A manufacturing method is provided.
  • the present invention provides an optically anisotropic layer in which a transparent substrate having cellulose derivative power is used, and an optically anisotropic material in which the wavelength dependence of the retardation shows a positive dispersion type is dissolved in a solvent on the transparent substrate.
  • the optically anisotropic layer of the optically anisotropic film formed by the forming process includes a liquid crystal material on the optically anisotropic layer, and refractive indexes nx and ny in arbitrary x and y directions perpendicular to each other in the in-plane direction, and in the thickness direction.
  • an optical layered body in which the retardation layer is formed on the optically anisotropic layer is formed. Formed by the layer forming process and the retardation layer forming process. And a stretching process for stretching the optical layered product.
  • a method for producing a retardation film is provided.
  • the transparent substrate is made of cellulose derivative
  • the retardation film produced according to the present invention is used as an inner polarizing plate protective film
  • a polarizing plate protective film made of cycloolefin-based resin can be used as the polarizing plate protective film
  • a retardation film capable of producing a polarizing plate having excellent durability can be produced.
  • the present invention uses a transparent substrate having cellulose derivative power, and the substrate is coated on the transparent substrate.
  • a coating solution for forming an optically anisotropic layer in which an optically anisotropic material whose wavelength dependency of the retardation is positively dispersed is dissolved in a solvent the optically anisotropic layer is formed on the transparent substrate.
  • the optically anisotropic film contains a liquid crystal material on a surface opposite to the surface on which the optically anisotropic layer is formed, and is in any x and y directions orthogonal to each other in the in-plane direction.
  • a manufacturing method is provided.
  • the present invention provides an optically anisotropic layer in which a transparent substrate having cellulose derivative power is used, and an optically anisotropic material in which the wavelength dependence of the retardation shows a positive dispersion type is dissolved in a solvent on the transparent substrate.
  • the retardation layer is formed on the optically anisotropic layer by forming a retardation layer in which a relationship of nx ⁇ ny and nz is established between the refractive index nx, ny in the direction and the refractive index nz in the thickness direction.
  • a retardation layer forming step Forming a formed optical layered body, a retardation layer forming step;
  • a method for producing a retardation film comprising: a stretching step of stretching the optical laminate formed by the retardation layer forming step.
  • the transparent substrate is made of cellulose derivative, for example, when the retardation film produced according to the present invention is used as an inner polarizing plate protective film, Since a polarizing plate protective film made of cycloolefin-based resin can be used as the polarizing plate protective film, a polarizing plate having excellent durability can be obtained.
  • the retardation layer forming step forms the retardation layer on the surface opposite to the surface on which the optically anisotropic layer is formed. As a result, it is easy to form a retardation layer having excellent retardation. For this reason, according to the present invention, a retardation film capable of producing a polarizing plate having excellent durability can be produced.
  • the solvent preferably contains a ketone solvent having a boiling point of 100 ° C or higher.
  • the ketone solvent is preferably cyclopentanone or cyclohexanone.
  • cyclopentanone or cyclohexanone as the ketone solvent, an optically anisotropic film having a smaller haze can be formed in the optically anisotropic film forming step.
  • the cellulose derivative is triacetyl cellulose. Since triacetyl cellulose is excellent in optical isotropy, the use of such triacetyl cellulose makes it possible to produce a retardation film having good optical properties.
  • the present invention provides a liquid crystal display device using the retardation film of the present invention. According to the present invention, a liquid crystal display device excellent in durability and viewing angle characteristics can be obtained by using the retardation film of the present invention.
  • the present invention also provides a liquid crystal display device using the brightness enhancement film of the present invention. According to the present invention, by using the brightness enhancement film of the present invention, a liquid crystal display device having excellent brightness characteristics can be obtained.
  • the present invention provides a liquid crystal display device using the polarizing plate of the present invention. According to the present invention, a liquid crystal display device having excellent durability and viewing angle characteristics can be obtained by using the polarizing plate of the present invention.
  • the present invention provides a liquid crystal display device using the retardation film produced by the method for producing a retardation film of the present invention.
  • a liquid crystal display device excellent in durability and viewing angle characteristics is obtained by using the retardation film manufactured by the method for manufacturing a retardation film of the present invention. Can be obtained.
  • the retardation film of the present invention as a polarizing plate protective film, there is an effect that it is possible to obtain a polarizing plate having excellent durability and a viewing angle compensation function.
  • FIG. 1 is a schematic view showing an example of a retardation film of the present invention.
  • FIG. 2 is a schematic view showing another example of the retardation film of the present invention.
  • FIG. 3 is a schematic view showing another example of the retardation film of the present invention.
  • FIG. 4 is a schematic view showing an example of the brightness enhancement film of the present invention.
  • FIG. 5 is a schematic view showing an example of the polarizing plate of the present invention.
  • FIG. 6 is a schematic view showing another example of the polarizing plate of the present invention.
  • FIG. 7 is a schematic view showing an example of a method for producing the retardation film of the first embodiment of the present invention.
  • FIG. 8 is a schematic view showing an example of a method for producing the retardation film of the second embodiment of the present invention.
  • FIG. 9 is a schematic view showing an example of a method for producing the retardation film of the third embodiment of the present invention.
  • FIG. 10 is a schematic view showing an example of a method for producing a retardation film according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic view showing an example of a liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 12 is a schematic view showing an example of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 13 is a schematic view showing an example of a liquid crystal display device according to a third embodiment of the present invention.
  • FIG. 14 is a schematic view showing an example of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 15 is a schematic view schematically illustrating a part of a general liquid crystal display device.
  • FIG. 16 is a schematic view schematically illustrating a part of a liquid crystal display device using a retardation film.
  • FIG. 17 is a schematic view showing an example of how the retardation film is used.
  • Liquid crystal display 60, 70, 80, 90... Liquid crystal display
  • the retardation film the brightness enhancement film, the polarizing plate, the method for producing the retardation film, and the liquid crystal display device of the present invention will be described in order.
  • the retardation film of the present invention is an optical anisotropic in which a relationship of nx> ny is established between the refractive index nx in the slow axis direction in the in-plane direction and the refractive index ny in the fast axis direction in the in-plane direction.
  • the film is formed on the optically anisotropic film and contains the liquid crystal material.
  • FIG. 1 shows a book It is the schematic which shows an example of the retardation film of invention.
  • a retardation film 10 of the present invention has an optically anisotropic film 1 and a retardation layer 2 formed on the optically anisotropic film 1 and containing a liquid crystal material. is there.
  • the optically anisotropic film 1 has a relationship of nx> ny with the refractive index ny in the fast axis direction in the in-plane direction.
  • the retardation layer 2 has a relationship of nx ⁇ ny ⁇ nz between the refractive indices nx and ny in the x and y directions orthogonal to each other in the in-plane direction and the refractive index nz in the thickness direction. Is.
  • the retardation film 10 of the present invention is characterized in that the optically anisotropic film 1 uses a transparent substrate having a cellulose derivative power.
  • the retardation film of the present invention was used as an inner polarizing plate protective film because the optically anisotropic film having a transparent substrate having cellulose derivative strength was used.
  • a polarizing plate having excellent durability can be obtained because a polarizing plate protective film comprising a cycloolefin-based resin can be used as the outer polarizing plate protective film.
  • the retardation layer satisfies the relationship of nx ⁇ ny and nz
  • the optical anisotropic film satisfies the relationship of nx> ny.
  • a retardation film that can provide a polarizing plate that is excellent in durability and has a viewing angle compensation function. it can.
  • the retardation film of the present invention has at least the optically anisotropic film and a retardation layer.
  • the optically anisotropic film used in the present invention has a refractive index nx in the slow axis direction in the in-plane direction and an in-plane direction.
  • nx> ny is established between the refractive index ny in the fast axis direction in and a transparent substrate having a cellulose derivative power is used.
  • the refractive index nx in the slow axis direction in the in-plane direction of the optically anisotropic film used in the present invention is not particularly limited as long as the relationship of nx> ny is established.
  • any film satisfying any of these relationships can be preferably used.
  • the relationship of nx> ny (that is, Re> 0) among the relationships of nx, ny, and nz may be used exclusively.
  • the magnitude of the nz value (that is, the absolute value and sign of Rth (Rth> 0 or Rth> 0)) is adjusted as appropriate in consideration of the desired viewing angle compensation characteristics and other optical characteristics.
  • the entire retardation film requires Rth 0 (so-called + C plate characteristics), and the retardation layer is Rth 0, so if the optically anisotropic film is also Rth 0,
  • the absolute value of Rth of the retardation layer itself is set to be smaller than the desired value for the retardation film.
  • the optical anisotropy film has Rth> 0, the Rth absolute value of the retardation layer itself is set to be larger than the desired value for the retardation film.
  • Re letter retardation
  • the thickness direction letter-thickness (Rth) at a wavelength of 550 nm is preferably in the range of Onm to 300 nm.
  • the retardation film of the present invention can be made suitable as a viewing angle compensation film for a liquid crystal display device when the above-mentioned letter decision (Re) and the above-mentioned thickness-direction letter decision (Rth) are within the above ranges. It is.
  • the optical anisotropic film force used in the present invention satisfies the relationship of nx>ny> nz or nx>nz> ny, the optical anisotropic film has a wavelength of 550 nm.
  • Letter D (Re) must be within Onm Re ⁇ 300nm.
  • the thickness direction letter-thickness (Rth) at a wavelength of 550 nm is preferably in the range of 300 nm to 300 nm.
  • the retardation film of the present invention can be made suitable as a viewing angle compensation film for a liquid crystal display device when the above-mentioned letter decision (Re) and the above-mentioned thickness-direction letter decision (Rth) are within the above ranges. is there.
  • Re (nx-ny) X using the above nx, ny, and film thickness d. It is represented by d.
  • Re and Rth are, for example, KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd.
  • the wavelength dependence of Re of the optically anisotropic film used in the present invention may be any of a reverse dispersion type, a normal dispersion type, and a flat dispersion type.
  • the wavelength dependency of Re may be referred to as "wavelength dispersion".
  • Re has a smaller wavelength dispersion on the short wavelength side than on the long wavelength side (ie, (Re is an increasing function of wavelength) is called ⁇ reverse dispersion type ''.
  • ⁇ reverse dispersion type '' means Re (Re) at a wavelength of 450 nm and Re (Re) at a wavelength of 550 nm.
  • the ratio of 450 550 (hereinafter sometimes simply referred to as “Re ratio”) is less than 1.
  • Re is shorter on the short wavelength side than on the long wavelength side (that is, Re is a decreasing function of wavelength)
  • positive dispersion type a type of chromatic dispersion in which Re is shorter on the short wavelength side than on the long wavelength side (that is, Re is a decreasing function of wavelength)
  • Re is a decreasing function of wavelength
  • the type of chromatic dispersion in which Re does not have wavelength dependency is generally called “flat type”.
  • the “flat type” in the present invention means that the Re ratio is 1.
  • optically anisotropic film used in the present invention those having the above-mentioned wavelength dependency of a reverse dispersion type or a normal dispersion type are usually used. Therefore, hereinafter, those having wavelength dispersion of inverse dispersion type are referred to as “first embodiment”, and those having wavelength dependency of normal dispersion type are referred to as “second embodiment”. I will explain the sex film in order.
  • the optically anisotropic film of this embodiment is one in which the wavelength dependency of Re is a reverse dispersion type.
  • optically anisotropic film of this embodiment can be suitably used, for example, when a retardation layer having a wavelength dispersion of Re having a reverse dispersion type is used as a retardation layer described later.
  • the optically anisotropic film of the present embodiment is not particularly limited as long as the Re ratio is less than 1, and is appropriately adjusted depending on the use of the retardation film of the present invention. That's fine.
  • the Re ratio is preferably in the range of 0.6 to 0.99, particularly preferably in the range of 0.7 to 0.95. This is because the retardation film of the present invention can improve the viewing angle uniformity of the liquid crystal display device in a wider wavelength region by being within the range such as the above Re specific force.
  • the optically anisotropic film of the present embodiment uses a transparent substrate having a cellulose derivative strength, and the cellulose derivative constituting the transparent substrate has a desired water permeability and the present invention.
  • the retardation film is used as a polarizing plate protective film, it is possible to transmit moisture contained in the polarizer in the polarizing plate manufacturing process and to suppress a decrease in polarization characteristics over time to a desired level. If it is not particularly limited.
  • cellulose acrylates Cellulose acylates are widely used industrially, and are advantageous in terms of availability.
  • lower fatty acid esters having 2 to 4 carbon atoms are preferable.
  • the lower fatty acid ester include a single lower fatty acid such as cellulose acetate. It may contain only a fatty acid ester or may contain a plurality of fatty acid esters such as cellulose acetate butyrate or cellulose acetate propionate.
  • cellulose acetate can be particularly preferably used.
  • cellulose acetate triacetinorescenellose having an average acetylation degree of 57.5 to 62.5% (substitution degree: 2.6 to 3.0) is most preferable. Since triacetyl cellulose has a molecular structure having a relatively bulky side chain, by using such a transparent substrate having triacetyl cellulose strength, the adhesion between the transparent substrate and the optically anisotropic layer can be further improved. It is a power that can be improved.
  • the degree of acetylation means the amount of bound acetic acid per unit mass of cellulose.
  • the degree of acetylation can be determined by measuring and calculating the degree of acetylation in ASTM: D-817-91 (test method for cellulose acetate and the like).
  • the acetic acid content of the triacetyl cellulose constituting the triacetyl cellulose film can be determined by the above method after removing impurities such as a plasticizer contained in the film.
  • the transparent substrate is used in the optically anisotropic film of the present embodiment
  • desired optical anisotropy and wavelength dependence of Re are imparted to the optically anisotropic film of the present embodiment.
  • it will not be specifically limited. Examples of such an embodiment include an embodiment in which the optically anisotropic film of the present embodiment is composed only of the transparent substrate, and an embodiment in which an optically anisotropic layer is laminated on the transparent substrate. Can do.
  • the optically anisotropic film of this embodiment may be any of these embodiments, but the latter embodiment is preferred among them. This is because it becomes easy to impart a desired function to the optically anisotropic film of this embodiment with a high degree of freedom without affecting various characteristics such as strength and the production conditions of the transparent substrate itself.
  • optically anisotropic film of the present embodiment having an aspect in which an optically anisotropic layer is laminated on the transparent substrate is not limited as long as it can impart a desired function to the retardation film of the present invention. It is not particularly limited.
  • the optical anisotropy of nx> ny is imparted as it is or by performing further stretching treatment as necessary. can do.
  • optically anisotropic film of each aspect will be described in order.
  • the optically anisotropic film of this embodiment is an embodiment having the transparent substrate and an optically anisotropic layer formed on the transparent substrate and containing a urethane-based resin.
  • the urethane-based resin has a urethane bond portion (—O—CO—N ⁇ ) whose wavelength dependency of Re is a reverse dispersion type, by using such a urethane-based resin, the present state
  • Such an optically anisotropic film has the advantage that the wavelength dependence of Re can be easily reverse dispersion.
  • the urethane-based resin used in this embodiment is not particularly limited as long as it has a refractive index anisotropy of a degree capable of imparting a desired retardation to the optically anisotropic layer. Absent.
  • the urethane type resin used in this embodiment preferably has a Re ratio in the range of 0.6 or more and less than 1.0, particularly in the range of 0.7 to 0.95. In addition, those having a value within the range of 0.8 to 0.9 are preferable.
  • the Re ratio of the urethane-based resin is determined by peeling off the film from the optically isotropic substrate after forming a film made of the urethane-based resin to be evaluated on an optically isotropic substrate such as a glass substrate.
  • the letter Dane Yeon It can be measured by the parallel-coll rotation method using a KOBRA-WR manufactured by Komatsu.
  • the “refractive index anisotropy” means that the refractive index for incident light differs depending on the incident direction of light.
  • the urethane-based resin used in this embodiment preferably has a complex tensile elastic modulus at 30 ° C of 80 OMPa or less, and is preferably in the range of lMPa to 800 MPa. In particular, those within the range of 10 MPa to 600 MPa are preferred.
  • the complex tensile modulus is within such a range, for example, in the step of producing the optically anisotropic film of this embodiment, it is easy to stretch the optically anisotropic layer. It is a force that has
  • the complex tensile elastic modulus (E *) is expressed by the following equation by the storage tensile elastic modulus ( ⁇ ′ ′) and the loss tensile elastic modulus ( ⁇ ′).
  • ⁇ * (( ⁇ ,) 2 + ( ⁇ ,,) 2 )
  • the complex tensile elastic modulus ( ⁇ *) is determined by the storage tensile elastic modulus ( ⁇ '') and the loss tensile elastic modulus ( ⁇ ') under the following measurement conditions using "Rheogel- ⁇ 400 0" manufactured by UBM Co., Ltd. It can be measured and calculated according to the above formula.
  • urethane-based resin used in this embodiment, a urethane bond (
  • any urethane-based resin can be used depending on the use of the retardation film of the present invention, the production method, and the like.
  • the urethane-based resin used in this embodiment include polyurethane and urethane acrylate.
  • Urethane acrylate has the advantage that, for example, it is possible to arbitrarily control the development characteristics of phase difference by modifying by bonding an atomic group having refractive index anisotropy between urethane bond portions. Have Power.
  • the urethane acrylate is not particularly limited as long as it is obtained by polymerizing a urethane acrylate monomer having a urethane bond portion and an allyloyl group.
  • the urethane acrylate monomer may contain one or more alitaroyl groups.
  • the number of urethane bond portions contained in the urethane acrylate monomer may be one or plural.
  • the urethane acrylate used in the present embodiment is preferably one in which a urethane acrylate monomer having an atomic group having refractive index anisotropy is polymerized between the urethane bond and the allyloyl group.
  • a urethane acrylate obtained by polymerizing such a urethane acrylate monomer is capable of arranging the atomic groups having the above refractive index anisotropy in one direction by stretching, and thus has excellent retardation. Because.
  • the sum of the atomic weights of the elements constituting the atomic group existing between the urethane bond portion and the attalyloyl group is Among these, the range of 100 to 1000 is preferable, and the range of 200 to 600 is preferable, and the range of 400 to 600 is particularly preferable. If the sum of the atomic weights is less than the above range, the atomic group contributing to the development of retardation is reduced, and as a result, it may be difficult to impart desired retardation to the optically anisotropic layer in this embodiment. Because there is sex.
  • the amount is larger than the above range, the urethane bond portion present in the urethane acrylate obtained by polymerization of the urethane attriate monomer is reduced.
  • the Re ratio of the optically anisotropic film of this embodiment is set to a desired level. This is because it may be difficult to control.
  • a desired retardation is imparted to the retardation film of the present invention depending on the use of the retardation film of the present invention and the production method thereof. It is not particularly limited as long as it can be done.
  • the atomic group having such refractive index anisotropy include an ester atomic group including an ester bond, an ether atomic group including an ether bond, and the like.
  • an ester group is used among these forces, which can be suitably used even if they are out of group. It is preferable. This is because, by using the ester group, the urethane acrylate can be further improved in retardation.
  • the urethane acrylate monomer having the ester group can be synthesized relatively easily, so that the retardation film of the present invention can be made excellent in production suitability.
  • the ester atomic group includes a rataton atomic group containing a constitutional unit of rataton, a polycarbonate atomic group containing a constitutional unit of polycarbonate, and an adipate atom containing a constitutional unit of an adipate A group can be mentioned.
  • a lacton-based atomic group among the forces that can be suitably used for any of these atomic groups.
  • Lataton-based atomic groups have a high refractive anisotropy and are excellent in phase retardation, and are powerful.
  • a force prolatatone-modified atomic group containing a structural unit of force prolatatone among the above-mentioned rataton-based atomic groups. Since the force-prolatatone-modified atomic group has a larger refractive index anisotropy, it is possible to further improve the retardation of the resin material.
  • the force prolatatone modified atomic group may include a single force prolatatone constituent unit, or may include a plurality of force prolatatone constituent units.
  • the number of the force prolatatone structural units contained in the force prolatatone modified atomic group may be in the range of 2 to 5. preferable.
  • the urethane acrylate used in the present invention may be a polymer obtained by polymerizing a single urethane acrylate polymer or a product obtained by polymerizing a plurality of types of urethane acrylate monomers. Even so! /.
  • the optically anisotropic layer in this embodiment may contain other compounds in addition to the urethane-based resin.
  • Such other compounds are not particularly limited as long as the retardation imparted to the optically anisotropic layer and the wavelength dependence of Re are not impaired.
  • Applications of the retardation film of the present invention are not particularly limited. Any compound can be used depending on the like.
  • Such other compounds include, for example, the development of retardation of the optically anisotropic layer.
  • the compound which has the refractive index anisotropy to give can be mentioned.
  • the retardation can be increased.
  • Power is also.
  • examples of such compounds having refractive index anisotropy include liquid crystal compounds and inorganic compounds having refractive index anisotropy.
  • a photopolymerization initiator is preferably used as the other compound.
  • the photopolymerization initiator used in this embodiment include benzophenone, o-methyl benzoylbenzoate, 4,4 bis (dimethylamine) benzophenone, 4,4 bis (jetylamine) benzophenone, ⁇ -amino'acetophenone, 4, 4— Dichlorobenzophenone, 4-Benzyl 4-Methyldiphenyl ketone, Dibenzyl ketone, Fluorenone, 2, 2-Diethoxyacetophenone, 2, 2-Dimethoxy-2-phenylacetophenone, 2-Hydroxy-2-methylpropi Ofenone, p-tert-butyldichloroacetophenone, thixanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-is
  • photopolymerization initiator when used, it is preferable to use a photopolymerization initiation assistant in combination.
  • photopolymerization initiation assistants include tertiary amines such as triethanolamine and methyljetanolamine, and benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and 4-dimethylamidobenzoic acid ethyl.
  • the ability S can be, but is not limited to these.
  • the thickness of the optically anisotropic layer used in this embodiment is within a range in which a desired retardation can be imparted to the retardation film of the present invention, depending on the type of urethane-based resin. If there is no particular limitation! In particular, the thickness of the optically anisotropic layer in this embodiment is usually preferably in the range of 0.5 / ⁇ ⁇ to 20 / ⁇ ⁇ .
  • the transparent substrate used in this embodiment has the cellulose derivative strength described above.
  • the transparency of the transparent substrate used in this embodiment may be arbitrarily determined according to the transparency required for the retardation film of the present invention, but usually the transmittance in the visible light region is 80% or more. It is more preferable that it is 90% or more.
  • the transmittance of the transparent substrate can be measured by JIS K7361-1 (Testing method of total light transmittance of a plastic-transparent material).
  • the thickness of the transparent substrate used in the present embodiment is not particularly limited as long as necessary self-supporting properties can be obtained according to the use of the retardation film of the present invention. .
  • it is preferably within the range of 10 ⁇ m to 188 ⁇ m, particularly preferably within the range of 20 ⁇ m to 125 ⁇ m, and more preferably 30 ⁇ m to 80 ⁇ m. It is preferably within the range of m.
  • the thickness of the transparent substrate is thinner than the above range, there is a force that may not provide the necessary self-supporting property to the retardation film of the present invention. Also, the thickness is thicker than the above range And, for example, when cutting the retardation film of the present invention, the processing waste increases! Or the cutting blade may wear out quickly.
  • the Re of the transparent substrate used in the present embodiment is not particularly limited as long as it is within a range in which a desired retardation can be imparted to the retardation film of the present invention. It can adjust arbitrarily according to a use and the specific aspect of the optically anisotropic film used for this aspect.
  • the transparent substrate used in this embodiment has a Re of 550 ⁇ at 550 nm! It is preferable to be within a range of ⁇ 50 nm.
  • the transparent substrate used in this embodiment has an Rth force ⁇ ⁇ at a wavelength of 550 nm! Preferable to be in the range of ⁇ 100 nm! / ,.
  • the wavelength dependence of Re of the transparent substrate used in this embodiment may be any of a reverse dispersion type, a normal dispersion type, and a flat dispersion type.
  • a distributed type is preferred.
  • the phase difference film of the present invention can be used in a wider wavelength region and can exhibit the viewing angle compensation function of the liquid crystal display device. Because it can be done.
  • the transparent substrate used in this embodiment has a storage tensile modulus X cross-sectional area greater than that of the optically anisotropic layer and a dimensional shrinkage of the optically anisotropic layer. It is preferably smaller than the dimensional reduction ratio.
  • the value represented by the storage tensile modulus X cross-sectional area of the transparent substrate used in the present embodiment is the kind of urethane-based resin contained in the optically anisotropic layer or the retardation film of the present invention. It can be appropriately adjusted within a suitable range depending on the purpose of use.
  • the value expressed by the storage tensile modulus X cross-sectional area of the transparent substrate used in this embodiment is 10 times or more the value expressed by the storage tensile modulus X cross-sectional area of the optically anisotropic layer. In particular, it is preferably 20 times or more, more preferably 35 times or more.
  • Storage tensile strength ratio of transparent substrate The value represented by the X cross-sectional area is within the above range, so that the dimensional stability of the optically anisotropic film of this embodiment is more dominant to the mechanical properties of the transparent substrate. Can be made Therefore, for example, it is possible to control the mechanical properties of the entire optically anisotropic film by controlling the mechanical properties of the transparent substrate. This is because it has advantages such as easy design.
  • the specific range of the value represented by the storage tensile modulus X cross-sectional area of the transparent substrate used in this embodiment is in the range of 10000N to 5000000N, more preferably in the range of 10000N to 1000 OOON, Preferably, it is within the range of 50000N to 500000N.
  • the value represented by the above-mentioned storage tensile modulus X cross-sectional area is measured by measuring the storage tensile modulus under the following conditions using, for example, “Rheogel-E4000” manufactured by Ubi-M Corporation. It can be obtained by multiplying the value by the cross-sectional area of the transparent substrate.
  • the optically anisotropic film of this embodiment when the optically anisotropic layer penetrates into the transparent substrate, it is difficult to measure the storage tensile modulus of the transparent substrate alone by the above method.
  • the value expressed by the compression elastic modulus X cross-sectional area of the transparent substrate is the compression elastic modulus X cross-section of the optically anisotropic layer described above. It is larger than the value represented by the product and is not particularly limited as long as it is within the range.
  • the value of the compression modulus X cross-sectional area of the transparent substrate in this embodiment is in the range of 30000N to 15000000N when the width of the transparent substrate is lm and the coating width of the optically anisotropic layer is lm. It is preferable that it is within the range of 30000N to 3000000N. S It is preferable that it is within the range of 150,000N to 1500000N.
  • the compression elastic modulus a value measured under the following conditions is used using Elio-TAS Inc. ENT-1100a.
  • cross-sectional area means the cross-sectional area of the cross section perpendicular to the planar direction of the transparent substrate (the thickness of the transparent substrate ⁇ the width of the transparent substrate).
  • the dimensional shrinkage rate of the transparent substrate used in this embodiment is not particularly limited as long as it is smaller than the dimensional shrinkage rate of the optically anisotropic layer.
  • the dimensional shrinkage of the transparent substrate used in this embodiment is preferably in the range of 0.01% to 1%, particularly preferably in the range of 0.01% to 0.1%. Furthermore, it is preferably within the range of 0.01% to 0.02%.
  • the value expressed by the above dimensional shrinkage ratio is, for example, measured by La for the length of the transparent substrate stretched to 1.4 times the original length, and Lb for the length one day after stretching. By doing so, it can be obtained based on the following formula.
  • the transparent substrate used in this embodiment is excellent in dimensional stability in a high temperature and high humidity atmosphere.
  • the use of the transparent substrate having excellent dimensional stability in a high-temperature and high-humidity atmosphere can improve the dimensional stability in a high-temperature and high-humidity atmosphere as a whole retardation film. This is because a retardation film having good optical property stability can be obtained even in an atmosphere.
  • the transparent substrate used in this embodiment preferably has a dimensional change rate of 25% or less after lhr in an environment of a temperature of 90 ° C and a relative humidity of 90% RH. It is preferably in the range of 1% to 10%, and more preferably in the range of 0.1% to 5%.
  • the configuration of the transparent substrate used in this embodiment is not limited to a configuration consisting of a single layer, but may have a configuration in which a plurality of layers are stacked.
  • layers having the same composition may be stacked.
  • a plurality of layers having different compositions may be stacked.
  • the optically anisotropic film of this embodiment has a structure formed so that the optically anisotropic layer is in close contact with the transparent substrate.
  • the degree of adhesion between the optically anisotropic layer and the transparent substrate at this time is within a range in which the mechanical properties of the optically anisotropic layer can be controlled by the mechanical properties of the transparent substrate. It is not particularly limited. In particular, in the present invention, it is preferable that the evaluation result by the cross-cut method is within the range of 20Z100 to 100ZlOO.
  • cross-cut method refers to the Japanese Industrial Standard JISK5600-5-6 “General paint test method-Part 5: Mechanical properties of paint film-Section 6: Adhesion (cross-cut method)” This is an evaluation method. Put lmm square cuts in a grid pattern on the coated surface side, apply adhesive tape (Nichiban Co., Cello Tape (registered trademark)), then peel off the tape, and leave lmm square in 100 pieces The adhesiveness is evaluated by counting the number of pieces.
  • adhesive tape Niban Co., Cello Tape (registered trademark)
  • the evaluation result by the cross-cut method represents the number remaining in the 100 grid-like evaluation sites.
  • the “20Z100” is left without peeling off the 100 evaluation sites. This means that there are 20 locations, and “100Zl 00” above means that 100 of the 100 evaluation sites remain without peeling.
  • the transparent substrate and the optically anisotropic layer may be laminated such that the transparent substrate and the optically anisotropic layer are independent layers.
  • the content of the urethane-based resin continuously changes between the transparent substrate and the optically anisotropic layer where there is a clear interface between the transparent substrate and the optically anisotropic layer. It may be an aspect of being laminated as described above.
  • FIG. 2 is a schematic view showing an example of an embodiment in which the transparent substrate and the optically anisotropic layer are laminated in the optically anisotropic film of this embodiment.
  • the optically anisotropic films 1A and 1A ′ of this embodiment may be an embodiment in which the transparent substrate la and the optically anisotropic layer lb are laminated as independent layers ( ( Figure 2 (a)) or above There is no clear interface between the transparent substrate la and the optically anisotropic layer lb ', and the layers are laminated so that the content of the urethane-based resin changes continuously between the two. May be present (Fig. 2 (b)).
  • the optically anisotropic film of this embodiment is an optically anisotropic film formed on a transparent substrate made of a cellulose derivative, the cellulose derivative that forms the transparent substrate, and the wavelength dependence of Re that is a positive dispersion type. And an optically anisotropic layer containing an isotropic material.
  • the optically anisotropic film of this embodiment uses, for example, a transparent substrate whose wavelength dependency of Re is a reverse dispersion type, and the absolute value of the Re ratio of the transparent substrate is the Re ratio of the optically anisotropic layer.
  • the optically anisotropic material used in this embodiment is not particularly limited as long as the wavelength dependency of the lettering is a positive dispersion type, depending on the use of the retardation film of the present invention. Those capable of imparting a desired retardation to the retardation film of the present invention can be appropriately selected and used. Among them, the optically anisotropic material used in this embodiment is preferably one having the above Re ratio in the range of 1 to 2. In particular, in order to take advantage of the reverse dispersion characteristics of the transparent substrate, it is preferable to use a substrate having a Re ratio as close to 1 as possible.
  • the Re ratio of the optically anisotropic material is formed of the optically anisotropic material on an isotropic base material such as a glass substrate on which an alignment film such as polyimide is formed and subjected to an alignment treatment.
  • an isotropic base material such as a glass substrate on which an alignment film such as polyimide is formed and subjected to an alignment treatment.
  • optically anisotropic material used in the present embodiment is not particularly limited as long as the Re ratio is within the above range.
  • examples of such an optically anisotropic material include a rod-shaped compound, a polymer liquid crystal material, and a polyimide material.
  • examples of the polymer liquid crystal material include compounds described in JP-A-2002-265475, JP-A-2004-285174, and JP-A-8-278491.
  • polyimide-based material examples include compounds described in JP-A-2004-78203, JP-A-2005-91625, and JP-A-2004-331951.
  • any of the rod-shaped compound, the polymer liquid crystal material, and the polyimide-based material can be suitably used. It is preferable to use a compound. Since a rod-like compound can exhibit excellent retardation by being regularly arranged, by using such a rod-like compound, a desired retardation is imparted to the optically anisotropic film of this embodiment. It is because it becomes easy to do.
  • the “rod-like compound” in the present embodiment refers to the one in which the main skeleton of the molecular structure is rod-like.
  • the rod-like compound used in this embodiment a compound having a relatively small molecular weight is preferably used. More specifically, a compound having a molecular weight in the range of 200 to 1200 is preferred, and a compound having a molecular weight in the range of 400 to 1000 is preferably used.
  • the optically anisotropic layer used in the present embodiment contains the optically anisotropic material and a cellulose derivative constituting a transparent substrate described later, but a compound having a relatively small molecular weight as the rod-shaped compound. This is because it becomes easy to mix the rod-like compound with the cellulose derivative in the optically anisotropic layer.
  • the molecular weight of the said rod-shaped compound shall show the molecular weight of the monomer before superposition
  • the rod-shaped compound used in this embodiment is preferably a liquid crystalline material exhibiting liquid crystallinity. Since the liquid crystalline material has a property of regularly arranging, by using such a liquid crystalline material, a desired retardation is imparted to the optically anisotropic film of this embodiment. This is because it becomes easier.
  • liquid crystalline material a material exhibiting a shifted liquid crystal phase such as a nematic phase, a cholesteric phase, and a smectic phase can be preferably used.
  • a liquid crystalline material exhibiting a nematic phase it is preferable to use a liquid crystalline material exhibiting a nematic phase.
  • a liquid crystalline material exhibiting a nematic phase is a force that can be easily arranged regularly as compared with liquid crystalline materials exhibiting other liquid crystal phases.
  • liquid crystalline material exhibiting the nematic phase it is preferable to use a material having spacers at both ends of the mesogen. Since the liquid crystalline material having spacers at both ends of the mesogen is excellent in flexibility, the use of such a liquid crystalline material also has the power to make the optically anisotropic film of this embodiment excellent in transparency. .
  • rod-shaped compound used in this embodiment those having a polymerizable functional group in the molecule are preferably used, and among them, those having a polymerizable functional group capable of three-dimensional crosslinking are more preferably used. It is done. Since the rod-like compound has a polymerizable functional group, the rod-like compound can be polymerized and fixed. Therefore, the rod-like compound is excellent in alignment stability and hardly causes a change in retardation over time. It is also the force which can obtain an anisotropic layer.
  • the rod-like compound having a polymerizable functional group and the rod-like compound having no polymerizable functional group may be mixed and used.
  • three-dimensional crosslinking means that liquid crystal molecules are polymerized in three dimensions to form a network structure.
  • Examples of the polymerizable functional group include polymerizable functional groups that are polymerized by the action of ionizing radiation such as ultraviolet rays and electron beams, or heat.
  • Typical examples of these polymerizable functional groups include radical polymerizable functional groups or cationic polymerizable functional groups.
  • representative examples of radically polymerizable functional groups include functional groups having at least one addition-polymerizable ethylenically unsaturated double bond, and specific examples include a buyl group having or not having a substituent.
  • an allylate group (generic name including an allyloyl group, a methacryloyl group, an attaryloxy group, and a methacryloyloxy group).
  • an epoxy group etc. are mentioned as a specific example of the said cation polymerizable functional group.
  • examples of the polymerizable functional group include an isocyanate group and an unsaturated triple bond. Of these, functional groups having an ethylenically unsaturated double bond are preferably used from the viewpoint of process.
  • the rod-like compound in this embodiment is a liquid crystalline material exhibiting liquid crystallinity, and particularly preferably has a polymerizable functional group at the end.
  • a liquid crystal material for example, it can be polymerized three-dimensionally to form a network structure, so that it has alignment stability and exhibits optical properties. This is because an excellent optically anisotropic layer can be formed.
  • the rod-like compound used in this embodiment is preferably a monofunctional polymerizable liquid crystal material having a single polymerizable functional group in the molecule. Since the monofunctional polymerizable liquid crystal material has excellent alignment characteristics, by using such a monofunctional polymerizable liquid crystal material, the optically anisotropic film of this embodiment can be made excellent in optical anisotropy. Because
  • rod-shaped compound used in the present embodiment include compounds represented by the following formulas (1) to (6).
  • H 2 C CHG00 ⁇ GH2 ⁇ ) ⁇ 0 ⁇ ⁇ Vcoo— ⁇ -0CH 3 (5)
  • the liquid crystalline materials represented by the chemical formulas (1), (2), (5), and (6) are DJ. Broer et al., Makromol. Chem. 190,3201—3215 (1989), or DJ. It can be prepared according to or similar to the method disclosed in Broer et al., Makromol. Chem. L90, 2250 (1989). In addition, the preparation of the liquid crystalline material represented by the chemical formulas (3) and (4) is disclosed in DE 195,04,224.
  • nematic liquid crystalline material having an acrylate group at the terminal include:
  • the rod-shaped compound used in this embodiment may be only one kind or two or more kinds.
  • the rod-like composite is used by mixing a liquid crystalline material having one or more polymerizable functional groups at both ends and a liquid crystalline material having one or more polymerizable functional groups at one end, This is preferred because the polymerization density (crosslinking density) and optical properties can be arbitrarily adjusted by adjusting the mixing ratio of the two.
  • the resin material used in this embodiment is a cellulose derivative constituting a transparent substrate described later.
  • an optically anisotropic film excellent in adhesion between the transparent substrate and the optically anisotropic layer can be obtained by containing such a cellulose derivative in the optically anisotropic layer.
  • the adhesiveness between the transparent substrate and the optically anisotropic layer in the optically anisotropic film of the present embodiment is within a desired range. There is no particular limitation as long as it is within a range that can be enclosed.
  • the content power of the cellulose derivative is preferably in the range of 1% by mass to 50% by mass, and more preferably in the range of 5% by mass to 30% by mass.
  • the optically anisotropic layer used in the present embodiment may contain other compounds in addition to the optically anisotropic material and the resin material.
  • examples of such other compounds include silicone leveling agents such as polydimethylsiloxane, methylphenol siloxane, and organically modified siloxane; linear polymers such as polyalkyl acrylate and polyalkyl butyl ether; Surfactants such as surfactants and hydrocarbon surfactants; Fluorine leveling agents such as tetrafluoroethylene; photopolymerization initiators and the like can be mentioned.
  • a photopolymerization initiator is included as the other compound.
  • the photopolymerization initiator used in this embodiment is the same as that described in the above section "(1) Optical anisotropic film of the first embodiment", and thus the description thereof is omitted here. .
  • the content of the photopolymerization initiator is not particularly limited as long as it is within a range in which the rod-like compound can be polymerized in a desired time.
  • the amount of the photopolymerization initiator is usually 100 parts by weight of the rod-like compound.
  • the range of 1 to 10 parts by weight is preferable, and the range of 3 to 6 parts by weight is particularly preferable.
  • a photopolymerization initiation assistant can be used in combination.
  • photopolymerization initiation aids include triethanolamine, methyljetanolamine, and the like.
  • benzoic acid derivatives such as 2-dimethylaminoethyl benzoic acid, 4-dimethylamide ethyl benzoate, etc.
  • polyester (meth) acrylate which is obtained by reacting (meth) acrylic acid with a polyester prepolymer obtained by condensing a polyhydric alcohol and a monobasic acid or polybasic acid
  • polyol A polyurethane (meth) acrylate obtained by reacting a compound having two isocyanate groups and two isocyanate groups with each other and then reacting the reaction product with (meth) acrylic acid
  • bisphenol A type epoxy resin bis Phenolic F type epoxy resin, novolak type epoxy resin, polycarboxylic acid polyglycidyl ester, polyol polyglycidyl ether, aliphatic or cycloaliphatic epoxy resin, amino group epoxy resin, triphenol methane type epoxy Epoxy resins such as xylose and dihydroxybenzene type epoxy resins and
  • the thickness of the optically anisotropic layer used in the present embodiment is dependent on the wavelength dependence of Re of the optically anisotropic film of the present embodiment, depending on the optically anisotropic material and the type of the transparent substrate described later. It is not particularly limited as long as it can be made into a reverse dispersion type.
  • the thickness of the optically anisotropic layer in this embodiment is usually preferably in the range of 0.5 / ⁇ ⁇ to 20 / ⁇ ⁇ .
  • the transparent substrate used in this embodiment has the above-described cellulose derivative power, and the wavelength dependency of Re is a reverse dispersion type.
  • the transparent substrate used in this embodiment is not particularly limited as long as the wavelength dependency of Re is inverse dispersion.
  • the transparent substrate used in this embodiment has a Re ratio of 0. Those within the range of 3 to 1 are preferred, and those within the range of 0.5 to 0.9 are particularly preferred.
  • a film having a Re ratio within the above range it is easy to make the retardation film of the present invention have a wavelength dependency of Re that is a reverse dispersion type.
  • Rth Ratio to Rth (Rth) at 550 nm (Rth / Rth) (Hereafter, simply “R
  • the transparent substrate used in this embodiment preferably has the Rth ratio in the range of 0.3 to 1.
  • it may be within the range of 0.5 to 0.9.
  • the configuration of the transparent substrate used in this embodiment is not limited to a configuration composed of a single layer, and may have a configuration in which a plurality of layers are stacked.
  • layers having the same composition may be stacked, or a plurality of layers having different compositions may be stacked.
  • the transparency of the transparent substrate used in the present embodiment may be arbitrarily determined according to the transparency required for the retardation film of the present invention, but usually the transmittance in the visible light region is 80% or more. It is more preferable that it is 90% or more.
  • the transmittance of the transparent substrate can be measured by JIS K7361-1 (Testing method of total light transmittance of a plastic-transparent material).
  • the thickness of the transparent substrate used in the present embodiment is not particularly limited as long as necessary self-supporting properties can be obtained according to the use of the retardation film of the present invention. .
  • it is preferably within the range of 10 ⁇ m to 188 ⁇ m, particularly preferably within the range of 20 ⁇ m to 125 ⁇ m, and more preferably 30 ⁇ m to 80 ⁇ m. It is preferably within the range of m.
  • the thickness of the transparent substrate is thinner than the above range, there is a force that may not provide the necessary self-supporting property to the retardation film of the present invention. Further, when the thickness is larger than the above range, for example, when cutting the retardation film of the present invention, the processing waste increases! Or the cutting blade may wear out quickly.
  • Re of the transparent substrate used in this embodiment is a desired position in the retardation film of the present invention. If it is in the range which can provide phase difference, it will not be specifically limited. According to the use of the retardation film of the present invention and the specific embodiment of the optically anisotropic film used in this embodiment
  • the transparent substrate used in this embodiment has a Re of 550 ⁇ at 550 nm! It is preferable to be within a range of ⁇ 50 nm.
  • the transparent substrate used in this embodiment has an Rth force ⁇ ⁇ at a wavelength of 550 nm! Preferable to be in the range of ⁇ 100 nm! / ,.
  • the wavelength dependence of Re of the transparent substrate used in this embodiment may be any of a reverse dispersion type, a normal dispersion type, and a flat dispersion type.
  • a distributed type is preferred.
  • the phase difference film of the present invention can be used in a wider wavelength region and can exhibit the viewing angle compensation function of the liquid crystal display device. Because it can be done.
  • the optically anisotropic film of the second embodiment used in the present invention will be described.
  • the wavelength dependency of Re is positive dispersion.
  • the optically anisotropic film of the present embodiment is not particularly limited as long as the Re ratio is greater than 1, and is appropriately adjusted depending on the use of the retardation film of the present invention. That's fine.
  • the Re ratio is preferably in the range of 1.01 to L3, particularly preferably in the range of 1.01 to L2.
  • the retardation film of the present invention can improve the viewing angle uniformity of the liquid crystal display device in a wider wavelength region.
  • the optically anisotropic film of the present embodiment uses a transparent substrate having a cellulose derivative power, and the cellulose derivative constituting the transparent substrate has a desired water permeability and the present invention.
  • the retardation film is used as a polarizing plate protective film, it is possible to transmit moisture contained in the polarizer in the polarizing plate manufacturing process and to suppress a decrease in polarization characteristics over time to a desired level.
  • the transparent substrate used in this embodiment the above “1-1. First Embodiment” The description is omitted here since it is the same as that described in the section.
  • the transparent substrate is used in the optically anisotropic film of this embodiment
  • desired optical anisotropy and Re wavelength dependency are imparted to the optically anisotropic film of this embodiment.
  • it will not be specifically limited. Examples of such an embodiment include an embodiment in which the optically anisotropic film of the present embodiment is composed only of the transparent substrate, and an embodiment in which an optically anisotropic layer is laminated on the transparent substrate. Can do.
  • the optically anisotropic film of this embodiment may be any of these embodiments, but the latter embodiment is preferred among them.
  • the optically anisotropic film having an optically anisotropic layer laminated on the transparent substrate is not particularly limited as long as a desired function can be imparted to the retardation film of the present invention. Absent.
  • the optically anisotropic film of the present embodiment is an optically anisotropic film in which the wavelength dependency of the transparent substrate and the cellulose derivative and retardation that are formed on the transparent substrate and constitute the transparent substrate is a positive dispersion type.
  • An embodiment having an optically anisotropic layer containing an isotropic material is preferred. If it has such an aspect, by changing the thickness of the optically anisotropic layer, etc., the optical characteristics of the optically anisotropic film of this embodiment and the wavelength dependence of Re are within a desired range. This is because it is easy to make adjustments.
  • the optical anisotropy satisfying nx> ny can be obtained as it is or by performing further stretching treatment as necessary. Can be granted.
  • optically anisotropic film having such an embodiment will be described in order.
  • the optically anisotropic material used for the optically anisotropic layer in the present embodiment is not particularly limited as long as the wavelength dependence of the letter dispersion is a positive dispersion type.
  • Use of the retardation film of the present invention Depending on the above, those capable of imparting the desired retardation to the retardation film of the present invention can be appropriately selected and used.
  • the optically anisotropic material used in the present embodiment the same material as described in the section “1 1. First Embodiment” can be used, so the description thereof is omitted here. To do.
  • the resin material used in this embodiment is a cellulose derivative constituting a transparent substrate described later.
  • an optically anisotropic film excellent in adhesion between the transparent substrate and the optically anisotropic layer can be obtained by containing such a cellulose derivative in the optically anisotropic layer.
  • the content of the cellulose derivative contained in the optically anisotropic layer of the present embodiment is such that the adhesion between the transparent substrate and the optically anisotropic layer in the optically anisotropic film of the present embodiment is within a desired range. There is no particular limitation as long as it is within a range that can be enclosed.
  • the content power of the cellulose derivative is preferably in the range of 1% by mass to 50% by mass, and more preferably in the range of 5% by mass to 30% by mass.
  • the optically anisotropic layer used in this embodiment may contain other compounds in addition to the optically anisotropic material and the resin material.
  • other compounds the same compounds as those described in the above section “1-1. First Embodiment” can be used, and thus the description thereof is omitted here.
  • the thickness of the optically anisotropic layer used in this embodiment is dependent on the wavelength of Re of the optically anisotropic film of this embodiment, depending on the type of the optically anisotropic material and the transparent substrate described later. It is not particularly limited as long as it can be made positively distributed.
  • the thickness of the optically anisotropic layer in this embodiment is preferably in the range of 0.5 m to 20 ⁇ m.
  • the transparent substrate used in this embodiment also has the cellulose derivative strength described above, and the wavelength dependency of Re is a reverse dispersion type.
  • the retardation layer used in the present invention contains a liquid crystal material, and nx ⁇ between refractive indices nx and ny in arbitrary x and y directions orthogonal to each other in the in-plane direction and refractive index nz in the thickness direction. The relationship between ny and nz is established.
  • the retardation film of the present invention is imparted with a property as a positive C plate by using a retardation layer satisfying such a relationship for nx, ny, and nz. Therefore, the retardation film of the present invention can be suitably used as a viewing angle compensation film for an IPS retardation film.
  • phase difference layer used in the present invention has the relationship of nx ⁇ ny and nz is the same as the fact that the liquid crystal material forms homeotropic pick alignment in the phase difference layer.
  • the liquid crystal material used in the present invention is not particularly limited as long as it can provide the above nx, ny, and nz of the retardation layer with the retardation that satisfies the above relationship.
  • a home-to-mouth pick liquid crystal material that can be home-to-mouth pick-aligned is usually used.
  • the homeotopic pick liquid crystal material is not particularly limited as long as a desired retardation can be imparted to the retardation film of the present invention by forming homeotopic pick alignment.
  • the homeotopic liquid crystal material used in the present invention preferably has a polymerizable functional group. This is because, by using such a homeotopically picked liquid crystal material, they can be polymerized with each other via a polymerizable functional group, so that the mechanical strength of the retardation layer in the present invention can be improved. In addition, the alignment stability of the home-mouth pick liquid crystal material in the retardation layer can be improved.
  • polymerizable functional group various polymerizable functional groups that are polymerized by the action of ionizing radiation such as ultraviolet rays and electron beams, or heat are used.
  • Typical examples of these polymerizable functional groups include radical polymerizable functional groups or cationic polymerizable functional groups.
  • representative examples of radically polymerizable functional groups include functional groups having at least one addition-polymerizable ethylenically unsaturated double bond, and specific examples include a buluyl having or not having a substituent.
  • an acrylate group (generic name including an allyloyl group, a methacryloyl group, an attaryloxy group, and a methacryloyloxy group).
  • cationic polymerizable functional group examples include an epoxy group.
  • examples of the polymerizable functional group include an isocyanate group and an unsaturated triple bond.
  • a functional group having an ethylenically unsaturated double bond is preferably used from the viewpoint of the process.
  • the home-picked liquid crystal material used in the present invention may have a plurality of the above-described polymerizable functional groups, or may have only one.
  • Such a homeotopically picked liquid crystal material includes a material having a homeotopic orientation that can form a homeotropic orientation without using a vertical alignment film (first homeotopically picked liquid crystal material), and Although the homeo-mouth pick alignment cannot be formed, a material capable of forming a home-o-mouth pick alignment by using a vertical alignment film (second home-to-mouth pick liquid crystal material) can be mentioned. In the present invention, not only the first home-mouth pick liquid crystal material but also the second home-mouth pick liquid crystal material can be suitably used.
  • the homeotopic pick liquid crystal material when the second homeotopic pick liquid crystal material is used, in order to align the homeotopic pick liquid crystal material in the phase difference layer, usually, the homeotopic pick liquid crystal material is usually used.
  • An alignment layer having an alignment regulating force for homeotropic orientation of the liquid crystal material is used between the optically anisotropic film and the retardation layer, or the liquid crystal material is homeotoped in the optically anisotropic layer.
  • a method using an orientation control compound having a function of mouth-pick orientation is used, and disclosed in, for example, JP-A-10-319408, 2002-174724, and JP-A-2003-195035.
  • the first homeotropic liquid crystal material homeotropic alignment can be formed without using a vertical alignment film, and a desired retardation can be imparted to the retardation layer in the present invention.
  • a desired retardation can be imparted to the retardation layer in the present invention.
  • a first homeotropic liquid crystal material for example, a monomer unit containing a liquid crystalline fragment side chain having a positive refractive index anisotropy and a monomer unit containing a non-liquid crystalline fragment side chain are used.
  • liquid crystal polymers such as polymers.
  • Such liquid crystal polymers are described in, for example, JP-A 2003-121853, JP-A 2002-174725, JP-A 2002-333642, and JP-A 2005-70098. Such compounds can be mentioned.
  • an additive such as a surfactant having a vertical alignment action can be used, and examples thereof include JP-A-2002-148626. Can do.
  • JP 2000-514202 A can be mentioned.
  • a homeotopic pick alignment can be formed by using a vertical alignment film or the like, and the retardation layer in the present invention has a desired retardation.
  • the retardation layer in the present invention has a desired retardation.
  • nematic liquid crystal materials exhibiting a nematic phase are preferably used in the present invention.
  • the above second home-picked liquid crystal material used in the present invention include, for example, JP-A-7-258638, JP-T-10-508882 and # ⁇ 2003-287623. Examples of such compounds are described.
  • the compounds represented by the above formulas (1) to (17) can be suitably used as the second home-mouth pick liquid crystal material.
  • examples of the second home-mouth pick liquid crystal material used in the present invention include, Examples thereof include compounds as described in Kaihei 10-319408.
  • a compound represented by the following chemical formula can be preferably used.
  • X is 1 to 12
  • Z is 1, 4 phenylene group or 1, 4-cyclohexylene group
  • R 1 is a force that is halogen or cyan, or carbon atom 1 to
  • An alkyl or alkoxy group having 12 and L is a force that is H, halogen or CN, or an alkyl, alkoxy or acyl group having 1 to 7 carbon atoms.
  • the liquid crystal material contained in the retardation layer in the present invention is a polymer polymerized via the polymerizable functional group. Become.
  • the liquid crystal material contained in the retardation layer in the present invention may be one type or two or more types. Further, when two or more kinds of liquid crystal materials are used, the first home-mouth pick liquid crystal material may be mixed with the second home-mouth pick-up liquid crystal material.
  • the retardation layer in the present invention contains other compounds than the liquid crystal material. May be. Such other compounds are not particularly limited as long as they do not impair the alignment state of the liquid crystal material in the retardation layer and the optical properties of the retardation layer, and are not particularly limited. It can be appropriately selected and used according to the use of the retardation film.
  • examples of the other compound that can be suitably used in the present invention include an alignment control compound that assists in the formation of the home-mouth pick alignment of the liquid crystal material.
  • an orientation control compound By using such an orientation control compound, there is an advantage that it is possible to use the homeomorphic liquid crystal material of the second aspect.
  • the regularity of home-to-mouth pick alignment can be improved by using such an alignment control compound.
  • the alignment control compound is not particularly limited as long as it can impart a desired homeotropic pick alignment regulating force to the retardation layer in the present invention.
  • a surfactant can be preferably used as the orientation control compound used in the present invention. Surfactants are unevenly distributed at the air interface in the retardation layer, and the specific direction of the molecules can be arranged toward the retardation layer, so that the above-described homeotopic orientation regulation force is easily imparted to the retardation layer. Because it can be done.
  • surfactant used in the present invention examples include sulfonate surfactants, and fluorinated sulfonate surfactants are particularly preferably used.
  • fluorinated sulfonate surfactant examples include trade names FC-4430 and FC-4432 (both manufactured by 3M Company).
  • examples of the other compound used in the present invention include a polymerization initiator, a polymerization inhibitor, a plasticizer, a surfactant, and a silane coupling agent.
  • polyester (meth) acrylate which is obtained by reacting a polyester prepolymer obtained by condensing a polyhydric alcohol and a monobasic acid or polybasic acid with (meth) acrylic acid
  • Polyurethane (meth) acrylate obtained by reacting a compound having a vinyl group and two isocyanate groups with each other and then reacting the reaction product with (meth) acrylic acid
  • bisphenol A type epoxy resin Bisphenol F type epoxy resin, novolak type epoxy resin
  • a photopolymerizable compound such as epoxy (meth) acrylate obtained
  • the thickness of the retardation layer in the present invention is not particularly limited as long as it is within a range in which desired optical properties can be imparted to the retardation layer, depending on the type of the liquid crystal material and the like, but is 0.5 / ⁇ ⁇ . In particular, it is preferable to be in the range of 0.5 ⁇ m to 5 ⁇ m, especially in the range of 1 ⁇ m to 3 ⁇ m. Is preferred.
  • the retardation layer in the present invention is a force that exhibits retardation. Such retardation can be arbitrarily adjusted according to the use of the retardation film of the present invention.
  • the retardation layer used in the present invention has a thickness-direction letter force ⁇ ! It is preferable to be within the range of ⁇ Onm.
  • the retardation layer used in the present invention is a force that is formed on the optically anisotropic film described above.
  • the retardation layer is formed on the optically anisotropic film.
  • the embodiment formed on the optically anisotropic layer may be an embodiment formed on the optically anisotropic layer or on the surface opposite to the surface on which the optically anisotropic layer is formed. It may be an aspect.
  • FIG. 3 is a schematic diagram showing an example of an embodiment in which a retardation layer is formed on the optically anisotropic film in the present invention.
  • the optically anisotropic film 1 in which the optically anisotropic layer lb is formed on the transparent substrate la is used as the retardation film 10 ′, 10 ”force of the present invention.
  • the retardation layer 2 is formed on the optical film 1 as the optical anisotropic layer. It may be formed on lb (Fig. 3 (a)) or the above light It may be formed on a surface opposite to the surface on which the scholarly anisotropic layer lb is formed (FIG. 3 (b)).
  • the retardation layer is formed on the surface on the optically anisotropic layer side
  • the optically anisotropic layer and the retardation layer are on the same side, continuous coating is immediately produced. It is easy, and the surface scattering of the optically anisotropic layer can be canceled and the opposite surface of the transparent substrate can be exposed, so that the exposed surface side can be laminated with a polarizer.
  • various functional layers such as an antireflection layer can be laminated, which has the advantage of increasing the degree of freedom in usage and design specifications.
  • the retardation layer is formed on the surface opposite to the surface on which the optically anisotropic layer is formed, there is no interaction between the retardation layer and the optical functional layer. It is easy to impart desired optical characteristics to the retardation layer, which is less likely to cause a shift or variation in the design value force of the retardation as described above.
  • a mode more suitable for the above-mentioned 2 mode force may be appropriately selected and used.
  • the retardation film of the present invention has at least the above-mentioned optically anisotropic film and the above-mentioned retardation layer. Any other configuration may be used as necessary.
  • an arbitrary configuration used in the present invention one having a desired function can be appropriately selected and used depending on the use of the retardation film of the present invention. Examples of such an arbitrary configuration include a transparent overcoat layer formed on the retardation layer. By using such an overcoat layer, even when a liquid crystal display device is produced using the retardation film of the present invention, even if the adhesive layer is laminated on the retardation layer side, the retardation film is used. It is also a force that can improve the durability of the.
  • the retardation exhibited by the retardation film of the present invention can be determined as appropriate according to the application of the retardation film of the present invention. Among them, the retardation film of the present invention has the same Nz factor.
  • the above Nz factor is a parameter that defines the shape of the refractive index ellipsoid. It is determined by the refractive indices nx and ny in the x and y directions orthogonal to each other in the in-plane direction and the refractive index nz in the thickness direction. Is represented by the following equation.
  • Nz (nx—nz) ,, nx—ny)
  • the above Nz factor is obtained, for example, by measuring according to the above equation after measuring the above nx, ny, and nz by the parallel-col rotation method using KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd. be able to.
  • the film preferably has Re at a wavelength of 550 nm in the range of Onm to 300 nm.
  • Rth at a wavelength of 550 nm is preferably in the range of ⁇ 600 ⁇ Rth ⁇ 150.
  • the Re wavelength dependency of the retardation film of the present invention is a reverse dispersion type in which Re becomes smaller as the wavelength becomes shorter, but is a positive dispersion type in which Re becomes larger as the wavelength becomes shorter.
  • it may be a flat type that does not have wavelength dependency in Re.
  • the said wavelength dispersion is a reverse dispersion type
  • the Re ratio is preferably in the range of 0.6 or more and less than 1.0. In particular, the range of 0.8 to 0.9 is preferable.
  • the form of the retardation film of the present invention is not particularly limited.
  • the retardation film of the present invention may be in the form of a sheet that matches the screen size of a liquid crystal display device using the retardation film of the present invention, or may be long. It may be a shape.
  • the method for producing a retardation film of the present invention is a method capable of producing a retardation film having the above-described configuration. If it is, it will not specifically limit. As such a method, for example, the following three methods can be shown in column f.
  • the first method is a coating liquid for forming an optically anisotropic layer, which uses a transparent substrate having a cellulose derivative strength and contains the urethane-based resin or an optically anisotropic material whose wavelength dependency is a positive dispersion type.
  • An optically anisotropic film production process for producing an optically anisotropic film by coating on the transparent substrate, and stretching for stretching the optically anisotropic film produced by the optically anisotropic film production process And applying the coating liquid for forming a retardation layer containing the liquid crystal material on the optically anisotropic layer of the optically anisotropic film stretched by the stretching process and the optically anisotropic film.
  • the second method is a coating liquid for forming an optically anisotropic layer, which uses a transparent substrate having a cellulose derivative strength and contains the above urethane-based resin or an optically anisotropic material whose wavelength dependency is a positive dispersion type.
  • An optically anisotropic film production process for producing an optically anisotropic film by coating on the transparent substrate, and an optical anisotropy of the optically anisotropic film produced by the optically anisotropic film production process A retardation layer forming step of forming a retardation layer on the optically anisotropic layer by coating a retardation layer forming coating solution containing the liquid crystal material on the optical layer; and the optical layer And a stretching step of stretching the laminate of the anisotropic film and the retardation layer.
  • a retardation layer may be formed on the surface of the optical anisotropic film opposite to the surface on which the optical anisotropic layer is formed.
  • the third method is a coating liquid for forming an optically anisotropic layer, which uses a transparent substrate having cellulose derivative strength and contains the urethane-based resin or an optically anisotropic material whose wavelength dependency is a positive dispersion type.
  • An optically anisotropic film production process for producing an optically anisotropic film by coating on the transparent substrate, and stretching for stretching the optically anisotropic film produced by the optically anisotropic film production process And forming a retardation layer containing the liquid crystal material on a substrate provided with a step and a vertical alignment film, and then forming only the retardation layer with the optical anisotropy. And a retardation layer forming step of adhering to the optically anisotropic layer of the film via an adhesive.
  • a retardation layer may be formed on the surface of the optical anisotropic film opposite to the surface on which the optically anisotropic layer is formed.
  • the retardation film of the present invention can be produced by any of the above methods. Among them, according to the first method, the optical anisotropy of the first embodiment can be more easily performed. A retardation film using the film can be obtained.
  • the optically anisotropic material when a rod-like compound having a polymerizable functional group is used as the optically anisotropic material, the optically anisotropic material is polymerized.
  • the timing of subjecting the optically anisotropic material to the polymerization treatment may be before or after the stretching step. .
  • the apparatus used in the stretching process, the processing method, and the like are basically the same as those used for stretching a normal synthetic resin film, and an optically anisotropic film is used.
  • the film may be stretched under appropriate conditions in consideration of the constituent materials and the desired letter value.
  • biaxial stretching For stretching, either uniaxial stretching treatment or biaxial stretching treatment may be performed.
  • the biaxial stretching process may be an unbalanced biaxial stretching process.
  • unbalanced biaxial stretching a polymer film is stretched at a certain magnification in a certain direction and stretched at a higher rate in a direction perpendicular thereto.
  • the bi-directional stretching process may be performed simultaneously.
  • the stretching treatment is not particularly limited.
  • it can be appropriately performed by any stretching method such as a roll stretching method, a long gap stretching method, a tenter stretching method, and a tubular stretching method.
  • the polymer film is preferably heated to, for example, a glass transition point temperature or higher and a melting temperature (or melting point temperature) or lower.
  • the stretching process may be a mode of stretching in the direction parallel to the film transport direction (longitudinal stretching), or A mode (lateral stretching) may be employed in which the film is stretched in a direction substantially perpendicular to the film conveyance direction.
  • the draw ratio of the drawing treatment is appropriately determined depending on the desired letter value and is not particularly limited. From the viewpoint of making the letter value uniform at each point in the in-plane direction of the film, it is preferably in the range of 1.03 to 2 times.
  • a method generally used for producing a retardation film for a liquid crystal display device can be used. Omitted.
  • the brightness enhancement film of the present invention includes the retardation film according to the present invention, and a cholesteric liquid crystal layer containing a cholesteric aligned liquid crystal material formed on the retardation layer included in the retardation film. It is what.
  • FIG. 4 is a schematic view showing an example of the brightness enhancement film of the present invention.
  • the brightness enhancement film 20 of the present invention includes a retardation film 10 and a cholesteric liquid crystal layer formed on the retardation layer 2 of the retardation film 10 and containing a cholesteric aligned liquid crystal material. 21.
  • the brightness enhancement film 20 of the present invention is characterized in that the retardation film according to the present invention is used as the retardation film 10.
  • the retardation film according to the present invention since the retardation film according to the present invention is used, a brightness enhancement film having an excellent brightness enhancement function can be obtained by using it as a polarizing plate protective film.
  • the brightness enhancement film of the present invention has at least the retardation film and the cholesteric liquid crystal layer.
  • the retardation film used in the present invention is the same as that described in the above section “A. Retardation film”, and thus the description thereof is omitted here.
  • the cholesteric liquid crystal layer used in the present invention is formed on the retardation layer of the retardation film described above and has a cholesteric aligned liquid crystal material.
  • the cholesteric liquid crystal layer used in the present invention is not particularly limited as long as it has a property of reflecting either left-handed or right-handed circularly polarized light and transmitting other light.
  • the cholesteric liquid crystal layer used in the present invention exhibits circular dichroism in at least a part of visible light band, or exhibits circular dichroism in a band of 200 nm or more of visible light. Prefer what you show.
  • cholesteric liquid crystal layer examples include a liquid crystal polymer alignment product and a liquid crystal monomer alignment product having a polymerization layer force.
  • the cholesterol liquid crystal layer used in the present invention may have these composite layer forces.
  • Specific examples of the cholesteric liquid crystal layer used in the present invention include those described in JP-A-2004-198478.
  • the thickness of the cholesteric liquid crystal layer used in the present invention is not particularly limited as long as a desired selective reflection function can be imparted to the cholesteric liquid crystal layer.
  • it is preferably in the range of 1 ⁇ m to 30 ⁇ m, and particularly preferably in the range of 2 ⁇ ⁇ m.
  • the cholesteric liquid crystal layer used in the present invention requires at least one additive such as a polymer other than the liquid crystal polymer, a stabilizer, an inorganic compound such as a plasticizer, an organic compound, a metal, or a compound thereof. It can be blended according to.
  • the cholesteric liquid crystal layer used in the present invention has a wide wavelength range such as a visible light region by combining two or more layers with different reflection wavelengths to form an overlapping structure. It can also be used to reflect circularly polarized light.
  • the method for producing the brightness enhancement film of the present invention is not particularly limited as long as it is a method capable of producing the brightness enhancement film having the above-described configuration.
  • the retardation film of the present invention is used, and the cholesteric liquid crystal layer type containing a nematic liquid crystal material and a chiral agent on the retardation layer of the retardation film.
  • An example is a method of forming a cholesteric liquid crystal layer on the retardation layer by applying a composition coating liquid.
  • the cholesteric liquid crystal layer forming coating solution is usually applied onto the retardation layer, and then this is applied.
  • a method of cholesteric alignment of the liquid crystal material after drying is used.
  • polymerization treatment is performed by ultraviolet irradiation or the like. Details of such a method are the same as known methods generally used for forming a cholesteric liquid crystal layer, and thus detailed description thereof is omitted here.
  • the polarizing plate of the present invention can be classified into two embodiments depending on its constitution.
  • C 1 Polarizing plate of the first embodiment
  • the polarizing plate of the first embodiment of the present invention will be described.
  • the retardation film according to the present invention is used as a polarizing plate protective film. That is, the polarizing plate of this embodiment is the retardation film according to the present invention and the optically anisotropic film provided in the retardation film, on the side opposite to the side on which the retardation layer is formed. It has the polarizer formed on the surface, and the polarizing plate protective film formed on the said polarizer, It is characterized by the above-mentioned.
  • FIG. 5 is a schematic view showing an example of the polarizing plate of this embodiment.
  • the polarizing plate 30 of this embodiment includes a retardation film 10, a polarizer 31 formed on the optical anisotropic film 1 provided in the retardation film 10, and the polarizer 31. And a polarizing plate protective film 32 formed thereon.
  • the polarizing plate 30 of this embodiment is characterized in that the retardation film 10 of the present invention is used as the retardation film 10.
  • the retardation film according to the present invention is used as one polarizing plate protective film, so that it has excellent durability and a viewing angle with respect to the IPS liquid crystal display device. A polarizing plate having a compensation function can be obtained.
  • the polarizing plate of this embodiment has at least the retardation film, the polarizer, and the polarizing plate protective film.
  • the retardation film used in the present embodiment is the same as that described in the above section “A. Retardation film”, and thus the description thereof is omitted here.
  • the polarizing plate protective film used in this embodiment has a function of preventing the polarizer from being exposed to moisture in the air in the polarizing plate of this embodiment and a function of preventing a change in the dimensions of the polarizer. It is.
  • the polarizing plate protective film used in this embodiment is not particularly limited as long as it can protect the polarizer in the polarizing plate of this embodiment and has desired transparency.
  • the polarizing plate protective film used in this embodiment preferably has a transmittance of 80% or more in the visible light region, and preferably 90% or more.
  • the transmittance of the polarizing plate protective film can be measured by JIS K7361-1 (Testing method for total light transmittance of plastic one-transparent material).
  • Examples of the material constituting the polarizing plate protective film used in this embodiment include a cell mouth derivative, a cycloolefin-based resin, polymethyl methacrylate, polybutyl alcohol, polyimide, polyarylate, polyethylene terephthalate, Examples include polysulfone, polyether sulfone, amorphous polyolefin, modified acrylic polymer, polystyrene, epoxy resin, polycarbonate, and polyesters.
  • a cellulose derivative or a cycloolefin-based resin as the resin material.
  • the cellulose derivative is described as a cellulose derivative constituting a transparent substrate used for an optically anisotropic film, for example, in the section "A. Retardation film" above. The same ones as described above can be used.
  • the cycloolefin-based resin is not particularly limited as long as it has a monomer unit composed of cyclic olefin (cyclohexylene).
  • Examples of such a monomer having a cyclic olefin ability include norbornene polycyclic norbornene monomers.
  • cycloolefin-based resin used in this embodiment, it can be suitably used even if the cycloolefin polymer (COP) or the cycloolefin copolymer (COC)!
  • the cycloolefin-based resin used in this embodiment may be a homopolymer of a monomer that also serves as the above-described cyclic polyolefin, or may be a copolymer.
  • the cycloolefin-based resin used in this embodiment preferably has a saturated water absorption at 23 ° C of 1% by mass or less, preferably 0.1% by mass to 0.7% by mass. Those within are preferred. By using such cycloolefin-based resin, it is possible to make the polarizing plate of this embodiment less susceptible to changes in optical properties and dimensions due to water absorption.
  • the saturated water absorption is obtained by immersing in 23 ° C. water for 1 week and measuring the increased weight according to ASTM D570.
  • the cycloolefin-based resin used in this embodiment preferably has a glass transition point in the range of 100 ° C to 200 ° C, particularly in the range of 100 ° C to 180 ° C. Some are preferred, and those within the range of 100 ° C to 150 ° C are preferred. When the glass transition point is within the above range, the polarizing plate of this embodiment is also capable of making it superior in heat resistance and processability.
  • polarizing plate protective film made of cycloolefin-based resin used in this embodiment include, for example, Topas manufactured by Ticona, Arton manufactured by JSR, ZEONOR manufactured by Nippon Zeon, and ZEONEX manufactured by Nippon Zeon In addition, examples include Mitsui Chemical's appell.
  • any of the above-mentioned cellulose derivative power and the above-mentioned cycloolefin-based resin can be suitably used.
  • the polarizing plate protective film on both sides of the polarizing plate of this embodiment becomes a cellulose derivative force. There is a risk that the sex will be impaired.
  • the polarizing plate protective film made of the above-mentioned cycloolefin-based resin or acrylic resin makes it possible to use the polarizing plate protective film made of cycloolefin-based resin or acrylic resin on one side. This is because the phase film of the present invention in which a cellulose derivative is used on the other surface is used, and thus there is little concern as described above.
  • the configuration of the polarizing plate protective film in the present invention is not limited to a configuration consisting of a single layer, and may have a configuration in which a plurality of layers are laminated.
  • layers having the same composition may be stacked, or a plurality of layers having different compositions may be stacked.
  • the polarizer used in this embodiment has a function of imparting polarization characteristics to the polarizing plate of this embodiment.
  • the polarizer used in this embodiment is not particularly limited as long as it can impart desired polarization characteristics to the polarizing plate of this embodiment, and is generally used for a polarizing plate of a liquid crystal display device. Can be used without particular limitation.
  • a polarizer a polybulal alcohol film is usually stretched, and a polarizer containing iodine is used.
  • the method for producing the polarizing plate of this embodiment is not particularly limited as long as it is a method capable of producing a polarizing plate having the above configuration.
  • the above polarizer is usually used.
  • a method of bonding the polarizing plate protective film and the retardation film together with an adhesive is used.
  • the retardation film and the polarizer are usually bonded together so that the slow axis direction of the retardation film and the absorption axis direction of the polarizer are perpendicular to each other.
  • the method used when manufacturing the polarizing plate generally used for a liquid crystal display device can be used.
  • a method described in Japanese Patent No. 3132122 can be used.
  • a long polarizer, a polarizing plate protective film, and a retardation film are usually used.
  • a method for producing a polarizing plate wound up in a roll shape by laminating is used.
  • the polarizer having the absorption axis direction parallel to the longitudinal direction is used, and the retardation film has a slow axis direction.
  • C 2 Polarizing plate of the second embodiment
  • the polarizing plate of the second aspect of the present invention is used as a polarizing plate protective film. That is, the polarizing plate of this aspect is on the brightness enhancement film according to the present invention and the optically anisotropic film provided in the brightness enhancement film, on the side opposite to the side on which the retardation layer is formed. It has a polarizer formed on the surface, and a polarizing plate protective film formed on the polarizer.
  • FIG. 6 is a schematic view showing an example of the polarizing plate of this embodiment.
  • the polarizing plate 40 of this embodiment includes a brightness enhancement film 20, a polarizer 41 formed on the optically anisotropic film 1 provided in the brightness enhancement film 20, and the polarizer 41. And a polarizing plate protective film 42 formed thereon.
  • the polarizing plate 40 of this embodiment is the present invention as the brightness enhancement film 20 described above.
  • a bright brightness enhancement film is used.
  • the use of the brightness enhancement film according to the present invention as one polarizing plate protective film provides a polarizing plate having excellent durability and a brightness enhancement function. Can do.
  • the polarizing plate of this embodiment has at least the brightness enhancement film, the polarizer, and the polarizing plate protective film.
  • the method for producing the polarizing plate of the present embodiment is not particularly limited as long as it is a method capable of producing a polarizing plate having the above-described configuration. As such a method, a method of bonding the polarizing plate protective film and the brightness enhancement film to the polarizer with an adhesive is usually used.
  • the brightness enhancement film and the polarizer are usually bonded so that the direction of the slow axis of the brightness enhancement film and the direction of the absorption axis of the polarizer are 45 °.
  • the method for attaching the polarizing plate protective film, the brightness enhancement film, and the polarizer is the same as the method used when manufacturing a polarizing plate generally used in a liquid crystal display device. Detailed explanation here is omitted.
  • the manufacturing method of the retardation film of this invention is demonstrated.
  • the method for producing a phase difference film of the present invention can be broadly divided into four modes according to the mode. Therefore, the method for producing the retardation film of the present invention will be described below in order according to each aspect.
  • the method for producing a retardation film of the present aspect uses a transparent substrate having cellulose derivative strength, and By applying an optically anisotropic layer-forming coating solution in which an optically anisotropic material having a wavelength dependence of letter dispersion of a positive dispersion type is dissolved in a solvent, the transparent substrate is coated on the transparent substrate.
  • the optically anisotropic layer of the optically anisotropic film stretched by the above stretching step contains a liquid crystal material and has a refractive index nx, ny, and thickness in any x and y directions orthogonal to each other in the in-plane direction.
  • FIG. 7 is a schematic view showing an example of a method for producing the retardation film of this embodiment.
  • the retardation film of this embodiment uses a transparent substrate 51a having a cellulose derivative power (FIG. 7 (a)), and the wavelength dependence of the letter retardation on the transparent substrate 51a.
  • the optically anisotropic layer 51b is formed on the transparent substrate 51a by applying an optically anisotropic layer forming coating solution in which an optically anisotropic material exhibiting positive dispersion is dissolved in a solvent.
  • An optically anisotropic film forming step for forming the optically anisotropic film 51 (FIG.
  • FIG. 7 (c) a stretching step for stretching the optically anisotropic film 51 formed by the optically anisotropic film forming step.
  • any x which contains a liquid crystal material and is orthogonal to each other in the in-plane direction, on the optically anisotropic layer 51b of the optically anisotropic film 51 stretched by the stretching step.
  • the relationship of nx ⁇ ny ⁇ nz between the refractive index nx, ny in the y direction and the refractive index nz in the thickness direction A phase difference layer forming step for forming the phase difference layer 52 formed (FIG. 7 (d)), and a phase difference film 50 in which the phase difference layer 52 is formed on the optically anisotropic film 51. It is to be manufactured (Fig. 7 (e)).
  • the transparent substrate is made of cellulose derivative
  • the retardation film produced according to this aspect is used as an inner polarizing plate protective film
  • a polarizing plate protective film made of cycloolefin-based resin can be used as the polarizing plate protective film
  • a polarizing plate having excellent durability can be obtained.
  • a retardation film can be produced.
  • the method for producing a retardation film of the present embodiment includes at least the optically anisotropic film forming step, the stretching step, and the retardation layer forming step. It is a thing that has a process.
  • the optical anisotropic film formation process used for this aspect is demonstrated.
  • a transparent substrate having a cellulose derivative power is used, and an optically anisotropic layer forming coating in which an optically anisotropic material whose wavelength dependency of the retardation is a positive dispersion type is dissolved in a solvent on the transparent substrate.
  • a solvent containing a ketone solvent having a boiling point of 100 ° C. or higher is used.
  • a solvent containing the ketone solvent is used as a solvent for the coating liquid for forming the optically anisotropic layer, whereby the haze is small and an optically anisotropic film is formed. It is something that can be done.
  • the coating liquid for forming an optically anisotropic layer used in this step is a solvent containing a ketone solvent having a boiling point of 100 ° C. or more, an optically anisotropic material whose wavelength dependency of the retardation is a positive dispersion type. It is dissolved in
  • the solvent used in the optically anisotropic layer-forming coating solution is not particularly limited as long as it can dissolve the optically anisotropic material at a desired concentration.
  • a solvent containing a ketone solvent having a boiling point of 100 ° C. or higher is used as the solvent used in the coating liquid for forming the optically anisotropic layer.
  • the haze is small and it is possible to form an optically anisotropic film.
  • the solvent used for the optically anisotropic layer forming coating solution according to this embodiment ! a solvent containing a ketone solvent having a boiling point of 100 ° C or higher is used.
  • the reason why the optically anisotropic film can be formed is not clear although the haze is small over the optically anisotropic film forming step, but it is due to the following reasons. Conceivable.
  • the content of the ketone solvent contained in the solvent is preferably an optically anisotropic material described later. It is not particularly limited as long as it can be dissolved at a concentration of.
  • the solvent used in this step is preferably one having a ketone solvent content in the range of 20% by mass to 100% by mass, particularly in the range of 50% by mass to 100% by mass. preferable.
  • the optically anisotropic film having a smaller haze can be formed in this step.
  • the ketone solvent used in this step is not particularly limited as long as it has a boiling point of 100 ° C or higher. It is used in combination with an optically anisotropic material described later and a ketone solvent. It can be appropriately selected and used according to the type of other solvent.
  • the ketone solvent used in this step preferably has a boiling point of 100 ° C or higher, particularly preferably 120 ° C or higher, and further within the range of 130 ° C to 170 ° C. I like things! /.
  • the ketone solvent used in the present invention is preferably one showing a desired solubility in cellulose acetate. More specifically the solubility parameter for cellulose acetate (S p value) 8 (Cal / cm -3) 1/2 ⁇ 13 (Cal / cm _3) is good Mashigu Above all in the range of 1/2 Those within the range of 9 (Cal / cm ⁇ 3 ) 1/2 to 12 (Cal / cm ⁇ 3 ) 1/2 are preferred.
  • ketone solvent used in this step include cyclopentanone, cyclohexanone, methyl isobutyl ketone and the like.
  • cyclopentanone or cyclohexanone as the ketone solvent, an optically anisotropic film having a smaller haze can be formed through the optically anisotropic film forming step. As a result, it is possible to produce a retardation film having further excellent transparency according to this embodiment.
  • the ketone solvent used in this step may be one kind or two or more kinds.
  • the embodiment in which the solvent used in this step contains the ketone solvent may be an embodiment in which only the ketone solvent is used, or the ketone solvent is mixed with another solvent. It may be the mode that was done.
  • the solvent used in this step is a mode in which the above-mentioned ketone solvent is mixed with another solvent
  • the above-mentioned other solvent includes the optical anisotropy described later of the solvent used in this step.
  • the solubility in the material can be in the desired range, it is not particularly limited. Absent. Examples of such other solvents include methyl ethyl ketone, isopropyl alcohol, normal propyl alcohol, toluene, isobutanol, N-butanol, and ethyl acetate.
  • the other solvent used in this step may be only one type or two or more types.
  • optically anisotropic material used in this step is not particularly limited as long as the wavelength dependency of the lettering shows a positive dispersion type.
  • optically anisotropic material used in this step is the same as that described in the section “A. Retardation film”, description thereof is omitted here.
  • the content of the optically anisotropic material in the coating liquid for forming an optically anisotropic layer used in this step is as follows. There is no particular limitation as long as the viscosity of the coating liquid for forming an optically anisotropic layer is within a desired range depending on the coating method for applying the working liquid.
  • the content is preferably in the range of 5% by mass to 50% by mass, particularly preferably in the range of 5% by mass to 40% by mass, and further 5% by mass. It is preferable that it is in the range of% to 30% by mass.
  • the optically anisotropic layer-forming coating solution used in this step may contain other compounds in addition to the solvent and the optically anisotropic material.
  • examples of such other compounds include silicon leveling agents such as polydimethylsiloxane, methylphenylsiloxane, and organically modified siloxane; linear polymers such as polyalkyl acrylate and polyalkyl butyl ether; fluorine Surfactants such as surfactants based on hydrocarbons and hydrocarbons; fluorine leveling agents such as tetrafluoroethylene; photopolymerization initiators and the like.
  • a photopolymerization initiator is included as the other compound.
  • the photopolymerization initiator used in this embodiment is the same as that described in the above section "A. Retardation film", and thus the description thereof is omitted here.
  • a photopolymerization initiation assistant can be used in combination.
  • photopolymerization initiation assistants include tertiary amines such as triethanolamine and methyljetanolamine, and benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and 4-dimethylamidebenzoic acid ethyl.
  • the power S that can be done is not limited to these.
  • the following compounds can be added to the optically anisotropic layer-forming coating solution.
  • examples of compounds that can be added include polyester (meth) acrylates obtained by reacting (meth) acrylic acid with polyester prepolymers obtained by condensing polyhydric alcohols with monobasic acids or polybasic acids; polyols A polyurethane (meth) acrylate obtained by reacting a group having two isocyanate groups with each other and then reacting the reaction product with (meth) acrylic acid; bisphenol A type epoxy resin, Bisphenol F type epoxy resin, novolak type epoxy resin, polyglycidyl ester polycarboxylate, polyol polyglycidyl ether, aliphatic or cycloaliphatic epoxy resin, amino group epoxy resin, triphenol methane type epoxy Epoxy resin such as resin, dihydroxybenzene type epoxy resin and (meth) acrylic resin Photopolymerizable ⁇ product of the epoxy (meth) Atari rate obtained by reacting an acid; photopolymerizable
  • the transparent substrate used in this step also has cellulose derivative power.
  • the transparent substrate used in this step is the same as that described in the section “A. Retardation film”, description thereof is omitted here.
  • the method for coating the optically anisotropic layer-forming coating solution on the transparent substrate is not particularly limited as long as the thickness is uniform and the desired flatness can be achieved.
  • a gravure coating method a reverse coating method, a nail coating method, a dip coating method, a spray coating method, an air knife coating method, a spin coating method, a roll coating method, a printing method, a dip pulling method, a curtain.
  • the coating method, die coating method, casting method, bar coating method, etching coating method, and E-type coating method can be given.
  • the thickness of the coating film formed by applying the optically anisotropic layer-forming coating solution on the transparent substrate is also the desired optical specification (Re and wavelength dependence). ) Is not particularly limited as long as it can be achieved. In particular, in this process, it is preferably within the range of 0.1 111 to 50 111, particularly preferably within the range of 0.5 / ⁇ ⁇ to 30 / ⁇ ⁇ . Further, it is preferably within the range of 0.5 / ⁇ ⁇ to 20 / ⁇ ⁇ .
  • the thickness of the coating film for forming the optically anisotropic layer is thinner than the above range, the planarity of the optically anisotropic layer formed by this process may be impaired, and the thickness may be in the above range. If it is thicker than the enclosure, the drying load of the solvent increases, and the productivity may decrease.
  • a method for drying the coating film of the optically anisotropic layer-forming coating liquid throughout this step for example, a heat drying method, a vacuum drying method, a gap drying method, etc.
  • the drying method used in the above can be used.
  • the drying method used in this step is not limited to a single method, and a plurality of drying methods may be employed, for example, by changing the drying method sequentially according to the amount of remaining solvent.
  • the optically anisotropic material When a compound having a polymerizable functional group is used as the optically anisotropic material, the optically anisotropic material is dried after drying the coating film of the optically anisotropic layer forming coating solution.
  • a polymerization process for polymerization is performed.
  • Such a polymerization treatment may be arbitrarily determined according to the type of the polymerizable functional group.
  • irradiation treatment with ultraviolet rays or visible light, heat treatment or the like is usually used.
  • the timing of performing the polymerization treatment may be carried out after drying the coating film of the coating solution for forming an optically anisotropic layer in this step, or alternatively, the coating layer for forming an optically anisotropic layer may be used. After drying the coating film of the liquid, it may be carried out through a stretching process described later.
  • This step is a step of stretching the optical anisotropic film formed by the optical anisotropic film forming step.
  • the mode of stretching the optically anisotropic film is not particularly limited as long as it can impart desired optical anisotropy to the optically anisotropic film. Therefore, the stretching mode used in this step may be uniaxial stretching or biaxial stretching.
  • the optical anisotropic film has a refractive index nx in the slow axis direction in the in-plane direction and a refractive index ny in the fast axis direction in the in-plane direction. It is preferable to stretch the optically anisotropic film in such a manner as to develop optical anisotropy that satisfies the relationship.
  • an unbalanced biaxial stretching method may be used.
  • a method is used in which the optically anisotropic film is stretched at a certain ratio in a certain direction and stretched at a larger ratio in a direction perpendicular thereto. Note that the above two-direction stretching treatment may be performed simultaneously.
  • the stretching ratio for stretching the optically anisotropic film is not particularly limited as long as it is within a range in which desired optical anisotropy can be imparted to the optically anisotropic film. .
  • the stretching method used in this step is not particularly limited as long as it is a method capable of stretching the optically anisotropic film to a desired stretching ratio.
  • Examples of the stretching method used in this step include a roll stretching method, a long gap stretching method, a tenter stretching method, and a tuber stretching method. In order to perform roll-to-roll bonding with a polarizer, the tenter stretching method is desirable.
  • the optically anisotropic film is stretched in a state of being heated to a glass transition temperature or higher and a melting temperature (or melting temperature) or lower.
  • the optically anisotropic layer of the optically anisotropic film stretched by the stretching process contains a liquid crystal material and has an arbitrary refractive index nx, ny in the x and y directions perpendicular to each other in the in-plane direction, and the thickness direction.
  • This is the process of forming a phase difference layer in which the relationship of nx ⁇ ny and nz is established between the refractive index nz of the film.
  • a refractive index nx, ny in any x, y direction containing a liquid crystal material and orthogonal to each other in the in-plane direction is used.
  • nx ⁇ ny nz holds between the refractive index nz in the thickness direction.
  • a coating solution for forming a retardation layer in which a homeomorphic liquid crystal material is dissolved in a solvent is coated on the optically anisotropic layer, or other glass substrate or the like.
  • Examples thereof include a transfer method in which a phase difference layer in which a homeotope pick liquid crystal material is homeopic pick oriented is separately formed on a substrate and then peeled off and laminated on the optically anisotropic film.
  • the former method is disclosed in JP-A-10-319408, 2002-174724, JP-T2000-514202, and JP2003-195035.
  • the latter method is the same as the method disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-177242, and detailed description thereof is omitted here.
  • liquid crystal material used in this step is the same as that described in the above section "A. Retardation film", and thus the description thereof is omitted here.
  • the method for producing a retardation film of the present embodiment uses a transparent substrate having cellulose derivative power, and an optically anisotropic material in which the wavelength dependence of the letter-deposition exhibits a positive dispersion type is dissolved on a solvent.
  • a liquid crystal material is contained, and refractive indices nx, ny in arbitrary x and y directions orthogonal to each other in the in-plane direction.
  • the retardation layer is formed on the optically anisotropic layer by forming a retardation layer that satisfies the relationship of nx ⁇ ny ⁇ nz with the refractive index nz in the thickness direction.
  • FIG. 8 is a schematic view showing an example of a method for producing the retardation film of this embodiment.
  • the retardation film of this embodiment uses a transparent substrate 51a having cellulose derivative power (FIG. 8 (a)), and the wavelength dependence of the letter retardation on the transparent substrate 51a.
  • the optically anisotropic layer 51b is formed on the transparent substrate 51a by applying an optically anisotropic layer forming coating solution in which an optically anisotropic material exhibiting positive dispersion is dissolved in a solvent.
  • An optically anisotropic film forming step for forming the optically anisotropic film 51 (FIG.
  • the optically anisotropic film 51 formed by the optically anisotropic film forming step On the anisotropic layer 51b, a liquid crystal material is contained, and the refractive indices nx and ny in the x and y directions orthogonal to each other in the in-plane direction and the refractive index nz in the thickness direction are nx ⁇ ny and nz.
  • the retardation layer 52 By forming the retardation layer 52 that satisfies the relationship, the retardation layer 52 is formed on 5 lb of the optically anisotropic layer.
  • a retardation layer forming step for forming the optical layered body 50 ′ (FIG.
  • the transparent substrate is made of cellulose derivative
  • the retardation film produced according to this aspect is used as an inner polarizing plate protective film
  • a polarizing plate protective film made of cycloolefin-based resin can be used as the polarizing plate protective film
  • a retardation film capable of producing a polarizing plate having excellent durability can be produced.
  • the method for producing a retardation film of the present embodiment includes at least the optically anisotropic film forming step, the retardation layer forming step, and the stretching step. You can have a process!
  • the optical anisotropic film formation process used for this aspect is demonstrated.
  • a transparent substrate having a cellulose derivative power is used, and an optically anisotropic layer forming coating in which an optically anisotropic material whose wavelength dependency of the retardation is a positive dispersion type is dissolved in a solvent on the transparent substrate.
  • the liquid crystal material is contained on the optical anisotropic layer of the optical anisotropic film formed by the optical anisotropic film forming step, and in any x and y directions orthogonal to each other in the in-plane direction.
  • a retardation layer is formed on the optically anisotropic layer by forming a retardation layer in which a relationship of nx ⁇ ny and nz is established between the refractive indices nx and ny and the refractive index nz in the thickness direction. This is a step of forming an optical stack.
  • This step is a step of stretching the optical layered body formed by the retardation layer forming step.
  • the said optical laminated body becomes a phase difference film which has predetermined
  • the method for stretching the optical laminate is not particularly limited as long as it can form a retardation film having a desired retardation.
  • the stretching method used in this step is the same as the method described in the above-mentioned section “D-1. Method for producing retardation film of first aspect”. Omitted.
  • the method for producing a retardation film of the present embodiment uses a transparent substrate having cellulose derivative power, and an optically anisotropic material in which the wavelength dependence of the letter-deposition exhibits a positive dispersion type is dissolved on a solvent.
  • FIG. 9 is a schematic view showing an example of a method for producing the retardation film of this embodiment.
  • the method for producing the retardation film of the present embodiment uses a transparent substrate 51a having a cellulose derivative power (FIG. 9 (a)), and the wavelength dependence of letter retardation on the transparent substrate 51a.
  • the optically anisotropic layer 51b is formed on the transparent substrate 51a by applying an optically anisotropic layer forming coating solution in which an optically anisotropic material exhibiting positive dispersion is dissolved in a solvent.
  • An optically anisotropic film forming step for forming the optically anisotropic film 51 (FIG.
  • FIG. 9 (c) a stretching step for stretching the optically anisotropic film 51 formed by the optically anisotropic film forming step.
  • FIG. 9 (c) a liquid crystal material on the surface opposite to the surface on which the optically anisotropic layer 51b of the optically anisotropic film 51 stretched by the stretching step is formed, Refractive indices nx and ny in the x and y directions that are orthogonal to each other in the in-plane direction, and in the thickness direction
  • a retardation layer forming step for forming a retardation layer 52 in which a relationship of nx ⁇ ny ⁇ nz is established between the refractive index nz and the optically anisotropic film 51 (FIG. 9 (d)).
  • the retardation film 50 in which the retardation layer 52 is formed is manufactured (FIG. 9 (e)).
  • the transparent substrate is made of cellulose derivative.
  • a polarizing plate protective film made of a cycloolefin-based resin can be used as the outer polarizing plate protective film. Therefore, a polarizing plate having excellent durability can be obtained.
  • the retardation layer forming step forms a retardation layer on the surface of the optical anisotropic film opposite to the surface on which the optical anisotropic layer is formed. As a result, it becomes easy to form a retardation layer having excellent retardation.
  • a retardation film capable of producing a polarizing plate having excellent durability can be produced.
  • the method for producing a retardation film of the present embodiment includes at least the optically anisotropic film forming step, the stretching step, and the retardation layer forming step. It is a thing that has a process.
  • optically anisotropic film forming step and the stretching step in this embodiment are both the same as those described in the above section “D-1. Method for producing retardation film of first embodiment”. It is.
  • This step includes a liquid crystal material on a surface opposite to the surface on which the optically anisotropic layer of the optically anisotropic film stretched by the stretching step is formed, and is orthogonal to each other in the in-plane direction.
  • This is a step of forming a retardation layer in which a relationship of nx ⁇ ny and nz is established between an arbitrary refractive index nx, ny in the x and y directions and a refractive index nz in the thickness direction.
  • a liquid crystal material is contained on the surface opposite to the surface on which the optically anisotropic layer is formed.
  • a phase difference layer in which a relationship of nx ⁇ ny and nz is established between the refractive indices nx and ny in the x and y directions orthogonal to each other in the in-plane direction and the refractive index nz in the thickness direction can be formed. There is no particular limitation as long as it is present.
  • the method for producing a retardation film of the present embodiment uses a transparent substrate having cellulose derivative power, and an optically anisotropic material in which the wavelength dependence of the letter-deposition exhibits a positive dispersion type is dissolved on a solvent.
  • FIG. 10 is a schematic view showing an example of a method for producing the retardation film of this embodiment.
  • the method for producing a retardation film of this embodiment uses a transparent substrate 51a having a cellulose derivative power (FIG. 10 (a)), and the wavelength dependence of the letter retardation on the transparent substrate 51a.
  • the optically anisotropic layer 51b was formed on the transparent substrate 51a by applying a coating liquid for forming an optically anisotropic layer in which an optically anisotropic material exhibiting a positive dispersion type was dissolved in a solvent.
  • An optical anisotropic film forming step for forming the optical anisotropic film 51 (FIG. 10 (b)), and an optical anisotropic layer of the optical anisotropic film 51 formed by the optical anisotropic film forming step.
  • a liquid crystal material is contained, and the refractive indices nx and ny in the x and y directions orthogonal to each other in the in-plane direction, and the refractive index in the thickness direction nz
  • the retardation layer 52 that satisfies the relationship of nx ⁇ ny ⁇ nz between and Film 51 and the retardation layer formation step of the phase difference layer 52 to form a by optical stack 50 'formed on (FIG.
  • the transparent substrate having a cellulose derivative strength is used.
  • the retardation film produced according to the present invention is used as an inner polarizing plate protective film, Since a polarizing plate protective film made of cycloolefin-based resin can be used as the polarizing plate protective film, a polarizing plate having excellent durability can be obtained.
  • the retardation layer forming step forms the retardation layer on the surface opposite to the surface on which the optically anisotropic layer is formed. As a result, it is easy to form a retardation layer having excellent retardation. For this reason, according to the present invention, a retardation film capable of producing a polarizing plate having excellent durability can be produced.
  • the method for producing a retardation film of the present embodiment includes at least the optically anisotropic film forming step, the stretching step, and the retardation layer forming step. It is a thing that has a process.
  • optically anisotropic film forming step and the stretching step in this embodiment are both the same as those described in the above section “D-2. Method for producing retardation film of first embodiment”. It is.
  • This step includes a liquid crystal material on a surface opposite to the surface on which the optically anisotropic layer of the optically anisotropic film stretched by the stretching step is formed, and is orthogonal to each other in the in-plane direction.
  • This is a step of forming a retardation layer in which a relationship of nx ⁇ ny and nz is established between an arbitrary refractive index nx, ny in the x and y directions and a refractive index nz in the thickness direction.
  • a liquid crystal material is contained on the surface opposite to the surface on which the optically anisotropic layer is formed.
  • Refractive indices nx, ny in the x and y directions orthogonal to each other in the in-plane direction The method is not particularly limited as long as it can form a retardation layer in which the relationship of nx ⁇ ny and nz is established between the rate nz.
  • D-2 except for forming the optically anisotropic film on the surface opposite to the surface on which the optically anisotropic layer is formed, “D-2. Since it is the same as the method described in the section “Method for producing retardation film”, a detailed description thereof is omitted here.
  • liquid crystal display device of the present invention will be described.
  • the liquid crystal display device of the present invention can be classified into four modes according to the mode. Therefore, the liquid crystal display device of the present invention will be described below in each embodiment.
  • the liquid crystal display device according to the first embodiment of the present invention will be described.
  • the liquid crystal display device of this aspect is characterized in that the retardation film of the present invention is used.
  • FIG. 11 is a schematic view showing an example of the liquid crystal display device of this embodiment.
  • the liquid crystal display device 60 of the present embodiment includes a liquid crystal cell 101 and polarizing plates 102A ′ and 102B ′ disposed on both surfaces of the liquid crystal cell 101.
  • the polarizing plates 102A ′ and 102B are sandwiched between the polarizer 111, the polarizing plate protective film 11 lb, and the retardation film 10 of the present invention. It has a configuration.
  • a liquid crystal display device having excellent durability and viewing angle characteristics can be obtained by using the retardation film of the present invention.
  • the embodiment in which the retardation film of the present invention is used is not particularly limited as long as the viewing angle characteristic of the liquid crystal display device of the present invention can be set to a desired level. is not.
  • Examples of such an embodiment include an embodiment in which the retardation film is disposed between a liquid crystal cell and a polarizing plate, and a polarizing plate protective film that constitutes two polarizing plates that sandwich the liquid crystal cell. And an embodiment using a film. In the present embodiment, the latter embodiment is preferable among all of these embodiments, which can be suitably used.
  • the retardation film of the present invention is the latter embodiment By using this, the liquid crystal display device of this embodiment can be thinned.
  • the retardation film of the present invention may be used as an inner polarizing plate protective film or an outer polarizing plate protection film. May be used as a film. Especially, it is preferable to use as an inner side polarizing plate protective film for this aspect. This is because the liquid crystal display device of this embodiment can be made more excellent in durability by using a polarizing plate protective film that also has a cycloolefin-based resin as the outer polarizing plate protective film.
  • liquid crystal cell the polarizing plate, and the like used in the present embodiment are the same as those used in a general liquid crystal display device. Is omitted
  • the liquid crystal display device of this aspect is characterized in that the brightness enhancement film of the present invention is used.
  • FIG. 12 is a schematic view showing an example of the liquid crystal display device of this embodiment.
  • the liquid crystal display device 70 of this embodiment includes a liquid crystal cell 101 and polarizing plates 102A and 102B disposed on both surfaces of the liquid crystal cell 101, and further on the polarizing plate 102A.
  • the brightness enhancement film 20 of the present invention is disposed.
  • a liquid crystal display device having excellent brightness characteristics can be obtained by using the brightness enhancement film of the present invention.
  • the above-described brightness enhancement film of the present invention is particularly limited as long as the brightness enhancement film is generally used in a liquid crystal display device. It ’s not something that ’s done.
  • liquid crystal cell the polarizing plate, and the like used in this embodiment are the same as those used in a general liquid crystal display device. Is omitted
  • liquid crystal display device of the third aspect a liquid crystal display device according to a third aspect of the present invention will be described.
  • the liquid crystal display device of this embodiment is characterized in that the polarizing plate of the present invention is used.
  • FIG. 13 is a schematic view showing an example of the liquid crystal display device of this embodiment.
  • the liquid crystal display device 80 according to the present embodiment is characterized in that the liquid crystal cell 101 and the polarizing plate 30 of the present invention are disposed on both surfaces of the liquid crystal cell 101.
  • a liquid crystal display device excellent in durability and viewing angle characteristics can be obtained by using the polarizing plate of the present invention.
  • the polarizing plate of the present invention is applied to both of two polarizing plates used in the liquid crystal display device of the present embodiment.
  • An embodiment in which the polarizing plate of the present invention is used for one polarizing plate may be used.
  • it is preferable that the polarizing plate of the present invention is used for both of the two polarizing plates. This is because the liquid crystal display device of this aspect can be made more durable.
  • liquid crystal cell the polarizing plate, and the like used in this embodiment are the same as those used in a general liquid crystal display device. Is omitted
  • the liquid crystal display device of this embodiment is characterized in that the retardation film produced by the method for producing a retardation film of the present invention is used.
  • FIG. 14 is a schematic view showing an example of the liquid crystal display device of this embodiment.
  • the liquid crystal display device 90 of this embodiment includes a liquid crystal cell 101 and polarizing plates 102A ′ and 102B ′ disposed on both surfaces of the liquid crystal cell 101.
  • the liquid crystal display device 90 of this embodiment includes the polarizing plates 102A ′ and 1
  • 02B has a configuration in which the polarizer 111 is sandwiched between the polarizing plate protective film 111b and the retardation film 50 produced by the method for producing a retardation film of the present invention. It is.
  • the viewing angle characteristics of the liquid crystal display device of this embodiment can be set to a desired level. If it is an aspect, it will not specifically limit.
  • the phase difference film is disposed between the liquid crystal cell and the polarizing plate, and the phase protective film is used as a polarizing plate protective film constituting two polarizing plates sandwiching the liquid crystal cell.
  • the latter embodiment is preferable among all of these embodiments, which can be suitably used.
  • the retardation film produced by the method for producing a retardation film of the present invention is used as a polarizing plate protective film
  • the retardation film may be used as an inner polarizing plate protective film or Further, it may be used as an outer polarizing plate protective film.
  • it is preferable that the film is used as an inner polarizing plate protective film in this embodiment.
  • the liquid crystal display device of this aspect can be made more excellent in durability by using a polarizing plate protective film having a strength such as cycloolefin-based resin as the outer polarizing plate protective film.
  • liquid crystal cell, the polarizing plate, and the like used in the present embodiment are the same as those used in a general liquid crystal display device. Is omitted
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same operational effects can be used. It is included in the technical scope.
  • Optical anisotropy by dissolving a urethane acrylate monomer with a storage tensile modulus of 3.5 X 10 2 MPa in methyl ethyl ketone to 40% by mass, and adding a polymerization initiator to 4% by mass with respect to the solid content.
  • a film-forming coating solution was prepared.
  • TAC abbreviation for triacetylcellulose
  • the above-mentioned TAC film substrate was placed on the surface.
  • Optical anisotropy A coating solution for forming a film layer was applied by bar coating.
  • the solvent is removed by heating at 90 ° C for 4 minutes, and the coated surface is irradiated with ultraviolet rays to fix the urethane phthalate monomer, and the dried film is 6 ⁇ m thick. Formed body.
  • the optical laminate was uniaxially stretched in the in-plane direction while being heated at 165 ° C. so that the draw ratio was 1.4 times by a stretching experiment machine, and an optically anisotropic layer was formed on the transparent substrate.
  • An optically anisotropic film laminated with was prepared.
  • a photopolymerization initiator Ciba Special Tig Chemicals, Inc.
  • the retardation layer forming coating solution on the optically anisotropic layer After coating the retardation layer forming coating solution on the optically anisotropic layer, it was dried at 100 ° C for 1 minute and allowed to cool to room temperature, whereby the liquid crystal mixture was subjected to home-to-mouth orientation. . Further, the film was cured with UV of lOOmjZcm 2 to form a retardation layer having a thickness of 1 ⁇ m on the optically anisotropic layer, thereby producing a retardation film.
  • a liquid crystal mixture containing a liquid crystal material represented by the following formulas (C), (D), and (E), a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, Irgacure 907, 5 mass for the liquid crystal mixture) %) was dissolved in a cyclohexanone solution to a solid content of 20% by mass, and a leveling agent was further added to obtain a coating solution for forming a retardation layer.
  • the retardation layer forming coating solution was applied onto a glass substrate on which a vertical alignment film was formed, dried at 60 ° C. for 2 minutes, and home-orifice-pick aligned. Furthermore, a retardation layer having a thickness of 1 ⁇ m was formed by curing with UV of lOOmjZcm 2 .
  • the retardation layer was peeled off from the glass substrate, and bonded to the optically anisotropic layer of the optically anisotropic film described in Example 1 via an adhesive to produce a retardation film.
  • a TAC film substrate (thickness: 80 m) with a storage tensile elastic modulus of 2.7 X 10 3 MPa was used as the transparent substrate, and the coating solution for forming the optically anisotropic layer was formed on the surface of the TAC film substrate.
  • the coating solution for forming the optically anisotropic layer was formed on the surface of the TAC film substrate.
  • the solvent is removed by heating at 90 ° C. for 4 minutes, and the coated surface is irradiated with ultraviolet rays to fix the above-mentioned force-prolatatone-modified urethane acrylate monomer. m optically anisotropic layers were formed.
  • optical laminate in which the optical anisotropic layer was laminated on the transparent substrate was produced.
  • the optical laminated body was uniaxially stretched in the in-plane direction while being heated at 165 ° C. so that the stretch ratio was 1.4 times using a stretching test machine, thereby producing an optically anisotropic film.
  • the retardation layer described in Example 2 was bonded via an adhesive to prepare a retardation film.
  • a mixture of a photopolymerizable liquid crystal compound represented by the following formula (B) and a photopolymerization initiator described in Example 2 was used.
  • the cyclohexanone to dissolve so that 20 mass 0/0 cycloheteroalkyl, TAC film (manufactured by Fuji Photo film Co., Ltd., trade name: TF80UL).
  • the bar coating on a substrate surface the coating amount after drying 2 OgZm 2 It was coated so that Subsequently, the solvent was removed by heating at 90 ° C. for 4 minutes, and the coated surface was irradiated with ultraviolet rays to immobilize the photopolymerizable liquid crystal compound to prepare an optical laminate.
  • the optical layered product was uniaxially stretched in the in-plane direction while being heated at 150 ° C. so as to have a draw ratio of 1.25 times using a stretching test machine, thereby producing an optically anisotropic film.
  • the retardation layer described in Example 2 was bonded via an adhesive to prepare a retardation film.
  • Example 4 Using the mixture of the photopolymerizable liquid crystal compound and the photopolymerization initiator used in Example 4, this was dissolved in cyclopentanone so as to be 20% by mass, and the same coating and stretching treatment as in Example 4 was performed. It was.
  • the retardation layer forming coating solution described in Example 1 was applied, dried at 60 ° C. for 2 minutes, and home-orifice-oriented. Furthermore, by curing with UV of lOOmjZ cm 2 , a retardation layer with a thickness of 1 ⁇ m was formed, and a retardation film was produced.
  • Example 4 Using the mixture of the photopolymerizable liquid crystal compound and the photopolymerization initiator used in Example 4, this was dissolved in methyl ethyl ketone so as to be 20% by mass, and the same coating and stretching treatment as in Example 4 was performed. It was.
  • the retardation layer described in Example 2 was bonded through an adhesive to prepare a retardation film.
  • Example 4 The mixture of the photopolymerizable liquid crystal compound and the photopolymerization initiator used in Example 4 was dissolved in methyl acetate so as to be 20% by mass, and the same coating and stretching treatment as in Example 4 was performed. It was.
  • the retardation layer described in Example 2 was bonded via an adhesive to prepare a retardation film.
  • Example 4 Using the mixture of the photopolymerizable liquid crystal compound and photopolymerization initiator used in Example 4, It was dissolved in clohexanone so as to be 20% by mass and coated in the same manner as in Example 4. On the optically anisotropic layer of this optically anisotropic film, the retardation layer described in Example 1 was applied. A forming coating solution was applied, dried at 60 ° C. for 2 minutes, and home-orificed pick-oriented. Further, by curing with lOOmjZc m 2 UV, a retardation layer having a thickness of 1 ⁇ m was formed to obtain an optical laminate.
  • the optical layered body was uniaxially stretched in the in-plane direction while being heated at 150 ° C. so as to have a draw ratio of 1.25 times by a stretching experiment machine, thereby producing a retardation film.
  • a mixture of the photopolymerizable liquid crystal compound represented by the following formula (F) and the photopolymerization initiator used in Example 4 was added to a mixed solvent of cyclohexanone and cyclopentanone to 20% by mass. Then, the same coating and stretching treatment as in Example 4 were performed.
  • the retardation layer forming coating solution described in Example 1 was applied, dried at 60 ° C. for 2 minutes, and home-orifice-oriented. Furthermore, by curing with UV of lOOmjZ cm 2 , a retardation layer with a thickness of 1 ⁇ m was formed, and a retardation film was produced.
  • Example 4 A mixture of the photopolymerizable liquid crystal compound represented by the above formula (F) and the photopolymerization initiator used in Example 4 was used, and this was adjusted to 20% by mass in a mixed solvent of cyclohexanone and cyclopentanone. Then, the same coating and stretching treatment as in Example 4 were performed.
  • the retardation layer forming coating solution described in Example 1 is applied, and the coating is performed at 60 ° C. Dry for minutes and homeotropic orientation. Further, a retardation film having a thickness was formed by curing with UV of lOOmjZcm 2 to prepare a retardation film.
  • Example 4 Using the mixture of the photopolymerizable liquid crystal compound and photopolymerization initiator used in Example 4, Dissolve it in clohexanone so as to be 20% by mass, apply the same coating as in Example 4, and on the surface opposite to the optically anisotropic layer of this optically anisotropic film, The described retardation layer forming coating solution was applied, dried at 60 ° C. for 2 minutes, and home-to-mouth pick-oriented. Furthermore, by curing with UV of lOOmjZcm 2 , a retardation layer with a thickness of 1 ⁇ m was formed to obtain an optical laminate.
  • optical laminate was stretched in the same process as in Example 8 to produce a retardation film.
  • Overcoat layer is formed by dissolving urethane acrylate monomer (Toagosei Co., Ltd., Alonix: M1600) in methyl ethyl ketone to 40% by weight, and adding 4% by weight of polymerization initiator to the solid content.
  • a coating solution was prepared. Apply the overcoat layer-forming coating solution to the retardation layer side of the retardation film prepared in Example 5, heat at 90 ° C for 4 minutes to dry remove the solvent, and irradiate the coating solution with ultraviolet light As a result, the above urethane acrylate monomer was fixed and an overcoat layer having a coating strength S4 ⁇ m after drying was formed to obtain a retardation film.
  • the overcoat layer-forming coating solution prepared in Example 11 was applied to the retardation layer side of the retardation film produced in Example 10 in the process of Example 11, and the coating film after drying was 4 An m overcoat layer was formed to obtain a retardation film.
  • a retardation layer is formed on the optically anisotropic film by the same method as in Example 1.
  • a retardation film was prepared by forming a film.
  • the retardation films produced in the above Examples and Comparative Examples were evaluated for homeotropic orientation evaluation, Re ratio of in-plane retardation, and haze.
  • the homeo-mouth pick orientation evaluation uses the automatic birefringence measuring device KOBRA to calculate nx, ny, and nz of the retardation film. If nx>nz> ny, a positive C-plate function is given. Judged that. The Re ratio was measured using KOBRA. The haze was measured by “Haze Guard II” manufactured by Toyo Seiki.
  • a polarizing plate was produced using each retardation film as a polarizing plate protective film on one side, and an environmental test was conducted in which it was left for 100 hours in an environment at a temperature of 90 ° C and a humidity of 90% RH. Evaluation was performed. In the frame unevenness evaluation, light leakage during black display was visually evaluated.
  • a polarizing plate protective film made of a cycloolefin-based resin could be used as the other polarizing plate protective film. .
  • Example 1 Orientation Re ratio Frame irregularity Haze (%) Example 1 O 0.94 ⁇ 0.4 Example 2 ⁇ 0.94 ⁇ 0.5 Example 3 O 0.86 ⁇ 0.3 Example 4 o 1.02 ⁇ 0.5 Example 5 o 1.02 O 0.5 Example 6 o 1.02 o 1 Example 7 o 1.02 o 2 Example 8 ⁇ 1.02 O 0.5 Example 9 o 1.07 O 0.7 Example 10 o 1.02 ⁇ 0.5 Example 1 1 ⁇ 1.02 ⁇ 0.7 Example 12 ⁇ 1.02 ⁇ 0.5 Example 13 o 1.02 O 0.5 Comparative example o 1 X 0.4

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)

Description

明 細 書
位相差フィルム、輝度向上フィルム、偏光板、位相差フィルムの製造方法 、および、液晶表示装置
技術分野
[0001] 本発明は、偏光板保護フィルムとして好適に用いられる位相差フィルム、輝度向上 フィルム、偏光板、および、位相差フィルムの製造方法等に関するものである。
背景技術
[0002] 液晶表示装置は、その省電力、軽量、薄型等といった特徴を有することから、従来 の CRTディスプレイに替わり、近年急速に普及している。一般的な液晶表示装置とし ては、図 15に示すように、入射側の偏光板 102Aと、出射側の偏光板 102Bと、液晶 セル 101とを有するものを挙げることができる。偏光板 102Aおよび 102Bは、所定の 振動方向の振動面を有する直線偏光のみを選択的に透過させるように構成されたも のであり、それぞれの振動方向が相互に直角の関係になるようにクロス-コル状態で 対向して配置されている。また、液晶セル 101は画素に対応する多数のセルを含む ものであり、偏光板 102Aと 102Bとの間に配置されている。
[0003] このような液晶表示装置は、上記液晶セルに用いられる液晶材料の配列形態によ り種々の駆動方式を用いたものが知られている。今日、普及している液晶表示装置 の主たるものは、 TN、 STN、 MVA、 IPS,および、 OCB等に分類される。なかでも 今日においては、上記 MVA、および、 IPSの駆動方式を有するものが広く普及する に至っている。
[0004] 一方、液晶表示装置は、その特有の問題点として液晶セルや偏光板の屈折率異 方性に起因する視野角依存性の問題点がある。この視野角依存性の問題は、液晶 表示装置を正面から見た場合と、斜め方向から見た場合とで視認される画像の色味 やコントラストが変化してしまう問題である。このような視野角特性の問題は、近年の 液晶表示装置の大画面化に伴って、さらにその問題の重大性が増している。
[0005] このような視野角依存性の問題を改善するため、現在までに様々な技術が開発さ れている。その代表的な方法として位相差フィルムを用いる方法がある。このような位 相差フィルムを用いる方法は、図 16に示すように所定の光学特性を有する位相差フ イルム 103を、液晶セル 101と偏光板 102Aおよび 102Bとの間に配置することにより 、視野角依存性の問題を改善する方法である。この方法は位相差フィルム 103を液 晶表示装置に組み込むことのみで上記視野角依存性の問題点を改善できることから 、簡便に視野角特性に優れた液晶表示装置を得ることが可能な方法として広く用い られるに至っている。
ここで、上記位相差フィルムとしては、例えば、透明基板上に、規則的に配列した液 晶材料を含有する位相差層が形成された構成を有するものや、延伸フィルムからな るものが一般的に知られている。
[0006] また近年では、図 16に例示したように、位相差フィルムと偏光板とを別個に配置す る方式ではなく、位相差フィルムを上記偏光板を構成する偏光板保護フィルムとして 兼用する方式が主流になってきている。すなわち、図 17に例示するように、一般的な 液晶表示装置は、液晶セル 101の両側に偏光板 102A、 102Bが配置された構成を 有するものであり、上記偏光板 102A、 102Bは、通常、 2枚の偏光板保護フィルム 1 12a, 112bによって偏光子 111が挟持された構成を有するものである(図 17 (a) ) (こ こで、説明の便宜上、液晶セル 101側に配置されている偏光板保護フィルム 112aを 「内側の偏光板保護フィルム」と称し、他方の偏光板保護フィルム 112bを「外側の偏 光板保護フィルム」と称する。 ) oそして、位相差フィルム 103を用いて液晶表示装置 の視野角特性を改善する場合、図 17 (b)に例示するように、上記 2枚の偏光板保護 フィルム 112a、 112bのうち、内側の偏光板保護フィルム 112aとして位相差フィルム 103が用いられた偏光板 102A,、 102B'を用いることが近年の主流となって 、る。
[0007] ここで、上記偏光板に用いられる偏光板保護フィルムとしては、セルローストリァセ テートに代表されるセルロース誘導体力 なるものと、ノルボルネン系榭脂に代表さ れるシクロォレフィン系榭脂からなるものとが知られて 、る。上記セルロース誘導体は 、透水性に優れるため、偏光板の製造工程において偏光子に含有された水分を、フ イルムを通じて揮散させることができるという利点を有する。また、 PVAを主原料とす る偏光膜との密着性も良好であり、作業性や歩留まりが良好であると 、う利点も有す る。 し力しながら、その一方で、高温高湿雰囲気下において吸湿による寸度変化や、光 学特性の変動が比較的大きいという欠点を有する。さらに、セルロース誘導体からな る偏光板保護フィルムは、ガスノリア性に乏しいという面もある。このため、両側にセ ルロース誘導体力 なる偏光板保護フィルムを使用すると、偏光板の光学特性の耐 久性が低下してしまうと 、う問題点がある。
一方、上記シクロォレフイン系榭脂は、疎水性の榭脂であるため、高温高湿雰囲気 下において吸湿による寸度変化や、光学特性の変動が比較的小さいという利点を有 する。し力しながら、その一方で、偏光板の製造工程において偏光子に含有された 水分を、フィルムを通じて揮散させることができないという欠点を有する。このため、両 側にシクロォレフイン系榭脂からなる偏光板保護フィルムを使用すると、経時で偏光 特性が低下してしまうという問題点がある。
このようなことから、上記偏光板としては、内側の偏光板保護フィルムとしてセルロー ス誘導体力もなる偏光板保護フィルムを用い、外側の偏光板保護フィルムとしてシク 口才レフイン系榭脂からなる偏光板保護フィルムを用いることが望まし 、とされて 、る 。これにより両者の利点を併有させ、両者の欠点を相殺させることができるため、耐久 性に優れた偏光板を得ることができるという利点を有するからである。したがって、上 記位相差フィルムを用いる際には、このような態様で用いることが望ましいとされてい る(例えば、特許文献 4)。
ところで、上記位相差フィルムが備える位相差性は、視野角特性を改善する対象と なる液晶表示装置の駆動方式等に依存するものであるが、なかでも、 IPS (In -Plan e Switching)方式の液晶表示装置には、正の Cプレートとしての性質を有する位 相差フィルムが用いられている。そして、特許文献 1〜3には、このような IPS方式の 液晶表示装置に用いられる位相差フィルムとして、シクロォレフイン系榭脂からなる透 明基板上に正の Cプレートとしての性質を有する位相差層が形成された構成を有す るものが開示されている。
上記特許文献 1〜3に開示されたような構成を有する位相差フィルムは、吸湿性が 低 ヽシクロォレフィン系榭脂からなる透明基板が用いられて 、ることから、高温高湿 雰囲気下においても吸湿膨張することが少なぐまた、光学特性の耐久性も良好であ るという利点を有するものである。
[0009] し力しながら、このようなシクロォレフイン系榭脂からなる透明基板が用いられた位 相差フィルムは、これを上記内側の偏光板保護フィルムとして用いると、外側の偏光 板保護フィルムとしてセルロース誘導体力 なる偏光板保護フィルムを用いなければ ならなくなり、上述した偏光板の望ましい使用態様を実現することが不可能であるとい う問題点があった。
[0010] このようなことから、上記シクロォレフイン系榭脂からなる透明基板が用いられた位 相差フィルムでは、偏光板保護フィルムとして兼用した場合に、耐久性に優れる偏光 板を得ることができな 、と 、う問題点があった。
[0011] 特許文献 1 :特開 2002— 174725号公報
特許文献 2 :特開 2003— 121853号公報
特許文献 3:特開 2005 - 70098号公報
特許文献 4:特許第 3132122号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明はこのような問題点に鑑みてなされたものであり、偏光板保護フィルムとして 用いることにより、耐久性に優れ、かつ、視野角補償機能を備える偏光板を得ること が可能な位相差フィルムを提供することを主目的とするものである。
課題を解決するための手段
[0013] 上記課題を解決するために本発明は、面内方向における遅相軸方向の屈折率 nx と、面内方向における進相軸方向の屈折率 nyとの間に、 nx>nyの関係が成立する 光学異方性フィルムと、上記光学異方性フィルム上に形成され、液晶材料を含有し、 さらに面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み 方向の屈折率 nzとの間に nx≤nyく nzの関係が成立する位相差層と、を有する位相 差フィルムであって、上記光学異方性フィルムが、セルロース誘導体力 なる透明基 板が用いられて ヽるものであることを特徴とする位相差フィルムを提供する。
[0014] 本発明によれば、上記光学異方性フィルムとしてセルロース誘導体力 なる透明基 板を有するものが用いられていることにより、本発明の位相差フィルムを内側の偏光 板保護フィルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフィ ン系榭脂からなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏 光板を得ることができる。
また、本発明によれば上記位相差層が nx≤nyく nzの関係が成立するものであり、 かつ、上記光学異方性フィルムが nx>nyの関係が成立するものであることから、本 発明の位相差フィルムを偏光板保護フィルムとして用いることにより、 IPS方式の液晶 表示装置の視野角補償機能を備える偏光板を得ることができる。
このようなことから、本発明によれば偏光板保護フィルムとして用いることにより、耐 久性に優れ、かつ、視野角補償機能を備える偏光板を得ることが可能な位相差フィ ルムを得ることができる。
[0015] 本発明においては、上記光学異方性フィルムが、上記透明基板と、上記透明基板 上に形成され、ウレタン系榭脂を含有する光学異方性層とを有するものであることが 好ましい。上記光学異方性フィルムがこのような構成を有するものであることにより、 上記光学異方性フィルムのレターデーシヨンの波長依存性を逆分散型にすることが 容易になるからである。
[0016] また本発明においては、上記光学異方性フィルムが、上記透明基板と、上記透明 基板上に形成され、上記透明基板を構成するセルロース誘導体およびレターデーシ ヨンの波長依存性が正分散型を示す光学異方性材料を含有する光学異方性層とを 有するものであってもよ 、。上記光学異方性フィルムがこのような構成を有するもので あっても、上記光学異方性フィルムのレターデーシヨンの波長依存性を逆分散型に することができる力らである。また、このような構成を有することにより、上記光学異方 性フィルムのレターデーシヨンの波長依存性を所望の態様に調整することが容易に なるからである。
[0017] さらに、本発明においては上記セルロース誘導体力 トリァセチルセルロースである ことが好まし 、。トリァセチルセルロースはレターデーシヨンの波長依存性が逆分散型 であることから、このようなトリァセチルセルロースを用いることにより、上記光学異方 性フィルムのレターデーシヨンの波長依存性を逆分散型とすることが容易になるから である。 また、トリァセチルセルロースは光学的等方性や、偏光子との接着性に優れるから である。
[0018] さらにまた、本発明においては、上記光学異方性材料に、分子内に単一の重合性 官能基を有する単官能重合性液晶化合物が含まれることが好まし 、。これにより上記 光学異方性フィルムを光学異方性の発現性に優れたものにできるからである。
[0019] また本発明は、上記本発明に係る位相差フィルムと、上記位相差フィルムが備える 上記位相差層上に形成され、コレステリック配列した液晶材料を含有するコレステリッ ク液晶層とを有することを特徴とする、輝度向上フィルムを提供する。
[0020] 本発明によれば、上記本発明に係る位相差フィルムが用いられていることにより、偏 光板保護フィルムとして用いることにより、輝度向上機能に優れた輝度向上フィルム を得ることができる。
[0021] また本発明は、上記本発明に係る位相差フィルムと、上記位相差フィルムが備える 上記光学異方性フィルム上であって、上記位相差層が形成された側とは反対側の面 上に形成された偏光子と、上記偏光子上に形成された偏光板保護フィルムと、を有 することを特徴とする偏光板を提供する。
[0022] 本発明によれば、片方の偏光板保護フィルムとして上記本発明に係る位相差フィ ルムが用いられていることにより、耐久性に優れ、かつ、 IPS方式の液晶表示装置に 対する視野角補償機能を備える偏光板を得ることができる。
[0023] また本発明は、上記本発明に係る輝度向上フィルムと、上記輝度向上フィルムが備 える上記光学異方性フィルム上であって、上記位相差層が形成された側とは反対側 の面上に形成された偏光子と、上記偏光子上に形成された偏光板保護フィルムと、 を有することを特徴とする、偏光板を提供する。
[0024] 本発明によれば、片方の偏光板保護フィルムとして上記本発明に係る輝度向上フ イルムが用いられていることにより、耐久性に優れ、かつ、輝度向上機能を備える偏 光板を得ることができる。
[0025] 上記偏光板保護フィルム力 シクロォレフイン系榭脂またはアクリル系榭脂からなる ことが好ましい。これにより上記本発明の偏光板を、光学特性の耐久性に優れたもの にできるからである。 [0026] また本発明は、セルロース誘導体力もなる透明基板を用い、上記透明基板上にレ ターデーシヨンの波長依存性が正分散型を示す光学異方性材料が溶媒に溶解され た光学異方性層形成用塗工液を塗工することにより、上記透明基板上に光学異方 性層が形成された光学異方性フィルムを形成する光学異方性フィルム形成工程と、 上記光学異方性フィルム形成工程によって形成された光学異方性フィルムを延伸す る延伸工程と、上記延伸工程によって延伸された光学異方性フィルムの光学異方性 層上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y方向の 屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立する位 相差層を形成する位相差層形成工程と、を有することを特徴とする位相差フィルムの 製造方法を提供する。
[0027] さらに本発明は、セルロース誘導体力もなる透明基板を用い、上記透明基板上にレ ターデーシヨンの波長依存性が正分散型を示す光学異方性材料が溶媒に溶解され た光学異方性層形成用塗工液を塗工することにより、上記透明基板上に光学異方 性層が形成された光学異方性フィルムを形成する、光学異方性フィルム形成工程と 、上記光学異方性フィルム形成工程によって形成された光学異方性フィルムの光学 異方性層上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y 方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立 する位相差層を形成することにより、上記光学異方性層上に位相差層が形成された 光学積層体を形成する、位相差層形成工程と、上記位相差層形成工程によって形 成された光学積層体を延伸する延伸工程と、を有することを特徴とする位相差フィル ムの製造方法を提供する。
[0028] 本発明によれば、上記透明基板としてセルロース誘導体力 なるものが用いられる ことにより、例えば、本発明により製造される位相差フィルムを内側の偏光板保護フィ ルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフイン系榭脂か らなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏光板を得る ことができる。このようなこと力ゝら、本発明によれば耐久性に優れた偏光板を作製可能 な位相差フィルムを製造することができる。
[0029] また本発明は、セルロース誘導体力もなる透明基板を用い、上記透明基板上にレ ターデーシヨンの波長依存性が正分散型を示す光学異方性材料が溶媒に溶解され た光学異方性層形成用塗工液を塗工することにより、上記透明基板上に光学異方 性層が形成された光学異方性フィルムを形成する、光学異方性フィルム形成工程と 、上記光学異方性フィルム形成工程によって形成された光学異方性フィルムを延伸 する延伸工程と、上記延伸工程によって延伸された光学異方性フィルムの上記光学 異方性層が形成された面とは反対側の面上に、液晶材料を含有し、面内方向にお いて互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの 間に nx≤ny<nzの関係が成立する位相差層を形成する位相差層形成工程と、を 有することを特徴とする位相差フィルムの製造方法を提供する。
[0030] さらに本発明は、セルロース誘導体力もなる透明基板を用い、上記透明基板上にレ ターデーシヨンの波長依存性が正分散型を示す光学異方性材料が溶媒に溶解され た光学異方性層形成用塗工液を塗工することにより、上記透明基板上に光学異方 性層が形成された光学異方性フィルムを形成する、光学異方性フィルム形成工程と 、上記光学異方性フィルム形成工程によって形成された光学異方性フィルムの上記 光学異方性層が形成された面とは反対側の面上に、液晶材料を含有し、面内方向 において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nz との間に nx≤nyく nzの関係が成立する位相差層を形成することにより、上記光学異 方性層上に位相差層が形成された光学積層体を形成する、位相差層形成工程と、 上記位相差層形成工程によって形成された光学積層体を延伸する延伸工程と、を 有することを特徴とする位相差フィルムの製造方法を提供する。
[0031] 本発明によれば、上記透明基板としてセルロース誘導体力 なるものが用いられる ことにより、例えば、本発明により製造される位相差フィルムを内側の偏光板保護フィ ルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフイン系榭脂か らなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏光板を得る ことができる。
また、本発明によれば、上記位相差層形成工程が、上記光学異方性フィルムの上 記光学異方性層が形成された面とは反対側の面上に位相差層を形成するものであ ることにより、位相差性の発現性に優れた位相差層を形成することが容易になる。 このようなことから、本発明によれば耐久性に優れた偏光板を作製可能な位相差フ イルムを製造することができる。
[0032] 本発明においては、上記溶媒に沸点が 100°C以上のケトン系溶媒が含まれること が好ましい。これにより、上記光学異方性フィルム形成工程においてヘイズが小さい 光学異方性フィルムを形成することが可能になるため、本発明によって透明性に優 れた位相差フィルムを製造することができるからである。
[0033] 本発明にお 、ては、上記ケトン系溶媒が、シクロペンタノンまたはシクロへキサノン であることが好ましい。上記ケトン系溶媒として、シクロペンタノンまたはシクロへキサノ ンが用いられていることにより、上記光学異方性フィルム形成工程において、よりヘイ ズが小さい光学異方性フィルムを形成することができる結果、本発明によりさらに透 明性に優れた位相差フィルムを製造することが可能になる力もである。
[0034] また、本発明にお!/、ては、上記セルロース誘導体がトリァセチルセルロースであるこ とが好ましい。トリァセチルセルロースは光学的等方性に優れるため、このようなトリア セチルセルロースを用いることにより、光学特性が良好な位相差フィルムを製造する ことができるカゝらである。
[0035] 本発明は、上記本発明の位相差フィルムが用いられたことを特徴とする液晶表示 装置を提供する。本発明によれば上記本発明の位相差フィルムが用いられて ヽるこ とにより、耐久性および視野角特性に優れた液晶表示装置を得ることができる。
[0036] また本発明は、上記本発明の輝度向上フィルムが用いられたことを特徴とする液晶 表示装置を提供する。本発明によれば、上記本発明の輝度向上フィルムが用いられ ていることにより、輝度特性に優れた液晶表示装置を得ることができる。
[0037] さらに本発明は、上記本発明の偏光板が用いられたことを特徴とする液晶表示装 置を提供する。本発明によれば、上記本発明の偏光板が用いられていることにより、 耐久性および視野角特性に優れた液晶表示装置を得ることができる。
[0038] さらにまた、本発明は、上記本発明の位相差フィルムの製造方法によって製造され た位相差フィルムが用いられたことを特徴とする、液晶表示装置を提供する。本発明 によれば、上記本発明の位相差フィルムの製造方法によって製造された位相差フィ ルムが用いられていることにより、耐久性および視野角特性に優れた液晶表示装置 を得ることができる。
発明の効果
[0039] 本発明の位相差フィルムは、偏光板保護フィルムとして用いることにより、耐久性に 優れ、かつ、視野角補償機能を備える偏光板を得ることが可能であるという効果を奏 する。
図面の簡単な説明
[0040] [図 1]本発明の位相差フィルムの一例を示す概略図である。
[図 2]本発明の位相差フィルムの他の例を示す概略図である。
[図 3]本発明の位相差フィルムの他の例を示す概略図である。
[図 4]本発明の輝度向上フィルムの一例を示す概略図である。
[図 5]本発明の偏光板の一例を示す概略図である。
[図 6]本発明の偏光板の他の例を示す概略図である。
[図 7]本発明の第 1態様の位相差フィルムの製造方法の一例を示す概略図である。
[図 8]本発明の第 2態様の位相差フィルムの製造方法の一例を示す概略図である。
[図 9]本発明の第 3態様の位相差フィルムの製造方法の一例を示す概略図である。
[図 10]本発明の第 4態様の位相差フィルムの製造方法の一例を示す概略図である。
[図 11]本発明の第 1態様の液晶表示装置の一例を示す概略図である。
[図 12]本発明の第 2態様の液晶表示装置の一例を示す概略図である。
[図 13]本発明の第 3態様の液晶表示装置の一例を示す概略図である。
[図 14]本発明の第 4態様の液晶表示装置の一例を示す概略図である。
[図 15]—般的な液晶表示装置の一部を模式的に例示する概略図である。
[図 16]位相差フィルムが用いられた液晶表示装置の一部を模式的に例示する概略 図である。
[図 17]位相差フィルムの使用態様の一例を示す概略図である。
符号の説明
[0041] 1, 1A, 1A' … 光学異方性フィルム
la, 51a … 透明基板
lb, lb' , 51b … 光学異方性層 2, 52 … 位相差層
10, 10' , 10" , 50 … 位相差フィルム
11 … 液晶セノレ
20 … 輝度向上フィルム
21 … コレステリック液晶層
30, 40 … 偏光板
31, 41 … 偏光子
32, 42 … 偏光板保護フィルム
50' … 光学積層体
60、 70、 80、 90 … 液晶表示装置
101 … 液晶セノレ
102A, 102B, 102A' , 102B' … 偏光板
103 … 位相差フィルム
111 … 偏光子
112, 112a, 112b … 偏光板保護フィルム
発明を実施するための形態
[0042] 以下、本発明の位相差フィルム、輝度向上フィルム、偏光板、位相差フィルムの製 造方法、および、液晶表示装置について順に説明する。
[0043] A.位相差フィルム
まず、本発明の位相差フィルムについて説明する。本発明の位相差フィルムは、面 内方向における遅相軸方向の屈折率 nxと、面内方向における進相軸方向の屈折率 nyとの間に、 nx>nyの関係が成立する光学異方性フィルムと、上記光学異方性フィ ルム上に形成され、液晶材料を含有し、さらに面内方向において互いに直交する任 意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤ny<nzの関 係が成立する位相差層と、を有するものであって、上記光学異方性フィルムが、セル ロース誘導体力 なる透明基板が用いられているものであることを特徴とするもので ある。
[0044] このような本発明の位相差フィルムについて図を参照しながら説明する。図 1は本 発明の位相差フィルムの一例を示す概略図である。図 1に例示するように本発明の 位相差フィルム 10は、光学異方性フィルム 1と、上記光学異方性フィルム 1上に形成 され、液晶材料を含有する位相差層 2とを有するものである。ここで、上記光学異方 性フィルム 1は、面内方向における進相軸方向の屈折率 nyとの間に、 nx>nyの関 係が成立するものである。また、上記位相差層 2は、面内方向において互いに直交 する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤ny<n zの関係が成立するものである。
このような例において、本発明の位相差フィルム 10は、上記光学異方性フィルム 1 がセルロース誘導体力 なる透明基板が用いられているものであることを特徴とする ものである。
[0045] 本発明によれば、上記光学異方性フィルムとしてセルロース誘導体力 なる透明基 板を有するものが用いられていることにより、本発明の位相差フィルムを内側の偏光 板保護フィルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフィ ン系榭脂からなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏 光板を得ることができる。
また、本発明によれば上記位相差層が nx≤nyく nzの関係が成立するものであり、 かつ、上記光学異方性フィルムが nx>nyの関係が成立するものであることから、本 発明の位相差フィルムを偏光板保護フィルムとして用いることにより、 IPS方式の液晶 表示装置の視野角補償機能を備える偏光板を得ることができる。
このようなことから、本発明によれば偏光板保護フィルムとして用いることにより、耐 久性に優れ、かつ、視野角補償機能を備える偏光板を得ることが可能な位相差フィ ルムを得ることができる。
[0046] 本発明の位相差フィルムは、少なくとも上記光学異方性フィルムと、位相差層とを有 するものである。
以下、本発明の位相差フィルムに用いられる各構成について詳細に説明する。
[0047] 1.光学異方性フィルム
まず、本発明に用いられる光学異方性フィルムについて説明する。本発明に用いら れる光学異方性フィルムは、面内方向における遅相軸方向の屈折率 nxと、面内方向 における進相軸方向の屈折率 nyとの間に、 nx>nyの関係が成立するものであり、か つ、セルロース誘導体力 なる透明基板が用いられていることを特徴とするものであ る。
[0048] 本発明に用いられる光学異方性フィルムの面内方向における遅相軸方向の屈折 率 nxと、面内方向における進相軸方向の屈折率 nyと、厚み方向における屈折率 nz との関係は、 nx>nyの関係が成立するものであれば特に限定されるものではない。 本発明における光学異方性フィルムにおいて上記 nx>nyの関係が成立する態様と しては、 nx>ny>nz、 nx>nz>ny、 nx>ny=nz、および、 nz>nx>nyの関保力 成立する態様を挙げることができる。本発明に用いられる光学異方性フィルムとして は、これらのいずれの関係が成立するものであっても好適に用いることができる。 なお、本発明に用いられる光学異方性フィルムとしては、上記 nx、 ny、および、 nz の関係のうち nx>nyの関係(即ち、 Re >0)を専ら利用する場合がある。 nz値の大小 (即ち、 Rthの絶対値及び符号 (Rth>0か Rthく 0か))については、所望の視野角 補償特性及び他の光学特性とを勘案して適宜調整する。位相差フィルム全体として は、 Rthく 0 (所謂 + Cプレート特性)が要求され、且つ位相差層は Rthく 0である為 、若し、光学異方性フィルムも Rthく 0の場合は、その分、位相差層自体の Rthの絶 対値を位相差フィルムでの所望値より少なめに設定する。一方、若し、光学異方性フ イルムが Rth >0の場合は、その分、位相差層自体の Rthの絶対値を位相差フィルム での所望値より大きめに設定する。
[0049] 本発明に用いられる光学異方性フィルム力 上記 nx>ny=nz関係が成立する態 様のものである場合、上記光学異方性フィルムの波長 550nmにおけるレターデーシ ヨン(Re) (これを「Re 」と表記する。 )は、 Onmく Re < 300nmの範囲内であるこ
550 550
とが好ましい。
また、波長 550nmにおける厚み方向のレターデーシヨン (Rth)は Onm〜300nm の範囲内であることが好ましい。
上記レターデーシヨン (Re)および上記厚み方向のレターデーシヨン (Rth)が上記 範囲内であることにより、本発明の位相差フィルムを液晶表示装置の視野角補償フィ ルムとして好適なものにできるからである。 [0050] 一方、本発明に用いられる光学異方性フィルム力 上記 nx>ny>nzまたは上記 n x>nz>nyの関係が成立するものである場合、上記光学異方性フィルムの波長 550 nmにおけるレターデーシヨン (Re)は、 Onmく Re < 300nmの範囲内であることが
550
好ましい。
また、波長 550nmにおける厚み方向のレターデーシヨン (Rth)は 300nm〜300 nmの範囲内であることが好ましい。上記レターデーシヨン (Re)および上記厚み方向 のレターデーシヨン (Rth)が上記範囲内であることにより、本発明の位相差フィルムを 液晶表示装置の視野角補償フィルムとして好適なものにできるからである。
[0051] ここで、上記レターデーシヨン (以下、単に「Re」と称する場合がある。 )とは、上記 nx 、 ny、および、フィルムの厚み dを用いて、 Re= (nx— ny) X dで表されるものである。 また、上記厚み方向のレターデーシヨン (以下、単に「Rth」と称する場合がある。)と は、上記 nx、 ny、 nzおよび dを用いて、 Rth= { (nx+ny) Z2—nz} X dで表される 値である。
上記 Reおよび Rthは、例えば、王子計測機器株式会社製 KOBRA— WRを用い
、平行-コル回転法によって測定することができる。
[0052] 本発明に用いられる光学異方性フィルムの Reの波長依存性は、逆分散型、正分散 型、または、フラット分散型のいずれであってもよい。
[0053] なお、本発明においては、上記 Reの波長依存性を「波長分散」と称する場合がある また、一般的に、 Reが長波長側よりも短波長側のほうが小さい波長分散 (即ち、 Re が波長の増加関数である)の類型を「逆分散型」と称するが、本発明において「逆分 散型」とは、波長 450nmにおける Re (Re )と、波長 550nmにおける Re (Re )と
450 550 の比 (Re /Re ) (以下、単に「Re比」と称する場合がある。)が 1より小さいことを
450 550
意味するものとする。
また、一般的に Reが長波長側よりも短波長側のほうが大きい波長分散 (即ち、 Reが 波長の減少関数である)の類型を「正分散型」と称するが、本発明における「正分散 型」とは、上記 Re比が 1より大きいことを意味するものとする。
さらに、一般的に Reが波長依存性を有さない波長分散の類型を「フラット型」と称す る力 本発明における「フラット型」とは、上記 Re比が 1であること意味するものとする。
[0054] 本発明に用いられる光学異方性フィルムとしては、通常、上記波長依存性が逆分 散型または正分散型のものが用いられる。したがって、以下、上記波長依存性が逆 分散型であるものを「第 1実施態様」、上記波長依存性が正分散型であるものを「第 2 実施態様」とし、各実施態様の光学異方性フィルムにつ!、て順に説明する。
[0055] 1 1.第 1実施態様
まず、本発明に用いられる第 1実施態様の光学異方性フィルムについて説明する。 本実施態様の光学異方性フィルムは、 Reの波長依存性が逆分散型であるものであ る。
本実施態様の光学異方性フィルムは、例えば、後述する位相差層として Reの波長 依存性が逆分散型のものを用いる場合に、好適に用いることができるものである。
[0056] 本実施態様の光学異方性フィルムとしては、上記 Re比が 1よりも小さいものであれ ば特に限定されるものではなぐ本発明の位相差フィルムの用途等に応じて適宜を 調整すればよい。なかでも本実施態様においては上記 Re比が 0. 6〜0. 99の範囲 内であることが好ましぐ特に 0. 7〜0. 95の範囲内であることが好ましい。上記 Re比 力 のような範囲内であることにより、本発明の位相差フィルムをより広範な波長領域 において液晶表示装置の視野角等性を改善できるものにできるからである。
[0057] 本実施態様の光学異方性フィルムは、セルロース誘導体力 なる透明基板が用い られているものであるが、上記透明基板を構成するセルロース誘導体としては、所望 の透水性を備え、本発明の位相差フィルムを偏光板保護フィルムとして用いた場合 に、偏光板製造工程において、偏光子に含有される水分を透過し、経時での偏光特 性の低下を所望の程度に抑制できるものであれば特に限定されるものではな 、。な かでも本実施態様においては、上記セルロース誘導体として、セルロースエステル類 を用いることが好ましぐさらに、セルロースエステル類の中では、セルロースァシレー ト類を用いることが好まし 、。セルロースァシレート類は工業的に広く用いられて 、る ことから、入手容易性の点において有利だ力もである。
[0058] 上記セルロースァシレート類としては、炭素数 2〜4の低級脂肪酸エステルが好まし い。低級脂肪酸エステルとしては、例えばセルロースアセテートのように、単一の低級 脂肪酸エステルのみを含むものでもよぐまた、例えばセルロースアセテートブチレー トゃセルロースアセテートプロピオネートのような複数の脂肪酸エステルを含むもので あってもよい。
[0059] また本実施態様においては、上記低級脂肪酸エステルの中でもセルロースァセテ ートを特に好適に用いることができる。セルロースアセテートとしては、平均酢化度が 57. 5〜62. 5% (置換度: 2. 6〜3. 0)のトリァセチノレセノレロースを用!/、ること力最も 好ましい。トリァセチルセルロースは、比較的嵩高い側鎖を有する分子構造を有する ことから、このようなトリァセチルセルロース力 なる透明基板を用いることにより、透明 基板と上記光学異方性層との密着性をより向上することできる力 である。
ここで、酢化度とは、セルロース単位質量当りの結合酢酸量を意味する。酢化度は 、 ASTM : D— 817— 91 (セルロースアセテート等の試験方法)におけるァセチル化 度の測定および計算により求めることができる。なお、トリァセチルセルロースフィルム を構成するトリアセチルセルロースの酢ィ匕度は、フィルム中に含まれる可塑剤等の不 純物を除去した後、上記の方法により求めることができる。
[0060] 本実施態様の光学異方性フィルムに上記透明基板が用いられている態様としては 、本実施態様の光学異方性フィルムに所望の光学異方性および Reの波長依存性等 を付与することができる態様であれば特に限定されるものではな 、。このような態様と しては、本実施態様の光学異方性フィルムが上記透明基板のみから構成される態様 と、上記透明基板上に、光学異方性層が積層された態様とを挙げることができる。本 実施態様の光学異方性フィルムは、これらのいずれの態様であってもよいが、なかで も後者の態様であることが好ましい。これにより透明基板自体の強度等の諸特性、製 造条件に影響を与えることなぐ高い自由度で本実施態様の光学異方性フィルムに 所望の機能を付与することが容易になるからである。
[0061] 上記透明基板上に光学異方性層が積層された態様を有する本実施態様の光学異 方性フィルムとしては、本発明の位相差フィルムに所望の機能を付与できるものであ れば特に限定されるものではない。このような態様としては、上記透明基板と、上記 透明基板上に形成され、ウレタン系榭脂を含有する光学異方性層とを有する態様( 第 1態様の光学異方性フィルム)、および、上記透明基板と、上記透明基板上に形成 され、上記透明基板を構成するセルロース誘導体およびレターデーシヨンの波長依 存性が正分散型を示す光学異方性材料とを含有する光学異方性層とを有する態様
(第 2態様の光学異方性フィルム)とを、挙げることができる。
なお、これらの態様においては、透明基板上に光学異方性層を形成した後、その ままで、或いは、必要に応じて更に延伸処理を施すことにより、 nx>nyなる光学異方 性を付与することができる。
以下、上記各態様の光学異方性フィルムにつ!、て順に説明する。
[0062] (1)第 1態様の光学異方性フィルム
まず、上記第 1態様の光学異方性フィルムについて説明する。本態様の光学異方 性フィルムは、上記透明基板と、上記透明基板上に形成され、ウレタン系榭脂を含有 する光学異方性層とを有する態様である。
ここで、上記ウレタン系榭脂は、 Reの波長依存性が逆分散型であるウレタン結合部 (― O— CO— N< )を有するため、このようなウレタン系榭脂を用いることにより、本態 様の光学異方性フィルムを容易に Reの波長依存性が逆分散であるものにできると 、 う利点を有する。
以下、本態様の光学異方性フィルムについて詳細に説明する。
[0063] a.光学異方性層
本態様に用いられるウレタン系榭脂としては、光学異方性層に所望の位相差性を 付与することが可能な程度の屈折率異方性を備えるものであれば特に限定されるも のではない。
なかでも本態様に用いられるウレタン系榭脂は、上記 Re比が 0. 6以上、 1. 0未満の 範囲内であるものが好ましぐ特に 0. 7〜0. 95の範囲内であるものが好ましぐさら には 0. 8〜0. 9の範囲内であるものが好ましい。
ここで、上記ウレタン系榭脂の Re比は、ガラス基板などの光学的等方性基材上に 評価対象のウレタン系榭脂からなる膜を成膜した後、当該膜を光学等方性基材から 剥離し、さらに延伸処理を施したサンプルについて、波長 450nmにおけるレターデ ーシヨン (Re )と、波長 550nmにおけるレターデーシヨン (Re )とを測定すること
450 550 により算出することができる。上記レターデーンヨンは、例えば、王子計測機器株式会 社製 KOBRA— WRを用い、平行-コル回転法により測定することができる。
なお、上記「屈折率異方性」とは、入射される光に対する屈折率が、光の入射方向 によって異なることを意味するものである。
[0064] また、本態様に用いられるウレタン系榭脂は、 30°Cにおける複素引張弾性率が 80 OMPa以下であるものが好ましぐなかでも lMPa〜800MPaの範囲内であるものが 好ましぐ特に 10MPa〜600MPaの範囲内であるものが好ましい。上記複素引張弹 性率がこのような範囲内であることにより、例えば、本態様の光学異方性フィルムを製 造する工程において、光学異方性層を延伸することが容易になる等の利点を有する 力 である。
ここで、上記複素引張弾性率 (E * )は、貯蔵引張弾性率 (Ε' ' )と、損失引張弾性 率 (Ε' )とにより、以下の式で表されるものである。
Ε * = ((Ε,)2+ (Ε,,)2)
また、上記複素引張弾性率 (Ε * )は、株式会社ユービーェム製「Rheogel— Ε400 0」により以下の測定条件で、貯蔵引張弾性率 (Ε' ' )と、損失引張弾性率 (Ε' )を測 定し、上記式に準じて求めることができる。
チャック間距離 : 15mm
サンプル幅 : 5mm
歪み : 100 /z m
昇温速度 : 3°CZmin
周波数 : 10Hz
[0065] このような本態様に用いられるウレタン系榭脂としては、分子内にウレタン結合部(
O— CO— N < )を有するものであれば特に限定されるものではなく、本発明の位 相差フィルムの用途や、製造方法等に応じて任意のウレタン系榭脂を用いることがで きる。このような本態様に用いられるウレタン系榭脂としては、例えば、ポリウレタンや ウレタンアタリレート等を挙げることができる。なかでも本態様においては、上記ウレタ ン系榭脂としてウレタンアタリレートを用いることが好まし 、。ウレタンアタリレートは、 例えば、ウレタン結合部間に屈折率異方性を備える原子団を結合させて変性するこ とにより、位相差性の発現特性を任意に制御することが可能である等の利点を有する 力 である。
[0066] 上記ウレタンアタリレートとしては、ウレタン結合部とアタリロイル基とを有するウレタ ンアタリレートモノマーが重合してなるものであれば特に限定されるものではない。 ここで、上記ウレタンアタリレートモノマーに含まれるアタリロイル基の数は、 1つであ つてもよく、または、複数であってもよい。
また、上記ウレタンアタリレートモノマーに含まれるウレタン結合部の数は、 1つであ つてもよく、または、複数であってもよい。
[0067] 本態様に用いられるウレタンアタリレートは、ウレタン結合部とアタリロイル基との間 に、屈折率異方性を備える原子団を有するウレタンアタリレートモノマーが重合してな るものが好まし 、。このようなウレタンアタリレートモノマーが重合してなるウレタンァク リレートは、延伸することにより上記屈折率異方性を備える原子団を一方向に配列さ せることができるため、位相差性の発現性に優れるからである。
[0068] また、上記屈折率異方性を備える原子団を有するウレタンアタリレートモノマーとし ては、上記ウレタン結合部と上記アタリロイル基との間に存在する原子団を構成する 元素の原子量の総和が 100〜1000の範囲内であることが好ましぐなかでも 200〜 600の範囲内であることが好ましぐ特に 400〜600の範囲内であることが好ましい。 上記原子量の総和が上記範囲よりも少ないと、位相差性の発現に寄与する原子団が 少なくなる結果、本態様における光学異方性層に所望の位相差性を付与することが 困難となる可能性があるからである。また、上記範囲より多いと上記ウレタンアタリレー トモノマーが重合してなるウレタンアタリレート中に存在するウレタン結合部が少なくな る結果、本態様の光学異方性フィルムの上記 Re比を所望の程度に制御することが困 難となるおそれがあるからである。
[0069] 上記屈折率異方性を備える原子団の種類としては、本発明の位相差フィルムの用 途ゃ本製造方法等に応じて、本発明の位相差フィルムに所望の位相差性を付与で きるものであれば特に限定されるものではな 、。このような屈折率異方性を備える原 子団としては、例えば、エステル結合を含むエステル系原子団、エーテル結合を含 むエーテル系原子団等を挙げることができる。本態様にお ヽてはこれらの 、ずれの 原子団であっても好適に用いることができる力 なかでもエステル系原子団を用いる ことが好ましい。上記エステル系原子団を用いることにより、上記ウレタンアタリレート をさらに位相差性の発現性に優れたものにできるからである。また、上記エステル系 原子団を有するウレタンアタリレートモノマーは比較的容易に合成することができるた め、本発明の位相差フィルムを製造適性に優れたものにできるからである。
[0070] 上記エステル系原子団としては、ラタトンの構成単位を含有するラタトン系原子団、 ポリカーボネートの構成単位を含有するポリカーボネート系原子団、および、アジべ ートの構成単位を含有するアジペート系原子団を挙げることができる。本態様にぉ ヽ てはこれらのいずれの原子団であっても好適に用いることができる力 なかでもラクト ン系原子団を用いることが好ましい。ラタトン系原子団は屈折異方性が高ぐ位相差 性の発現性に優れて 、る力 である。
[0071] また、本態様においては、上記ラタトン系原子団のなかでも力プロラタトンの構成単 位を含む力プロラタトン変性原子団を用いることが好ましい。力プロラタトン変性原子 団は屈折率異方性がより大きいため、榭脂材料の位相差発現性をさらに向上するこ とができるカゝらである。
[0072] また、上記力プロラタトン変性原子団は、単一の力プロラタトンの構成単位を含むも のであってもよぐまたは、複数の力プロラタトンの構成単位を含むものであってもよい ここで、上記力プロラタトン変性原子団が複数の力プロラタトンの構成単位を含むも のである場合、当該力プロラタトン変性原子団に含有される力プロラタトンの構成単位 の数は、 2〜5の範囲内であることが好ましい。
[0073] なお、本発明に用いられる上記ウレタンアタリレートは、単一のウレタンアタリレート モノマーが重合してなるものであってもよぐまたは、複数種類のウレタンアタリレート モノマーが重合してなるものであってもよ!/、。
[0074] 本態様における光学異方性層には、上記ウレタン系榭脂以外に他の化合物が含ま れていてもよい。このような他の化合物としては、光学異方性層に付与される位相差 性や Reの波長依存性を損なわないものであれば特に限定されるものではなぐ本発 明の位相差フィルムの用途等に応じて任意の化合物を用いることができる。
[0075] このような他の化合物としては、例えば、光学異方性層の位相差性の発現性に寄 与する屈折率異方性を有する化合物を挙げることができる。このような化合物を用い ることにより、例えば、上記ウレタン系榭脂のみでは光学異方性層に所望の位相差性 の付与することが困難である場合に、位相差性を増加させることができる力もである。 このような屈折率異方性を有する化合物としては、例えば、液晶化合物や、屈折率異 方性を備える無機化合物等を挙げることができる。
また、本態様における光学異方性層に含有されるウレタン系榭脂として、上記ウレタ ンアタリレートを用いる場合は、上記他の化合物として光重合開始剤を用いることが 好ましい。本態様に用いられる光重合開始剤としては、例えば、ベンゾフエノン、 o— ベンゾィル安息香酸メチル、 4, 4 ビス(ジメチルァミン)ベンゾフエノン、 4, 4 ビス( ジェチルァミン)ベンゾフエノン、 α ァミノ'ァセトフエノン、 4, 4—ジクロロべンゾフエ ノン、 4—ベンゾィル 4—メチルジフエ二ルケトン、ジベンジルケトン、フルォレノン、 2, 2—ジエトキシァセトフエノン、 2, 2—ジメトキシー 2—フエニルァセトフエノン、 2— ヒドロキシー 2—メチルプロピオフエノン、 p—tert—ブチルジクロロアセトフエノン、チ ォキサントン、 2—メチルチオキサントン、 2—クロ口チォキサントン、 2—イソプロピル チォキサントン、ジェチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキ シェチルァセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アント ラキノン、 2— tert—ブチルアントラキノン、 2—アミルアントラキノン、 β クロルアント ラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、 4ーァ ジドベンジルァセトフエノン、 2, 6 ビス(ρ アジドベンジリデン)シクロへキサン、 2, 6 ビス(ρ アジドベンジリデン)一 4—メチルシクロへキサノン、 2—フエ-ルー 1, 2 ブタジオンー2—(ο—メトキシカルボニル)ォキシム、 1 フエ二ループロパンジォ ンー 2—(ο エトキシカルボニル)ォキシム、 1, 3 ジフエ二ループロパントリオン 2 一(ο エトキシカルボニル)ォキシム、 1 フエ二ルー 3 エトキシープロパントリオン - 2- (ο べンゾィル)ォキシム、ミヒラーケトン、 2—メチルー 1 [4 (メチルチオ)フ ェ -ル] - 2-モルフォリノプロパン一 1 オン、 2 -ベンジル - 2-ジメチルァミノ 1 - (4—モルフォリノフエ-ル)一ブタノン、ナフタレンスルホ-ルクロライド、キノリンス ルホユルク口ライド、 η—フエ-ルチオアタリドン、 4, 4—ァゾビスイソブチ口-トリル、ジ フエ-ルジスルフイド、ベンズチアゾールジスルフイド、トリフエ-ルホスフィン、カンフ ァーキノン、アデ力社製 N1717、四臭化炭素、トリブロモフエ-ルスルホン、過酸化べ ンゾイン、ェォシン、メチレンブルー等の光還元性色素とァスコルビン酸やトリェタノ ールァミンのような還元剤との組み合わせ等を例示できる。本態様では、これらの光 重合開始剤を 1種または 2種以上を組み合わせて用いることができる。
[0077] 上記光重合開始剤を用いる場合には、光重合開始助剤を併用することが好ま 、 。このような光重合開始助剤としては、トリエタノールァミン、メチルジェタノールァミン 等の 3級ァミン類や、 2—ジメチルアミノエチル安息香酸、 4ージメチルアミド安息香酸 ェチル等の安息香酸誘導体を例示することができる力 S、これらに限られるものではな い。
[0078] 本態様に用いられる光学異方性層の厚みとしては、上記ウレタン系榭脂の種類に 応じて、本発明の位相差フィルムに所望の位相差性を付与することができる範囲内 であれば特に限定されるものではな!/、。なかでも本態様における上記光学異方性層 の厚みは、通常、 0. 5 /ζ πι〜20 /ζ πιの範囲内であることが好ましい。
[0079] b.透明基板
次に、本態様に用いられる透明基板について説明する。本態様に用いられる透明 基板は上述したセルロース誘導体力 なるものである。
[0080] 本態様に用いられる透明基板の透明度は、本発明の位相差フィルムに求める透明 性等に応じて任意に決定すればよいが、通常、可視光領域における透過率が 80% 以上であることが好ましぐ 90%以上であることがより好ましい。
ここで、上記透明基板の透過率は、 JIS K7361 - 1 (プラスチック一透明材料の全 光透過率の試験方法)により測定することができる。
[0081] また、本態様に用いられる透明基板の厚みは、本発明の位相差フィルムの用途等 に応じて、必要な自己支持性が得られる範囲内であれば特に限定されるものではな い。なかでも本態様においては 10 μ m〜188 μ mの範囲内であることが好ましぐ特 に 20 μ m〜125 μ mの範囲内であることが好ましぐさらには 30 μ m〜80 μ mの範 囲内であることが好ましい。
透明基板の厚みが上記の範囲よりも薄いと、本発明の位相差フィルムに必要な自 己支持性を付与できない場合がある力もである。また、厚みが上記の範囲よりも厚い と、例えば、本発明の位相差フィルムを裁断加工する際に、加工屑が増力!]したり、裁 断刃の磨耗が早くなつてしまう場合があるからである。
[0082] また、本態様に用いられる透明基板の Reは、本発明の位相差フィルムに所望の位 相差性を付与できる範囲内であれば特に限定されるものではなぐ本発明の位相差 フィルムの用途や、本態様に用いられる光学異方性フィルムの具体的態様に応じて 、任意に調整することができる。なかでも本態様に用いられる透明基板は、 550nmに おける Reが Οηπ!〜 50nmの範囲内であることが好ましい。
また、本態様に用いられる透明基板は、波長 550nmにおける Rth力 Οηπ!〜 100 nmの範囲内であることが好まし!/、。
[0083] ここで、本態様に用いられる透明基板の Reの波長依存性は、逆分散型、正分散型 、または、フラット分散型のいずれであってもよいが、なかでも本態様においては逆分 散型であることが好ましい。
上記透明基板の Reの波長依存性が逆分散型であることにより、本発明の位相差フ イルムを、より広範な波長領域にぉ 、て液晶表示装置の視野角補償機能を発現でき るものにすることができるからである。
[0084] 本態様に用いられる透明基板は、貯蔵引張弾性率 X断面積で表される値が上記 光学異方性層のそれよりも大きぐかつ、寸法収縮率が上記光学異方性層の寸法収 縮率よりも小さいことが好ましい。このような特徴を有する透明基板を用いることにより 光学異方性層に経時で寸法変化が生じることをより効果的に防止できるため、光学 特性の経時安定性に優れた位相差フィルムを得ることができるからである。
[0085] 本態様に用いられる透明基板の貯蔵引張弾性率 X断面積で表される値は、上記 光学異方性層に含有されるウレタン系榭脂等の種類や、本発明の位相差フィルムの 用途等に応じて適宜好適な範囲に調整することができる。なかでも本態様に用いら れる透明基板の貯蔵引張弾性率 X断面積で表される値は、光学異方性層の貯蔵引 張弾性率 X断面積で表される値の 10倍以上であることが好ましぐ特に 20倍以上で あることが好ましぐさらには 35倍以上であることが好ましい。透明基板の貯蔵引張弹 性率 X断面積で表される値が上記範囲内であることにより、本態様の光学異方性フ イルムの寸法安定性を、より透明基板の力学特性に支配的なものにすることができる ことから、例えば、透明基板の力学特性を制御することで光学異方性フィルム全体の 力学特性を制御することが可能になるため、本態様の光学異方性フィルムの光学特 性の経時安定性を設計することが容易になる等の利点を有するからである。
[0086] 本態様に用いられる透明基板の貯蔵引張弾性率 X断面積で表される値の具体的 な範囲としては、 10000N〜5000000Nの範囲内、より好ましくは 10000N〜1000 OOONの範囲内、さらに好ましくは 50000N〜500000Nの範囲内程度とされる。 ここで、上記貯蔵引張弾性率 X断面積で表される値は、例えば、株式会社ユービ 一ェム社製「Rheogel— E4000」を用い、以下の条件により貯蔵引張弾性率を測定 し、その測定値に透明基板の断面積を乗ずることにより求めることができる。
•チャック間距離 : 15mm
'サンプノレ幅 : 5mm
'歪み : 100 /z m
•昇温速度 : 3°CZmin
'周波数 : 10Hz
[0087] また、本態様の光学異方性フィルムにおいて光学異方性層が透明基板に浸透する などして、上記の方法で透明基板単独の貯蔵引張弾性率を測定することが困難な場 合においては、一般的に知られている圧縮方向の動的な弾性率とせん断方向の動 的な弾性率の関係、すなわち (せん断方向の弾性率 =圧縮方向の弾性率 Z3)とい う関係を利用できる。つまり、透明基板単独の貯蔵引張弾性率を測定することが困難 である場合は、上記貯蔵引張弾性率に替えて上記圧縮弾性率を用いることが可能で ある。
[0088] 上記貯蔵引張弾性率に替えて上記圧縮弾性率を用いる場合、透明基板の圧縮弾 性率 X断面積で表される値としては、上述した光学異方性層の圧縮弾性率 X断面 積で表される値よりも大き 、範囲内であれば特に限定されるものではな 、。なかでも 本態様における透明基板の圧縮弾性率 X断面積の値は、透明基板の幅が lm、光 学異方性層の塗工幅が lmである場合に、 30000N〜 15000000Nの範囲内である ことが好ましぐ特〖こ 30000N〜3000000Nの範囲内であること力 S好ましく、さらには 150000N〜 1500000Nの範囲内であること力 子まし!/ヽ。 ここで、上記圧縮弾性率は、株式会社エリオ-タス ENT— 1100a用い、以下の条 件で測定した値を用いるものとする。
'測定深度 : 500nm
'測定 : 500pointで区切り、 lpointあたりのステップインターバルを lOmse cとする。
[0089] なお、上記「断面積」は、透明基板の平面方向に対して垂直方向の断面の断面積( 透明基板の厚み X透明基板の幅)を意味するものとする。
[0090] また、本態様に用いられる透明基板の寸法収縮率は、上記光学異方性層の寸法 収縮率よりも小さ 、範囲であれば特に限定されるものではな 、。なかでも本態様に用 いられる透明基板の寸法収縮率は 0. 01%〜1%範囲内であることが好ましぐ特に 0. 01%〜0. 1%の範囲内であることが好ましぐさらには 0. 01%〜0. 02%の範囲 内であることが好ましい。
ここで、上記寸法収縮率で表される値は、例えば、透明基板を元の長さの 1. 4倍の 長さまで延伸した長さを La、延伸後 1日経過後の長さを Lbを測定することにより、以 下の式に基 、て求めることができる。
寸法収縮率 = (La Lb)/La
[0091] さらに、本態様に用いられる透明基板は高温高湿雰囲気下における寸法安定性に 優れたものであることが好ま 、。上記透明基板として高温高湿雰囲気下における寸 法安定性に優れたものを用いることにより、位相差フィルム全体としての高温高湿雰 囲気下における寸法安定性を向上することができる結果、高温高湿雰囲気下におい ても光学特性の安定性が良好な位相差フィルムを得ることができるからである。なか でも本態様に用いられる透明基板は、温度 90°C、相対湿度 90%RHの環境下にお いて lhr経過させた際の寸法変化率が 25%以下であることが好ましぐ特に 0. 1% 〜 10%の範囲内であることが好ましぐさらには 0. 1%〜5%の範囲内であることが 好ましい。
[0092] なお、本態様に用いられる透明基板の構成は、単一の層からなる構成に限られるも のではなぐ複数の層が積層された構成を有してもょ 、。
また、複数の層が積層された構成を有する場合は、同一組成の層が積層されてもよ ぐまた、異なった組成を有する複数の層が積層されてもよい。
[0093] cその他
本態様の光学異方性フィルムは、上記光学異方性層が上記透明基板上に密着す るように形成された構成を有するものとなる。このときの上記光学異方性層と上記透 明基板との密着の程度としては、上記透明基板の力学特性により上記光学異方性層 の力学特性を制御することが可能な範囲内であれば特に限定されるものではない。 なかでも本発明にお 、ては上記密着の程度力 クロスカット法での評価結果が 20Z 100〜100ZlOOの範囲内であることが好ましい。
なお、上記「クロスカット法」とは、日本工業規格 JISK5600-5-6「塗料一般試験方 法-第 5部:塗膜の機械的性質-第 6節:付着性 (クロスカット法)に準ずる評価法であり 、塗工面側に lmm角の切れ目を碁盤目状にいれ、接着テープ (ニチバン社製、セロ テープ (登録商標))を貼り付け、その後テープを引き剥がし、 lmm角 100個中残つ た個数を数えることにより付着性を評価するものである。
また、上記クロスカット法による評価結果は、 100箇所の碁盤目状評価部位のうち 残った数を表すものであり、例えば、上記「20Z100」は、 100箇所の評価部位のう ち剥れずに残った箇所が 20箇所であること意味するものであり、また、上記「100Zl 00」は、 100箇所の評価部位のうち、 100箇所すべてが剥れずに残ることを意味する ものである。
[0094] また、本態様の光学異方性フィルムにおいて、上記透明基板と、上記光学異方性 層とが積層された態様としては、上記透明基板と上記光学異方性層とが独立した層 として積層された態様であってもよぐまたは、上記透明基板と光学異方性層との間 に明確な界面がなぐ両者の間において上記ウレタン系榭脂の含有量が連続的に変 化するように積層された態様であってもよ 、。
[0095] このような上記透明基板と上記光学異方性層とが積層された態様について図を参 照しながら説明する。図 2は本態様の光学異方性フィルムにおいて、上記透明基板と 上記光学異方性層とが積層された態様の一例を示す概略図である。図 2に例示する ように、本態様の光学異方性フィルム 1A、 1A'は、上記透明基板 laと上記光学異方 性層 lbとが独立した層として積層された態様であってもよく(図 2(a) )、または、上記 透明基板 laと光学異方性層 lb 'との間に明確な界面がなく、両者の間にお 、て上 記ウレタン系榭脂の含有量が連続的に変化するように積層された態様であってもよ い(図 2 (b) )。
[0096] (2)第 2態様の光学異方性フィルム
次に、上記第 2態様の光学異方性フィルムについて説明する。本態様の光学異方 性フィルムは、セルロース誘導体カゝらなる透明基板と、上記透明基板上に形成され、 上記透明基板を構成するセルロース誘導体および Reの波長依存性が正分散型を 示す光学異方性材料を含有する光学異方性層とを有するものである。
本態様の光学異方性フィルムは、例えば、上記透明基板として Reの波長依存性が 逆分散型であるものを用い、上記透明基板の Re比の絶対値を上記光学異方性層の Re比の絶対値よりも大きいものとすることにより、上記光学異方性フィルムを容易にレ ターデーシヨンの波長依存性が逆分散であるものにできるという利点を有する。
以下、本態様の光学異方性フィルムについて詳細に説明する。
[0097] a.光学異方性層
まず、本態様に用いられる光学異方性材料について説明する。本態様に用いられ る光学異方性材料としては、レターデーシヨンの波長依存性が正分散型であるもので あれば特に限定されるものではなぐ本発明の位相差フィルムの用途等に応じて、本 発明の位相差フィルムに所望の位相差性を付与できるものを適宜選択して用いるこ とができる。なかでも本態様に用いられる光学異方性材料は、上記 Re比が 1〜2の範 囲内であるものが好ましい。特に、上記透明基板の逆分散特性を生かすためには、 Re比がなるべく 1に近 、ものを用いることが好まし 、。
[0098] ここで、光学異方性材料の上記 Re比は、ポリイミドなどの配向膜を形成し、配向処 理を施したガラス基板などの等方性基材上に、上記光学異方性材料からなる層を成 膜し、波長 450nm〖こおける Re (Re )と、波長 550nm〖こおける Re (Re )とを測定
450 550 することにより算出することができる。
[0099] 本態様に用いられる上記光学異方性材料としては、上記 Re比が上記範囲内である もののであれば特に限定されるものではな 、。このような光学異方性材料としては、 例えば、棒状化合物、高分子液晶材料、および、ポリイミド系材料を挙げることができ る。
ここで、上記高分子液晶材料としては、例えば、特開 2002— 265475号公報、特 開 2004— 285174、および、特開平 8— 278491に記載の化合物等を挙げることが できる。
また、上記ポリイミド系材料としては、例えば、特開 2004— 78203号公報、特開 20 05— 91625号公報、および、特開 2004— 331951号公報に記載の化合物等を挙 げることができる。
[0100] 本態様に用いられる光学異方性材料としては、上記棒状化合物、上記高分子液晶 材料、および、上記ポリイミド系材料のいずれであっても好適に用いることができるが 、なかでも棒状ィ匕合物を用いることが好ましい。棒状化合物は規則的に配列させるこ とにより優れた位相差性を発現できるため、このような棒状ィ匕合物を用いることにより 、本態様の光学異方性フィルムに所望の位相差性を付与することが容易になるから である。
ここで、本態様における「棒状ィ匕合物」とは、分子構造の主骨格が棒状となっている ものを指す。
[0101] 本態様に用いられる上記棒状ィ匕合物としては、分子量が比較的小さい化合物を用 いることが好ましい。より具体的には、分子量が 200〜1200の範囲内である化合物 が好ましぐ特に 400〜1000の範囲内である化合物が好適に用いられる。その理由 は次の通りである。すなわち、本態様に用いられる光学異方性層は、上記光学異方 性材料と、後述する透明基板を構成するセルロース誘導体とを含有するものであるが 、上記棒状化合物として分子量が比較的小さい化合物を用いることにより、上記光学 異方性層にお ヽて上記棒状化合物が上記セルロース誘導体と混合しやすくなるから である。
なお、上記棒状化合物として重合性官能基を有する材料を用いる場合、上記棒状 化合物の分子量は、重合前のモノマーの分子量を示すものとする。
[0102] また、本態様に用いられる棒状化合物は、液晶性を示す液晶性材料であることが 好ましい。液晶性材料は規則的に配列する特性を備えるため、このような液晶性材 料を用いることにより、本態様の光学異方性フィルムに所望の位相差性を付与するこ とが容易になるからである。
[0103] 上記液晶性材料としては、ネマチック相、コレステリック相、および、スメクチック相等 の 、ずれの液晶相を示す材料であっても好適に用いることができる。なかでも本態様 においては、ネマチック相を示す液晶性材料を用いることが好ましい。ネマチック相を 示す液晶性材料は、他の液晶相を示す液晶性材料と比較して規則的に配列させる ことが容易である力 である。
[0104] また、上記ネマチック相を示す液晶性材料としてはメソゲン両端にスぺーサを有す る材料を用いることが好まし 、。メソゲン両端にスぺーサを有する液晶性材料は柔軟 性に優れるため、このような液晶性材料を用いることにより、本態様の光学異方性フィ ルムを透明性に優れたものにできる力もである。
[0105] さらに、本態様に用いられる棒状化合物は、分子内に重合性官能基を有するもの が好適に用いられ、なかでも 3次元架橋可能な重合性官能基を有するものがより好 適に用いられる。上記棒状化合物が重合性官能基を有することにより、上記棒状ィ匕 合物を重合して固定することが可能になるため、配列安定性に優れ、位相差性の経 時変化が生じにくい光学異方性層を得ることができる力もである。
また、本態様においては上記重合性官能基を有する棒状化合物と、上記重合性官 能基を有さな 、棒状ィ匕合物とを混合して用いてもょ ヽ。
なお、上記「3次元架橋」とは、液晶性分子を互いに 3次元に重合して、網目(ネット ワーク)構造の状態にすることを意味する。
[0106] 上記重合性官能基としては、例えば、紫外線、電子線等の電離放射線、或いは熱 の作用によって重合する重合性官能基を挙げることができる。これら重合性官能基の 代表例としては、ラジカル重合性官能基、或いはカチオン重合性官能基等が挙げら れる。さらにラジカル重合性官能基の代表例としては、少なくとも一つの付加重合可 能なエチレン性不飽和二重結合を持つ官能基が挙げられ、具体例としては、置換基 を有するもしくは有さないビュル基、アタリレート基 (アタリロイル基、メタクリロイル基、 アタリロイルォキシ基、メタクリロイルォキシ基を包含する総称)等が挙げられる。また、 上記カチオン重合性官能基の具体例としては、エポキシ基等が挙げられる。その他、 重合性官能基としては、例えば、イソシァネート基、不飽和 3重結合等が挙げられる。 これらの中でもプロセス上の点から、エチレン性不飽和二重結合を持つ官能基が好 適に用いられる。
[0107] さらにまた、本態様における棒状化合物は液晶性を示す液晶性材料であって、末 端に上記重合性官能基を有するものが特に好ま 、。このような液晶材料を用いるこ とにより、例えば、互いに 3次元に重合して、網目(ネットワーク)構造の状態にするこ とができるため、配列安定性を備え、かつ、光学特性の発現性に優れた光学異方性 層を形成することができるからである。
なお、本態様にお!ヽては片末端に重合性官能基を有する液晶性材料を用いた場 合であっても、他の分子と架橋して配列安定ィ匕することができる。
[0108] また、本態様に用いられる棒状化合物は、分子内に単一の上記重合性官能基を有 する単官能重合性液晶材料を用いることが好まし ヽ。上記単官能重合性液晶材料 は配列特性に優れるため、このような単官能重合性液晶材料を用いることにより、本 態様の光学異方性フィルムを光学異方性の発現性に優れたものにできるからである
[0109] 本態様に用いられる棒状化合物の具体例としては、下記式(1)〜(6)で表される化 合物を例示することができる。
[0110] [化 1]
Figure imgf000033_0001
H2C=CHG00~ GH2~)~0~^ Vcoo— ^ -0CH3 ( 5)
Figure imgf000033_0002
[0111] ここで、化学式(1)、(2)、(5)および (6)で示される液晶性材料は、 DJ.Broerら、 Makromol. Chem. 190,3201— 3215 (1989)、または DJ.Broerら、 Makromol. Chem.l90,2250 (1989)に開示された方法に従い、あるいはそれに類似して調製 することができる。また、化学式(3)および (4)で示される液晶性材料の調製は、 DE 195,04,224【こ開示されて!ヽる。
[0112] また、末端にアタリレート基を有するネマチック液晶性材料の具体例としては、下記 化
学式(7)〜(17)に示すものも挙げられる。
[0113] [化 2]
Figure imgf000034_0001
( 1 7 ) g: 2~10の整数
[0114] なお、本態様に用いられる棒状化合物は、 1種類のみであってもよぐまたは、 2種 以上であってもよい。例えば、上記棒状ィ匕合物として、両末端に重合性官能基を 1つ 以上有する液晶性材料と、片末端に重合性官能基を 1つ以上有する液晶性材料とを 混合して用いると、両者の配合比の調整により重合密度 (架橋密度)及び光学特性を 任意に調整できる点から好まし 、。
[0115] 次に、本態様おける光学異方性層に含有されるセルロース誘導体について説明す る。本態様に用いられる榭脂材料は、後述する透明基板を構成するセルロース誘導 体である。本態様においては、光学異方性層にこのようなセルロース誘導体が含有さ れることにより、透明基板と光学異方性層との密着性に優れた光学異方性フィルムを 得ることができる。
[0116] 本態様の光学異方性層中に含有されるセルロース誘導体の含有量としては、本態 様の光学異方性フィルムにおいて、透明基板と光学異方性層との密着性を所望の範 囲にすることができる範囲内であれば特に限定されるものではない。なかでも本態様 においては、上記セルロース誘導体の含有量力 1質量%〜50質量%の範囲内で あることが好ましぐ特に 5質量%〜30質量%の範囲内であることが好ましい。
[0117] なお、上記セルロース誘導体については、上述した透明基板に用いられるものと同 様であるため、ここでの説明は省略する。
[0118] 本態様に用いられる光学異方性層には、上記光学異方性材料および上記榭脂材 料以外に他の化合物が含有されていてよい。このような他の化合物としては、例えば 、ポリジメチルシロキサン、メチルフエ-ルシロキサン、有機変性シロキサン等のシリコ ン形レベリング剤;ポリアルキルアタリレート、ポリアルキルビュルエーテル等の直鎖状 重合物;フッ素系界面活性剤、炭化水素系界面活性剤等の界面活性剤;テトラフル ォロエチレン等のフッ素系レべリング剤;光重合開始剤等を挙げることができる。 なかでも本態様においては、上記光学異方性材料として、光照射により重合する重 合性官能基を有する棒状化合物を用いる場合に、上記他の化合物として光重合開 始剤を含むことが好ましい。
[0119] 本態様に用いられる光重合開始剤としては、上記「(1)第 1態様の光学異方性フィ ルム」の項において説明したものと同様であるため、ここでの説明は省略する。
[0120] 上記光重合開始剤の含有量としては、上記棒状ィヒ合物を所望の時間で重合できる 範囲内であれば特に限定されないが、通常、上記棒状ィ匕合物 100重量部に対して、 1重量部〜 10重量部の範囲内が好ましく、特に 3重量部〜 6重量部の範囲内が好ま しい。
[0121] 上記光重合開始剤を用いる場合には、光重合開始助剤を併用することができる。こ のような光重合開始助剤としては、トリエタノールァミン、メチルジェタノールアミン等 の 3級ァミン類や、 2—ジメチルアミノエチル安息香酸、 4ージメチルアミド安息香酸ェ チル等の安息香酸誘導体を例示することができる力 これらに限られるものではな ヽ
[0122] さらに本態様における上記光学異方性層には、本発明の目的を損なわない範囲内 で、下記に示すような化合物を添加することができる。添加できる化合物としては、例 えば、多価アルコールと 1塩基酸または多塩基酸を縮合して得られるポリエステルプ レポリマーに、(メタ)アクリル酸を反応させて得られるポリエステル (メタ)アタリレート; ポリオール基と 2個のイソシァネート基を持つ化合物を互いに反応させた後、その反 応生成物に (メタ)アクリル酸を反応させて得られるポリウレタン (メタ)アタリレート;ビス フエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ノボラック型エポキシ 榭脂、ポリカルボン酸ポリグリシジルエステル、ポリオ一ルポリグリシジルエーテル、脂 肪族または脂環式エポキシ榭脂、アミノ基エポキシ榭脂、トリフエノールメタン型ェポ キシ榭脂、ジヒドロキシベンゼン型エポキシ榭脂等のエポキシ榭脂と、(メタ)アクリル 酸を反応させて得られるエポキシ (メタ)アタリレート等の光重合性ィ匕合物;アクリル基 ゃメタクリル基を有する光重合性の液晶性ィ匕合物等が挙げられる。このような化合物 を含有することにより本態様に用いられる上記光学異方性層の機械強度が向上し、 安定性が改善される場合がある。
[0123] 本態様に用いられる光学異方性層の厚みとしては、上記光学異方性材料や、後述 する透明基板の種類に応じて、本態様の光学異方性フィルムの Reの波長依存性を 逆分散型にできる範囲であれば特に限定されるものではな、。なかでも本態様にお ける上記光学異方性層の厚みは、通常、 0. 5 /ζ πι〜20 /ζ πιの範囲内であることが好 ましい。
[0124] b.透明基板
次に、本態様に用いられる透明基板について説明する。本態様に用いられる透明 基板は、上述したセルロース誘導体力 なり、 Reの波長依存性が逆分散型であるも のである。
[0125] 本態様に用いられる透明基板は、 Reの波長依存性が逆分散であるものであれば 特に限定されるものではない。なかでも本態様に用いられる透明基板は、 Re比が 0. 3〜1の範囲内であるものが好ましぐ特に 0. 5〜0. 9の範囲内であるものが好ましい 。 Re比が上記範囲内であるものを用いることにより、本発明の位相差フィルムを、 Re の波長依存性が逆分散型であるものにすることが容易になる力 である。
なお、本態様に用いられる透明基板の Reが小さぐ上記 Re比を正確に測定するこ とが困難である場合においては、上記 Re比に替えて、波長 450nmにおける Rth(Rt h )と、波長 550nmにおける Rth(Rth )との比(Rth /Rth ) (以下、単に「R
450 550 450 550
th比」と称する場合がある。)を上記逆分散の指標とすることができる。すなわち、本 態様に用いられる透明基板は、上記 Rth比が 0. 3〜1の範囲内であるものが好ましく
、特に 0. 5〜0. 9の範囲内であるものであってもよい。
[0126] 本態様に用いられる透明基板の構成は、単一の層からなる構成に限られるもので はなぐ複数の層が積層された構成を有してもよい。
また、複数の層が積層された構成を有する場合は、同一組成の層が積層されてもよ ぐまた、異なった組成を有する複数の層が積層されてもよい。
[0127] 本態様に用いられる透明基板の透明度は、本発明の位相差フィルムに求める透明 性等に応じて任意に決定すればよいが、通常、可視光領域における透過率が 80% 以上であることが好ましぐ 90%以上であることがより好ましい。
ここで、上記透明基板の透過率は、 JIS K7361 - 1 (プラスチック一透明材料の全 光透過率の試験方法)により測定することができる。
[0128] また、本態様に用いられる透明基板の厚みは、本発明の位相差フィルムの用途等 に応じて、必要な自己支持性が得られる範囲内であれば特に限定されるものではな い。なかでも本態様においては 10 μ m〜188 μ mの範囲内であることが好ましぐ特 に 20 μ m〜125 μ mの範囲内であることが好ましぐさらには 30 μ m〜80 μ mの範 囲内であることが好ましい。
透明基板の厚みが上記の範囲よりも薄いと、本発明の位相差フィルムに必要な自 己支持性を付与できない場合がある力もである。また、厚みが上記の範囲よりも厚い と、例えば、本発明の位相差フィルムを裁断加工する際に、加工屑が増力!]したり、裁 断刃の磨耗が早くなつてしまう場合があるからである。
[0129] また、本態様に用いられる透明基板の Reは、本発明の位相差フィルムに所望の位 相差性を付与できる範囲内であれば特に限定されるものではなぐ本発明の位相差 フィルムの用途や、本態様に用いられる光学異方性フィルムの具体的態様に応じて
、任意に調整することができる。なかでも本態様に用いられる透明基板は、 550nmに おける Reが Οηπ!〜 50nmの範囲内であることが好ましい。
また、本態様に用いられる透明基板は、波長 550nmにおける Rth力 Οηπ!〜 100 nmの範囲内であることが好まし!/、。
[0130] ここで、本態様に用いられる透明基板の Reの波長依存性は、逆分散型、正分散型 、または、フラット分散型のいずれであってもよいが、なかでも本態様においては逆分 散型であることが好ましい。
上記透明基板の Reの波長依存性が逆分散型であることにより、本発明の位相差フ イルムを、より広範な波長領域にぉ 、て液晶表示装置の視野角補償機能を発現でき るものにすることができるからである。
[0131] 1 2.第 2実施態様
まず、本発明に用いられる第 2実施態様の光学異方性フィルムについて説明する。 本実施態様の光学異方性フィルムは、 Reの波長依存性が正分散であるものである。
[0132] 本実施態様の光学異方性フィルムとしては、上記 Re比が 1よりも大きいものであれ ば特に限定されるものではなぐ本発明の位相差フィルムの用途等に応じて適宜を 調整すればよい。なかでも本実施態様においては上記 Re比が 1. 01〜: L 3の範囲 内であることが好ましぐ特に 1. 01〜: L 2の範囲内であることが好ましい。
上記 Re比がこのような範囲内であることにより、本発明の位相差フィルムをより広範 な波長領域において液晶表示装置の視野角等性を改善できるものにできるからであ る。
[0133] 本実施態様の光学異方性フィルムは、セルロース誘導体力 なる透明基板が用い られているものであるが、上記透明基板を構成するセルロース誘導体としては、所望 の透水性を備え、本発明の位相差フィルムを偏光板保護フィルムとして用いた場合 に、偏光板製造工程において、偏光子に含有される水分を透過し、経時での偏光特 性の低下を所望の程度に抑制できるものであれば特に限定されるものではない。 ここで、本実施態様に用いられる透明基板については、上記「1— 1.第 1実施態様 」の項において説明したものと同様であるため、ここでの説明は省略する。
[0134] 本実施態様の光学異方性フィルムに上記透明基板が用いられている態様としては 、本実施態様の光学異方性フィルムに所望の光学異方性および Reの波長依存性等 を付与することができる態様であれば特に限定されるものではな 、。このような態様と しては、本実施態様の光学異方性フィルムが上記透明基板のみから構成される態様 と、上記透明基板上に、光学異方性層が積層された態様とを挙げることができる。本 実施態様の光学異方性フィルムは、これらのいずれの態様であってもよいが、なかで も後者の態様であることが好ましい。これより、本発明の位相差フィルムの用途等に 応じて、本実施態様の光学異方性フィルムに所望の機能を付与することが容易にな るカゝらである。
[0135] 上記透明基板上に光学異方性層が積層された態様の光学異方性フィルムとしては 、本発明の位相差フィルムに所望の機能を付与できるものであれば特に限定される ものではない。なかでも本実施態様の光学異方性フィルムとしては、上記透明基板と 、上記透明基板上に形成され、上記透明基板を構成するセルロース誘導体およびレ ターデーシヨンの波長依存性が正分散型を示す光学異方性材料とを含有する光学 異方性層とを有する態様のものが好まし 、。このような態様を有するものであれば、 上記光学異方性層の厚み等を変化させることにより、本実施態様の光学異方性フィ ルムの光学特性や、 Reの波長依存性を所望の範囲に調整することが容易になるか らである。
なお、このような態様においては、透明基板上に光学異方性層を形成した後、その ままで、或いは、必要に応じて更に延伸処理を施すことにより、 nx>nyなる光学異方 性を付与することができる。
以下、このような態様の光学異方性フィルムについて順に説明する。
[0136] a.光学異方性層
本態様における光学異方性層に用いられる光学異方性材料としては、レターデー シヨンの波長依存性が正分散型であるものであれば特に限定されるものではなぐ本 発明の位相差フィルムの用途等に応じて、本発明の位相差フィルムに所望の位相差 性を付与できるものを適宜選択して用いることができる。 ここで、本態様に用いられる光学異方性材料については、上記「1 1.第 1実施態 様」の項において説明したものと同様のものを用いることができるため、ここでの説明 は省略する。
[0137] 次に、本態様おける光学異方性層に含有されるセルロース誘導体について説明す る。本態様に用いられる榭脂材料は、後述する透明基板を構成するセルロース誘導 体である。本態様においては、光学異方性層にこのようなセルロース誘導体が含有さ れることにより、透明基板と光学異方性層との密着性に優れた光学異方性フィルムを 得ることができる。
[0138] 本態様の光学異方性層中に含有されるセルロース誘導体の含有量としては、本態 様の光学異方性フィルムにおいて、透明基板と光学異方性層との密着性を所望の範 囲にすることができる範囲内であれば特に限定されるものではない。なかでも本態様 においては、上記セルロース誘導体の含有量力 1質量%〜50質量%の範囲内で あることが好ましぐ特に 5質量%〜30質量%の範囲内であることが好ましい。
[0139] なお、上記セルロース誘導体については、上述した透明基板に用いられるものと同 様であるため、ここでの説明は省略する。
[0140] 本態様に用いられる光学異方性層には、上記光学異方性材料および上記榭脂材 料以外に他の化合物が含有されていてもよい。このような他の化合物としては、上記 「1— 1.第 1実施態様」の項において説明したものと同様のものを用いることができる ため、ここでの説明は省略する。
[0141] 本態様に用いられる光学異方性層の厚みとしては、上記光学異方性材料や、後述 する透明基板の種類に応じて、本態様の光学異方性フィルムの Reの波長依存性を 正分散型にできる範囲であれば特に限定されるものではな 、。なかでも本態様にお ける上記光学異方性層の厚みは、 0. 5 m〜20 μ mの範囲内であることが好ましい
[0142] b.透明基板
本態様に用いられる透明基板は、上述したセルロース誘導体力もなり、 Reの波長 依存性が逆分散型であるものである。
ここで、本態様に用いられる透明基板としては、上記「1— 1.第 1実施態様」の項に おいて説明したものと同様のものを用いることができるため、ここでの説明は省略する
[0143] 2.位相差層
次に、本発明に用いられる位相差層について説明する。本発明に用いられる位相 差層は、液晶材料を含有し、面内方向において互いに直交する任意の x、 y方向の 屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に、 nx≤nyく nzの関係が成立するも のである。
本発明においては、上記 nx、 ny、および、 nzにこのような関係が成立する位相差 層が用いられていることにより、本発明の位相差フィルムに正の Cプレートとしての性 質を付与することができるため、本発明の位相差フィルムを IPS方式の位相差フィル ムの視野角補償フィルムとして好適に用いられるものにできるのである。
なお、本発明に用いられる位相差層が上記 nx≤nyく nzの関係を有することは、位 相差層にお 、て上記液晶材料がホメオト口ピック配向を形成して 、ることと同意であ る。
[0144] 以下、本発明に用いられる位相差層について説明する。
[0145] (1)液晶材料
まず、本発明に用いられる液晶材料について説明する。本発明に用いられる液晶 材料としては、位相差層の上記 nx、 ny、および、 nzに上記関係が成立する位相差性 を付与できるものであれば特に限定されるものではな 、。このような液晶材料としては 、通常、ホメオト口ピック配向させることが可能なホメオト口ピック液晶材料が用いられ る。
[0146] 上記ホメオト口ピック液晶材料としては、ホメオト口ピック配向を形成することにより、 本発明の位相差フィルムに所望の位相差性を付与できるものであれば特に限定され るものではない。なかでも本発明に用いられるホメオト口ピック液晶材料は、重合性官 能基を有するものであることが好まし 、。このようなホメオト口ピック液晶材料を用いる ことにより、重合性官能基を介して互いに重合させることができるため、本発明におけ る位相差層の機械強度を向上することができるからである。また、位相差層中におけ るホメオト口ピック液晶材料の配向安定性も向上させることができるからである。 [0147] 上記重合性官能基としては、紫外線、電子線等の電離放射線、或いは熱の作用に よって重合する各種重合性官能基が用いられる。これら重合性官能基の代表例とし ては、ラジカル重合性官能基、或いはカチオン重合性官能基等が挙げられる。さらに ラジカル重合性官能基の代表例としては、少なくとも一つの付加重合可能なエチレン 性不飽和二重結合を持つ官能基が挙げられ、具体例としては、置換基を有するもし くは有さないビュル基、アタリレート基 (アタリロイル基、メタクリロイル基、アタリロイル ォキシ基、メタクリロイルォキシ基を包含する総称)等が挙げられる。又、カチオン重 合性官能基の具体例としては、エポキシ基等が挙げられる。その他、重合性官能基 としては、例えば、イソシァネート基、不飽和 3重結合等が挙げられる。本発明におい ては、これらの重合性官能基のなかでもプロセス上の点から、エチレン性不飽和二重 結合を持つ官能基が好適に用いられる。
[0148] なお、本発明に用いられるホメオト口ピック液晶材料は、上記重合性官能基を複数 有するものであってもよぐまたは、 1つのみを有するものであってもよい。
[0149] このようなホメオト口ピック液晶材料としては、垂直配向膜を使用することなぐホメォ トロピック配向を形成できるホメオト口ピック配向性を有するもの(第 1のホメオト口ピック 液晶材料)と、単独ではホメオト口ピック配向を形成することができないが、垂直配向 膜を使用することによりホメオト口ピック配向を形成できるもの(第 2のホメオト口ピック 液晶材料)と、を挙げることができる。本発明においては、上記第 1のホメオト口ピック 液晶材料はもちろんのこと、上記第 2のホメオト口ピック液晶材料であっても好適に用 いることがでさる。
[0150] なお、本発明にお ヽて上記第 2のホメオト口ピック液晶材料を用いる場合は、位相 差層にお 、て上記ホメオト口ピック液晶材料をホメオト口ピック配向させるために、通 常、上述した光学異方性フィルムと位相差層との間に液晶材料をホメオト口ピック配 向させる配向規制力を有する配向層を用いたり、または、光学異方性層中に上記液 晶材料をホメオト口ピック配向させる機能を有する配向制御化合物を用いる方法が用 いられ、例えば、特開平 10— 319408号公報、 2002— 174724号、および、特開 2 003— 195035号等に開示されている。また、ガラス基板等の他の基板上に上記第 2 のホメオト口ピック液晶材料がホメオト口ピック配向した位相差層を別途形成した後、こ れを剥離して上記光学異方性フィルム上に積層する転写法も用いることができる。こ のような転写法にぉ ヽて、上記ガラス基板上に位相差層を形成する方法にっ ヽては
、例えば、特開 2003— 177242号公報等に開示されている。
[0151] 上記第 1のホメオト口ピック液晶材料としては、垂直配向膜を使用することなくホメォ トロピック配向を形成することができ、本発明における位相差層に所望の位相差性を 付与できるものであれば特に限定されるものではない。このような上記第 1のホメオト 口ピック液晶材料としては、例えば、正の屈折率異方性を有する液晶性フラグメント側 鎖を含有するモノマーユニットと、非液晶性フラグメント側鎖を含有するモノマーュ- ットとを含有する側鎖型液晶ポリマーや、上記液晶性フラグメント側鎖を含有するモノ マーユニットと脂環族環状構造を有する液晶性フラグメント側鎖を含有するモノマー ユニットとを含有する側鎖型液晶ポリマー等の液晶ポリマーを挙げることができる。こ のような液晶ポリマーとしては、例えば、特開 2003— 121853号公報、特開 2002— 174725号公報、特開 2002— 333642号公報、および、特開 2005— 70098号公 報に記載されているような化合物を挙げることができる。また、液晶ポリマーではない 液晶化合物をホメオト口ピック配向させる方法としては、垂直配向作用を有する界面 活性剤等の添加剤を使用することができ、例としては特開 2002— 148626号公報を 挙げることができる。さらに、重合性液晶化合物を使用した例としては、特表 2000— 514202号公報を挙げることができる。
[0152] 一方、上記第 2のホメオト口ピック液晶材料としては、垂直配向膜等を使用すること によりホメオト口ピック配向を形成することができ、本発明における位相差層に所望の 位相差性を付与できるものであれば特に限定されるものではない。なかでも、本発明 にお ヽては、ネマチック相を示すネマチック液晶材料が好適に用いられる。
[0153] 本発明に用いられる上記第 2のホメオト口ピック液晶材料の具体例としては、例えば 、特開平 7— 258638号公報や特表平 10— 508882号公報、 #^2003- 287623 号公報に記載されて 、るような化合物を挙げることができる。なかでも本発明にお ヽ ては、上記第 2のホメオト口ピック液晶材料として、上記式(1)〜(17)で表される化合 物を好適に用いることができる。
[0154] また、本発明に用いられる上記第 2のホメオト口ピック液晶材料としては、例えば、特 開平 10— 319408号公報に記載されているような化合物を挙げることができる。なか でも本発明においては、以下の化学式で表される化合物を好適に用いることができ る。
[化 3]
Figure imgf000044_0001
[0156] 上記式において、 Xは 1〜12であり、 Zは 1, 4 フエ-レン基または 1, 4ーシクロへ キシレン基であり、 R1はハロゲンまたはシァノである力、あるいは炭素原子 1〜12個を 有するアルキル基またはアルコキシ基であり、そして Lは、 H、ハロゲンまたは CNであ る力、あるいは炭素原子 1〜7個を有するアルキル基、アルコキシ基またはァシル基 である。
[0157] なお、上記液晶材料として重合性官能基を有する化合物を用いた場合、本発明に おける位相差層に含有される液晶材料は、上記重合性官能基を介して重合された 重合物となる。
[0158] (2)位相差層
本発明における位相差層に含有される液晶材料は 1種類でもよぐまたは、 2種類 以上であってもよい。また、 2種類以上の液晶材料を用いる場合、上記第 1のホメオト 口ピック液晶材料と、上記第 2のホメオト口ピック液晶材料とを混合して用いてもょ 、。
[0159] また、本発明における位相差層には、上記液晶材料以外の他の化合物が含まれて いてもよい。このような他の化合物としては、位相差層における上記液晶材料の配列 状態や、位相差層の光学特性発現性を損なわな 、ものであれば特に限定されるもの ではなぐ本発明に用いられる位相差フィルムの用途等に応じて適宜選択して用いる ことができる。なかでも、本発明に好適に用いられる上記他の化合物としては、上記 液晶材料のホメオト口ピック配向形成を補助する配向制御化合物を挙げることができ る。このような配向制御化合物を用いることにより、上記第 2態様のホメオト口ピック液 晶材料を用いることが可能になるという利点がある。また、上記第 1態様のホメオトロピ ック液晶材料を用いる場合であっても、このような配向制御化合物を用いることにより ホメオト口ピック配向の規則性を向上できるという利点がある。
[0160] 上記配向制御化合物としては、本発明における位相差層に所望のホメオト口ピック 配向規制力を付与できるものであれば特に限定されるものではな 、。なかでも本発 明に用いられる配向制御化合物としては、界面活性剤を好適に用いることができる。 界面活性剤は位相差層において、空気界面に偏在し、分子の特定の方向を位相差 層側に向けて配列することができるため、位相差層に上記ホメオト口ピック配向規制 力を容易に付与することができるからである。
[0161] 本発明に用いられる上記界面活性剤としては、例えば、スルホネート界面活性剤を 挙げることができ、特に、フッ素化スルホネート界面活性剤が好適に用いられる。
[0162] 上記フッ化スルホネート界面活性剤の具体例としては、例えば、商品名 FC— 443 0、 FC— 4432 (いずれも 3M Company製)を挙げることができる。
[0163] また、本発明に用いられる上記他の化合物としては、例えば、重合開始剤、重合禁 止剤、可塑剤、界面活性剤、および、シランカップリング剤等を挙げることができる。
[0164] さらに、本発明における位相差層には、本発明の目的を損なわない範囲内で、下 記に示すような化合物を添加することができる。添加できる化合物としては、例えば、 多価アルコールと 1塩基酸または多塩基酸を縮合して得られるポリエステルプレポリ マーに、(メタ)アクリル酸を反応させて得られるポリエステル (メタ)アタリレート;ポリオ ール基と 2個のイソシァネート基を持つ化合物を互いに反応させた後、その反応生成 物に (メタ)アクリル酸を反応させて得られるポリウレタン (メタ)アタリレート;ビスフエノ ール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ノボラック型エポキシ榭脂 、ポリカルボン酸ポリグリシジルエステル、ポリオ一ルポリグリシジルエーテル、脂肪族 または脂環式エポキシ榭脂、アミノ基エポキシ榭脂、トリフエノールメタン型エポキシ 榭脂、ジヒドロキシベンゼン型エポキシ榭脂等のエポキシ榭脂と、(メタ)アクリル酸を 反応させて得られるエポキシ (メタ)アタリレート等の光重合性ィ匕合物;アクリル基ゃメ タクリル基を有する光重合性の液晶性ィ匕合物等が挙げられる。
[0165] 本発明における位相差層の厚みは、上記液晶材料の種類等に応じて、位相差層 に所望の光学特性を付与できる範囲内であれば特に限定されないが、 0. 5 /ζ πι〜1 0 μ mの範囲内であることが好ましぐなかでも 0. 5 μ m〜5 μ mの範囲内であること が好ましぐ特に 1 μ m〜3 μ mの範囲内であることが好ましい。
[0166] 本発明における位相差層は位相差性を示すものである力 このような位相差性は、 本発明の位相差フィルムの用途等に応じて任意に調整することができる。なかでも本 発明に用いられる位相差層は、厚み方向のレターデーシヨン力 ΙΟΟΟηπ!〜 Onm の範囲内であることが好ましい。
[0167] また、本発明に用いられる位相差層は、上述した光学異方性フィルム上に形成され るものである力 本発明において上記光学異方性フィルム上に位相差層が形成され る態様は特に限定されるものではなぐ本発明の目的に応じて適宜選択すればよい 。したがって、例えば、上記光学異方性フィルムとして、上記透明基板上に光学異方 性層が積層された態様のものを用いる場合、本発明に用いられる位相差層が上記光 学異方性フィルム上に形成される態様としては、上記光学異方性層上に形成される 態様であってもよぐあるいは、上記光学異方性層が形成された面とは反対側の面上 に形成される態様であってもよ 、。
[0168] このような位相差層の形成態様について図を参照しながら具体的に説明する。図 3 は、本発明にお 、て位相差層が上記光学異方性フィルム上に形成される態様の一 例を示す概略図である。図 3に例示するように、本発明の位相差フィルム 10' , 10" 力 透明基板 la上に光学異方性層 lbが形成された光学異方性フィルム 1が用いら れ、上記光学異方性フィルム 1上に位相差層 2が形成された構成を有するものである 場合、上記位相差層 2が上記光学異方性フィルム 1上に形成される態様としては、上 記光学異方性層 lb上に形成される態様であってもよく(図 3 (a) )、あるいは、上記光 学異方性層 lbが形成された面とは反対側の面上に形成される態様であってもよ 、 ( 図 3 (b) )。
[0169] 本発明においては、上記のいずれの態様であっても好適に用いることができる。
ここで、上記位相差層が上記光学異方性層側の面上に形成される態様は、光学異 方性層と位相差層が同じ側になるため連続的な塗工がしゃすぐ製造しやすいこと、 および、光学異方性層の表面散乱を打ち消すことができ、かつ、透明基材の反対側 の面を露出させることができるため、当該露出面側は偏光子と積層することも、あるい は、反射防止層等の各種機能層を積層することも可能となり、利用法や設計仕様の 自由度が広がるという利点がある。
一方、上記位相差層が上記光学異方性層が形成された面とは反対側の面上に形 成される態様は、上記位相差層と上記光学機能層の相互作用が無いため、上記の ような位相差の設計値力ゝらの偏移やバラツキを生じ難ぐ上記位相差層への所望の 光学特性付与が容易になると!、う利点がある。
したがって、本発明の位相差フィルムの具体的用途や要求性能あるいは設計方針 等に応じて、上記の 2態様力もより適合的な態様を適宜選択して用いればよい。
[0170] 3.位相差フィルム
本発明の位相差フィルムは、少なくとも上記光学異方性フィルムと、上記位相差層 とを有するものである力 必要に応じて他の任意の構成が用いられていてもよい。本 発明に用いられる任意の構成としては、本発明の位相差フィルムの用途等に応じて、 所望の機能を有するものを適宜選択して用いることができる。このような任意の構成と しては、例えば、上記位相差層上に形成される透明なオーバーコート層を挙げること ができる。このようなオーバーコート層が用いられることにより、本発明の位相差フィル ムを用いて液晶表示装置を作成する際に、粘着層を位相差層側に積層した場合で あっても、位相差フィルムの耐久性を向上させることができる力もである。
[0171] 本発明の位相差フィルムが示す位相差性は、本発明の位相差フィルムの用途等に 応じて適宜決定することができる力 なかでも本発明の位相差フィルムは、 Nzファクタ 一が
1. 0以下であることが好ましぐ特に 1. 5≤Nz≤l. 0の範囲内であることが好まし い。
ここで、上記 Nzファクタ一は屈折率楕円体の形状を規定するパラメーターであり、 面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の 屈折率 nzとにより、以下の式で表されるものである。
Nz= (nx— nz) ,、nx— ny)
なお、上記 Nzファクタ一は、例えば、王子計測機器株式会社製 KOBRA-WR を用い、平行-コル回転法によって上記 nx、 ny、および、 nzを測定した後、上記式 にしたがって算出することにより求めることができる。
[0172] また、本発明の位相差フィルムの Reおよび Rthにつ!/、ても、本発明の位相差フィル ムの用途等に応じて適宜決定することができる力 なかでも本発明の位相差フィルム は波長 550nmにおける Reが Onm〜300nmの範囲内であることが好ましい。
また、本発明の位相差フィルムは波長 550nmにおける Rthが— 600≤Rthく 150 の範囲内であることが好ましい。
[0173] なお、本発明の位相差フィルムの Reの波長依存性は、波長が短くなるほど Reが小 さくなる逆分散型であってもよぐ波長が短くなるほど Reが大きくなる正分散型であつ てもよく、または、 Reに波長依存性を有さないフラット型であってもよい。なかでも、本 発明の位相差フィルムは、上記波長分散が逆分散型であることが好ましい。これによ り、本発明の位相差フィルムを、より広範な波長領域において液晶表示装置の視野 角補償機能を発現できるものにすることができるからである。
[0174] 本発明の位相差フィルムの Reの波長依存性が上記逆分散型である場合、 Re比と しては、 0. 6以上、 1. 0未満の範囲内であること力 S好ましく、特に 0. 8〜0. 9の範囲 内が好ましい。
[0175] 本発明の位相差フィルムの形態は特に限定されるものではなぐ例えば、本発明の 位相差フィルムを用いる液晶表示装置の画面サイズに合致したシート状であってもよ ぐまたは、長尺状であってもよい。
[0176] 4.位相差フィルムの製造方法
次に、本発明の位相差フィルムの製造方法について説明する。本発明の位相差フ イルムの製造方法としては、上記構成を有する位相差フィルムを製造できる方法であ れば特に限定されるものではない。このような方法としては、例えば、次の 3つの方法 を f列示することができる。
第 1の方法は、セルロース誘導体力 なる透明基板を用い、上記ウレタン系榭脂ま たは波長依存性が正分散型を示す光学異方性材料を含有する光学異方性層形成 用塗工液を上記透明基板上に塗工することにより光学異方性フィルムを作製する光 学異方性フィルム作製工程と、上記光学異方性フィルム作製工程によって作製され た光学異方性フィルムを延伸する延伸工程と、上記延伸工程によって延伸された光 学異方性フィルムの光学異方性層上に、上記液晶材料を含有する位相差層形成用 塗工液を塗工することにより、上記光学異方性層上に位相差層を形成する位相差層 形成工程とを有する方法である。なお、上記位相差層形成工程は、上記光学異方性 フィルムの上記光学異方性層が形成された面とは反対側の面上に位相差層を形成 するものであってもよい。
第 2の方法は、セルロース誘導体力 なる透明基板を用い、上記ウレタン系榭脂ま たは波長依存性が正分散型を示す光学異方性材料を含有する光学異方性層形成 用塗工液を上記透明基板上に塗工することにより光学異方性フィルムを作製する光 学異方性フィルム作製工程と、上記光学異方性フィルム作製工程によって作製され た光学異方性フィルムの光学異方性層上に、上記液晶材料を含有する位相差層形 成用塗工液を塗工することにより、上記光学異方性層上に位相差層を形成する位相 差層形成工程と、上記光学異方性フィルムおよび上記位相差層の積層体を延伸す る延伸工程とを有する方法である。
なお、上記位相差層形成工程は、上記光学異方性フィルムの上記光学異方性層 が形成された面とは反対側の面上に位相差層を形成するものであってもよい。 第 3の方法は、セルロース誘導体力 なる透明基板を用い、上記ウレタン系榭脂ま たは波長依存性が正分散型を示す光学異方性材料を含有する光学異方性層形成 用塗工液を上記透明基板上に塗工することにより光学異方性フィルムを作製する光 学異方性フィルム作製工程と、上記光学異方性フィルム作製工程によって作製され た光学異方性フィルムを延伸する延伸工程と、垂直配向膜を備える基板上に、上記 液晶材料を含有する位相差層を形成した後、上記位相差層のみを上記光学異方性 フィルムの光学異方性層上に粘着剤を介して接着させる位相差層形成工程とを有す る方法である。なお、上記位相差層形成工程は、上記光学異方性フィルムの上記光 学異方性層が形成された面とは反対側の面上に位相差層を形成するものであっても よい。
[0177] 本発明の位相差フィルムは、上記のいずれの方法であっても製造することができる 力 なかでも、上記第 1の方法によれば、より簡便に上記第 1態様の光学異方性フィ ルムが用いられた位相差フィルムを得ることができる。
[0178] ここで、上記第 1の方法および第 2の方法において、上記光学異方性材料として重 合性官能基を有する棒状化合物を用いる場合、光学異方性材料が重合処理される ことにより安定した光学異方性層を形成することが可能になるが、上記光学異方性材 料に重合処理を施すタイミングとしては、上記延伸工程の前であってもよぐあるいは 、後であってもよい。
[0179] なお、延伸工程に用いる装置、および、加工方法等にとしては、通常の合成樹脂フ イルムの延伸加工に用いられるものと基本的には同様の装置を用い、光学異方性フ イルムの構成材料、所望のレターデーシヨン値を勘案して、適宜条件にて延伸すれ ばよい。
延伸は、一軸延伸処理、二軸延伸処理のいずれを行ってもよい。また、二軸延伸 処理は、アンバランス二軸延伸処理を実施してもよい。アンバランス二軸延伸では、 ポリマーフィルムをある方向に一定倍率延伸し、それと垂直な方向にそれ以上の倍 率に延伸する。二方向の延伸処理は、同時に実施してもよい。
また、延伸処理は、特に限定されない。例えばロール延伸法、長間隙沿延伸法、テ ンター延伸法、チューブラー延伸法等の任意の延伸方法により適宜行うことができる 。延伸処理に当たり、高分子フィルムは、例えばガラス転移点温度、以上溶融温度( 乃至は融点温度)以下などに加熱されることが好ましい。
さら〖こ、上記延伸工程を Roll to Rollプロセスで実施する場合、上記延伸処理の 態様としては、フィルムの搬送方向に対して平行方向に延伸する態様 (縦延伸)であ つてもよく、または、フィルムの搬送方向に対して略垂直方向に延伸する態様 (横延 伸)であってもよい。 延伸処理の延伸倍率は、得たいレターデーシヨン値により適宜決定され、特に限定 されない。フィルムの面内方向の各点におけるレターデーシヨン値を均一にする点か らは、 1. 03〜2倍の範囲にあることが好ましい。
その他、上記各方法における各工程の具体的な実施方法については、一般的に 液晶表示装置用の位相差フィルムを作製する際に用いられる方法を用いることがで きるため、ここでの詳しい説明は省略する。
[0180] B.輝度向上フィルム
次に、本発明の輝度向上フィルムについて説明する。本発明の輝度向上フィルム は、上記本発明に係る位相差フィルムと、上記位相差フィルムが備える上記位相差 層上に形成され、コレステリック配列した液晶材料を含有するコレステリック液晶層と を有することを特徴とするものである。
[0181] このような本発明の輝度向上フィルムについて図を参照しながら説明する。図 4は 本発明の輝度向上フィルムの一例を示す概略図である。図 4に例示するように本発 明の輝度向上フィルム 20は、位相差フィルム 10と、上記位相差フィルム 10が備える 位相差層 2上に形成され、コレステリック配列した液晶材料を含有するコレステリック 液晶層 21を有するものである。
このような例において、本発明の輝度向上フィルム 20は、上記位相差フィルム 10と して、本発明に係る位相差フィルムが用いられて ヽることを特徴とするものである。
[0182] 本発明によれば、上記本発明に係る位相差フィルムが用いられていることにより、偏 光板保護フィルムとして用いることにより、輝度向上機能に優れた輝度向上フィルム を得ることができる。
[0183] 本発明の輝度向上フィルムは、少なくとも上記位相差フィルムおよび上記コレステリ ック液晶層を有するものである。
以下、本発明の輝度向上フィルムに用 、られる各構成につ 、て詳細に説明する。 なお、本発明に用いられる位相差フィルムについては、上記「A.位相差フィルム」 の項において説明したものと同様であるため、ここでの説明は省略する。
[0184] 1.コレステリック液晶層
まず、本発明に用いられるコレステリック液晶層について説明する。本発明に用いら れるコレステリック液晶層は、上述した位相差フィルムが有する位相差層上に形成さ れ、コレステリック配列した液晶材料を有するものである。
以下、本発明に用いられるコレステリック液晶層につ 、て詳細に説明する。
[0185] 本発明に用いられるコレステリック液晶層は、左回り又は右回りのいずれか一方の 円偏光を反射して他の光は透過する特性を有するものであれば特に限定されるもの ではない。なかでも本発明に用いられるコレステリック液晶層は、可視光の少なくとも 一部の帯域において円偏光二色性を示すもの、または、可視光の 200nm以上の帯 域にぉ 、て円偏光二色性を示すものが好ま 、。
[0186] このようなコレステリック液晶層は、例えば、液晶ポリマーの配向物、液晶モノマーの 配向物の重合層力もなるものを挙げることができる。また、本発明に用いられるコレス テリック液晶層はこれらの複合層力もなるものであってもよ 、。本発明に用いられるコ レステリック液晶層の具体例としては、例えば、特開 2004— 198478号公報に記載 されて ヽるちのを挙げることがでさる。
[0187] また、本発明に用いられるコレステリック液晶層の厚みとしては、上記コレステリック 液晶層に所望の選択反射機能を付与できる範囲であれば特に限定されるものでは ない。なかでも本発明においては、 1 μ m〜30 μ mの範囲内であることが好ましぐ 特に 2 μ τα—ΐ δ μ mの範囲内であることが好ましい。
[0188] なお、本発明に用いられるコレステリック液晶層には上記液晶ポリマー以外のポリマ 一や安定剤、可塑剤などの無機化合物、有機化合物、金属やその化合物などの 1種 以上の添加剤を必要に応じて配合することができる。
[0189] また、本発明に用いられるコレステリック液晶層は、反射波長が相違するものの組 み合わせにして 2層又は 3層以上重畳した配置構造とすることにより、可視光領域等 の広 、波長範囲で円偏光を反射するものとしてもよ 、。
[0190] 3.輝度向上フィルムの製造方法
本発明の輝度向上フィルムの製造方法としては、上記構成を有する輝度向上フィ ルムを製造できる方法であれば特に限定されるものではな 、。このような方法として は、例えば、上記本発明の位相差フィルムを用い、上記位相差フィルムが備える位相 差層上に、ネマチック液晶材料およびカイラル剤を含有するコレステリック液晶層形 成用塗工液を塗工することにより、上記位相差層上にコレステリック液晶層を形成す る方法を挙げることがでさる。
なお、上記コレステリック液晶層形成用塗工液を用いて上記コレステリック液晶層を 形成する方法としては、通常、上記コレステリック液晶層形成用塗工液を上記位相差 層上に塗工し、次いでこれを乾燥した後に、上記液晶材料をコレステリック配列させ る方法が用いられる。また、上記液晶材料として重合性官能基を有する材料が用い られている場合は、上記コレステリック配列を形成した後に、紫外線照射等によって 重合処理がなされることになる。このような方法の詳細については、一般的にコレステ リック液晶層を形成するために用いられている公知の方法と同様であるため、ここで の詳しい説明は省略する。
[0191] C.偏光板
次に、本発明の偏光板について説明する。本発明の偏光板は、その構成により 2つ の態様に分類することができる。
以下、各態様に分けて本発明の偏光板について順に説明する。
[0192] C 1 :第 1態様の偏光板
まず、本発明の第 1態様の偏光板について説明する。本態様の偏光板は、上記本 発明に係る位相差フィルムが偏光板保護フィルムとして用いられたものである。 すなわち、本態様の偏光板は、上記本発明に係る位相差フィルムと、上記位相差 フィルムが備える上記光学異方性フィルム上であって、上記位相差層が形成された 側とは反対側の面上に形成された偏光子と、上記偏光子上に形成された偏光板保 護フィルムと、を有することを特徴とするものである。
[0193] このような本態様の偏光板について図を参照しながら説明する。図 5は本態様の偏 光板の一例を示す概略図である。図 5に例示するように本態様の偏光板 30は、位相 差フィルム 10と、上記位相差フィルム 10が備える光学異方性フィルム 1上に形成され た、偏光子 31と、上記偏光子 31上に形成された偏光板保護フィルム 32とを有するも のである。
このような例において、本態様の偏光板 30は、上記位相差フィルム 10として本発明 の位相差フィルム 10が用いられていることを特徴とするものである。 [0194] 本態様によれば、片方の偏光板保護フィルムとして上記本発明に係る位相差フィ ルムが用いられていることにより、耐久性に優れ、かつ、 IPS方式の液晶表示装置に 対する視野角補償機能を備える偏光板を得ることができる。
[0195] 本態様の偏光板は、少なくとも上記位相差フィルム、偏光子、および、偏光板保護 フィルムを有するものである。
以下、本態様の偏光板に用いられる各構成について説明する。
なお、本態様に用いられる上記位相差フィルムについては、上記「A.位相差フィル ム」の項において説明したものと同様であるため、ここでの説明は省略する。
[0196] 1.偏光板保護フィルム
まず、本態様に用いられる偏光板保護フィルムについて説明する。本態様に用いら れる偏光板保護フィルムは、本態様の偏光板において偏光子が空気中の水分等に 曝されることを防止する機能と、偏光子の寸法変化を防止する機能とを有するもので ある。
[0197] 本態様に用いられる偏光板保護フィルムは、本態様の偏光板において上記偏光子 を保護することができ、かつ、所望の透明性を有するものであれば特に限定されるも のではない。なかでも本態様に用いられる偏光板保護フィルムは、可視光領域にお ける透過率が 80%以上であるものが好ましぐ 90%以上であるものがより好ましい。 ここで、上記偏光板保護フィルムの透過率は、 JIS K7361 - 1 (プラスチック一透 明材料の全光透過率の試験方法)により測定することができる。
[0198] 本態様に用いられる偏光板保護フィルムを構成する材料としては、例えば、セル口 ース誘導体、シクロォレフイン系榭脂、ポリメチルメタタリレート、ポリビュルアルコール 、ポリイミド、ポリアリレート、ポリエチレンテレフタレート、ポリスルホン、ポリエーテルス ルホン、アモルファスポリオレフイン、変性アクリル系ポリマー、ポリスチレン、エポキシ 榭脂、ポリカーボネート、ポリエステル類等を挙げることができる。
なかでも本態様にぉ 、ては、上記榭脂材料としてセルロース誘導体またはシクロォ レフイン系榭脂を用いることが好まし 、。
[0199] 上記セルロース誘導体としては、例えば、上記「A.位相差フィルム」の項にぉ ヽて 光学異方性フィルムに用いられる透明基板を構成するセルロース誘導体として説明 したものと同様のものを用いることができる。
[0200] 一方、上記シクロォレフイン系榭脂としては、環状ォレフィン (シクロォレフィン)から なるモノマーのユニットを有する榭脂であれば特に限定されるものではな 、。このよう な上記環状ォレフィン力 なるモノマーとしては、例えば、ノルボルネンゃ多環ノルボ ルネン系モノマー等を挙げることができる。
また、本態様に用いられるシクロォレフイン系榭脂としては、シクロォレフィンポリマ 一 (COP)またはシクロォレフィンコポリマー(COC)の!、ずれであっても好適に用い ることがでさる
[0201] 本態様に用いられるシクロォレフイン系榭脂は上記環状ォレフインカもなるモノマー の単独重合体であってもよぐまたは、共重合体であってもよい。
[0202] また、本態様に用いられるシクロォレフイン系榭脂は、 23°Cにおける飽和吸水率が 1質量%以下であるものが好ましぐなかでも 0. 1質量%〜0. 7質量%の範囲内であ るものが好ましい。このようなシクロォレフイン系榭脂を用いることにより、本態様の偏 光板を吸水による光学特性の変化や寸法の変化がより生じにくいものとすることがで さるカゝらである。
ここで、上記飽和吸水率は、上記吸水率は、 ASTMD570に準拠し 23°Cの水中で 1週間浸漬して増加重量を測定することにより求められる。
[0203] さらに、本態様に用いられるシクロォレフイン系榭脂は、ガラス転移点が 100°C〜2 00°Cの範囲内であるものが好ましぐ特に 100°C〜180°Cの範囲内であるものが好 ましぐなかでも 100°C〜150°Cの範囲内であるものが好ましい。ガラス転移点が上 記範囲内であることにより、本態様の偏光板を耐熱性および加工適性により優れたも のにできる力もである。
[0204] 本態様に用いられるシクロォレフイン系榭脂からなる偏光板保護フィルムの具体例 としては、例えば、 Ticona社製 Topas、ジエイエスアール社製 アートン、 日本ゼォ ン社製 ZEONOR、日本ゼオン社製 ZEONEX、三井化学社製 ァペル等を挙げ ることがでさる。
[0205] 本態様に用いられる偏光板保護フィルムとしては、上記セルロース誘導体力もなる もの、および、上記シクロォレフイン系榭脂からなるもののいずれであっても好適に用 いることができる力 なかでも本態様においてはシクロォレフィン系榭脂からなるもの を用いることが好ましい。その理由は次の通りである。すなわち、本態様の偏光板は、 一方の偏光板保護フィルムとして上記本発明に係る位相差フィルムが用いられたも のであるが、上記本発明に係る位相差フィルムは、セルロース誘導体力 なる透明基 板が用いられた光学異方性フィルムが用いられているものである。したがって、上記 偏光板保護フィルムとして、上記セルロース誘導体カゝらなるものを用いると、本態様の 偏光板における両面の偏光板保護フィルムがセルロース誘導体力 なるものになり、 その結果として、光学特性の耐久性等が損なわれてしまう恐れがある。
この点、上記シクロォレフイン系榭脂ゃアクリル系榭脂からなる偏光板保護フィルム を用いることにより、本態様の偏光板を、片面にシクロォレフイン系榭脂ゃアクリル系 榭脂からなる偏光板保護フィルムが用いられ、他の面にセルロース誘導体が用いら れた本発明の位相フィルムが用いられることになるため、上述したような懸念が少な いからである。
[0206] 本発明における偏光板保護フィルムの構成は、単一の層からなる構成に限られるも のではなぐ複数の層が積層された構成を有してもょ 、。
また、複数の層が積層された構成を有する場合は、同一組成の層が積層されてもよ ぐまた、異なった組成を有する複数の層が積層されてもよい。
[0207] 2.偏光子
次に、本態様に用いられる偏光子について説明する。本態様に用いられる偏光子 は、本態様の偏光板に偏光特性を付与する機能を有するものである。
[0208] 本態様に用いられる偏光子は、本態様の偏光板に所望の偏光特性を付与できるも のであれば特に限定されるものではなぐ一般的に液晶表示装置の偏光板に用いら れるものを特に制限なく用いることができる。本態様においては、このような偏光子と して、通常、ポリビュルアルコールフィルムが延伸されてなり、ヨウ素を含有する偏光 子が用いられる。
[0209] 3.偏光板の製造方法
本態様の偏光板の製造方法としては、上記構成を有する偏光板を製造できる方法 であれば特に限定されるものではない。このような方法としては、通常、上記偏光子 に接着剤を介して、上記偏光板保護フィルムと、上記位相差フィルムとを貼り合わせ る方法が用いられる。
また、上記位相差フィルムと、上記偏光子とは、通常、上記位相差フィルムの遅相 軸の方向と、上記偏光子の吸収軸の方向とが互いに直行するように貼り合わされる。 なお、上記偏光板保護フィルム、上記位相差フィルム、および、上記偏光子を貼り 合わせる方法については、一般的に液晶表示装置に用いられる偏光板を製造する 際に用いられる方法を用いることができる。このような方法としては、例えば、特許第 3 132122号公報に記載された方法等を用いることができる。
[0210] また、本態様のような偏光板を工業的に作製する場合、通常、長尺に形成された偏 光子、偏光板保護フィルム、および、位相差フィルムを用い、長尺の状態でこれらを 貼り合わせることにより、ロール状に巻き取られた形態の偏光板を製造する方法が用 いられる。このような方法により本発明の偏光板を製造する場合、上記偏光子として、 吸収軸の方向が長手方向に対して平行であるものを用い、上記位相差フィルムとし ては遅相軸の方向が長手方向に対して垂直であるものを用いることにより、 Roll to Rollプロセスで効率よく本発明の偏光板を製造することができる。
[0211] C 2 :第 2態様の偏光板
次に、本発明の第 2態様の偏光板について説明する。本態様の偏光板は、偏光板 保護フィルムとして上記本発明に係る輝度向上フィルムが用いられたものである。 すなわち、本態様の偏光板は、上記本発明に係る輝度向上フィルムと、上記輝度 向上フィルムが備える上記光学異方性フィルム上であって、上記位相差層が形成さ れた側とは反対側の面上に形成された偏光子と、上記偏光子上に形成された偏光 板保護フィルムと、を有することを特徴とするものである。
[0212] このような本態様の偏光板について図を参照しながら説明する。図 6は本態様の偏 光板の一例を示す概略図である。図 6に例示するように本態様の偏光板 40は、輝度 向上フィルム 20と、上記輝度向上フィルム 20が備える光学異方性フィルム 1上に形 成された、偏光子 41と、上記偏光子 41上に形成された偏光板保護フィルム 42とを有 するものである。
このような例において、本態様の偏光板 40は、上記輝度向上フィルム 20として本発 明の輝度向上フィルムが用 ヽられて 、ることを特徴とするものである。
[0213] 本態様によれば、片方の偏光板保護フィルムとして上記本発明に係る輝度向上フ イルムが用いられていることにより、耐久性に優れ、かつ、輝度向上機能を備える偏 光板を得ることができる。
[0214] 本態様の偏光板は、少なくとも上記輝度向上フィルム、偏光子、および、偏光板保 護フィルムを有するものである。
なお、本態様に用いられる上記輝度向上フィルムについては、上記「B.輝度向上 フィルム」の項において説明したものと同様であるため、ここでの説明は省略する。ま た、本態様に用いられる偏光子および偏光板保護フィルムについては、上記「C 1 :第 1態様の偏光板」の項において説明したものと同様であるため、ここでの説明は省 略する。
[0215] 本態様の偏光板の製造方法としては、上記構成を有する偏光板を製造できる方法 であれば特に限定されるものではない。このような方法としては、通常、上記偏光子 に接着剤を介して、上記偏光板保護フィルムと、上記輝度向上フィルムとを貼り合わ せる方法が用いられる。
また、上記輝度向上フィルムと、上記偏光子とは、通常、上記輝度向上フィルムの 遅相軸の方向と、上記偏光子の吸収軸の方向とが 45° となるように貼り合わされる。 なお、上記偏光板保護フィルム、上記輝度向上フィルム、および、上記偏光子を貼 り合わせる方法については、一般的に液晶表示装置に用いられる偏光板を製造する 際に用いられる方法と同様であるため、ここでの詳しい説明は省略する。
[0216] D.位相差フィルムの製造方法
次に、本発明の位相差フィルムの製造方法について説明する。ここで、本発明の位 相差フィルムの製造方法は、その態様により 4態様に大別することができる。したがつ て、以下、各態様に分けて本発明の位相差フィルムの製造方法について順に説明 する。
[0217] D— 1.第 1態様の位相差フィルムの製造方法
まず、本発明の第 1態様の位相差フィルムの製造方法について説明する。本態様 の位相差フィルムの製造方法は、セルロース誘導体力 なる透明基板を用い、上記 透明基板上にレターデーシヨンの波長依存性が正分散型を示す光学異方性材料が 溶媒に溶解された光学異方性層形成用塗工液を塗工することにより、上記透明基板 上に光学異方性層が形成された光学異方性フィルムを形成する光学異方性フィルム 形成工程と、上記光学異方性フィルム形成工程によって形成された光学異方性フィ ルムを延伸する延伸工程と、上記延伸工程によって延伸された光学異方性フィルム の光学異方性層上に、液晶材料を含有し、面内方向において互いに直交する任意 の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤ny<nzの関係 が成立する位相差層を形成する位相差層形成工程と、を有することを特徴とするもの である。
[0218] このような本態様の位相差フィルムの製造方法について図を参照しながら説明する 。図 7は、本態様の位相差フィルムの製造方法の一例を示す概略図である。図 7に例 示するように、本態様の位相差フィルムの製造方法は、セルロース誘導体力 なる透 明基板 51aを用い(図 7 (a) )、上記透明基板 51a上にレターデーシヨンの波長依存 性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層形成用塗 ェ液を塗工することにより、上記透明基板 51a上に光学異方性層 51bが形成された 光学異方性フィルム 51を形成する光学異方性フィルム形成工程と(図 7 (b) )、上記 光学異方性フィルム形成工程によって形成された上記光学異方性フィルム 51を延伸 する延伸工程(図 7 (c) )と、上記延伸工程によって延伸された光学異方性フィルム 5 1の光学異方性層 51b上に、液晶材料を含有し、面内方向において互いに直交する 任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤ny<nzの 関係が成立する位相差層 52を形成する位相差層形成工程と (図 7 (d) )、を有し、光 学異方性フィルム 51上に、位相差層 52が形成された位相差フィルム 50を製造する ものである(図 7 (e) )。
[0219] 本態様によれば、上記透明基板としてセルロース誘導体力 なるものが用いられる ことにより、例えば、本態様により製造される位相差フィルムを内側の偏光板保護フィ ルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフイン系榭脂か らなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏光板を得る ことができる。このようなこと力 、本態様によれば耐久性に優れた偏光板を作製可能 な位相差フィルムを製造することができる。
[0220] 本態様の位相差フィルムの製造方法は、少なくとも、上記光学異方性フィルム形成 工程と、上記延伸工程と、上記位相差層形成工程とを有するものであり、必要に応じ て他の工程を有してもょ 、ものである。
以下、本態様の位相差フィルムの製造方法に用いられる各工程について順に説明 する。
[0221] 1.光学異方性フィルム形成工程
まず、本態様に用いられる光学異方性フィルム形成工程について説明する。本ェ 程は、セルロース誘導体力 なる透明基板を用い、上記透明基板上にレターデーシ ヨンの波長依存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方 性層形成用塗工液を塗工することにより、上記透明基板上に光学異方性層が形成さ れた光学異方性フィルムを形成する工程であり、上記光学異方性層形成用塗工液 の溶媒として、沸点が 100°C以上のケトン系溶媒を含むものが用いられることを特徴 とするものである。本工程は、上記光学異方性層形成用塗工液の溶媒として、上記 ケトン系溶媒を含むものが用いられて 、ることにより、ヘイズが小さ!/、光学異方性フィ ルムを形成することができるものである。
以下、このような光学異方性フィルム形成工程について詳細に説明する。
[0222] (1)光学異方性層形成用塗工液
最初に、本工程に用いられる光学異方性層形成用塗工液について説明する。本 工程に用いられる光学異方性層形成用塗工液は、レターデーシヨンの波長依存性が 正分散型を示す光学異方性材料が、沸点が 100°C以上のケトン系溶媒を含む溶媒 に溶解されたものである。
[0223] a.溶媒
上記光学異方性層形成用塗工液に用いられる溶媒としては、上記光学異方性材 料を所望の濃度で溶解可能なものであれば特に限定されるものではな 、。なかでも 本工程においては、上記溶媒として、沸点が 100°C以上のケトン系溶媒を含むもの が用いられることが好ましい。上記光学異方性層形成用塗工液に用いられる溶媒と して、沸点が 100°C以上のケトン系溶媒を含むものが用いられることにより、上記光学 異方性フィルム形成工程にぉ ヽてヘイズが小さ!/、光学異方性フィルムを形成すること が可能になる力 である。
[0224] ここで、本態様お!/ヽて上記光学異方性層形成用塗工液に用いられる溶媒として、 沸点が 100°C以上のケトン系溶媒を含むものが用いられていることにより、上記光学 異方性フィルム形成工程にぉ ヽてヘイズが小さ!/、光学異方性フィルムを形成すること が可能になる理由については明らかではないが、次のような理由によるものであると 考えられる。
すなわち、沸点が 100°C以上のケトン系溶媒を用いることにより、上記光学異方性 層形成用塗工液を用いて光学機能層を形成する際に、塗膜の乾燥速度をより遅くす ることができるため、基材力 溶媒が揮発する際に光学異方性材料の配向性を劣化 しに《し、光学異方性層の内部散乱を抑制することができるため、より白濁の少ない 光学機能層を形成することができると考えられる。
[0225] 上記溶媒として沸点が 100°C以上のケトン系溶媒を含むものが用いられる場合、上 記溶媒中に含まれる上記ケトン系溶媒の含有量としては、後述する光学異方性材料 を所望の濃度で溶解できる範囲であれば特に限定されるものではな 、。なかでも本 工程に用いられる溶媒としては、上記ケトン系溶媒の含有量が 20質量%〜100質量 %の範囲内であるものが好ましく、特に 50質量%〜 100質量%の範囲内であるもの が好ましい。上記ケトン系溶媒の含有量が上記範囲内であることにより、本工程にお いてさらにヘイズが小さい光学異方性フィルムを形成することが可能になる力 であ る。
[0226] なお、本工程に用いられる溶媒中の上記ケトン系溶媒の含有量は、ガスクロマトグ ラフィ一法により、以下の条件で測定した値を用いるものとする。
(1)測定装置 島津製作所
(2)検出器 FID
(3)カラム SBS— 200 3m
(4)カラム温度 100°C
(5)インジェクション温度 150°C
(6)キャリアガス He 150kPa (7)水素圧 60kPa
(8)空気圧 50kPa
[0227] また、本工程に用いられるケトン系溶媒は沸点が 100°C以上であるものであれば特 に限定されるものではなぐ後述する光学異方性材料や、ケトン系溶媒と併用される 他の溶媒の種類等に応じて適宜選択して用いることができる。なかでも本工程に用 いられるケトン系溶媒は、沸点が 100°C以上のものが好ましぐ特に 120°C以上であ るものが好ましく、さらに 130°C〜 170°Cの範囲内であるものが好まし!/、。
[0228] また、本発明に用いられるケトン系溶媒は、セルロースアセテートに対して所望の溶 解性を示すものが好ましい。より具体的にはセルロースアセテートに対する溶解度パ ラメーター(Sp値)が 8 (Cal/cm-3) 1/2〜13 (Cal/cm_3) 1/2の範囲であることが好 ましぐなかでも 9 (Cal/cm-3) 1/2〜 12 (Cal/cm—3) 1/2の範囲内であるものが好ま しい。
[0229] 本工程に用いられるケトン系溶媒との具体例としては、シクロペンタノン、シクロへキ サノン、メチルイソブチルケトン等を挙げることができる。本工程においては、これらの いずれのケトン系溶媒であっても好適に用いることができる力 なかでもシクロペンタ ノンまたはシクロへキサノンを用いることが好ましい。上記ケトン系溶媒として、シクロ ペンタノンまたはシクロへキサノンが用いられていることにより、上記光学異方性フィ ルム形成工程にぉ 、て、よりヘイズが小さ 、光学異方性フィルムを形成することがで きる結果、本態様によりさらに透明性に優れた位相差フィルムを製造することが可能 になる力もである。
[0230] なお、本工程に用いられるケトン系溶媒は、 1種類であってもよぐまたは、 2種類以 上であってもよい。
[0231] 本工程に用いられる溶媒が、上記ケトン系溶媒を含有する態様としては、上記ケト ン系溶媒のみ力 なる態様であってもよぐまたは、上記ケトン系溶媒が他の溶媒と混 合された態様であってもよ ヽ。
[0232] 本工程に用いられる溶媒が、上記ケトン系溶媒が他の溶媒と混合された態様のもの である場合、上記他の溶媒としては、本工程に用いられる溶媒の後述する光学異方 性材料に対する溶解性を所望の範囲にできるものであれば特に限定されるものでは ない。このような他の溶媒としては、例えば、メチルェチルケトン、イソプロピルアルコ ール、ノルマルプロピルアルコール、トルエン、イソブタノール、 N—ブタノール、およ び、酢酸ェチル等を挙げることができる。
[0233] また、本工程に用いられる上記他の溶媒は 1種類のみであってもよぐまたは、 2種 類以上であってもよい。
[0234] b.光学異方性材料
本工程に用いられる光学異方性材料は、レターデーシヨンの波長依存性が正分散 型を示すものであれば特に限定されるものではない。ここで、本工程に用いられる光 学異方性材料については、上記「A.位相差フィルム」の項において説明したものと 同様であるため、ここでの説明は省略する。
[0235] 本工程に用いられる光学異方性層形成用塗工液中の上記光学異方性材料の含 有量としては、本工程において後述する透明基板上に光学異方性層形成用塗工液 を塗工する塗布方式等に応じて、上記光学異方性層形成用塗工液の粘度を所望の 範囲内にできる範囲であれば特に限定されるものではない。なかでも本工程におい ては、上記含有量が 5質量%〜50質量%の範囲内であることが好ましぐ特に 5質量 %〜40質量%の範囲内であることが好ましぐさらに 5質量%〜30質量%の範囲内 であることが好ましい。
[0236] c光学異方性層形成用塗工液
本工程に用いられる光学異方性層形成用塗工液には、上記溶媒および上記光学 異方性材料以外に他の化合物が含まれて 、てもよ 、。このような他の化合物としては 、例えば、ポリジメチルシロキサン、メチルフエニルシロキサン、有機変性シロキサン等 のシリコン形レべリング剤;ポリアルキルアタリレート、ポリアルキルビュルエーテル等 の直鎖状重合物;フッ素系界面活性剤、炭化水素系界面活性剤等の界面活性剤; テトラフルォロエチレン等のフッ素系レべリング剤;光重合開始剤等を挙げることがで きる。
なかでも本工程においては、上記光学異方性材料として、光照射により重合する重 合性官能基を有する棒状化合物を用いる場合に、上記他の化合物として光重合開 始剤を含むことが好ましい。 [0237] ここで、本態様に用いられる光重合開始剤については、上記「A.位相差フィルム」 の項において説明したものと同様であるため、ここでの説明は省略する。
[0238] また、上記光重合開始剤を用いる場合には、光重合開始助剤を併用することがで きる。このような光重合開始助剤としては、トリエタノールァミン、メチルジェタノールァ ミン等の 3級ァミン類や、 2—ジメチルアミノエチル安息香酸、 4ージメチルアミド安息 香酸ェチル等の安息香酸誘導体を例示することができる力 S、これらに限られるもので はない。
[0239] さらに上記光学異方性層形成用塗工液には、下記に示すような化合物を添加する ことができる。添加できる化合物としては、例えば、多価アルコールと 1塩基酸または 多塩基酸を縮合して得られるポリエステルプレボリマーに、(メタ)アクリル酸を反応さ せて得られるポリエステル (メタ)アタリレート;ポリオール基と 2個のイソシァネート基を 持つ化合物を互 、に反応させた後、その反応生成物に (メタ)アクリル酸を反応させ て得られるポリウレタン (メタ)アタリレート;ビスフエノール A型エポキシ榭脂、ビスフエ ノール F型エポキシ樹脂、ノボラック型エポキシ榭脂、ポリカルボン酸ポリグリシジルェ ステル、ポリオ一ルポリグリシジルエーテル、脂肪族または脂環式エポキシ榭脂、アミ ノ基エポキシ榭脂、トリフエノールメタン型エポキシ榭脂、ジヒドロキシベンゼン型ェポ キシ榭脂等のエポキシ榭脂と、(メタ)アクリル酸を反応させて得られるエポキシ (メタ) アタリレート等の光重合性ィ匕合物;アクリル基ゃメタクリル基を有する光重合性の液晶 性ィ匕合物等が挙げられる。
[0240] (2)透明基板
本工程に用いられる透明基板は、セルロース誘導体力もなるものである。ここで、本 工程に用いられる透明基板については、上記「A.位相差フィルム」の項において説 明したものと同様であるため、ここでの説明は省略する。
[0241] (3)光学異方性層の形成方法
次に、本工程において上記透明基板上に上記光学異方性層形成用塗工液を塗工 することにより、光学異方性層を形成する方法について説明する。
[0242] 本工程において、上記透明基板上に光学異方性層形成用塗工液を塗工する方法 としては、厚みが均一で、所望の平面性を達成できる方法であれば特に限定されるも のではない。このような方法としては、例えば、グラビアコート法、リバースコート法、ナ ィフコート法、ディップコート法、スプレーコート法、エアーナイフコート法、スピンコー ト法、ロールコート法、プリント法、浸漬引き上げ法、カーテンコート法、ダイコート法、 キャスティング法、バーコート法、エタストルージョンコート法、 E型塗布方法などを例 示することができる。
[0243] また、本工程において、透明基板上に上記光学異方性層形成用塗工液を塗布す ることにより形成される塗膜の厚みについても、所望の光学スペック (Reや波長依存 性)を達成できる範囲内であれば特に限定されるものではない。なかでも本工程にお 、ては0. 1 111〜50 111の範囲内でぁることカ 子ましく、特に0. 5 /ζ πι〜30 /ζ πιの 範囲内であることが好ましぐさらに 0. 5 /ζ πι〜20 /ζ πιの範囲内であることが好ましい 。光学異方性層形成用塗工液の塗膜の厚みが上記範囲より薄いと本工程により形 成される光学異方性層の平面性が損なわれてしまう場合があり、また厚みが上記範 囲より厚いと、溶媒の乾燥負荷が増大し、生産性が低下してしまう可能性があるから である。
[0244] また、本工程にぉ ヽて上記光学異方性層形成用塗工液の塗膜を乾燥する方法とし ては、例えば、加熱乾燥方法、減圧乾燥方法、ギャップ乾燥方法等、一般的に用い られる乾燥方法を用いることができる。また、本工程に用いられる乾燥方法は、単一 の方法に限られず、例えば、残留する溶媒量に応じて順次乾燥方式を変化させる等 の態様により、複数の乾燥方式を採用してもよい。
[0245] なお、上記光学異方性材料として重合性官能基を有する化合物を用いる場合、上 記光学異方性層形成用塗工液の塗膜を乾燥した後に、上記光学異方性材料を重合 させる重合処理を行うことになる。このような重合処理としては、上記重合性官能基の 種類に応じて任意に決定すればよい。このような重合処理としては、通常、紫外線ま たは可視光の照射処理や、加熱処理等が用いられる。
上記重合処理を行うタイミングとしては、本工程にお!、て上記光学異方性層形成用 塗工液の塗膜を乾燥した後に行ってもよぐあるいは、上記光学異方性層形成用塗 ェ液の塗膜を乾燥した後、後述する延伸工程を経てカゝら行ってもよい。
[0246] 2.延伸工程 次に、本態様に用いられる延伸工程について説明する。本工程は、上記光学異方 性フィルム形成工程によって形成された光学異方性フィルムを延伸する工程である。
[0247] 本工程において、上記光学異方性フィルムを延伸する態様としては、上記光学異 方性フィルムに所望の光学異方性を付与できる方法であれば特に限定されるもので はない。したがって、本工程に用いられる延伸態様は一軸延伸であってもよぐまた は、二軸延伸であってもよい。なかでも本工程においては、上記光学異方性フィルム に、面内方向における遅相軸方向の屈折率 nxと、面内方向における進相軸方向の 屈折率 nyとの間に、 nx>nyの関係が成立する光学異方性を発現させるような態様 で、上記光学異方性フィルムを延伸することが好ま 、。
[0248] 本工程において上記光学異方性フィルムを二軸延伸する場合は、アンバランス二 軸延伸法を用いてもよい。また、アンバランス二軸延伸法を用いる場合は、通常、上 記光学異方性フィルムをある方向に一定倍率延伸し、それと垂直な方向にそれ以上 の倍率に延伸する方法が用いられる。なお、上記二方向の延伸処理は、同時に実施 してちよい。
[0249] 本工程において、上記光学異方性フィルムを延伸する延伸倍率としては、上記光 学異方性フィルムに所望の光学異方性を付与できる範囲内であれば特に限定される ものではない。なかでも本工程においては、 1. 01倍〜 1. 4倍の範囲内であることが 好ましぐ特に 1. 1倍〜 1. 4倍の範囲内であることが好ましぐさらに 1. 15倍〜 1. 3 5倍の範囲内であることが好ましい。
[0250] また、本工程に用いられる延伸方法としては、上記光学異方性フィルムを所望の延 伸倍率に延伸できる方法であれば特に限定されるものではない。本工程に用いられ る延伸方法としては、例えば、ロール延伸法、長間隙沿延伸法、テンター延伸法、チ ユーブラー延伸法等を挙げることができる。なお、偏光子との Roll to Rollの貼り合 せを行うためには、テンター延伸法が望ましい。
[0251] なお、本工程にお 、ては、上記光学異方性フィルムを、ガラス転移点温度、以上溶 融温度 (乃至は融点温度)以下に加温した状態で延伸することが好ましい。
[0252] 3.位相差層形成工程
次に、本態様に用いられる位相差層形成工程について説明する。本工程は、上記 延伸工程によって延伸された光学異方性フィルムの光学異方性層上に、液晶材料を 含有し、面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚 み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立する位相差層を形成するェ 程である。
[0253] 本工程において、上記光学異方性層上に位相差層を形成する方法としては、液晶 材料を含有し、面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 ny と、厚み方向の屈折率 nzとの間に nxnynzの関係が成立する位相差層を形成 できる方法であれば特に限定されるものではない。このような方法としては、例えば、 ホメオト口ピック液晶材料を溶媒に溶解させた位相差層形成用塗工液を、上記光学 異方性層上に塗工する方法や、ガラス基板等の他の基板上にホメオト口ピック液晶材 料がホメオト口ピック配向した位相差層を別途形成した後、これを剥離して上記光学 異方性フィルム上に積層する転写法等を挙げることができる。このような方法につい ては、例えば、前者の方法については特開平 10— 319408号公報、 2002— 1747 24号、特表 2000— 514202号公報及び特開 2003— 195035号等【こ開示されて!ヽ る方法と同様であり、後者の方法については、例えば、特開 2003— 177242号公報 等に開示されている方法と同様であるため、ここでの詳しい説明は省略する。
[0254] また、本工程に用いられる液晶材料につ!、ては、上記「A.位相差フィルム」の項に おいて説明したものと同様であるため、ここでの説明は省略する。
[0255] D- 2.第 2態様の位相差フィルムの製造方法
次に、本発明の第 2態様の位相差フィルムの製造方法について説明する。本態様 の位相差フィルムの製造方法は、セルロース誘導体力 なる透明基板を用い、上記 透明基板上にレターデーシヨンの波長依存性が正分散型を示す光学異方性材料が 溶媒に溶解された光学異方性層形成用塗工液を塗工することにより、上記透明基板 上に光学異方性層が形成された光学異方性フィルムを形成する光学異方性フィルム 形成工程と、上記光学異方性フィルム形成工程によって形成された光学異方性フィ ルムの光学異方性層上に、液晶材料を含有し、面内方向において互いに直交する 任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤ny<nzの 関係が成立する位相差層を形成することにより、上記光学異方性層上に位相差層が 形成された光学積層体を形成する位相差層形成工程と、上記位相差層形成工程に よって形成された光学積層体を延伸する延伸工程と、を有するものである。
[0256] このような本態様の位相差フィルムの製造方法にっ 、て図を参照しながら説明する 。図 8は本態様の位相差フィルムの製造方法の一例を示す概略図である。図 8に例 示するように、本態様の位相差フィルムの製造方法は、セルロース誘導体力 なる透 明基板 51aを用い (図 8 (a) )、上記透明基板 51a上にレターデーシヨンの波長依存性 が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層形成用塗工 液を塗工することにより、上記透明基板 51a上に光学異方性層 51bが形成された光 学異方性フィルム 51を形成する、光学異方性フィルム形成工程と (図 8 (b) )、上記光 学異方性フィルム形成工程によって形成された光学異方性フィルム 51の光学異方 性層 51b上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y 方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立 する位相差層 52を形成することにより、上記光学異方性層 5 lb上に位相差層 52が 形成された光学積層体 50'を形成する位相差層形成工程と (図 8 (c) )、上記位相差 層形成工程によって形成された光学積層体 50'を延伸する延伸工程 (図 8 (d) )と、 により、光学異方性フィルム 51上に位相差層 52が形成された位相差フィルム 50を製 造する方法である(図 8 (e) )。
[0257] 本態様によれば、上記透明基板としてセルロース誘導体力 なるものが用いられる ことにより、例えば、本態様により製造される位相差フィルムを内側の偏光板保護フィ ルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフイン系榭脂か らなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏光板を得る ことができる。このようなこと力 、本態様によれば耐久性に優れた偏光板を作製可能 な位相差フィルムを製造することができる。
[0258] 本態様の位相差フィルムの製造方法は、少なくとも上記光学異方性フィルム形成ェ 程、上記位相差層形成工程、および、上記延伸工程を有するものであり、必要に応 じて他の工程を有してもよ!、ものである。
以下、本態様の位相差フィルムの製造方法に用いられる各工程について順に説明 する。 [0259] 1.光学異方性フィルム形成工程
まず、本態様に用いられる光学異方性フィルム形成工程について説明する。本ェ 程は、セルロース誘導体力 なる透明基板を用い、上記透明基板上にレターデーシ ヨンの波長依存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方 性層形成用塗工液を塗工することにより、上記透明基板上に光学異方性層が形成さ れた光学異方性フィルムを形成する工程である。
[0260] ここで、本工程にぉ 、て光学異方性フィルムを形成する方法につ!、ては、上記「D
1.第 1態様の位相差フィルムの製造方法」の項にお!、て説明した方法と同様であ るため、ここでの説明は省略する。
[0261] 2.位相差層形成工程
次に、本態様に用いられる位相差層形成工程について説明する。本工程は、上記 光学異方性フィルム形成工程によって形成された光学異方性フィルムの光学異方性 層上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y方向の 屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立する位 相差層を形成することにより、上記光学異方性層上に位相差層が形成された光学積 層体を形成する工程である。
[0262] ここで、本工程にぉ ヽて上記光学異方性層上に位相差層を形成し、上記光学積層 体を形成する方法については、上記「D— 1.第 1態様の位相差フィルムの製造方法 」の項において説明した方法と同様であるため、ここでの説明は省略する。
[0263] 3.延伸工程
次に、本態様に用いられる延伸工程について説明する。本工程は、上記位相差層 形成工程によって形成された光学積層体を延伸する工程である。
なお、上記光学積層体は、本工程において延伸されることにより所定の位相差性を 有する位相差フィルムとなる。
[0264] 本工程にお ヽて、上記光学積層体を延伸する方法としては、所望の位相差性を有 する位相差フィルムを形成できる方法であれば特に限定されるものではない。
ここで、本工程に用いられる延伸方法については、上記「D—1.第 1態様の位相差 フィルムの製造方法」の項において説明した方法と同様であるため、ここでの説明は 省略する。
[0265] D- 3.第 3態様の位相差フィルムの製造方法
次に、本発明の第 3態様の位相差フィルムの製造方法について説明する。本態様 の位相差フィルムの製造方法は、セルロース誘導体力 なる透明基板を用い、上記 透明基板上にレターデーシヨンの波長依存性が正分散型を示す光学異方性材料が 溶媒に溶解された光学異方性層形成用塗工液を塗工することにより、上記透明基板 上に光学異方性層が形成された光学異方性フィルムを形成する、光学異方性フィル ム形成工程と、上記光学異方性フィルム形成工程によって形成された光学異方性フ イルムを延伸する延伸工程と、上記延伸工程によって延伸された光学異方性フィル ムの上記光学異方性層が形成された面とは反対側の面上に、液晶材料を含有し、面 内方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈 折率 nzとの間に nx≤ny< nzの関係が成立する位相差層を形成する位相差層形成 工程と、を有することを特徴とするものである。
[0266] このような本態様の位相差フィルムの製造方法にっ 、て図を参照しながら説明する 。図 9は、本態様の位相差フィルムの製造方法の一例を示す概略図である。図 9に例 示するように、本態様の位相差フィルムの製造方法は、セルロース誘導体力 なる透 明基板 51aを用い(図 9 (a) )、上記透明基板 51a上にレターデーシヨンの波長依存 性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層形成用塗 ェ液を塗工することにより、上記透明基板 51a上に光学異方性層 51bが形成された 光学異方性フィルム 51を形成する光学異方性フィルム形成工程と(図 9 (b) )、上記 光学異方性フィルム形成工程によって形成された上記光学異方性フィルム 51を延伸 する延伸工程(図 9 (c) )と、上記延伸工程によって延伸された光学異方性フィルム 5 1の上記光学異方性層 51bが形成された面と反対側の面上に、液晶材料を含有し、 面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の 屈折率 nzとの間に nx≤ny< nzの関係が成立する位相差層 52を形成する位相差層 形成工程と(図 9 (d) )、を有し、光学異方性フィルム 51上に、位相差層 52が形成さ れた位相差フィルム 50,を製造するものである(図 9 (e) )。
[0267] 本態様によれば、上記透明基板としてセルロース誘導体力 なるものが用いられる ことにより、例えば、本態様により製造される位相差フィルムを内側の偏光板保護フィ ルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフイン系榭脂か らなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏光板を得る ことができる。
また、本態様によれば上記位相差層形成工程が、上記光学異方性フィルムの上記 光学異方性層が形成された面とは反対側の面上に位相差層を形成するものであるこ とにより、位相差性の発現性に優れた位相差層を形成することが容易になる。
このようなことから、本態様によれば耐久性に優れた偏光板を作製可能な位相差フ イルムを製造することができる。
[0268] 本態様の位相差フィルムの製造方法は、少なくとも、上記光学異方性フィルム形成 工程と、上記延伸工程と、上記位相差層形成工程とを有するものであり、必要に応じ て他の工程を有してもょ 、ものである。
ここで、本態様における上記光学異方性フィルム形成工程および上記延伸工程に ついては、いずれも上記「D— 1.第 1態様の位相差フィルムの製造方法」の項にお いて説明したものと同様である。
したがって、以下、本態様に用いられる位相差層形成工程についてのみ説明する
[0269] 本態様に用いられる位相差層形成工程について説明する。本工程は、上記延伸 工程によって延伸された光学異方性フィルムの光学異方性層が形成された面とは反 対側の面上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y 方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立 する位相差層を形成する工程である。
[0270] 本工程において、上記光学異方性フィルム上に位相差層を形成する方法としては 、上記光学異方性層が形成された面とは反対側の面上に、液晶材料を含有し、面内 方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折 率 nzとの間に nx≤nyく nzの関係が成立する位相差層を形成できる方法であれば 特に限定されるものではない。このような方法としては、光学異方性フィルムの上記光 学異方性層が形成された面とは反対側の面上に形成すること以外は、上記「D— 1. 第 1態様の位相差フィルムの製造方法」の項にお!、て説明した方法と同様であるた め、ここでの詳しい説明は省略する。
[0271] D-4.第 4態様の位相差フィルムの製造方法
次に、本発明の第 4態様の位相差フィルムの製造方法について説明する。本態様 の位相差フィルムの製造方法は、セルロース誘導体力 なる透明基板を用い、上記 透明基板上にレターデーシヨンの波長依存性が正分散型を示す光学異方性材料が 溶媒に溶解された光学異方性層形成用塗工液を塗工することにより、上記透明基板 上に光学異方性層が形成された光学異方性フィルムを形成する、光学異方性フィル ム形成工程と、上記光学異方性フィルム形成工程によって形成された光学異方性フ イルムの上記光学異方性層が形成された面とは反対側の面上に、液晶材料を含有し
、面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向 の屈折率 nzとの間に nx≤nyく nzの関係が成立する位相差層を形成することにより 、上記光学異方性層上に位相差層が形成された光学積層体を形成する、位相差層 形成工程と、上記位相差層形成工程によって形成された光学積層体を延伸する延 伸工程と、を有することを特徴とするものである。
[0272] このような本態様の位相差フィルムの製造方法にっ 、て図を参照しながら説明する 。図 10は本態様の位相差フィルムの製造方法の一例を示す概略図である。図 10に 例示するように、本態様の位相差フィルムの製造方法は、セルロース誘導体力 なる 透明基板 51aを用い (図 10 (a) )、上記透明基板 51a上にレターデーシヨンの波長依 存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層形成用 塗工液を塗工することにより、上記透明基板 51a上に光学異方性層 51bが形成され た光学異方性フィルム 51を形成する光学異方性フィルム形成工程と (図 10 (b) )、上 記光学異方性フィルム形成工程によって形成された光学異方性フィルム 51の光学 異方性層 51bが形成された面とは反対側の面上に、液晶材料を含有し、面内方向に おいて互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzと の間に nx≤ ny < nzの関係が成立する位相差層 52を形成することにより、上記光学 異方性フィルム 51上に位相差層 52が形成された光学積層体 50 'を形成する位相差 層形成工程と(図 10 (c) )、上記位相差層形成工程によって形成された光学積層体 5 0'を延伸する延伸工程(図 10 (d) )と、により、光学異方性フィルム 51上に位相差層 52が形成された位相差フィルム 50を製造する方法である(図 10 (e) )。
[0273] 本発明によれば、上記透明基板としてセルロース誘導体力 なるものが用いられる ことにより、例えば、本発明により製造される位相差フィルムを内側の偏光板保護フィ ルムとして用いた場合に、外側の偏光板保護フィルムとしてシクロォレフイン系榭脂か らなる偏光板保護フィルムを用いることができるため、耐久性に優れた偏光板を得る ことができる。
また、本発明によれば、上記位相差層形成工程が、上記光学異方性フィルムの上 記光学異方性層が形成された面とは反対側の面上に位相差層を形成するものであ ることにより、位相差性の発現性に優れた位相差層を形成することが容易になる。 このようなことから、本発明によれば耐久性に優れた偏光板を作製可能な位相差フ イルムを製造することができる。
[0274] 本態様の位相差フィルムの製造方法は、少なくとも、上記光学異方性フィルム形成 工程と、上記延伸工程と、上記位相差層形成工程とを有するものであり、必要に応じ て他の工程を有してもょ 、ものである。
ここで、本態様における上記光学異方性フィルム形成工程および上記延伸工程に ついては、いずれも上記「D— 2.第 1態様の位相差フィルムの製造方法」の項にお いて説明したものと同様である。
したがって、以下、本態様に用いられる位相差層形成工程についてのみ説明する
[0275] 本態様に用いられる位相差層形成工程について説明する。本工程は、上記延伸 工程によって延伸された光学異方性フィルムの光学異方性層が形成された面とは反 対側の面上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y 方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立 する位相差層を形成する工程である。
[0276] 本工程において、上記光学異方性フィルム上に位相差層を形成する方法としては 、上記光学異方性層が形成された面とは反対側の面上に、液晶材料を含有し、面内 方向において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折 率 nzとの間に nx≤nyく nzの関係が成立する位相差層を形成できる方法であれば 特に限定されるものではない。このような方法としては、光学異方性フィルムの上記光 学異方性層が形成された面とは反対側の面上に形成すること以外は、上記「D— 2. 第 1態様の位相差フィルムの製造方法」の項にお!、て説明した方法と同様であるた め、ここでの詳しい説明は省略する。
[0277] E.液晶表示装置
次に、本発明の液晶表示装置について説明する。ここで、本発明の液晶表示装置 は、その態様により 4つの態様に分類することができる。したがって、以下、各態様に 分けて本発明の液晶表示装置について説明する。
[0278] E— 1.第 1態様の液晶表示装置
まず、本発明の第 1態様の液晶表示装置について説明する。本態様の液晶表示装 置は、上記本発明の位相差フィルムが用いられたことを特徴とするものである。
[0279] このような本態様の液晶表示装置について図を参照しながら説明する。図 11は、 本態様の液晶表示装置の一例を示す概略図である。図 11に例示するように、本態 様の液晶表示装置 60は、液晶セル 101と、上記液晶セル 101の両面に配置された 偏光板 102A'、 102B'とを有するものである。
このような例において、本態様の液晶表示装置 60は、上記偏光板 102A'および 1 02B,が、偏光子 111が偏光板保護フィルム 11 lbと、本発明の位相差フィルム 10と によって挟持された構成を有するものである。
[0280] 本発明によれば上記本発明の位相差フィルムが用いられていることにより、耐久性 および視野角特性に優れた液晶表示装置を得ることができる。
[0281] 本態様の液晶表示装置に、上記本発明の位相差フィルムが用いられる態様として は、本発明の液晶表示装置の視野角特性を所望の程度にできる態様であれば特に 限定されるものではない。このような態様としては、液晶セルと、偏光板との間に上記 位相差フィルムを配置して用いる態様と、液晶セルを挟持する 2枚の偏光板を構成 する偏光板保護フィルムとして上記位相差フィルムを用いる態様とを挙げることができ る。本態様においては、これらのいずれの態様であっても好適に用いることができる 力 なかでも後者の態様が好ましい。上記本発明の位相差フィルムを後者の態様で 用いることにより、本態様の液晶表示装置を薄型化することができる力 である。
[0282] また、本発明の位相差フィルムを偏光板保護フィルムとして用いる場合、上記本発 明の位相差フィルムは内側の偏光板保護フィルムとして用いられてもよぐまたは、外 側の偏光板保護フィルムとして用いられてもよ ヽ。なかでも本態様にぉ ヽては内側の 偏光板保護フィルムとして用いられることが好ましい。これにより、上記外側の偏光板 保護フィルムとして、シクロォレフイン系榭脂等力もなる偏光板保護フィルムを用いる こと等によって、本態様の液晶表示装置をより耐久性に優れたものにできるからであ る。
[0283] なお、本態様に用いられる液晶セル、および、偏光板等にっ 、ては、一般的な液 晶表示装置に用いられて 、るものと同様であるため、ここでの詳 、説明は省略する
[0284] E- 2.第 2態様の液晶表示装置
次に、本発明の第 2態様の液晶表示装置について説明する。本態様の液晶表示 装置は、上記本発明の輝度向上フィルムが用いられたことを特徴とするものである。
[0285] このような本態様の液晶表示装置について図を参照しながら説明する。図 12は、 本態様の液晶表示装置の一例を示す概略図である。図 12に例示するように本態様 の液晶表示装置 70は、液晶セル 101と、上記液晶セル 101の両面に配置された偏 光板 102A、 102Bとを有するものであり、さらに上記偏光板 102A上に本発明の輝 度向上フィルム 20が配置されていることを特徴とするものである。
[0286] 本発明によれば、上記本発明の輝度向上フィルムが用いられていることにより、輝 度特性に優れた液晶表示装置を得ることができる。
[0287] 本態様の液晶表示装置にお 、て上記本発明の輝度向上フィルムが用いられて ヽ る態様としては、一般的に液晶表示装置に輝度向上フィルムが用いられる態様であ れば特に限定されるものではな 、。
[0288] なお、本態様に用いられる液晶セル、および、偏光板等にっ 、ては、一般的な液 晶表示装置に用いられて 、るものと同様であるため、ここでの詳 、説明は省略する
[0289] E- 3.第 3態様の液晶表示装置 次に、本発明の第 3態様の液晶表示装置について説明する。本態様の液晶表示 装置は、上記本発明の偏光板が用いられたことを特徴とするものである。
[0290] このような本態様の液晶表示装置について図を参照しながら説明する。図 13は、 本態様の液晶表示装置の一例を示す概略図である。図 13に例示するように、本態 様の液晶表示装置 80は、液晶セル 101と、上記液晶セル 101の両面に本発明の偏 光板 30が配置されていることを特徴とするものである。
[0291] 本態様によれば、上記本発明の偏光板が用いられていることにより、耐久性および 視野角特性に優れた液晶表示装置を得ることができる。
[0292] 本態様の液晶表示装置に、上記本発明の偏光板が用いられている態様としては、 本態様の液晶表示装置に用いられる 2枚の偏光板の両方に上記本発明の偏光板が 用いられている態様であってもよぐまたは、片方の偏光板に上記本発明の偏光板が 用いられている態様であってもよい。なかでも本態様においては、上記 2枚の偏光板 の両方に上記本発明の偏光板が用いられていることが好ましい。これにより、本態様 の液晶表示装置をより耐久性に優れたものにできるからである。
[0293] なお、本態様に用いられる液晶セル、および、偏光板等にっ 、ては、一般的な液 晶表示装置に用いられて 、るものと同様であるため、ここでの詳 、説明は省略する
[0294] E-4.第 4態様の液晶表示装置
次に、本発明の第 4態様の液晶表示装置について説明する。本態様の液晶表示 装置は、上記本発明の位相差フィルムの製造方法によって製造された位相差フィル ムが用いられたことを特徴とするものである。
[0295] このような本態様の液晶表示装置について図を参照しながら説明する。図 14は、 本態様の液晶表示装置の一例を示す概略図である。図 14に例示するように、本態 様の液晶表示装置 90は、液晶セル 101と、上記液晶セル 101の両面に配置された 偏光板 102A'、 102B'とを有するものである。
このような例において、本態様の液晶表示装置 90は、上記偏光板 102A'および 1
02B,が、偏光子 111が偏光板保護フィルム 111bと、本発明の位相差フィルムの製 造方法によって製造された位相差フィルム 50とによって挟持された構成を有するもの である。
[0296] 本態様によれば、上記本発明の位相差フィルムの製造方法によって製造された位 相差フィルムが用いられて ヽること〖こより、耐久性および視野角特性に優れた液晶表 示装置を得ることができる。
[0297] 本態様の液晶表示装置に上記本発明の位相差フィルムの製造方法によって製造 された位相差フィルムが用いられる態様としては、本態様の液晶表示装置の視野角 特性を所望の程度にできる態様であれば特に限定されるものではない。このような態 様としては、液晶セルと、偏光板との間に上記位相差フィルムを配置して用いる態様 と、液晶セルを挟持する 2枚の偏光板を構成する偏光板保護フィルムとして上記位相 差フィルムを用いる態様とを挙げることができる。本態様においては、これらのいずれ の態様であっても好適に用いることができる力 なかでも後者の態様が好ましい。上 記位相差フィルムを後者の態様で用いることにより、本態様の液晶表示装置を薄型 ィ匕することがでさるカゝらである。
[0298] また、本発明の位相差フィルムの製造方法によって製造された位相差フィルムを偏 光板保護フィルムとして用いる場合、上記位相差フィルムは内側の偏光板保護フィル ムとして用いられてもよぐまたは、外側の偏光板保護フィルムとして用いられてもよい 。なかでも本態様にぉ 、ては内側の偏光板保護フィルムとして用いられることが好ま しい。これにより、上記外側の偏光板保護フィルムとして、シクロォレフイン系榭脂等 力 なる偏光板保護フィルムを用いること等によって、本態様の液晶表示装置をより 耐久性に優れたものにできる力 である。
[0299] なお、本態様に用いられる液晶セル、および、偏光板等にっ 、ては、一般的な液 晶表示装置に用いられて 、るものと同様であるため、ここでの詳 、説明は省略する
[0300] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示 であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成 を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範 囲に包含される。
実施例 [0301] 次に、実施例を示すことにより本発明についてさらに具体的に説明する。
[0302] (1)実施例 1
貯蔵引張弾性率 3. 5 X 102MPaのウレタンアタリレートモノマーをメチルェチルケト ンに 40質量%になるように溶解させ、さらに重合開始剤を固形分に対して 4質量% 加えることにより光学異方性フィルム形成用塗工液を調製した。次いで、透明基板と して貯蔵引張弾性率 2. 7 X 103MPaの TAC (トリアセチルセルロースの略称)フィル ム基材 (厚み: 80 m)を用い、当該 TACフィルム基材の表面上に上記光学異方性 フィルム層形成用塗工液をバーコーティングにより塗工した。次いで、 90°Cで 4分間 加熱して溶剤を乾燥除去し、塗工面に紫外線を照射することにより、上記ウレタンァ タリレートモノマーを固定ィ匕して乾燥後の塗膜が 6 μ mの光学積層体を形成した。そ の後、上記光学積層体を延伸実験機により、延伸倍率が 1. 4倍になるように 165°C で加熱しながら面内方向に一軸延伸して、透明基板上に光学異方性層が積層され た光学異方性フィルムを作製した。
[0303] 次に、下記式 (A)に示される側鎖型ポリマー 50質量%と、下記式 (B)で示される光 重合性液晶 50質量%の液晶混合物、光重合開始剤(チバスぺシャリティケミカルズ 社製、ィルガキュア 907、光重合性ィ匕合物に対して 5質量%)を、シクロへキサノン溶 液に固形分 20%になるように溶解させ、更にレべリング剤を添加することにより位相 差層形成用塗工液を得た。当該位相差層形成用塗工液を上記光学異方性層上に 塗工した後、 100°Cで 1分間乾燥し、そのまま室温まで冷却することにより、上記液晶 混合物をホメオト口ピック配向させた。さらに lOOmjZcm2の UVにて硬化させ、上記 光学異方性層上に厚み 1 μ mの位相差層を形成することにより、位相差フィルムを作 製した。
[0304] [化 4]
Figure imgf000079_0001
Figure imgf000079_0002
[0305] (2)実施例 2
下記式 (C)、 (D)、および、(E)に示される液晶材料を含有する液晶混合物、光重 合開始剤(チバスぺシャリティケミカルズ社製、ィルガキュア 907、液晶混合物に対し て 5質量%)を、シクロへキサノン溶液に固形分 20質量%になるように溶解させ、更に レべリング剤を添加することにより位相差層形成用塗工液を得た。次いで、当該位相 差層形成用塗工液を、垂直配向膜が形成されたガラス基板上に塗布し、 60°Cで 2分 間乾燥し、ホメオト口ピック配向させた。さらに lOOmjZcm2の UVにて硬化させること により、厚み 1 μ mの位相差層を形成した。
次いで、上記位相差層をガラス基板カゝら剥離し、粘着剤を介して実施例 1に記載の 光学異方性フィルムの光学異方性層上に貼り合せることにより位相差フィルムを作製 した。
[0306] [化 5]
Figure imgf000080_0001
Figure imgf000080_0002
Figure imgf000080_0003
[0307] (3)実施例 3
貯蔵引張弾性率 5. 1 X 102MPaの力プロラタトン変性ウレタンアタリレートモノマー をメチルェチルケトンに 40質量%になるように溶解させ、さらに重合開始剤を固形分 に対して 4質量%加えることにより、光学異方性層形成用塗工液を調製した。
次いで、透明基板として貯蔵引張弾性率 2. 7 X 103MPaの TACフィルム基材 (厚 み: 80 m)を用い、当該 TACフィルム基材の表面に上記光学異方性層形成用塗 工液をバーコーティングにより塗工した。
その後、 90°Cで 4分間加熱して溶剤を乾燥除去し、塗工面に紫外線を照射するこ とにより、上記力プロラタトン変性ウレタンアタリレートモノマーを固定ィ匕して乾燥後の 塗膜が 6 μ mの光学異方性層を形成した。
このようにして、透明基板上に光学異方性層が積層された光学積層体を作製した。 次に、上記光学積層体を延伸実験機により、延伸倍率が 1. 4倍になるように 165°C で加熱しながら面内方向に一軸延伸して、光学異方性フィルムを作製した。
この光学異方性フィルムの光学異方性層上に、実施例 2に記載の位相差層を粘着 剤を介して貼り合せることにより、位相差フィルムを作製した。
[0308] (4)実施例 4
光学異方性材料として、下記式 (B)で表される光重合性液晶化合物と実施例 2〖こ 記載の光重合開始剤 (液晶化合物の重量に対し 5質量%)の混合物を用い、これを シクロへキサノンに 20質量0 /0になるように溶解させ、 TACフィルム(富士写真フィルム 社製、商品名: TF80UL)基材表面にバーコーティングにより、乾燥後の塗工量が 2 . OgZm2となるように塗工した。 次いで、 90°Cで 4分間加熱して溶剤を乾燥除去し、塗工面に紫外線を照射するこ とにより、上記光重合性液晶化合物を固定化して光学積層体を作製した。
上記光学積層体を延伸実験機により、延伸倍率が 1. 25倍になるように 150°Cで加 熱しながら面内方向に一軸延伸して、光学異方性フィルムを作製した。
この光学異方性フィルムの光学異方性層上に、実施例 2に記載の位相差層を粘着 剤を介して貼り合せることにより、位相差フィルムを作製した。
[0309] (5)実施例 5
実施例 4で用いた光重合性液晶化合物と光重合開始剤の混合物を用い、これをシ クロペンタノンに 20質量%になるように溶解させ、実施例 4と同様の塗工及び延伸処 理を行った。
この光学異方性フィルムの光学異方性層上に、実施例 1に記載の位相差層形成用 塗工液を塗布し、 60°Cで 2分間乾燥し、ホメオト口ピック配向させた。さらに lOOmjZ cm2の UVにて硬化させることにより、厚み 1 μ mの位相差層を形成し、位相差フィル ムを作製した。
[0310] (6)実施例 6
実施例 4で用いた光重合性液晶化合物と光重合開始剤の混合物を用い、これをメ チルェチルケトンに 20質量%になるように溶解させ、実施例 4と同様の塗工及び延 伸処理を行った。
この光学異方性フィルムの光学異方性層上に、実施例 2に記載の位相差層を、粘 着剤を介して貼り合せることにより、位相差フィルムを作製した。
[0311] (7)実施例 7
実施例 4で用いた光重合性液晶化合物と光重合開始剤の混合物を用い、これを酢 酸メチルに 20質量%になるように溶解させ、実施例 4と同様の塗工及び延伸処理を 行った。
この光学異方性フィルムの光学異方性層上に、実施例 2に記載の位相差層を粘着 剤を介して貼り合せることにより、位相差フィルムを作製した。
[0312] (8)実施例 8
実施例 4で用いた光重合性液晶化合物と光重合開始剤の混合物を用い、これをシ クロへキサノンに 20質量%になるように溶解させ、実施例 4と同様の塗工を行い、こ の光学異方性フィルムの光学異方性層上に、実施例 1に記載の位相差層形成用塗 工液を塗布し、 60°Cで 2分間乾燥し、ホメオト口ピック配向させた。さらに lOOmjZc m2の UVにて硬化させることにより、厚み 1 μ mの位相差層を形成し光学積層体を得 た。
次に、上記光学積層体を延伸実験機により、延伸倍率が 1. 25倍になるように 150 °Cで加熱しながら面内方向に一軸延伸して、位相差フィルムを作製した。
[0313] (9)実施例 9
下記式 (F)で表される光重合性液晶化合物と実施例 4で用いた光重合開始剤の混 合物を用い、これをシクロへキサノンとシクロペンタノンの混合溶媒に 20質量%にな るように溶解させ、実施例 4と同様の塗工及び延伸処理を行った。
この光学異方性フィルムの光学異方性層上に、実施例 1に記載の位相差層形成用 塗工液を塗布し、 60°Cで 2分間乾燥し、ホメオト口ピック配向させた。さらに lOOmjZ cm2の UVにて硬化させることにより、厚み 1 μ mの位相差層を形成し、位相差フィル ムを作製した。
[0314] [化 6]
Figure imgf000082_0001
[0315] (10)実施例 10
上記式 (F)で表される光重合性液晶化合物と実施例 4で用いた光重合開始剤の混 合物を用い、これをシクロへキサノンとシクロペンタノンの混合溶媒に 20質量%にな るように溶解させ、実施例 4と同様の塗工及び延伸処理を行った。
この光学異方性フィルムの光学異方性層が形成された面とは反対側の面上に、実 施例 1に記載の位相差層形成用塗工液を塗布し、 60°Cで 2分間乾燥し、ホメオトロピ ック配向させた。さらに lOOmjZcm2の UVにて硬化させることにより、厚み の 位相差層を形成し、位相差フィルムを作製した。
[0316] (11)実施例 11
実施例 4で用いた光重合性液晶化合物と光重合開始剤の混合物を用い、これをシ クロへキサノンに 20質量%になるように溶解させ、実施例 4と同様の塗工を行い、こ の光学異方性フィルムの光学異方性層とは反対の面上に、実施例 1に記載の位相 差層形成用塗工液を塗布し、 60°Cで 2分間乾燥し、ホメオト口ピック配向させた。さら に lOOmjZcm2の UVにて硬化させることにより、厚み 1 μ mの位相差層を形成し光 学積層体を得た。
次に、上記光学積層体を実施例 8と同じ工程の延伸を行い、位相差フィルムを作製 した。
[0317] (12)実施例 12
ウレタンアタリレートモノマー(東亞合成社製、ァロニックス: M1600)をメチルェチ ルケトンに 40重量%になるように溶解させ、さらに重合開始剤を固形分に対して 4重 量%加えることにより、オーバーコート層形成用塗工液を調製した。実施例 5で作製 した位相差フィルムの位相差層側にオーバーコート層形成用塗工液を塗工し、 90°C で 4分間加熱して溶剤を乾燥除去し、塗工液に紫外線を照射することにより、上記ゥ レタンアタリレートモノマーを固定ィ匕して乾燥後の塗膜力 S4 μ mのオーバーコート層を 形成し、位相差フィルムを得た。
[0318] (13)実施例 13
実施例 10で作製した位相差フィルムの位相差層側に、実施例 11で調製したォー バーコート層形成用塗工液を実施例 11の工程で塗工し、乾燥後の塗膜が 4 mの オーバーコート層を形成し、位相差フィルムを得た。
[0319] (14)比較例
光学異方性フィルムとして Re = 80nmのノルボルネン系榭脂からなる基板(日本ゼ オン社製 商品名:ゼォノア)を用い、当該光学異方性フィルム上に実施例 1と同様 の方法により位相差層を形成することによって位相差フィルムを作製した。
[0320] (15)評価
上記実施例および比較例にぉ 、て作製した位相差フィルムにつ 、てホメオトロピッ ク配向性評価と、面内位相差の Re比と、ヘイズとを評価した。上記ホメオト口ピック配 向性評価は、自動複屈折測定装置 KOBRAを用いて位相差フィルムの nx、 ny、 nz を算出し、 nx>nz>nyとなっていれば正の Cプレート機能が付与されたと判断した。 Re比は、 KOBRAを用いて測定した。また、ヘイズは、東洋精機製「ヘイズガード II」 で測定により測定した。
[0321] また、各位相差フィルムを片側の偏光板保護フィルムとして用いて偏光板を作製し 、温度 90°C、湿度 90%RHの環境下に 100時間放置するという環境試験を行い、額 縁ムラ評価を行った。額縁ムラ評価は黒表示時の光漏れを目視にて評価した。 ここで、実施例 1〜4の位相差フィルムを用いて偏光板を作成する際には、他方の 偏光板保護フィルムとして、シクロォレフイン系榭脂からなる偏光板保護フィルムを用 、ることができた。
し力しながら、比較例 1にお 、て作製した位相差フィルムを用いて偏光板を作成す る際には、水分透過性の関係上、他方の偏光板保護フィルムとしてトリァセチルセル ロース力もなる偏光板保護フィルムを用いる他な力つた。
[0322] 上記評価結果を表 1に示す。
[0323] [表 1] 配向性 Re比 額縁ムラ ヘイズ(%) 実施例 1 O 0.94 〇 0.4 実施例 2 〇 0.94 〇 0.5 実施例 3 O 0.86 〇 0.3 実施例 4 o 1.02 〇 0.5 実施例 5 o 1.02 O 0.5 実施例 6 o 1.02 o 1 実施例 7 o 1.02 o 2 実施例 8 〇 1.02 O 0.5 実施例 9 o 1.07 O 0.7 実施例 10 o 1.02 〇 0.5 実施例 1 1 〇 1.02 〇 0.7 実施例 12 〇 1.02 〇 0.5 実施例 13 o 1.02 O 0.5 比較例 o 1 X 0.4

Claims

請求の範囲
[1] 面内方向における遅相軸方向の屈折率 nxと、面内方向における進相軸方向の屈 折率 nyとの間に、 nx>nyの関係が成立する光学異方性フィルムと、
前記光学異方性フィルム上に形成され、液晶材料を含有し、さらに面内方向にお いて互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの 間に nx≤nyく nzの関係が成立する位相差層と、を有する位相差フィルムであって、 前記光学異方性フィルムが、セルロース誘導体力 なる透明基板が用いられて 、る ものであることを特徴とする、位相差フィルム。
[2] 前記光学異方性フィルムが、前記透明基板と、前記透明基板上に形成され、ウレタ ン系榭脂を含有する光学異方性層とを有するものであることを特徴とする、請求の範 囲第 1項に記載の位相差フィルム。
[3] 前記光学異方性フィルムが、前記透明基板と、前記透明基板上に形成され、前記 透明基板を構成するセルロース誘導体、および、レターデーシヨンの波長依存性が 正分散型を示す光学異方性材料を含有する光学異方性層と、を有するものであるこ とを特徴とする、請求の範囲第 1項または請求の範囲第 2項に記載の位相差フィルム
[4] 前記光学異方性材料に、分子内に単一の重合性官能基を有する単官能重合性液 晶化合物が含まれることを特徴とする、請求の範囲第 3項に記載の位相差フィルム。
[5] 前記セルロース誘導体力 トリァセチルセルロースであることを特徴とする、請求の 範囲第 1項力 請求の範囲第 4項までのいずれかの請求の範囲に記載の位相差フィ ノレム。
[6] 請求の範囲第 1項力 請求の範囲第 5項までのいずれかの請求の範囲に記載の位 相差フィルムと、前記位相差フィルムが備える前記位相差層上に形成され、コレステ リック配列した液晶材料を含有するコレステリック液晶層とを有することを特徴とする、 輝度向上フィルム。
[7] 請求の範囲第 1項力 請求の範囲第 5項までのいずれかの請求の範囲に記載の位 相差フィルムと、前記位相差フィルムが備える前記光学異方性フィルム上であって、 前記位相差層が形成された側とは反対側の面上に形成された偏光子と、前記偏光 子上に形成された偏光板保護フィルムと、を有することを特徴とする、偏光板。
[8] 請求の範囲第 6項に記載の輝度向上フィルムと、前記輝度向上フィルムが備える前 記光学異方性フィルム上であって、前記位相差層が形成された側とは反対側の面上 に形成された偏光子と、前記偏光子上に形成された偏光板保護フィルムと、を有する ことを特徴とする、偏光板。
[9] 前記偏光板保護フィルムが、シクロォレフイン系榭脂またはアクリル系榭脂からなる ことを特徴とする、請求の範囲第 7項または請求の範囲第 8項に記載の偏光板。
[10] セルロース誘導体力 なる透明基板を用い、前記透明基板上にレターデーシヨンの 波長依存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層 形成用塗工液を塗工することにより、前記透明基板上に光学異方性層が形成された 光学異方性フィルムを形成する、光学異方性フィルム形成工程と、
前記光学異方性フィルム形成工程によって形成された光学異方性フィルムを延伸 する延伸工程と、
前記延伸工程によって延伸された光学異方性フィルムの光学異方性層上に、液晶 材料を含有し、面内方向において互いに直交する任意の x、 y方向の屈折率 nx、 ny と、厚み方向の屈折率 nzとの間に nxnynzの関係が成立する位相差層を形成 する位相差層形成工程と、を有することを特徴とする位相差フィルムの製造方法。
[11] セルロース誘導体力 なる透明基板を用い、前記透明基板上にレターデーシヨンの 波長依存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層 形成用塗工液を塗工することにより、前記透明基板上に光学異方性層が形成された 光学異方性フィルムを形成する、光学異方性フィルム形成工程と、
前記光学異方性フィルム形成工程によって形成された光学異方性フィルムの光学 異方性層上に、液晶材料を含有し、面内方向において互いに直交する任意の x、 y 方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤nyく nzの関係が成立 する位相差層を形成することにより、前記光学異方性層上に位相差層が形成された 光学積層体を形成する、位相差層形成工程と、
前記位相差層形成工程によって形成された光学積層体を延伸する延伸工程と、を 有することを特徴とする位相差フィルムの製造方法。
[12] セルロース誘導体力 なる透明基板を用い、前記透明基板上にレターデーシヨンの 波長依存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層 形成用塗工液を塗工することにより、前記透明基板上に光学異方性層が形成された 光学異方性フィルムを形成する、光学異方性フィルム形成工程と、
前記光学異方性フィルム形成工程によって形成された光学異方性フィルムを延伸 する延伸工程と、
前記延伸工程によって延伸された光学異方性フィルムの前記光学異方性層が形 成された面とは反対側の面上に、液晶材料を含有し、面内方向において互いに直交 する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nzとの間に nx≤ny<n zの関係が成立する位相差層を形成する位相差層形成工程と、を有することを特徴と する位相差フィルムの製造方法。
[13] セルロース誘導体力 なる透明基板を用い、前記透明基板上にレターデーシヨンの 波長依存性が正分散型を示す光学異方性材料が溶媒に溶解された光学異方性層 形成用塗工液を塗工することにより、前記透明基板上に光学異方性層が形成された 光学異方性フィルムを形成する、光学異方性フィルム形成工程と、
前記光学異方性フィルム形成工程によって形成された光学異方性フィルムの前記 光学異方性層が形成された面とは反対側の面上に、液晶材料を含有し、面内方向 において互いに直交する任意の x、 y方向の屈折率 nx、 nyと、厚み方向の屈折率 nz との間に nx≤nyく nzの関係が成立する位相差層を形成することにより、前記光学異 方性層上に位相差層が形成された光学積層体を形成する、位相差層形成工程と、 前記位相差層形成工程によって形成された光学積層体を延伸する延伸工程と、を 有することを特徴とする位相差フィルムの製造方法。
[14] 前記溶媒に沸点が 100°C以上のケトン系溶媒が含まれることを特徴とする、請求の 範囲第 10項力も請求の範囲第 13項までのいずれかの請求の範囲に記載の位相差 フィルムの製造方法。
[15] 前記ケトン系溶媒が、シクロペンタノンまたはシクロへキサノンであることを特徴とす る、請求の範囲第 14項に記載の位相差フィルムの製造方法。
[16] 前記セルロース誘導体がトリァセチルセルロースであることを特徴とする、請求の範 囲第 10項力も請求の範囲第 16項までのいずれかの請求の範囲に記載の位相差フ イルムの製造方法。
[17] 請求の範囲第 1項力 請求の範囲第 5項までのいずれかの請求の範囲に記載の位 相差フィルムが用いられたことを特徴とする、液晶表示装置。
[18] 請求の範囲第 6項に記載の輝度向上フィルムが用いられたことを特徴とする、液晶 表示装置。
[19] 請求の範囲第 7項力 請求の範囲第 9項までのいずれかの請求の範囲に記載の偏 光板が用いられたことを特徴とする、液晶表示装置。
[20] 請求の範囲第 10項力も請求の範囲第 16項までのいずれかの請求の範囲に記載 の位相差フィルムの製造方法によって製造された位相差フィルムが用いられたことを 特徴とする、液晶表示装置。
PCT/JP2007/064119 2006-07-18 2007-07-17 Film retard, film améliorant la luminance, plaque de polarisation, procédé de fabrication d'un film retard et dispositif d'affichage à cristaux liquides WO2008010497A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008525867A JPWO2008010497A1 (ja) 2006-07-18 2007-07-17 位相差フィルム、輝度向上フィルム、偏光板、位相差フィルムの製造方法、および、液晶表示装置
US12/374,113 US20090251642A1 (en) 2006-07-18 2007-07-17 Retardation film, brightness enhancement film, polarizing plate, producing method of a retardation film, and liquid crystal display

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-196216 2006-07-18
JP2006196216 2006-07-18
JP2006-270020 2006-09-29
JP2006270020 2006-09-29
JP2006-309303 2006-11-15
JP2006309303 2006-11-15

Publications (1)

Publication Number Publication Date
WO2008010497A1 true WO2008010497A1 (fr) 2008-01-24

Family

ID=38956828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064119 WO2008010497A1 (fr) 2006-07-18 2007-07-17 Film retard, film améliorant la luminance, plaque de polarisation, procédé de fabrication d'un film retard et dispositif d'affichage à cristaux liquides

Country Status (4)

Country Link
US (1) US20090251642A1 (ja)
JP (1) JPWO2008010497A1 (ja)
KR (1) KR101377911B1 (ja)
WO (1) WO2008010497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500997A (ja) * 2008-08-22 2012-01-12 アクロン ポリマー システムズ 延伸ポリマーフィルムを基礎とする光学補償フィルム
US9149569B2 (en) 2000-12-06 2015-10-06 Anthrogenesis Corporation Treatment of diseases or disorders using placental stem cells

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090080133A (ko) * 2006-11-17 2009-07-23 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) 타원편광판 및 이것을 이용한 수직배향형 액정표시장치
JP2009075533A (ja) * 2007-08-31 2009-04-09 Nippon Oil Corp 楕円偏光板および液晶表示装置
JP2009300760A (ja) * 2008-06-13 2009-12-24 Nippon Oil Corp 楕円偏光板およびそれを用いた垂直配向型液晶表示装置
CN102472857B (zh) * 2009-07-15 2013-10-30 柯尼卡美能达精密光学株式会社 偏振片、其制造方法以及使用该偏振片的液晶显示装置
JP6120408B2 (ja) * 2010-11-10 2017-04-26 エルジー・ケム・リミテッド 光学素子
JP6029246B2 (ja) * 2011-11-17 2016-11-24 エルジー・ケム・リミテッド 光学素子およびこれを含む立体映像表示装置
JP5051328B1 (ja) * 2012-01-27 2012-10-17 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
KR102407519B1 (ko) * 2013-12-05 2022-06-13 스미또모 가가꾸 가부시키가이샤 광학 이방성 막
KR101802562B1 (ko) * 2014-08-29 2017-11-29 삼성에스디아이 주식회사 편광판, 이를 위한 편광판용 보호층 조성물 및 이를 포함하는 광학표시장치
JP6712157B2 (ja) 2016-03-25 2020-06-17 日東電工株式会社 光学補償層付偏光板およびそれを用いた有機elパネル
JP6712161B2 (ja) * 2016-03-30 2020-06-17 日東電工株式会社 光学補償層付偏光板およびそれを用いた有機elパネル
WO2017188428A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 偏光板、偏光板の製造方法、液晶表示装置
KR102498616B1 (ko) * 2016-06-08 2023-02-10 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조방법
KR102091438B1 (ko) * 2016-07-01 2020-03-23 다이니폰 인사츠 가부시키가이샤 광학 적층체 및 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713022A (ja) * 1993-06-29 1995-01-17 Fuji Photo Film Co Ltd 光学補償シートおよびそれを用いた液晶表示素子
JP3132122B2 (ja) * 1992-02-05 2001-02-05 日本ゼオン株式会社 複合シート
JP2002174725A (ja) * 2000-12-06 2002-06-21 Nitto Denko Corp ホメオトロピック配向液晶フィルムの製造方法およびホメオトロピック配向液晶フィルム
JP2003121853A (ja) * 2001-10-18 2003-04-23 Nitto Denko Corp ホメオトロピック配向液晶フィルムの製造方法、ホメオトロピック配向液晶フィルムおよび光学フィルム
JP2004004150A (ja) * 2002-05-13 2004-01-08 Sumitomo Chem Co Ltd 積層位相差フィルム及びそれを用いた液晶表示装置
JP2005070098A (ja) * 2003-08-25 2005-03-17 Nitto Denko Corp 積層光学フィルム、楕円偏光板および画像表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718838A (en) * 1995-08-10 1998-02-17 Fuji Photo Film Co., Ltd. Optical compensatory sheet, process for the preparation of the same and liquid crystal display
JPH10104428A (ja) * 1996-07-03 1998-04-24 Sumitomo Chem Co Ltd 位相差フィルムおよびこれを用いた液晶表示装置
JP4352592B2 (ja) * 2000-07-11 2009-10-28 コニカミノルタホールディングス株式会社 セルロースエステルドープ組成物、セルロースエステルフィルムの製造方法、セルロースエステルフィルム及びそれを用いた偏光板
US6814914B2 (en) * 2001-05-30 2004-11-09 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
JP2004264345A (ja) 2003-02-03 2004-09-24 Nitto Denko Corp 位相差フィルムおよびその製造方法
JP4759317B2 (ja) * 2005-05-26 2011-08-31 富士フイルム株式会社 偏光板及びこれを用いた液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3132122B2 (ja) * 1992-02-05 2001-02-05 日本ゼオン株式会社 複合シート
JPH0713022A (ja) * 1993-06-29 1995-01-17 Fuji Photo Film Co Ltd 光学補償シートおよびそれを用いた液晶表示素子
JP2002174725A (ja) * 2000-12-06 2002-06-21 Nitto Denko Corp ホメオトロピック配向液晶フィルムの製造方法およびホメオトロピック配向液晶フィルム
JP2003121853A (ja) * 2001-10-18 2003-04-23 Nitto Denko Corp ホメオトロピック配向液晶フィルムの製造方法、ホメオトロピック配向液晶フィルムおよび光学フィルム
JP2004004150A (ja) * 2002-05-13 2004-01-08 Sumitomo Chem Co Ltd 積層位相差フィルム及びそれを用いた液晶表示装置
JP2005070098A (ja) * 2003-08-25 2005-03-17 Nitto Denko Corp 積層光学フィルム、楕円偏光板および画像表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149569B2 (en) 2000-12-06 2015-10-06 Anthrogenesis Corporation Treatment of diseases or disorders using placental stem cells
JP2012500997A (ja) * 2008-08-22 2012-01-12 アクロン ポリマー システムズ 延伸ポリマーフィルムを基礎とする光学補償フィルム

Also Published As

Publication number Publication date
KR20090039737A (ko) 2009-04-22
KR101377911B1 (ko) 2014-03-25
JPWO2008010497A1 (ja) 2009-12-17
US20090251642A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
WO2008010497A1 (fr) Film retard, film améliorant la luminance, plaque de polarisation, procédé de fabrication d&#39;un film retard et dispositif d&#39;affichage à cristaux liquides
JP7265024B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
EP1757961A2 (en) Optical film and polyrizing film using the same, and method for improving view angle of the polarizing film
KR100666895B1 (ko) 액정성 디〔메트〕아크릴레이트 화합물, 위상차 필름, 광학필름, 편광판, 액정 패널 및 액정 표시 장치
TWI391757B (zh) 光學功能薄膜,相位差薄膜,光學功能層形成用組成物,及光學功能薄膜之製造方法
KR20080034405A (ko) 위상차 필름 및 편광판
JP7182533B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
WO2005116741A1 (ja) 液晶表示装置
JP2006268007A (ja) 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置
JPWO2007142206A1 (ja) コレステリック液晶組成物及び円偏光分離シート、並びにその用途
JP2008009328A (ja) 位相差フィルム
WO2014189041A1 (ja) 偏光板およびその製造方法ならびに光学フィルム材料
JP2009086260A (ja) 位相差フィルム
JP2007171595A (ja) 長尺円偏光フィルム、および、これを用いた液晶表示装置
WO2015046399A1 (ja) 偏光板の製造方法
JP2007094271A (ja) 位相差層形成用塗工液、位相差光学積層体、および、位相差光学積層体の製造方法
US8305524B2 (en) Liquid crystal display polarizing plate, method for producing liquid crystal display polarizing plate, and liquid crystal display
JP2008191407A (ja) 位相差フィルム
WO2015016297A1 (ja) 偏光板の製造方法
JP2008122885A (ja) 位相差フィルム、および、偏光板
WO2005116700A1 (ja) 楕円偏光板および画像表示装置
JP5029043B2 (ja) 位相差フィルム、および、位相差フィルムの製造方法
WO2015016296A1 (ja) 偏光板の製造方法
JP6769921B2 (ja) 液晶配向フィルムの製造方法
JP2008122918A (ja) 位相差フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525867

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12374113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097002063

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790881

Country of ref document: EP

Kind code of ref document: A1