WO2005116700A1 - 楕円偏光板および画像表示装置 - Google Patents

楕円偏光板および画像表示装置 Download PDF

Info

Publication number
WO2005116700A1
WO2005116700A1 PCT/JP2005/006636 JP2005006636W WO2005116700A1 WO 2005116700 A1 WO2005116700 A1 WO 2005116700A1 JP 2005006636 W JP2005006636 W JP 2005006636W WO 2005116700 A1 WO2005116700 A1 WO 2005116700A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
axis
polarizing plate
retardation film
Prior art date
Application number
PCT/JP2005/006636
Other languages
English (en)
French (fr)
Inventor
Shuuji Yano
Masayuki Kawai
Ryouji Kinoshita
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US11/569,538 priority Critical patent/US7619818B2/en
Publication of WO2005116700A1 publication Critical patent/WO2005116700A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to an elliptically polarizing plate in which an optical film on which a retardation film is laminated and a polarizer are laminated.
  • the present invention also relates to a liquid crystal display device using the elliptically polarizing plate, an organic EL (electroluminescence) display device, and an image display device such as a PDP.
  • the elliptically polarizing plate of the present invention is suitable for an in-plane switching (IPS mode) active matrix liquid crystal display device.
  • a so-called TN mode liquid crystal display device in which liquid crystals having a positive dielectric anisotropy are twisted and horizontally aligned between substrates facing each other has been mainly used.
  • a horizontal electric field type liquid crystal display device performs pixel display by forming an electric field parallel to a liquid crystal substrate between a pixel electrode and a common electrode, and a TN device that forms an electric field perpendicular to the substrate.
  • a complete black display is possible, and there is an advantage that a wide viewing angle can be obtained.
  • the conventional horizontal electric field type active matrix type liquid crystal display device can perform almost perfect black display in the panel normal direction, the panel is observed from the direction shifted from the normal direction.
  • the polarizers located above and below the liquid crystal cell are unavoidable in the direction deviated from the optical axis direction due to the characteristics of the polarizers! /
  • the optical path of light becomes longer, and the apparent retardation of the liquid crystal layer changes. For this reason, if the viewing angle is changed, the wavelength of the transmitted light will change, and the color of the screen will change, and the image will be seen, and a color shift will occur depending on the viewing direction.
  • Patent Document 1 proposes a technique in which a compensation layer having optical anisotropy is interposed between a liquid crystal layer and a pair of polarizing plates sandwiching the liquid crystal layer. This technology is effective for improving color shift. The suppression of the decrease in power contrast is not enough.
  • Patent Document 2 proposes a technology in which first and second retardation plates are interposed between a liquid crystal layer and a pair of polarizing plates sandwiching the liquid crystal layer. It is described that this technique is effective for suppressing a decrease in contrast and improving a color shift, but it is desired that a higher and more effective effect is desired.
  • Patent document 1 JP-A-11-133408
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-242462
  • the present invention is an elliptically polarizing plate in which a retardation film and a polarizer are laminated, and when applied to an in-plane switching type active matrix liquid crystal display device, reduces contrast at a wide viewing angle.
  • the objective is to provide a color filter that can be suppressed and has a high color shift improvement effect.
  • Another object of the present invention is to provide an image display device using the elliptically polarizing plate.
  • the present invention provides a thermoplastic polymer containing a cyclic polyolefin resin, wherein the direction in which the in-plane refractive index is maximum is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction is the thickness direction.
  • the refractive indices in the respective axial directions are nx, ny, and nz as the Z axis
  • a retardation film A having a uniaxially oriented positive refractive index anisotropy (nx> ny nz)
  • the direction where the in-plane refractive index is the maximum is the X axis
  • the direction perpendicular to the X axis is the Y axis
  • the thickness direction is the Z axis
  • the refractive index in each axis direction is nx, ny
  • a retardation film B having a positive refractive index anisotropy Is an optical film made by laminating
  • the present invention relates to an elliptically polarizing plate, which is laminated on one side of a polarizer such that a slow axis of the retardation film A and an absorption axis of the polarizer are orthogonal to each other.
  • a retardation film A and a retardation film B are laminated on the elliptically polarizing plate of the present invention.
  • the retardation film A has a compensation function based on uniaxially oriented positive refractive index anisotropy, and the retardation film B can also control the retardation in the thickness direction.
  • the retardation film A contains a cyclic polyolefin resin.
  • Cyclic polyolefin resin has a small photoelastic coefficient and can suppress unevenness, which is likely to occur in tensile stress and durability tests, especially in large panel applications such as the in-plane switching method (IPS mode).
  • the retardation film A is laminated such that the slow axis is orthogonal to the absorption axis of the polarizer. Arranging at right angles as described above is preferable from the viewpoint of obtaining high contrast.
  • the optical film obtained by laminating the retardation film A and the retardation film B is laminated on a polarizer, and the optical film also serves as a protective film. This is advantageous in that the reduction in color shift can be suppressed and the color shift can be improved.
  • the optical films are laminated such that the retardation film A and the retardation film B are arranged in this order from the polarizer, so that a decrease in contrast at a wide viewing angle can be suppressed. Also preferred in terms of color shift improvement effects.
  • a film containing a norbornene resin as the retardation film A.
  • a film containing a norbornene-based resin is preferred from the viewpoint of excellent durability under high temperature, high temperature and high humidity conditions.
  • the retardation film B has a retardation in the thickness direction of ⁇ ((nx + ny) / 2) —nz in order to suppress a decrease in contrast and a color shift at a wide viewing angle.
  • the phase difference in the direction is preferably 300 nm to 130 nm. And one more 200
  • the retardation film B is preferably a film containing a force-side-chain type liquid crystal polymer that can use the one having the above-mentioned refractive index without any particular limitation.
  • a material having a small in-plane refractive index in a stretching direction that is, a so-called negative optical material can be exemplified. Examples of such a material include styrene resin and acrylic resin.
  • a ⁇ 4 plate can be used as the retardation film A.
  • the present invention relates to an image display device wherein the elliptically polarizing plates are stacked.
  • an image display device application to a liquid crystal display device is preferable, and in particular, application to an active matrix type liquid crystal display device in which a driving mode is an in-plane switching mode (IPS mode) is preferable.
  • An image display device such as a liquid crystal display device to which the elliptically polarizing plate is applied can realize a wide viewing angle, can suppress a decrease in contrast even when the display screen is viewed obliquely, and can improve a color shift.
  • the liquid crystal display device can be formed by disposing the elliptically polarizing plate of the present invention on one side or both sides of the liquid crystal cell instead of the conventional polarizing plate.
  • the arrangement of the elliptically polarizing plate of the present invention with respect to the liquid crystal cell is not particularly limited.
  • the optical film obtained by laminating the retardation film A and the retardation film B is placed on the liquid crystal cell side (that is, the optical film is composed of a polarizer and a liquid crystal cell). And a force for disposing the optical film between polarizers arranged in crossed Nicols in a liquid crystal display device. This is preferable in terms of display quality.
  • the elliptically polarizing plate is arranged on the metal electrode in the organic EL display device, but it is preferable that the polarizer is laminated at a position farthest from the liquid crystal cell or the metal electrode.
  • FIG. 1 is an embodiment of a cross-sectional view and a conceptual view of an elliptically polarizing plate of the present invention.
  • FIG. 2 is an embodiment of a sectional view and a conceptual view of an elliptically polarizing plate of the present invention.
  • FIG. 3 is an embodiment of a conceptual diagram of the liquid crystal display device of the present invention.
  • FIG. 4 is an embodiment of a conceptual diagram of a liquid crystal display device of a comparative example. Explanation of reference numerals
  • A: retardation film that satisfies A: nx> ny nz
  • an optical film 2 on which a retardation film A and a retardation film B are laminated is laminated on one surface of a polarizer la.
  • a protective film lb can be laminated on the other side of the polarizer la. This is shown as polarizing plate 1.
  • the optical film 2 also serves as a protective film for the polarizer la.
  • the elliptically polarizing plate of the present invention is laminated such that the slow axis of the retardation film A and the absorption axis of the polarizer la are orthogonal to each other.
  • the order of laminating the optical film 2 with respect to the polarizer la is not particularly limited. However, when the optical film 2 is mounted on a liquid crystal display device, a reduction in contrast and a color shift are suppressed. Therefore, it is preferable to laminate the retardation film A and the retardation film B in this order from the polarizer la as shown in FIG.
  • the polarizer 1a, the retardation film A, and the retardation film B are laminated via a pressure-sensitive adhesive layer or an adhesive layer.
  • the pressure-sensitive adhesive layer or the adhesive layer may be a single layer or may be a superposed form of two or more layers.
  • the direction in which the refractive index in the plane of the film becomes the maximum is the X axis
  • the direction perpendicular to the X axis is the Y axis
  • the thickness direction of the film is the Z axis.
  • the retardation film A is obtained by uniaxially or biaxially stretching a polymer film made of a thermoplastic polymer containing a cyclic polyolefin resin in the plane direction. Ring Examples of the polyolefin resin include, for example, norbornene-based resins.
  • Examples of the norbornene-based resin include (1) a ring-opened (co) polymer of a norbornene-based monomer, a polymer-modified product thereof such as maleic acid addition and cyclopentadiene addition, and Added resin; (2) addition-polymerized norbornene-based monomer; (3) addition-copolymerized norbornene-based monomer with addition-type copolymerization with a olefinic monomer such as ethylene or ⁇ -olefin. be able to.
  • the polymerization method and the hydrogenation method can be performed by a conventional method.
  • norbornene-based monomer for example, norbornene and its alkyl and / or alkylidene-substituted product, for example, 5-methyl-2 norbornene, 5-dimethyl-2 norbornene, 5-ethyl-2 norbornene, 5-butyl-2 norbornene, 5 Polar groups substituted with halogen such as ethylidene-2 norbornene; dicyclopentadiene, 2,3 dihydrodicyclopentadiene; dimethanooctahydronaphthalene, alkyl- and / or alkylidene-substituted derivatives thereof, halogen, etc.
  • halogen such as ethylidene-2 norbornene
  • dicyclopentadiene 2,3 dihydrodicyclopentadiene
  • dimethanooctahydronaphthalene alkyl- and / or alkylidene-substituted derivatives thereof, halogen, etc
  • Polar group substituents such as 6-methyl 1,4: 5,8 dimethano-1,4,4a, 5,6,7,8,8a 1,8 dimethano 1,4,4a, 5,6,7,8,8a-year-old cutahydronaphthalene, 6 ethylidene 1,4: 5,8 dimethano 1,4,4a, 5,6,7,8 , 8a-octahydronaphthalene, 6-chloro 1,4: 5,8 dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6 cyano 1,4: 5,8 dimethano 1,4,4a, 5, 6, 7, 8, 8a-octahydronaphthalene, 6 pyridyl- 1,4: 5,8 dimethano- 1,4,4a, 5, 6, 7, 8, 8a- Octahydronaphthalene, 6-methoxycarbol-1,4: 5,8 dimethanol 1,4,4a, 5,6,7,8,8a-octahydronaphthalen
  • the above norbornene-based resin may be used in combination with other cycloolefins capable of ring-opening polymerization within a range that does not impair the object of the present invention.
  • cycloolefins include, for example, cyclopentene, cyclootaten, 5,6-dihydrodicyclo Compounds having one reactive double bond such as pentadiene are exemplified.
  • the norbornene-based resin has a number average molecular weight (Mn) of 25,000-200,000, preferably 30-000, as measured by a gel 'permeation' chromatograph (GPC) method using a toluene solvent. It is in the range of 100,000, more preferably 40,000 to 80,000. When the number average molecular weight is in the above range, a material having excellent mechanical strength and good solubility, moldability, and casting operability can be obtained.
  • Mn number average molecular weight
  • the hydrogenation rate is usually 90 from the viewpoint of heat deterioration resistance and light deterioration resistance. % Or more is used. Preferably it is at least 95%. More preferably, it is at least 99%.
  • the film containing the norbornene-based resin include, for example, a Zeonor film manufactured by Zeon Corporation and an Arton film manufactured by JSR Corporation.
  • the front retardation ((nx-ny) X d (thickness: nm)) of the retardation film A is 50 to 210 nm, it is effective for suppressing a decrease in contrast and improving a color shift.
  • the front retardation is preferably 70 nm or more, more preferably 80 nm or more, and further preferably 90 nm or more.
  • the front phase difference is preferably 200 nm or less, more preferably 190 nm or less.
  • the thickness (d) of the retardation film A is not particularly limited, but is preferably 1 to 200 / ⁇ , more preferably 2 to: LOO ⁇ m.
  • the retardation film B is fixed at a homeotropic aperture pick orientation, the direction in which the in-plane refractive index is maximum is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction is the Z axis. Satisfies the positive refractive index anisotropy (nz> nx ⁇ ny) when the refractive indices in the respective axial directions are nx, ny, and nz.
  • the retardation film B is obtained, for example, by orienting a liquid crystal material with a vertical alignment agent.
  • a liquid crystal compound that can be homeotropically pick-aligned for example, a nematic liquid crystal compound is known.
  • An overview of the powerful techniques for aligning liquid crystal compounds is described in, for example, Chemistry Review 44 (Surface Modification, edited by The Chemical Society of Japan, pp. 156-163).
  • the liquid crystal material examples include a monomer unit (a) having a positive refractive index anisotropy and containing a liquid crystal fragment side chain and a monomer unit containing a non-liquid crystal fragment side chain. It can be formed by a side chain type liquid crystal polymer containing a mer unit (b). The side chain type liquid crystal polymer can realize the homeotropic opening orientation of the liquid crystal polymer without using a vertical alignment film.
  • the monomer unit (a) has a side chain having nematic liquid crystallinity.
  • the monomer unit (a) has a general formula (a):
  • R 1 is a hydrogen atom or a methyl group
  • a is a positive integer of 1 to 6
  • X 1 is a —CO— group
  • R 2 represents a cyano group, an alkoxy group having 1 to 6 carbon atoms, a fluoro group or an alkyl group having 1 to 6 carbon atoms, and b and c each represent an integer of 1 or 2. ).
  • the monomer unit (b) has a linear side chain.
  • R 3 is a hydrogen atom or a methyl group
  • R 4 is an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a general formula (bl): [0041]
  • d represents a positive integer of 1 to 6
  • R 5 represents an alkyl group having 1 to 6 carbon atoms. )
  • the ratio of the monomer unit ( a ) to the monomer unit (b) is not particularly limited, and varies depending on the type of the uncured monomer unit.
  • the liquid crystal polymer capable of forming a homeotropically-pick-aligned liquid crystal film includes the monomer unit (a) having a liquid crystal fragment side chain and a monomer having a liquid crystal fragment side chain having an alicyclic ring structure.
  • a side chain type liquid crystal polymer containing the unit (c) is provided.
  • the monomer unit (c) has a side chain having nematic liquid crystallinity.
  • the monomer unit (c) has a general formula (c):
  • R 6 represents a hydrogen atom or a methyl group
  • h represents a positive integer of 1 to 6
  • X 2 represents a —CO— group.
  • e and g each represent an integer of 1 or 2
  • f represents an integer of 0 to 2
  • R 7 represents a cyano group, or an alkyl group having 1 to 12 carbon atoms.
  • the ratio of the monomer unit ( a ) to the monomer unit ( c ) is not particularly limited, and the ratio of the monomer unit (c) that varies depending on the type of the monomer unit to be removed is large.
  • it is more preferably 0.1 to 0.6.
  • the liquid crystal polymer capable of forming the retardation film B is not limited to those having the above-described monomer units, and the above-described monomer units can be appropriately combined.
  • the side chain type liquid crystal polymer preferably has a weight average molecular weight (GPC) of 2,000 to 100,000.
  • GPC weight average molecular weight
  • the weight average molecular weight is more preferably set to 2.5 or more.
  • the weight average molecular weight is more preferably 50,000 or less.
  • the above-mentioned exemplary side chain type liquid crystal polymer copolymerizes an acrylic monomer or a methacrylic monomer corresponding to the monomer unit (a), the monomer cut (b), and the monomer unit ( c ).
  • the monomers corresponding to the monomer units ( a ), (b) and (c) can be synthesized by a known method.
  • the copolymer can be prepared according to a conventional polymerization method of an acrylic monomer such as a radical polymerization method, a cationic polymerization method, or an anion polymerization method.
  • the radical polymerization method is applied, the power at which various polymerization initiators can be used. Of these, those that decompose at an intermediate temperature where the decomposition temperature of azobisisobutyl-tolyl or peroxyl-benzoyl is not too high or not too low. Is preferably used.
  • the side chain type liquid crystal polymer can be used as a liquid crystal composition by mixing a photopolymerizable liquid crystal compound.
  • the photopolymerizable liquid crystal compound is a liquid crystal compound having at least one unsaturated double bond such as an atalyloyl group or a metharyloyl group as a photopolymerizable functional group, and a nematic liquid crystal compound is awarded.
  • Examples of such a photopolymerizable liquid crystal compound include atalylate and methacrylate which are the monomer units (a).
  • two or more photopolymerizable functional groups are preferred.
  • a photopolymerizable liquid crystal compound for example,
  • R is a hydrogen atom or a methyl group
  • a and D are each independently a 1,4-phenylene group or a 1,4-cyclohexylene group
  • X is each independently a COO group
  • O is an OCO or O group
  • B is 1,4 phenylene, 1,4-cyclohexylene, 4,4'-biphenylene or 4,4'-bicyclohexylene
  • the photopolymerizable liquid crystal compound can be brought into a liquid crystal state by heat treatment, for example, a nematic liquid crystal layer can be developed and homeotropically orientated together with the side chain type liquid crystal polymer, and then the photopolymerizable liquid crystal compound is polymerized.
  • the crosslinking can improve the durability of the home-opening pick-oriented liquid crystal film.
  • the ratio of the photopolymerizable liquid crystal compound to the side chain type liquid crystal polymer in the liquid crystal composition is not particularly limited, and is appropriately determined in consideration of the durability of the obtained homeotropically-pick alignment liquid crystal film.
  • the photopolymerizable liquid crystal compound: the side chain type liquid crystal polymer (weight ratio) is preferably about 0.1: 1 to 30: 1, particularly preferably 0.5: 1 to 20: 1, and more preferably 0.5: 1 to 20: 1. 1: 1 to: L0: 1 is preferred.
  • the liquid crystal composition generally contains a photopolymerization initiator.
  • Various types of photopolymerization initiators can be used without particular limitation.
  • the photopolymerization initiator include Irgacure 907, 184, 651, 651, and 369 manufactured by Ciba Chemical Corporation.
  • the amount of the photopolymerization initiator depends on the type of the photopolymerized liquid crystal compound and the liquid crystal composition. In consideration of the compounding ratio of the product and the like, it is added to a degree that does not disturb the homeotropic opening pick orientation of the liquid crystalline composition. Usually, the amount is preferably about 0.5 to 30 parts by weight based on 100 parts by weight of the photopolymerizable liquid crystal compound. In particular, 3 parts by weight or more is preferable.
  • the retardation film B was prepared by applying a homeotropic-pic-alignable side-chain liquid crystal polymer on a substrate, and then bringing the side-chain-type liquid-crystalline polymer into a liquid-crystal state, followed by homeotropic-pic alignment. This is performed by immobilization while maintaining the orientation state.
  • a homeotropically orientated liquid crystal composition containing the side chain type liquid crystal polymer and the photopolymerizable liquid crystal compound is used, the liquid crystal composition is coated on a substrate, and then the liquid crystal composition is brought into a liquid crystal state. In this case, the homeotropic opening pick alignment is performed, and light irradiation is performed while maintaining the alignment state.
  • the substrate on which the side chain type liquid crystal polymer or liquid crystal composition is applied may be in any shape of a glass substrate, a metal foil, a plastic sheet or a plastic film.
  • the plastic film There is no particular limitation on the plastic film as long as it does not change at the temperature at which it is oriented. Examples thereof include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, diacetinoresenorelose, and triacetinoresenorelose.
  • the film include a transparent polymarker such as an acrylic polymer such as a senorelose-based polymer, a polycarbonate-based polymer, and polymethyl methacrylate.
  • the vertical alignment film need not be provided on the substrate.
  • the thickness of the substrate is usually about 10 to L000 m.
  • the method of applying the side chain type liquid crystal polymer or the liquid crystal composition to a substrate includes a solution coating method using a solution in which the side chain type liquid crystal polymer or the liquid crystal composition is dissolved in a solvent or the liquid crystal.
  • One of the strengths is the method of melting and polymerizing a polymer or liquid crystalline composition.
  • a method of applying a solution of a side chain type liquid crystal polymer or a liquid crystalline composition on a supporting substrate by a solution coating method is used. preferable.
  • a method of applying a solution of a side chain type liquid crystal polymer or a liquid crystalline composition adjusted to a desired concentration using the above-described solvent on a substrate for example, a roll coating method, a gravure coating method, and the like. Method, spin coating method, bar coating method and the like can be adopted.
  • the solvent is removed to form a liquid crystal polymer layer or a liquid crystal composition layer on the substrate.
  • the conditions for removing the solvent are not particularly limited, and the solvent can be substantially removed, and the liquid crystal polymer layer or the liquid crystalline polymer can be removed. It is only necessary that the composition layer does not flow or even run off.
  • the solvent is removed by drying at room temperature, drying in a drying oven, or heating on a hot plate.
  • the gravure coating method is preferably used in the present invention in that a large area can be uniformly coated.
  • the side-chain type liquid crystal polymer layer or the liquid crystalline composition layer formed on the supporting substrate is brought into a liquid crystal state, and is homeotropically orientated.
  • the side chain type liquid crystal polymer or the liquid crystal composition is subjected to a heat treatment so as to be in a liquid crystal temperature range, and is brought into a liquid crystal state to cause homeotropic alignment.
  • the heat treatment can be performed by the same method as the above-described drying method.
  • the temperature of the heat treatment varies depending on the type of the side chain type liquid crystal polymer or liquid crystalline composition to be used and the type of the supporting substrate, and cannot be unconditionally determined, but is usually in the range of 60 to 300 ° C, preferably 70 to 200 ° C. .
  • the heat treatment time varies depending on the heat treatment temperature and the type of side chain type liquid crystal polymer or liquid crystal composition or substrate, and cannot be specified unconditionally.
  • the force is in the range of 10 seconds to 2 hours, preferably in the range of 20 seconds to 30 minutes. Is selected. If the time is shorter than 10 seconds, homeotropic opening pick alignment may not sufficiently proceed.
  • orientation temperatures and the treatment time in the present invention, it is preferable to carry out the treatment at an orientation temperature of 80 to 150 ° C. for a treatment time of about 30 seconds to 10 minutes in view of workability and mass productivity.
  • a cooling operation is performed.
  • the cooling operation can be performed by taking the homeotropically-pick oriented liquid crystal film after the heat treatment from the heating atmosphere in the heat treatment operation to room temperature. Also, forced cooling such as air cooling or water cooling may be performed.
  • the alignment of the side-chain liquid crystal polymer homeotropic opening pick alignment layer is fixed by cooling the glass to a glass transition temperature or lower of the side-chain liquid crystal polymer.
  • the homeotropic liquid crystal alignment layer fixed in this way is irradiated with light, and the photopolymerizable liquid crystal compound is polymerized or crosslinked to form a photopolymerizable liquid crystal.
  • the compound is fixed to obtain a homeotropically-picked liquid crystal film layer having improved durability.
  • the light irradiation is performed by, for example, ultraviolet irradiation.
  • the ultraviolet irradiation conditions are preferably in an inert gas atmosphere in order to sufficiently promote the reaction.
  • a high pressure mercury ultraviolet lamp with an illuminance of about 80 ⁇ 160mWZc m 2 is typically used.
  • Other lamps such as metahalide UV lamps and incandescent tubes can also be used.
  • the liquid crystal layer during ultraviolet irradiation The surface temperature is adjusted appropriately by using a cold mirror, water cooling or other cooling treatment, or increasing the line speed so that the surface temperature falls within the liquid crystal temperature range.
  • the thickness of the homeotropically-pick alignment liquid crystal film of the present invention is not particularly limited, but the thickness of the coated homely-openingly-picked liquid crystal film layer composed of the side chain type liquid crystal polymer is about 0.3 to 200 ⁇ m, More preferably, it is 0.5 to 200 m. Below 0.3 m, the thickness is too thin to control the thickness.
  • the retardation film B can be used with or without peeling the substrate force.
  • a pressure-sensitive adhesive layer or an adhesive layer can be used for laminating the retardation film A and the retardation film B.
  • the material for forming the pressure-sensitive adhesive layer or the adhesive layer is not particularly limited.
  • an acrylic polymer, a silicone polymer, a polyester, a polyurethane, a polyamide, a polyether, a polymer such as a fluorine-based or rubber-based polymer is used as a base polymer.
  • Those can be appropriately selected and used.
  • a material having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties and having excellent weather resistance and heat resistance can be preferably used.
  • the formation of the pressure-sensitive adhesive layer or the adhesive layer can be performed by an appropriate method.
  • a solution of about 10 to 40% by weight is prepared by dissolving or dispersing a base polymer or a composition thereof in a solvent capable of being used alone or as a mixture of appropriate solvents such as toluene and ethyl acetate.
  • an appropriate developing method such as a casting method or a coating method, or by forming an adhesive layer or an adhesive layer on a separator in accordance with the method described above. Examples of the method include transfer onto the liquid crystal layer.
  • the pressure-sensitive adhesive layer or the adhesive layer may be formed of, for example, natural or synthetic resin, in particular, tackifying resin, glass fiber, glass beads, metal powder, or other inorganic powder. It may contain additives such as fillers, pigments, colorants, and antioxidants. Also, light diffusibility may be imparted by containing fine particles.
  • the thickness of the pressure-sensitive adhesive layer or the adhesive layer can be appropriately determined depending on the purpose of use, adhesive strength, and the like, and is generally 1 to 500 ⁇ m, preferably 5 to 200 ⁇ m force S, Especially 10 ⁇ : L00 ⁇ m force S preferred.
  • a separator is temporarily attached to the exposed surface of the pressure-sensitive adhesive layer or the adhesive layer for the purpose of preventing contamination and the like until practical use, and covered. This can prevent contact with the pressure-sensitive adhesive layer or the adhesive layer in a usual handling state.
  • a suitable thin leaf such as a plastic film, a rubber sheet, paper, cloth, nonwoven fabric, a net, a foaming sheet, a metal foil, or a laminate thereof may be used as a separator.
  • a suitable material according to the related art such as a material coated with a suitable release agent such as a resin, a long-chain alkyl compound, a fluorine compound, and sulfur molybdenum, may be used.
  • Each layer such as the optical film, the pressure-sensitive adhesive layer or the adhesive layer includes, for example, a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex compound.
  • UV-absorbing ability can be provided by a method such as a method of treating with an ultraviolet absorbent such as
  • the polarizer is not particularly limited, and various types can be used.
  • the polarizer include a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / butyl acetate copolymer-based partially modified film, and iodine and a dichroic dye.
  • a uniaxially stretched film obtained by adsorbing the dichroic substance described above, and a polyene oriented film such as a dehydrated product of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride.
  • the thickness of the polarizer is not particularly limited, it is generally about 5 to 80 ⁇ m.
  • a polarizer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching the film to 3 to 7 times its original length. Can be. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. Rinse the polybutyl alcohol-based film with water to remove dirt and anti-blocking agent on the surface of the polybutyl alcohol-based film.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with iodine. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the optical film (retardation film A or retardation film B) is laminated on one side of the polarizer, and the other side usually has a protective film on one side.
  • the protective film is preferably one which is usually used as a protective film for a polarizer and has excellent transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like.
  • polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate
  • senorelose-based polymers such as diacetylinoresenorelose and triacetinoresenorelose
  • acrylic-based polymers such as polymethyl methacrylate
  • Polymers include styrene-based polymers such as polystyrene and acrylonitrile-styrene copolymer (AS resin), polycarbonate-based polymers, and the like.
  • Sunolefon polymer, polyethenoresnolefon polymer, polyethenolethenoletone ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, Epoxy polymers or blends of the above polymers are examples of polymers that form the protective film.
  • Other examples include films made of thermosetting or ultraviolet curable resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone resins.
  • a polymer film described in JP-A-2001-343529 for example, (A) a thermoplastic resin having a substituted or Z- or non-amide group in a side chain; Resin compositions containing thermoplastic resins having substituted and Z- or unsubstituted fur and -tolyl groups in the chain are mentioned.
  • Specific examples include a resin composition film containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile-styrene copolymer.
  • the film is flexible, such as a mixed extruded resin composition. Film can be used.
  • a protective film that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface is saponified with an alkali or the like.
  • the thickness of the protective film can be determined as appropriate, it is generally about 10 to 500 ⁇ m from the viewpoint of workability such as strength, handleability, and thinness. In particular, a force of 20-300 ⁇ m S is preferable, and a force of 30-200 ⁇ m is preferable.
  • nx and ny are the main refractive index in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness
  • a protective film having a retardation value in the thickness direction of -90 nm to +75 nm is preferably used.
  • the phase difference value (Rth) in the thickness direction is more preferably -80 nm to +60 nm, particularly preferably -70 nm to +45 nm.
  • the polarizer and the protective film are in close contact with each other via an aqueous adhesive or the like.
  • the water-based adhesive include a polybutyl alcohol-based adhesive, a gelatin-based adhesive, a bullet-based latex, an aqueous polyurethane, and an aqueous polyester.
  • the protective film a hard coat layer or a film subjected to an anti-reflection treatment, a treatment for preventing sticking, and a treatment for diffusion or anti-glare can be used.
  • the hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched.
  • a suitable ultraviolet-curable resin such as an acrylic or silicone resin is used to cure the film with excellent hardness and sliding properties.
  • the film can be formed by a method of adding a film to the surface of the protective film.
  • the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-sticking treatment is performed for the purpose of preventing adhesion to an adjacent layer.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate, and the like.
  • an appropriate method such as a surface roughening method or a compounding method of transparent fine particles. It can be formed by providing a fine uneven structure on the surface of the protective film. Examples of the fine particles to be contained in the formation of the surface fine unevenness include silica, alumina, titanium, zirconia, tin oxide, indium oxide, cadmium oxide, and acid oxide having an average particle size of 0.5 to 50 m.
  • Transparent fine particles such as inorganic fine particles which may have conductive properties such as antimony, and organic fine particles which also have strong properties such as crosslinked or uncrosslinked polymers are used.
  • the amount of the fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight based on 100 parts by weight of the transparent resin forming the fine surface uneven structure.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle enlargement function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
  • the anti-reflection layer, anti-staking layer, diffusion layer, anti-glare layer, and the like can be provided on the protective film itself, or separately provided as an optical layer separately from the transparent protective layer. You can also.
  • the elliptically polarizing plate of the present invention is suitably used for an IPS mode liquid crystal display device.
  • An IPS mode liquid crystal display device includes a pair of substrates sandwiching a liquid crystal layer, an electrode group formed on one of the pair of substrates, and a liquid crystal composition material having a dielectric anisotropy sandwiched between the substrates.
  • the electrode group has an array structure arranged such that a parallel electric field is mainly applied to the interface between the alignment control layer and the liquid crystal composition layer.
  • the elliptically polarizing plate of the present invention is disposed on at least one of the viewing side and the incident side of the liquid crystal cell.
  • FIG. 3 shows a case where the elliptically polarizing plate of FIG. 1 is arranged on the viewing side.
  • the elliptical polarizing plate preferably has the optical film 2 side as the liquid crystal cell LC side.
  • a polarizing plate 1 ' is arranged on the opposite side (light incident side) of the liquid crystal cell 4 on which the elliptically polarizing plate is arranged.
  • the absorption axes of the polarizing plates arranged on both sides of the substrate of the liquid crystal cell LC and the absorption axes of the elliptically polarizing plates are arranged orthogonally.
  • a polarizing plate la in which protective films lb are laminated on both sides of a polarizer la is usually used.
  • the liquid crystal display device shown in Fig. 3 shows an example of a liquid crystal cell.
  • the polarizing plate can be applied to other various liquid crystal display devices.
  • the dye was dyed in an aqueous solution of potassium iodine Z, and then uniaxially stretched in an aqueous solution of boric acid to obtain a polarizer.
  • This polarizer was tested for single transmittance, parallel transmittance, and orthogonal transmittance with a spectrophotometer, and found to have a transmittance of 43.5% and a polarization of 99.9%.
  • a 100 ⁇ m thick norbornene-based unstretched film (ARTON film manufactured by JSR) was uniaxially stretched 1.3 times at 170 ° C.
  • the obtained stretched film had a thickness of 80 / ⁇ and a front retardation of 100 nm.
  • the solution is applied on a Zeonor film manufactured by Nippon Zeon Co., Ltd. with a bar coater, dried and orientated at 100 ° C. for 10 minutes, irradiated with ultraviolet rays, and cured to form a homeotop of thickness of 1.
  • a pick alignment liquid crystal film layer was obtained.
  • the optical phase difference of this sample was measured (measurement light was incident on the sample surface perpendicularly or obliquely), the front phase difference was almost zero, and the phase difference increased with an increase in the incident angle of the measurement light. From this, it was confirmed that homeotropic opening pick orientation was obtained.
  • the phase difference in the thickness direction of the homeotropic aperture pick-aligned liquid crystal film layer was 100 nm.
  • a triacetyl cellulose (TAC) film having a thickness of 80 ⁇ m, a front retardation of 6 nm, and a retardation in the thickness direction of 60 nm was adhered to one surface of the polarizer obtained in the reference example via a polybutyl alcohol-based adhesive.
  • a transparent protective layer was formed.
  • the other surface of the polarizer is bonded via a polyvinyl alcohol-based adhesive so that the absorption axis of the polarizer and the slow axis of the retardation film A are orthogonal to each other, and the retardation film B is further placed on top of the acrylic resin. Lamination was performed via an adhesive. Thereafter, the Zeonor film was peeled off to obtain an elliptically polarizing plate.
  • a norbornene-based unstretched film (arton film manufactured by JSR) having a thickness of 100 ⁇ m was uniaxially stretched 1.4 times at 170 ° C.
  • the obtained stretched film had a thickness of 70 / ⁇ and a front retardation of 180 nm.
  • Example 1 a homeotropic aperture pick-aligned liquid crystal film layer was obtained in the same manner as in Example 1 except that the thickness of the homeotropic aperture pick-aligned liquid crystal film layer was changed to 0.5 m.
  • the thickness direction retardation of the homeotropically aligned liquid crystal film layer was 50 nm.
  • An elliptically polarizing plate was obtained in the same manner as in Example 1 except that the retardation film A and the retardation film B obtained above were used.
  • a 100 ⁇ m-thick norbornene-based unstretched film (ARTON film manufactured by JSR) was uniaxially stretched 1.35 times at 175 ° C.
  • the obtained stretched film had a thickness of 75 / ⁇ and a front retardation of 140 nm.
  • Example 1 a homeotropic opening pick-aligned liquid crystal film layer was obtained in the same manner as in Example 1 except that the thickness of the homeotropic opening pick-aligned liquid crystal film layer was changed to 1.3 m.
  • the phase difference in the thickness direction of the homeotropically aligned liquid crystal film layer was 130 nm.
  • An elliptically polarizing plate was obtained in the same manner as in Example 1 except that the retardation film A and the retardation film B obtained above were used.
  • Triacetyl cellulose having a thickness of 80 ⁇ m, a front retardation of 6 nm, and a retardation in the thickness direction of 60 nm on one side of the polarizer obtained in the reference example via a polybutyl alcohol-based adhesive.
  • the film was adhered to form a transparent protective layer.
  • a triacetyl cellulose (TAC) film having a thickness of 80 m, a front retardation of 6 nm, and a retardation in the thickness direction of 60 nm was adhered to the other surface of the polarizer via a polyvinyl alcohol-based adhesive to obtain a polarizing plate.
  • a triacetyl cellulose (TAC) film having a thickness of 40 ⁇ m, a front retardation of 3 nm, and a retardation in the thickness direction of 40 nm was adhered to one side of the polarizer obtained in the reference example via a polybutyl alcohol-based adhesive.
  • a transparent protective layer was formed.
  • a polyvinyl alcohol-based adhesive was used to apply a triacetyl cellulose (TAC) film with a thickness of 40 m, a front retardation of 3 nm, and a retardation in the thickness direction of 40 nm via a polyvinyl alcohol-based adhesive. To obtain a polarizing plate.
  • An 80 m thick polycarbonate film was uniaxially stretched 1.3 times at 175 ° C.
  • the obtained stretched film had a thickness of 50 m and a front phase difference of 300 nm.
  • the obtained stretched film had a uniaxially oriented positive refractive index anisotropy (nx> ny ⁇ nz).
  • Example 1 a homeotropic aperture pick-aligned liquid crystal film layer was obtained in the same manner as in Example 1, except that the thickness of the homeotropic aperture pick-aligned liquid crystal film layer was changed to 3. O / zm.
  • the thickness direction retardation of the homeotropically aligned liquid crystal film layer was 300 nm.
  • Example 1 was repeated in the same manner as in Example 1 except that the retardation film A ′ obtained above and the retardation film B obtained above were used instead of the retardation film A. Thus, an elliptically polarizing plate was obtained.
  • the elliptically polarizing plates obtained in Examples 1 to 3 It was arranged on the viewing side.
  • the polarizing plates obtained in Comparative Examples 1 and 2 were arranged on the viewing side of the IPS mode liquid crystal cell as shown in FIG.
  • the elliptically polarizing plate obtained in Comparative Example 3 was used instead of the elliptically polarizing plate used in Example 1.
  • the polarizing plate obtained in Comparative Example 1 was disposed on the incident side (backlight side).
  • a white image and a black image are displayed on the liquid crystal display device, and X, X, X, X, and Z in the directions of up, down, left, right, diagonal 45 °-225 °, diagonal 135 °-315 ° are displayed on EZcontras tl60D manufactured by ELDIM.
  • the Y, X, and y values in the YZ display system were measured.
  • the angle at which the value of the contrast (Y value (white image) ZY value (black image)) at that time was 25 or more was defined as the viewing angle.
  • the elliptically polarizing plate or polarizing plate (400 mm ⁇ 300 mm) obtained above was bonded to alkali glass with an acrylic adhesive (20 IX m) using a roller so as to form a cross-col.
  • the unevenness due to stress after bonding, was visually probability p (S Les on the basis of the following criteria after the irradiation of the Roh backlight Q
  • the elliptically polarizing plate or polarizing plate (300 mm x 200 mm) obtained above was pressed against alkali glass with an acrylic adhesive (20 ⁇ m) using a roller to form a cross-col. Air bubbles were removed by autoclaving at atmospheric pressure for 15 minutes, and the surrounding unevenness after injection for 100 hours in an environment of 80 ° C was visually confirmed after the knock light irradiation according to the following criteria.
  • Example 1 Example 2
  • Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3
  • 40 40 30 Stress unevenness ⁇ ⁇ ⁇ ⁇ ⁇ X Heating durability ⁇ ⁇ ⁇ ⁇ ⁇ X Industrial applicability
  • the elliptically polarizing plate of the present invention can be suitably applied to a liquid crystal display, an organic EL (electroluminescence) display, and an image display such as a PDP.
  • the elliptically polarizing plate of the present invention is suitable for an in-plane switching (IPS mode) active matrix liquid crystal display device.

Abstract

 本発明の楕円偏光板は、環状ポリオレフィン樹脂を含有する熱可塑性高分子からなり、面内の屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nzとした場合に、一軸配向した正の屈折率異方性(nx>ny≒nz)を有する位相差フィルムAと、ホメオトロピック配向に固定されており、面内の屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx1、ny1、nz1とした場合に、正の屈折率異方性(nz1>nx1≒ny1)を有する位相差フィルムBとが積層してなる光学フィルムが、偏光子の片側に、位相差フィルムAの遅相軸と偏光子の吸収軸とが直交するように積層されている。かかる楕円偏光板は、横電界方式のアクティブマトリクス型液晶表示装置に適用した場合には、広視野角におけるコントラストの低下を抑制でき、かつカラーシフトの改善効果が高い。

Description

明 細 書
楕円偏光板および画像表示装置
技術分野
[0001] 本発明は、位相差フィルムを積層した光学フィルムと偏光子とを積層した楕円偏光 板に関する。また本発明は前記楕円偏光板を用いた液晶表示装置、有機 EL (エレク トロルミネセンス)表示装置、 PDP等の画像表示装置に関する。特に本発明の楕円 偏光板は、横電界方式 (IPSモード)のアクティブマトリクス型の液晶表示装置に好適 である。
背景技術
[0002] 従来より、液晶表示装置としては、正の誘電率異方性を有する液晶を、相互に対向 する基盤間にねじれ水平配向した、いわゆる TNモードの液晶表示装置が主として 使われている。しかし、 TNモードではその駆動特性上、黒表示をしょうとしても基板 近傍の液晶分子により、複屈折が生じる結果、光漏れが生じてしまい、完全な黒表示 を行うことが困難であった。これに対し、横電界方式の液晶表示装置は、画素電極と 共通電極との間に液晶基板に平行な電界を形成して画素表示を行うものであり、基 板に垂直な電界を形成する TNモード方式等に比較して、完全な黒色表示が可能で あり、広 、視野角が得られると 、う利点がある。
[0003] し力しながら、従来の横電界方式のアクティブマトリクス型液晶表示装置ではパネ ル法線方向においてはほぼ完全な黒色表示ができるものの、法線方向からズレた方 向からパネルを観察する場合、液晶セルの上下に配置する偏光板の光軸方向から ズレた方向では偏光板の特性上避けられな!/、光漏れが発生する結果、視野角が狭 くなりコントラストが低下するという問題があった。また、斜め方向から観察した場合は 、光の光路が長くなり液晶層の見かけのリタ一デーシヨンが変化する。このため、視野 角を変化させると透過してくる光の波長に変化が生じ、画面の色が変化して見えてし まい、観察方向に依存してカラーシフトが生じる。
[0004] このような横電界方式の液晶表示装置における視野角に依存するコントラストの低 下の抑制やカラーシフトを改善するために種々の提案がなされている (特許文献 1、 特許文献 2)。例えば、特許文献 1では液晶層とこれを挟む一対の偏光板の間に、光 学異方性を有する補償層を介在させる技術が提案されて 、る。この技術はカラーシ フトの改善には有効である力 コントラストの低下抑制は十分でない。また、特許文献 2では液晶層とこれを挟む一対の偏光板の間に、第 1および第 2の位相差板を介在さ せる技術が提案されて 、る。この技術ではコントラストの低下の抑制及びカラーシフト の改善に有効であることが記載されて 、るが、より高 、改善効果が望まれて!/、る。 特許文献 1:特開平 11— 133408号公報
特許文献 2:特開 2001— 242462号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、位相差フィルムと偏光子とを積層した楕円偏光板であって、横電界方式 のアクティブマトリクス型液晶表示装置に適用した場合には、広視野角におけるコント ラストの低下を抑制でき、かつカラーシフトの改善効果の高いものを提供することを目 的とする。
[0006] また本発明は、前記楕円偏光板を用いた画像表示装置を提供することを目的とす る。特に、広視野角におけるコントラストの低下を抑制でき、かつカラーシフトの改善 効果の高 、横電界方式のアクティブマトリクス型液晶表示装置を提供することを目的 とする。
課題を解決するための手段
[0007] 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す楕円偏 光板により、前記目的を達成できることを見出し、本発明を完成するに至った。
[0008] すなわち本発明は、環状ポリオレフイン榭脂を含有する熱可塑性高分子力 なり、 面内の屈折率が最大となる方向を X軸、 X軸に垂直な方向を Y軸、厚さ方向を Z軸と し、それぞれの軸方向の屈折率を nx、 ny、 nzとした場合〖こ、一軸配向した正の屈折 率異方性 (nx>ny nz)を有する位相差フィルム Aと、
ホメオト口ピック配向に固定されており、面内の屈折率が最大となる方向を X軸、 X 軸に垂直な方向を Y軸、厚さ方向を Z軸とし、それぞれの軸方向の屈折率を nx、 ny
1 1
、 nzとした場合に、正の屈折率異方性 (nz >nx ny )を有する位相差フィルム Bと が積層してなる光学フィルムが、
偏光子の片側に、位相差フィルム Aの遅相軸と偏光子の吸収軸とが直交するように 積層されていることを特徴とする楕円偏光板、に関する。
[0009] 上記本発明の楕円偏光板には、位相差フィルム Aおよび位相差フィルム Bが積層さ れて 、る。位相差フィルム Aは一軸配向した正の屈折率異方性による補償機能を有 し、位相差フィルム Bは厚み方向の位相差も制御が可能である。これらにより、視角の 変化により生じる偏光子の軸変化に基づくコントラストの低下を抑制でき、カラーシフ トを改善することができ、広視野角を補償することができる。
[0010] また位相差フィルム Aは、環状ポリオレフイン榭脂を含有している。環状ポリオレフィ ン榭脂は光弾性係数が小さぐ特に横電界方式 (IPSモード)などの大型パネルの用 途において、引っ張り応力や耐久性試験などで発生しやすい、ムラを抑えることがで きる。
[0011] また本発明の楕円偏光板は、位相差フィルム Aはその遅相軸が偏光子の吸収軸と 直交するように積層されて 、る。前記のように直交に配置することは高 、コントラストを 得る点で好適である。
[0012] また位相差フィルム Aと位相差フィルム Bとを積層した光学フィルムは、偏光子に積 層されており光学フィルムは保護フィルムを兼ねていることから、薄型、軽量化が可能 でありコントラストの低下を抑制することができ、またカラーシフトを改善できる点で優 れている。
[0013] 前記楕円偏光板は、偏光子から、位相差フィルム A、位相差フィルム Bの順になるよ うに光学フィルムが積層されて 、ることが、広視野角におけるコントラストの低下を抑 制でき、かつカラーシフトの改善効果の点で好ま 、。
[0014] 前記楕円偏光板にぉ 、て、前記位相差フィルム Aとしては、ノルボルネン系榭脂を 含むフィルムを用いるのが好ましい。ノルボルネン系榭脂を含むフィルムは、高温、高 温高湿条件下での耐久性に優れるなどの点から好ましい。
[0015] 前記楕円偏光板において、位相差フィルム Bは、広視野角でのコントラストの低下と カラーシフトを抑制するには、厚み方向の位相差: { ( (nx +ny ) /2)— nz } X d (厚
1 1 1 さ: nm)が、 500nm〜一 lOnmであることが好ましい。前記位相差フィルム Bの厚 み方向の位相差は、 300nm〜一 30nmであるのがより好ましい。さらには一 200
〜一 50nmが好ましい。
[0016] 前記楕円偏光板において、位相差フィルム Bは上記屈折率を有するものを特に制 限されなく使用できる力 側鎖型液晶ポリマーを含むフィルムが好適である。その他 に、位相差フィルム Bの材料としては、延伸方向の面内の屈折率が小さくなる材料、 いわゆる負の光学材料を例示することができる。このような材料としては、スチレン系 榭脂、アクリル系榭脂等があげられる。
[0017] 前記楕円偏光板において、位相差フィルム Aとしては、 λ Ζ4板を用いることができ る。
[0018] さらに本発明は、上記楕円偏光板が積層されていることを特徴とする画像表示装置 に関する。画像表示装置としては、液晶表示装置への適用が好適であり、特に駆動 モードが横電界方式 (IPSモード)のアクティブマトリクス型の液晶表示装置への適用 が好適である。当該楕円偏光板を適用した液晶表示装置などの画像表示装置は広 視野角化を実現でき、かつ表示画面を斜め力も見た場合にもコントラストの低下を抑 制でき、カラーシフトを改善できる。
[0019] 液晶表示装置は、従来の偏光板に代えて本発明の楕円偏光板を液晶セルの片側 または両側に配置することにより形成できる。液晶セルに対する本発明の楕円偏光 板の配置は特に制限されな ヽが、位相差フィルム Aおよび位相差フィルム Bを積層し た光学フィルムを液晶セル側(すなわち前記光学フィルムが偏光子と液晶セルの間) に位置し、液晶表示装置においてクロスニコルに配置した偏光子間に前記光学フィ ルムが配置されるようにするの力 表示品位上好ましい。また楕円偏光板は、有機 E L表示装置では金属電極に配置されるが、前記偏光子は、液晶セルや金属電極から 最も離れた位置に積層するのが好ま 、。
図面の簡単な説明
[0020] [図 1]本発明の楕円偏光板の断面図および概念図の一態様である。
[図 2]本発明の楕円偏光板の断面図および概念図の一態様である。
[図 3]本発明の液晶表示装置の概念図の一態様である。
[図 4]比較例の液晶表示装置の概念図の一態様である。 符号の説明
[0021] A:nx>ny=nz,を満足する位相差フィルム
B:nz >nx =nv ,を満足する位相差フィルム
1 1 1
la:偏光子
2 :光学フィルム
LC :液晶セル
発明を実施するための最良の形態
[0022] 以下に本発明の楕円偏光板を図 1乃至図 2を参照しながら説明する。図 1乃至図 2 に示すように、本発明の楕円偏光板は、位相差フィルム Aと位相差フィルム Bとが積 層されている光学フィルム 2が、偏光子 laの片面に積層されている。また図 1乃至図 2に示すように、偏光子 laのもう一方の片側には、保護フィルム lbを積層することが できる。これを偏光板 1として示す。前記光学フィルム 2は、偏光子 laの保護フィルム を兼ねている。また本発明の楕円偏光板は、位相差フィルム Aの遅相軸と偏光子 la の吸収軸とが直交するように積層されて 、る。
[0023] 図 1乃至図 2に示す楕円偏光板において、偏光子 laに対する前記光学フィルム 2 の積層順は特に制限されないが、液晶表示装置に実装した時に、コントラストの低下 とカラーシフトを抑制する点から、図 1のように偏光子 laから、位相差フィルム A、位 相差フィルム Bの順に積層するのが好ましい。なお、図 1乃至図 2において、偏光子 1 a、位相差フィルム A、位相差フィルム Bは粘着剤層または接着剤層を介して積層さ れている。粘着剤層または接着剤層は 1層でもよぐまた 2層以上の重畳形態とするこ とがでさる。
[0024] 位相差フィルム Aは、フィルム面内の屈折率が最大となる方向を X軸、 X軸に垂直な 方向を Y軸、フィルムの厚さ方向を Z軸とし、それぞれの軸方向の屈折率を nx、 ny、 n zとした場合に、 nx>ny=nz,を満足するものを用いる。すなわち、三次元屈折率楕 円体において一方向の主軸の屈折率が他の 2方向の屈折率よりも大きい、光学的に 正の一軸性を示す材料が用いられる。
[0025] 位相差フィルム Aは、環状ポリオレフイン榭脂を含有する熱可塑性高分子カゝらなる ポリマーフィルムを、面方向に一軸または二軸延伸処理することにより得られる。環状 ポリオレフイン榭脂としては、例えば、ノルボルネン系榭脂が例示される。
[0026] ノルボルネン系榭脂としては、例えば、(1)ノルボルネン系モノマーの開環(共)重 合体、さらにはこれのマレイン酸付加、シクロペンタジェン付加等のポリマー変性物、 さらにはこれらを水素添加した榭脂;(2)ノルボルネン系モノマーを付加重合させた 榭脂;(3)ノルボルネン系モノマーとエチレンや α—才レフインなどのォレフィン系モ ノマーと付加型共重合させた榭脂などが挙げることができる。重合方法および水素添 加方法は、常法により行うことができる。
[0027] 前記ノルボルネン系モノマーとしては、例えば、ノルボルネン、およびそのアルキル および/またはアルキリデン置換体、例えば、 5—メチルー 2 ノルボルネン、 5 ジ メチルー 2 ノルボルネン、 5 ェチルー 2 ノルボルネン、 5 ブチルー 2 ノルボ ルネン、 5 ェチリデンー 2 ノルボルネン等、これらのハロゲン等の極性基置換体; ジシクロペンタジェン、 2, 3 ジヒドロジシクロペンタジェン等;ジメタノォクタヒドロナ フタレン、そのアルキルおよび/またはアルキリデン置換体、およびハロゲン等の極 性基置換体、例えば、 6—メチル 1, 4 : 5, 8 ジメタノ— 1, 4, 4a, 5, 6, 7, 8, 8a 一才クタヒドロナフタレン、 6 ェチノレ一 1, 4 : 5, 8 ジメタノ一 1, 4, 4a, 5, 6, 7, 8 , 8a—才クタヒドロナフタレン、 6 ェチリデン一 1, 4 : 5, 8 ジメタノ一 1, 4, 4a, 5, 6, 7, 8, 8a—ォクタヒドロナフタレン、 6 クロ口 1, 4 : 5, 8 ジメタノ— 1, 4, 4a, 5 , 6, 7, 8, 8a—才クタヒドロナフタレン、 6 シァノ 1, 4 : 5, 8 ジメタノ一 1, 4, 4a , 5, 6, 7, 8, 8a—ォクタヒドロナフタレン、 6 ピリジル— 1, 4 : 5, 8 ジメタノ— 1, 4 , 4a, 5, 6, 7, 8, 8a—ォクタヒドロナフタレン、 6—メトキシカルボ-ル— 1, 4 : 5, 8 ージメタノー 1, 4, 4a, 5, 6, 7, 8, 8a—ォクタヒドロナフタレン等;シクロペンタジェン の 3〜4量体、例えば、 4, 9 : 5, 8—ジメタノ— 3a, 4, 4a, 5, 8, 8a, 9, 9a—ォクタヒ ドロ一 1H ベンゾインデン、 4, 11 : 5, 10 : 6, 9 トリメタノ一 3a, 4, 4a, 5, 5a, 6, 9, 9a, 10, 10a, 11, 11a ドデカヒドロ一 1H シクロペンタアントラセン等が挙げ られる。
[0028] 上記ノルボルネン系榭脂は、本発明の目的を損なわない範囲内において、開環重 合可能な他のシクロォレフイン類を併用することができる。このようなシクロォレフイン の具体例としては、例えば、シクロペンテン、シクロオタテン、 5, 6—ジヒドロジシクロ ペンタジェン等の反応性の二重結合を 1個有する化合物が挙げられる。
[0029] 前記ノルボルネン系榭脂は、トルエン溶媒によるゲル'パーミエーシヨン'クロマトグ ラフ(GPC)法で測定した数平均分子量(Mn)が 25, 000-200, 000、好ましくは 3 0, 000〜100, 000、より好ましくは 40, 000〜80, 000の範囲のものである。数平 均分子量が上記の範囲であれば、機械的強度に優れ、溶解性、成形性、流延の操 作性が良いものができる。
[0030] 前記ノルボルネン系榭脂がノルボルネン系モノマーの開環重合体を水素添カ卩して 得られるものである場合、水素添加率は、耐熱劣化性、耐光劣化性などの観点から、 通常 90%以上のものが用いられる。好ましくは 95%以上である。より好ましくは、 99 %以上である。
[0031] 前記ノルボルネン系榭脂を含むフィルムの具体例としては、例えば、日本ゼオン社 製のゼォノアフィルムや JSR社製のアートンフィルムなどがあげられる。
[0032] 位相差フィルム Aの正面位相差((nx— ny) X d (厚さ: nm) )は、 50〜210nmであ ることがコントラストの低下の抑制、カラーシフトの改善に有効である。前記正面位相 差は、 70nm以上、さらには 80nm以上、さらには 90nm以上であることが好ましい。 また、前記正面位相差は、 200nm以下、さらには 190nm以下であることが好ましい 。位相差フィルム Aの厚さ(d)は特に制限されないが、 1〜200 /ζ πιが好ましぐさらに 好ましくは 2〜: LOO μ mである。
[0033] 位相差フィルム Bは、ホメオト口ピック配向に固定されており、面内の屈折率が最大 となる方向を X軸、 X軸に垂直な方向を Y軸、厚さ方向を Z軸とし、それぞれの軸方向 の屈折率を nx、 ny、 nzとした場合に、正の屈折率異方性 (nz >nx ^ny )を満足
1 1 1 1 1 1 するものを用いる。位相差フィルム Bは、たとえば、液晶材料を、垂直配向剤により配 向させることにより得られる。ホメオト口ピック配向させることができる液晶化合物として は、たとえば、ネマチック液晶化合物が知られている。力かる液晶化合物の配向技術 にかかわる概説は、例えば、化学総説 44 (表面の改質, 日本化学会編, 156〜163 頁)に記載されている。
[0034] また前記液晶材料としては、たとえば、正の屈折率異方性を有する、液晶性フラグ メント側鎖を含有するモノマーユニット(a)と非液晶性フラグメント側鎖を含有するモノ マーユニット (b)を含有する側鎖型液晶ポリマーにより形成することができる。前記側 鎖型液晶ポリマーは、垂直配向膜を用いなくても、液晶ポリマーのホメオト口ピック配 向を実現することができる。
[0035] 前記モノマーユニット (a)はネマチック液晶性を有する側鎖を有するものであり、たと えば、一般式 (a) :
[0036] [化 1]
Figure imgf000010_0001
[0037] (ただし、 R1は水素原子またはメチル基を、 aは 1〜6の正の整数を、 X1は— CO—基
2 または— OCO—基を、 R2はシァノ基、炭素数 1〜6のアルコキシ基、フルォロ基また は炭素数 1〜6のアルキル基を、 bおよび cは 1または 2の整数を示す。)で表されるモ ノマーユニットがあげられる。
[0038] またモノマーユニット (b)は、直鎖状側鎖を有するものであり、たとえば、一般式 (b)
[0039] [化 2]
Figure imgf000010_0002
[0040] (ただし、 R3は水素原子またはメチル基を、 R4は炭素数 1〜22のアルキル基、炭素数 1〜22のフルォロアルキル基、または一般式(bl): [0041] [化 3]
CH2 - CH2- 0¾-R5
[0042] ただし、 dは 1〜6の正の整数を、 R5は炭素数 1〜6のアルキル基を示す。)で表される モノマーユニットがあげられる。
[0043] また、モノマーユニット (a)とモノマーユニット (b)の割合は、特に制限されるもので はなぐモノマーユニットの種類によっても異なる力 モノマーユニット (b)の割合が多 くなると側鎖型液晶ポリマーが液晶モノドメイン配向性を示さなくなるため、(b)Z{ (a ) + (b) } =0. 01-0. 8 (モル比)とするのが好ましい。特に 0. 1〜0. 5とするのがよ り好ましい。
[0044] またホメオト口ピック配向液晶フィルムを形成しうる液晶ポリマーとしては、前記液晶 性フラグメント側鎖を含有するモノマーユニット (a)と脂環族環状構造を有する液晶性 フラグメント側鎖を含有するモノマーユニット (c)を含有する側鎖型液晶ポリマーがあ げられる。
[0045] 前記モノマーユニット(c)はネマチック液晶性を有する側鎖を有するものであり、たと えば、一般式 (c) :
[0046] [化 4]
Figure imgf000011_0001
[0047] (ただし、 R6水素原子またはメチル基を、 hは 1〜6の正の整数を、 X2は— CO—基ま
2 たは— OCO—基を、 eと gは 1または 2の整数を、 fは 0〜2の整数を、 R7はシァノ基、 炭素数 1〜12のアルキル基を示す。)で表されるモノマーユニットがあげられる。
[0048] また、モノマーユニット (a)とモノマーユニット (c)の割合は、特に制限されるもので はなぐモノマーユニットの種類によっても異なる力 モノマーユニット (c)の割合が多 くなると側鎖型液晶ポリマーが液晶モノドメイン配向性を示さなくなるため、(c) Z{ (a ) + (c) } =0. 01-0. 8 (モル比)とするのが好ましい。特に 0. 1〜0. 6とするのがよ り好ましい。
[0049] 位相差フィルム Bを形成しうる液晶ポリマーは、前記例示のモノマーユニットを有す るものに限られず、また前記例示モノマーユニットは適宜に組み合わせることができる
[0050] 前記側鎖型液晶ポリマーの重量平均分子量 (GPC)は、 2千〜 10万であるのが好 ましい。重量平均分子量を力かる範囲に調整することにより液晶ポリマーとしての性 能を発揮する。側鎖型液晶ポリマーの重量平均分子量が過少では配向層の成膜性 に乏しくなる傾向があるため、重量平均分子量は 2. 5千以上とするのがより好ましい 。一方、重量平均分子量が過多では液晶としての配向性に乏しくなって均一な配向 状態を形成しに《なる傾向があるため、重量平均分子量は 5万以下とするのがより 好ましい。
[0051] なお、前記例示の側鎖型液晶ポリマーは、前記モノマーユニット (a)、モノマーュ- ット(b)、モノマーユニット (c)に対応するアクリル系モノマーまたはメタクリル系モノマ 一を共重合することにより調製できる。なお、モノマーユニット(a)、モノマーユニット( b)、モノマーユニット(c)に対応するモノマーは公知の方法により合成できる。共重合 体の調製は、例えばラジカル重合方式、カチオン重合方式、ァニオン重合方式など の通例のアクリル系モノマー等の重合方式に準じて行うことができる。なお、ラジカル 重合方式を適用する場合、各種の重合開始剤を用いうる力 そのうちァゾビスイソブ チ口-トリルや過酸ィ匕ベンゾィルなどの分解温度が高くもなぐかつ低くもない中間的 温度で分解するものが好ましく用いられる。
[0052] 前記側鎖型液晶ポリマーには、光重合性液晶化合物を配合して液晶性組成物とし て用いることができる。光重合性液晶化合物は、光重合性官能基として、たとえば、 アタリロイル基またはメタタリロイル基等の不飽和二重結合を少なくとも 1つ有する液 晶性化合物であり、ネマチック液晶性のものが賞用される。かかる光重合性液晶化合 物としては、前記モノマーユニット (a)となるアタリレートやメタタリレートを例示できる。 光重合性液晶化合物として、耐久性を向上させるには、光重合性官能基を 2つ以上 有するものが好ましい。このような光重合性液晶化合物として、たとえば、下記化 5 :
[0053] [化 5]
H2C= CR CO" C 2 j- O A X- B X- D - O CH2 02 C - CR= CH2
m n
[0054] (式中、 Rは水素原子またはメチル基を、 Aおよび Dはそれぞれ独立して 1, 4 フエ 二レン基または 1, 4ーシクロへキシレン基を、 Xはそれぞれ独立して COO 基、 OCO 基または O 基を、 Bは 1 , 4 フエ二レン基、 1, 4ーシクロへキシレン基、 4, 4'ービフエ-レン基または 4, 4'ービシクロへキシレン基を、 mおよび nはそれぞ れ独立して 2〜6の整数を示す。 )で表される架橋型ネマチック性液晶モノマー等を 例示できる。また、光重合性液晶化合物としては、前記化 5における末端の「H C =
2
CR— CO―」を、ビュルエーテル基またはエポキシ基に置換した化合物や、「―(C
2
H ) ―」および Zまたは「―(CH ) ―」を「―(CH ) — C*H (CH ) _ (CH ) —」ま
2 m 2 n 2 3 3 2 2 たは「― (CH ) ― C*H (CH )― (CH ) ―」に置換したィ匕合物を例示できる。
2 2 3 2 3
[0055] 上記光重合性液晶化合物は、熱処理により液晶状態として、たとえば、ネマチック 液晶層を発現させて側鎖型液晶ポリマーとともにホメオト口ピック配向させることができ 、その後に光重合性液晶化合物を重合または架橋させることによりホメオト口ピック配 向液晶フィルムの耐久性を向上させることができる。
[0056] 液晶性組成物中の光重合性液晶化合物と側鎖型液晶ポリマーの比率は、特に制 限されず、得られるホメオト口ピック配向液晶フィルムの耐久性等を考慮して適宜に決 定されるが、通常、光重合性液晶化合物:側鎖型液晶ポリマー (重量比) =0. 1: 1〜 30 : 1程度が好ましく、特に 0. 5 : 1〜20 : 1が好ましく、さらには 1 : 1〜: L0 : 1が好まし い。
[0057] 前記液晶性組成物中には、通常、光重合開始剤を含有する。光重合開始剤は各 種のものを特に制限なく使用できる。光重合開始剤としては、たとえば、チバスぺシャ ルティケミカルズ社製のィルガキュア(Irgacure) 907,同 184、同 651、同 369など を例示できる。光重合開始剤の添加量は、光重合液晶化合物の種類、液晶性組成 物の配合比等を考慮して、液晶性組成物のホメオト口ピック配向性を乱さな 、程度に 加えられる。通常、光重合性液晶化合物 100重量部に対して、 0. 5〜30重量部程 度が好ましい。特に 3重量部以上が好ましい。
[0058] 位相差フィルム Bの作製は、基板上に、ホメオト口ピック配向性側鎖型液晶ポリマー を塗工し、次 、で当該側鎖型液晶ポリマーを液晶状態にぉ 、てホメオト口ピック配向 させ、その配向状態を維持した状態で固定化することにより行う。また前記側鎖型液 晶ポリマーと光重合性液晶化合物を含有してなるホメオト口ピック配向液晶性組成物 を用いる場合には、これを基板に塗工後、次いで当該液晶性組成物を液晶状態に おいてホメオト口ピック配向させ、その配向状態を維持した状態で光照射することによ り行う。
[0059] 前記側鎖型液晶ポリマーまたは液晶性組成物を塗工する基板は、ガラス基板、金 属箔、プラスチックシートまたはプラスチックフィルムのいずれの形状でもよい。プラス チックフィルムは配向させる温度で変化しな 、ものであれば特に制限はなぐたとえ ば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマ 一、ジァセチノレセノレロース、トリァセチノレセノレロース等のセノレロース系ポリマー、ポリ カーボネート系ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー等の透明ポリ マーカもなるフィルムがあげられる。基板上に垂直配向膜は設けられていなくてもよ い。基板の厚さは、通常、 10〜: L 000 m程度である。
[0060] 前記側鎖型液晶ポリマーまたは液晶性組成物を基板に塗工する方法は、当該側 鎖型液晶ポリマーまたは液晶性組成物を溶媒に溶解した溶液を用いる溶液塗工方 法または当該液晶ポリマーまたは液晶性組成物を溶融して溶融塗工する方法が挙 げられる力 この中でも溶液塗工方法にて支持基板上に側鎖型液晶ポリマーまたは 液晶性組成物の溶液を塗工する方法が好ましい。
[0061] 上記の溶媒を用いて所望の濃度に調整した側鎖型液晶ポリマーまたは液晶性組 成物の溶液を、基板上に塗工する方法としては、例えば、ロールコート法、グラビアコ ート法、スピンコート法、バーコート法などを採用することができる。塗工後、溶媒を除 去し、基板上に液晶ポリマー層または液晶性組成物層を形成させる。溶媒の除去条 件は、特に限定されず、溶媒をおおむね除去でき、液晶ポリマー層または液晶性組 成物層が流動したり、流れ落ちたりさえしなければ良い。通常、室温での乾燥、乾燥 炉での乾燥、ホットプレート上での加熱などを利用して溶媒を除去する。これらの塗 ェ方法のなかでも本発明ではグラビアコート法を採用するのが、大面積を均一に塗 ェしゃすい点で好ましい。
[0062] 次いで、支持基板上に形成された側鎖型液晶ポリマー層または液晶性組成物層を 液晶状態とし、ホメオト口ピック配向させる。たとえば、側鎖型液晶ポリマーまたは液晶 性組成物が液晶温度範囲になるように熱処理を行!、、液晶状態にお!、てホメオトロピ ック配向させる。熱処理方法としては、上記の乾燥方法と同様の方法で行うことがで きる。熱処理温度は、使用する側鎖型液晶ポリマーまたは液晶性組成物と支持基板 の種類により異なるため一概には言えないが、通常 60〜300°C、好ましくは 70〜20 0°Cの範囲において行う。また熱処理時間は、熱処理温度および使用する側鎖型液 晶ポリマーまたは液晶性組成物や基板の種類によって異なるため一概には言えない 力 通常 10秒〜 2時間、好ましくは 20秒〜 30分の範囲で選択される。 10秒より短い 場合、ホメオト口ピック配向形成が十分に進行しないおそれがある。これらの配向温 度、その処理時間のなかでも本発明では、配向温度 80〜150°Cで、その処理時間 を 30秒〜 10分間程度行うのが、作業性、量産性の点で好ましい。
[0063] 熱処理終了後、冷却操作を行う。冷却操作としては、熱処理後のホメオト口ピック配 向液晶フィルムを、熱処理操作における加熱雰囲気中から、室温中に出すことによつ て行うことができる。また空冷、水冷などの強制冷却を行ってもよい。前記側鎖型液 晶ポリマーのホメオト口ピック配向層は、側鎖型液晶ポリマーのガラス転移温度以下 に冷却することにより配向が固定ィ匕される。
[0064] 液晶性組成物の場合には、このように固定ィ匕されたホメオト口ピック液晶配向層に 対して光照射を行 、、光重合性液晶化合物を重合または架橋させて光重合性液晶 化合物を固定ィ匕して、耐久性を向上したホメオト口ピック配向液晶フィルム層を得る。 光照射は、たとえば、紫外線照射により行う。紫外線照射条件は、十分に反応を促進 するために、不活性気体雰囲気中とすることが好ましい。通常、約 80〜160mWZc m2の照度を有する高圧水銀紫外ランプが代表的に用いられる。メタハライド UVラン プゃ白熱管などの別種ランプを使用することもできる。なお、紫外線照射時の液晶層 表面温度が液晶温度範囲内になるように、コールドミラー、水冷その他の冷却処理あ るいはライン速度を速くするなどして適宜に調整する。
[0065] このようにして、側鎖型液晶ポリマーまたは液晶性組成物の薄膜が生成され、配向 性を維持したまま固定ィ匕することにより、位相差フィルム Bが得られる。本発明のホメ オト口ピック配向液晶フィルムの厚みは、特に制限されないが、塗工された前記側鎖 型液晶ポリマーからなるホメオト口ピック配向液晶フィルム層の厚みは 0. 3-200 μ m程度、さらには 0. 5〜200 mとするのが好ましい。 0. 3 m以下では膜厚が薄す ぎるため厚み制御が困難である。 200 mを超える場合には、画像表示装置に実装 した場合に、上下左右の視野角が広がる方位がある一方、逆に狭くなる方位が発生 してしまう場合がある。位相差フィルム Bは、基板力も剥離して、または剥離することな く用いることができる。
[0066] 位相差フィルム Aと、位相差フィルム Bとの積層には粘着剤層または接着剤層を用 いることができる。粘着剤層または接着剤層を形成する材料は特に制限されないが、 例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミ ド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適 宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優 れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優 れるものが好ましく用いうる。
[0067] 粘着剤層または接着剤層の形成は、適宜な方式で行うことができる。その例として は、例えばトルエンや酢酸ェチル等の適宜な溶剤の単独物又は混合物力 なる溶媒 にベースポリマーまたはその組成物を溶解又は分散させた 10〜40重量%程度の溶 液を調製し、それを流延方式や塗工方式等の適宜な展開方式で前記基板または液 晶フィルム上に直接付設する方式、あるいは前記に準じセパレータ上に粘着剤層ま たは接着剤層を形成してそれを前記液晶層上に転写する方式などがあげられる。
[0068] また粘着剤層または接着剤層には、例えば天然物や合成物の榭脂類、特に、粘着 性付与榭脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等カゝらなる充 填剤や顔料、着色剤、酸化防止剤などの添加剤を含有していてもよい。また微粒子 を含有して光拡散性を付与してもよ ヽ。 [0069] 粘着剤層または接着剤層の厚さは、使用目的や接着力などに応じて適宜に決定で き、一般に ίま 1〜500 μ mであり、 5〜200 μ m力 S好ましく、特に 10〜: L00 μ m力 S好ま しい。
[0070] 粘着剤層または接着剤層の露出面に対しては、実用に供するまでの間、その汚染 防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態 で粘着剤層または接着剤層に接触することを防止できる。セパレータとしては、上記 厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発 泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン 系や長鎖アルキル系、フッ素系や硫ィ匕モリブデン等の適宜な剥離剤でコート処理し たものなどの、従来に準じた適宜なものを用いうる。
[0071] なお、上記光学フィルム、粘着剤層または接着剤層などの各層には、例えばサリチ ル酸エステル系化合物やべンゾフエノール系化合物、ベンゾトリアゾール系化合物 ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理す る方式などの方式により紫外線吸収能をもたせることができる。
[0072] 偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、 ポリビュルアルコール系フィルム、部分ホルマール化ポリビュルアルコール系フィル ム、エチレン ·酢酸ビュル共重合体系部分ケンィ匕フィルム等の親水性高分子フィルム に、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニル アルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリェン系配向フィ ルム等があげられる。これらのなかでもポリビュルアルコール系フィルムを延伸して二 色性材料 (沃素、染料)を吸着 *配向したものが好適に用いられる。偏光子の厚さも特 に制限されないが、 5〜80 μ m程度が一般的である。
[0073] ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば 、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3〜 7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなど の水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビュルアルコ ール系フィルムを水に浸漬して水洗してもよ 、。ポリビュルアルコール系フィルムを水 洗することでポリビュルアルコール系フィルム表面の汚れやブロッキング防止剤を洗 浄することができるほかに、ポリビュルアルコール系フィルムを膨潤させることで染色 のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良 いし、染色しながら延伸してもよし、また延伸して力もヨウ素で染色してもよい。ホウ酸 やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
[0074] 偏光子の片側には、前記光学フィルム (位相差フィルム Aまたは位相差フィルム B) が積層されるが、もう一方に片側には、通常、保護フィルムを有する。保護フィルムは 、通常、偏光子の保護フィルムとして用いられている、透明性、機械的強度、熱安定 性、水分遮蔽性、等方性などに優れるものが好ましい。前記保護フィルムの材料とし ては、例えばポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル 系ポリマー、ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系ポリマ 一、ポリメチルメタタリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル'ス チレン共重合体 (AS榭脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなど があげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構 造を有するポリオレフイン、エチレン 'プロピレン共重合体の如きポリオレフイン系ポリ マー、塩化ビュル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミ ド系ポリマー、スノレホン系ポリマー、ポリエーテノレスノレホン系ポリマー、ポリエーテノレエ ーテノレケトン系ポリマー、ポリフエ二レンスルフイド系ポリマー、ビニルアルコール系ポ リマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、ァリレート系ポリマ 一、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、あるいは前記ポリマーのブレ ンド物などが保護フィルムを形成するポリマーの例としてあげられる。その他、アクリル 系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の熱硬化型ないし 紫外線硬化型榭脂などをフィルム化したものなどがあげられる。
[0075] また、特開 2001— 343529号公報(WO01Z37007)に記載のポリマーフィルム、 たとえば、(A)側鎖に置換および Zまたは非置^ミド基を有する熱可塑性榭脂と、 (B)側鎖に置換および Zまたは非置換フ -ルならびに-トリル基を有する熱可塑 性榭脂を含有する榭脂組成物があげられる。具体例としてはイソブチレンと N—メチ ルマレイミドからなる交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する 榭脂組成物のフィルムがあげられる。フィルムは榭脂組成物の混合押出品など力ゝらな るフィルムを用いることができる。
[0076] 偏光特性や耐久性などの点より、特に好ましく用いることができる保護フィルムは、 表面をアルカリなどでケン化処理したトリァセチルセルロースフィルムである。保護フィ ルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性な どの^;より 10〜500 μ m程度である。特に 20〜300 μ m力 S好まし <、 30〜200 μ m 力 り好ましい。
[0077] また、保護フィルムは、できるだけ色付きがな 、ことが好まし 、。したがって、 Rth=
[ (nx+ny) /2-nz] . d (ただし、 nx、 nyはフィルム平面内の主屈折率、 nzはフィル ム厚方向の屈折率、 dはフィルム厚みである)で表されるフィルム厚み方向の位相差 値が― 90nm〜 + 75nmである保護フィルムが好ましく用いられる。かかる厚み方向 の位相差値 (Rth)が— 90nm〜 + 75nmのものを使用することにより、保護フィルム に起因する偏光板の着色 (光学的な着色)をほぼ解消することができる。厚み方向位 相差値 (Rth)は、さらに好ましくは— 80nm〜 + 60nm、特に— 70nm〜+45nmが 好ましい。
[0078] 前記偏光子と保護フィルムとは通常、水系粘着剤等を介して密着して!/ヽる。水系接 着剤としては、ポリビュルアルコール系接着剤、ゼラチン系接着剤、ビュル系ラテック ス系、水系ポリウレタン、水系ポリエステル等を例示できる。
[0079] 前記保護フィルムとしては、ハードコート層や反射防止処理、ステイツキング防止や 、拡散ないしアンチグレアを目的とした処理を施したものを用いることができる。
[0080] ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例 えばアクリル系、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性 等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成することが できる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであ り、従来に準じた反射防止膜などの形成により達成することができる。また、スティツキ ング防止処理は隣接層との密着防止を目的に施される。
[0081] またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式ゃェン ボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて保 護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記 表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が 0. 5〜5 0 mのシリカ、アルミナ、チタ-ァ、ジルコユア、酸化錫、酸化インジウム、酸化カドミ ゥム、酸ィ匕アンチモン等力 なる導電性のこともある無機系微粒子、架橋又は未架橋 のポリマー等力もなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸 構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明榭脂 100重量部に対して一般的に 2〜50重量部程度であり、 5〜25重量部が好ましい。 アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視 角拡大機能など)を兼ねるものであってもよい。
[0082] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等は、保 護フィルムそのものに設けることができるほか、別途光学層として透明保護層とは別 体のものとして設けることもできる。
[0083] 本発明の楕円偏光板は IPSモードの液晶表示装置に好適に用いられる。 IPSモー ドの液晶表示装置は、液晶層を狭持する一対の基板と、前記一対の基板の一方に 形成された電極群と、前記基板間に挟持された誘電異方性を有する液晶組成物質 層と、前記一対の基板の対向に形成されて前記液晶組成物質の分子配列を所定の 方向に配列させるための配向制御層および前記電極群に駆動電圧を印加するため の駆動手段とを具備した液晶セルを有する。前記電極群は前記配向制御層および 前記液晶組成物質層の界面に対して、主として平行な電界を印加するごとく配置さ れた配列構造を有して!/、る。
[0084] 本発明の楕円偏光板は液晶セルの視認側、入射側の少なくとも一方に配置される 。図 3は図 1の楕円偏光板を視認側に配置した場合である。図 3に示すように楕円偏 光板は、光学フィルム 2側を液晶セル LC側とするのが好ましい。図 3では、楕円偏光 板の配置された液晶セル 4の反対側(光入射側)には偏光板 1' が配置される。液晶 セル LCの基板の両側に配置した偏光板 の吸収軸と楕円偏光板 (偏光板 1)の吸 収軸は直交状態に配置されている。偏光板 1' としては、通常、偏光子 laの両側に 保護フィルム lbを積層したものが用いられる。
[0085] 上記図 3の液晶表示装置は、液晶セルの一例を示したものであり、本発明の楕円 偏光板はその他各種の液晶表示装置に適用できる。
実施例
[0086] 以下に実施例をあげて本発明の一態様について説明する力 本発明は実施例に 限定されな ヽことは ヽうまでもな!/ヽ。
[0087] なお、各光学フィルムの屈折率、位相差の測定は、フィルム面内と厚さ方向の主屈 折率 nx、 ny、 nzを自動複屈折測定装置 (王子計測機器株式会社製, 自動複屈折計 KOBRA21ADH)により、 λ = 590nmにおける特性を測定した。
[0088] 参考例
(偏光子)
ポリビニルアルコールフィルムを温水中に浸漬して膨張させたあと、ヨウ素 Zヨウィ匕 カリウム水溶液中にて染色し、次いでホウ酸水溶液中で一軸延伸処理して偏光子を 得た。これの偏光子は、分光光度計にて単体透過率、平行透過率および直交透過 率を調べたところ透過率 43. 5%、偏光度 99. 9%であった。
[0089] 実施例 1
(位相差フィルム A)
厚さ 100 μ mのノルボルネン系無延伸フィルム (JSR社製のアートンフィルム)を、 1 70°Cで 1. 3倍に一軸延伸した。得られた延伸フィルムは、厚さ:80 /ζ πι、正面位相 差: lOOnmであった。得られた延伸フィルムは、一軸配向した正の屈折率異方性 (n x>ny= nz)を有して!/、た。
[0090] (位相差フィルム B)
[0091] [ィ匕 6]
Figure imgf000022_0001
[0092] 上記の化 6 (式中の数字はモノマーユニットのモル0 /0を示し、便宜的にブロックポリ マー体で示して!/ヽる、重量平均分子量 5000)で示される側鎖型液晶ポリマー 5重量 部、ネマチック液晶相を示す重合性液晶(Paliocolor LC242, BASF製) 20重量 部および光開始剤 (ィルガキュア 907,チバスペシャルティケミカルズ社製)を前記重 合性液晶に対して 3重量部を、シクロへキサノン 75重量部に溶解した溶液を調製し た。そして、当該溶液を、 日本ゼオン社のゼォノアフィルム上にバーコ一ターにて塗 布し、 100°Cで 10分間、乾燥配向させた後、紫外線照射し、硬化することにより厚さ 1 . のホメオト口ピック配向液晶フィルム層を得た。このサンプルの光学位相差を 測定 (測定光をサンプル表面に対して垂直あるいは斜めから入射)したところ、正面 位相差がほぼゼロであり、また測定光の入射角度の増加に伴 、位相差が増加したこ とからホメオト口ピック配向が得られて 、ることを確認した。ホメオト口ピック配向液晶フ イルム層の厚み方向位相差は、 lOOnmであった。
[0093] (楕円偏光板)
参考例で得た偏光子の片面にポリビュルアルコール系接着剤を介して、厚み 80 μ m、正面位相差: 6nm、厚み方向の位相差: 60nmのトリアセチルセルロース(TAC) フィルムを接着して透明保護層を形成した。その偏光子の他面にポリビニルアルコー ル系接着剤を介して、偏光子の吸収軸と位相差フィルム Aの遅相軸が直交になるよう に接着し、その上に位相差フィルム Bをアクリル系粘着剤を介して貼り合せを行った。 その後、ゼォノアフィルムを剥離して、楕円偏光板を得た。
[0094] 実施例 2 (位相差フィルム A)
厚さ 100 μ mのノルボルネン系無延伸フィルム (JSR社製のアートンフィルム)を、 1 70°Cで 1. 4倍に一軸延伸した。得られた延伸フィルムは、厚さ:70 /ζ πι、正面位相 差: 180nmであった。得られた延伸フィルムは、一軸配向した正の屈折率異方性 (n x>ny= nz)を有して!/、た。
[0095] (位相差フィルム B)
実施例 1において、ホメオト口ピック配向液晶フィルム層の厚さ 0. 5 mにしたこと以 外は実施例 1と同様にしてホメオト口ピック配向液晶フィルム層を得た。ホメオトロピッ ク配向液晶フィルム層の厚み方向位相差は、 50nmであった。
[0096] (楕円偏光板)
実施例 1において、位相差フィルム A、位相差フィルム Bとして上記で得られたもの を用いたこと以外は実施例 1と同様にして楕円偏光板を得た。
[0097] 実施例 3
(位相差フィルム A)
厚さ 100 μ mのノルボルネン系無延伸フィルム (JSR社製のアートンフィルム)を、 1 75°Cで 1. 35倍に一軸延伸した。得られた延伸フィルムは、厚さ: 75 /ζ πι、正面位相 差: 140nmであった。得られた延伸フィルムは、一軸配向した正の屈折率異方性 (n x>ny= nz)を有して!/、た。
[0098] (位相差フィルム B)
実施例 1において、ホメオト口ピック配向液晶フィルム層の厚さ 1. 3 mにしたこと以 外は実施例 1と同様にしてホメオト口ピック配向液晶フィルム層を得た。ホメオトロピッ ク配向液晶フィルム層の厚み方向位相差は、 130nmであった。
[0099] (楕円偏光板)
実施例 1において、位相差フィルム A、位相差フィルム Bとして上記で得られたもの を用いたこと以外は実施例 1と同様にして楕円偏光板を得た。
[0100] 比較例 1
参考例で得た偏光子の片面にポリビュルアルコール系接着剤を介して、厚み 80 μ m、正面位相差: 6nm、厚み方向の位相差: 60nmのトリアセチルセルロース(TAC) フィルムを接着して透明保護層を形成した。その偏光子の他面に厚み 80 m、正面 位相差: 6nm、厚み方向の位相差: 60nmのトリアセチルセルロース(TAC)フィルム をポリビニルアルコール系接着剤を介して接着して偏光板を得た。
[0101] 比較例 2
参考例で得た偏光子の片面にポリビュルアルコール系接着剤を介して、厚み 40 μ m、正面位相差: 3nm、厚み方向の位相差: 40nmのトリアセチルセルロース(TAC) フィルムを接着して透明保護層を形成した。その偏光子の他面にポリビニルアルコー ル系接着剤を介して、厚み 40 m、正面位相差: 3nm、厚み方向の位相差: 40nm のトリアセチルセルロース(TAC)フィルムをポリビュルアルコール系接着剤を介して 接着して偏光板を得た。
[0102] 比較例 3
(位相差フィルム )
厚さ 80 mのポリカーボネートフィルムを、 175°Cで 1. 3倍に一軸延伸した。得られ た延伸フィルムは、厚さ: 50 m、正面位相差: 300nmであった。得られた延伸フィ ルムは、一軸配向した正の屈折率異方性 (nx>ny^nz)を有していた。
[0103] (位相差フィルム B)
実施例 1において、ホメオト口ピック配向液晶フィルム層の厚さ 3. O /z mにしたこと以 外は実施例 1と同様にしてホメオト口ピック配向液晶フィルム層を得た。ホメオトロピッ ク配向液晶フィルム層の厚み方向位相差は、 300nmであった。
[0104] (楕円偏光板)
実施例 1にお 、て、位相差フィルム Aの代わりに上記で得られた位相差フィルム A ' 、位相差フィルム Bとして上記で得られたものを用いたこと以外は実施例 1と同様に して楕円偏光板を得た。
[0105] (評価)
上記で得られた楕円偏光板または偏光板にっ 、て下記評価を行なった。結果を表 1に示す。
[0106] (視野角)
実施例 1〜3で得られた楕円偏光板を図 3に示すように、 IPSモードの液晶セルの 視認側に配置した。比較例 1、 2で得られた偏光板は、図 4に示すように IPSモードの 液晶セルの視認側に配置した。比較例 3で得られた楕円偏光板は、実施例 1で用い た楕円偏光板の代わりに用いた。一方、入射側 (バックライト側)には、比較例 1で得 られた偏光板を配置した。
[0107] 上記液晶表示装置に、白画像、黒画像を表示させて、 ELDIM社製の EZcontras tl60Dにて、上下、左右、対角 45° —225° 、対角 135° — 315° 方向における X YZ表示系における Y値、 X値、 y値を測定した。そのときのコントラスト (Y値(白画像) ZY値 (黒画像))の値が 25以上となる角度を視野角とした。
[0108] (貼り合せ応力によるムラ)
上記で得られた楕円偏光板または偏光板(400mm X 300mm)をアルカリガラスに アクリル系粘着剤(20 IX m)でローラーを用いてクロス-コルになるように貼り合わせ た。貼り合わせ後の応力によるムラを、ノ ックライトを照射後に以下の基準で目視確 p(Sレた Q
〇:光ぬけが確認できなかった。
X:光ぬけが確認できた。
[0109] (加熱耐久性)
上記で得られた楕円偏光板または偏光板(300mm X 200mm)をアルカリガラスに アクリル系粘着剤(20 μ m)でローラーを用いてクロス-コルになるように圧着した後、 50°C、 5気圧、 15分間のオートクレーブ処理にて気泡を除去し、さらに 80°Cの環境 下の 100時間投入後の周辺ムラを、ノ ックライトを照射後に以下の基準で目視確認 した。
〇:光ぬけが確認できな力つた。
X:光ぬけが確認できた。
[0110] [表 1] 実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3 視野角 フ 0 70 65 40 40 30 応力ムラ 〇 〇 〇 〇 〇 X 加熱耐久性 〇 〇 〇 〇 〇 X 産業上の利用可能性
本発明の楕円偏光板は、液晶表示装置、有機 EL (エレクトロルミネセンス)表示装 置、 PDP等の画像表示装置に好適に適用できる。特に本発明の楕円偏光板は、横 電界方式 (IPSモード)のアクティブマトリクス型の液晶表示装置に好適である。

Claims

請求の範囲
[1] 環状ポリオレフイン榭脂を含有する熱可塑性高分子力 なり、面内の屈折率が最大 となる方向を X軸、 X軸に垂直な方向を Y軸、厚さ方向を z軸とし、それぞれの軸方向 の屈折率を nx、 ny、 nzとした場合に、一軸配向した正の屈折率異方性 (nx>ny^n z)を有する位相差フィルム Aと、
ホメオト口ピック配向に固定されており、面内の屈折率が最大となる方向を X軸、 X 軸に垂直な方向を Y軸、厚さ方向を Z軸とし、それぞれの軸方向の屈折率を nx、 ny
1 1
、 nzとした場合に、正の屈折率異方性 (nz >nx ny )を有する位相差フィルム Bと
1 1 1 1
が積層してなる光学フィルムが、
偏光子の片側に、位相差フィルム Aの遅相軸と偏光子の吸収軸とが直交するように 積層されていることを特徴とする楕円偏光板。
[2] 偏光子から、位相差フィルム A、位相差フィルム Bの順になるように光学フィルムが 積層されていることを特徴とする請求項 1に記載の楕円偏光板。
[3] 前記位相差フィルム A力 ノルボルネン系榭脂を含むフィルムであることを特徴とす る請求項 1記載の楕円偏光板。
[4] 位相差フィルム Bは、厚み方向の位相差: { ( (nx +ny ) /2)—nz } X d (厚さ: nm
1 1 1
)力 — 500nm〜― lOnmであることを特徴とする請求項 1記載の楕円偏光板。
[5] 位相差フィルム B力 側鎖型液晶ポリマーを含むフィルムであることを特徴とする請 求項 1記載の楕円偏光板。
[6] 位相差フィルム Aが、 λ Ζ4板であることを特徴とする請求項 1記載の楕円偏光板。
[7] 請求項 1〜6のいずれかに記載の楕円偏光板が積層されていることを特徴とする画 像表示装置。
[8] 請求項 1〜6のいずれかに記載の楕円偏光板が積層されていることを特徴とする液 晶表示装置。
[9] 駆動モードが横電界方式 (IPSモード)であることを特徴とする請求項 8に記載の液 晶表示装置。
PCT/JP2005/006636 2004-05-26 2005-04-05 楕円偏光板および画像表示装置 WO2005116700A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/569,538 US7619818B2 (en) 2004-05-26 2005-04-05 Elliptically polarizing plate and image display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004156001 2004-05-26
JP2004-156001 2004-05-26
JP2004284618 2004-09-29
JP2004-284618 2004-09-29

Publications (1)

Publication Number Publication Date
WO2005116700A1 true WO2005116700A1 (ja) 2005-12-08

Family

ID=35451010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006636 WO2005116700A1 (ja) 2004-05-26 2005-04-05 楕円偏光板および画像表示装置

Country Status (3)

Country Link
US (1) US7619818B2 (ja)
TW (1) TWI276851B (ja)
WO (1) WO2005116700A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097407A1 (ja) * 2006-02-21 2007-08-30 Sumitomo Chemical Company, Limited 広視野角複合偏光板及び液晶表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407197B (zh) * 2006-11-20 2013-09-01 Lg Chemical Ltd 光學膜以及彼之製法
KR101314480B1 (ko) * 2008-12-26 2013-10-07 주식회사 엘지화학 면상 스위치 모드 lcd용 편광판 및 이를 포함하는 면상 스위치 모드 lcd
JP5830831B2 (ja) * 2010-03-05 2015-12-09 大日本印刷株式会社 液晶表示装置
JP5946362B2 (ja) * 2012-08-10 2016-07-06 日東電工株式会社 光学表示パネルの製造方法および光学表示パネルの製造システム
JP2016157081A (ja) * 2015-02-26 2016-09-01 日東電工株式会社 位相差層付偏光板および画像表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332068A (ja) * 2002-05-15 2003-11-21 Nitto Denko Corp エレクトロルミネッセンス素子
JP2004070344A (ja) * 2002-07-23 2004-03-04 Nitto Denko Corp 光学フィルムおよびそれを用いた液晶表示装置
JP2005189632A (ja) * 2003-12-26 2005-07-14 Teijin Ltd 広視野角偏光フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204182B2 (ja) 1997-10-24 2001-09-04 日本電気株式会社 横電界方式の液晶表示装置
JP4441971B2 (ja) 2000-02-28 2010-03-31 ソニー株式会社 液晶表示素子
KR100822247B1 (ko) 2002-04-01 2008-04-16 닛토덴코 가부시키가이샤 광학 필름 및 화상 표시 시스템
US6958797B2 (en) 2002-07-23 2005-10-25 Nitto Denko Corporation Optical film having low chromaticity variation and quarter wavelength plate, and liquid crystal display using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332068A (ja) * 2002-05-15 2003-11-21 Nitto Denko Corp エレクトロルミネッセンス素子
JP2004070344A (ja) * 2002-07-23 2004-03-04 Nitto Denko Corp 光学フィルムおよびそれを用いた液晶表示装置
JP2005189632A (ja) * 2003-12-26 2005-07-14 Teijin Ltd 広視野角偏光フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097407A1 (ja) * 2006-02-21 2007-08-30 Sumitomo Chemical Company, Limited 広視野角複合偏光板及び液晶表示装置

Also Published As

Publication number Publication date
US20080018831A1 (en) 2008-01-24
TW200604600A (en) 2006-02-01
TWI276851B (en) 2007-03-21
US7619818B2 (en) 2009-11-17

Similar Documents

Publication Publication Date Title
JP3880996B2 (ja) 楕円偏光板および液晶表示装置
KR100717564B1 (ko) 액정 표시 장치
JP5069166B2 (ja) 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置
JP5273775B2 (ja) 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置
WO2008059721A1 (fr) Plaque de polarisation elliptique et affichage à cristaux liquides à alignement vertical
JP2003121641A (ja) 積層位相差板、偏光部材及び液晶表示装置
WO2006085454A1 (ja) ホメオトロピック配向液晶フィルム、それを用いた光学フィルムおよび画像表示装置
JP2003149441A (ja) 位相差板およびその製造方法、光学フィルム
TWI449971B (zh) 橢圓偏光板,其製造方法及使用其之液晶顯示裝置
JP6677722B2 (ja) 水平配向型液晶表示装置
JP2008129175A (ja) 楕円偏光板およびそれを用いた垂直配向型液晶表示装置
JP3935489B2 (ja) 液晶表示装置
JP2008009403A (ja) 楕円偏光板、楕円偏光板の製造方法および液晶表示装置
CN110431457B (zh) 光学薄膜、光学薄膜层叠体、偏振片及图像显示装置
JP2003344856A (ja) 液晶表示装置、およびそれに用いる位相差薄膜、積層偏光板
JP2009288440A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
WO2005116700A1 (ja) 楕円偏光板および画像表示装置
JP2005202101A (ja) 透過型液晶表示素子
JP2009116197A (ja) 異方性光散乱フィルム、その製造方法、光学フィルムおよび画像表示装置
JP2007072213A (ja) 垂直配向型液晶表示装置用視野角補償板およびそれを用いた垂直配向型液晶表示装置
JP2007322778A (ja) 楕円偏光板、楕円偏光板の製造方法および液晶表示装置
JP2005189633A (ja) 透過型液晶表示素子
JP2009251326A (ja) 液晶パネルおよび液晶表示装置
JP2007114762A (ja) 光学補償層付偏光板、光学補償層付偏光板を用いた液晶パネル、液晶表示装置、および画像表示装置
JP2008129176A (ja) 楕円偏光板およびそれを用いた垂直配向型液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017993

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580011692.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11569538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067017993

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11569538

Country of ref document: US