WO2007097407A1 - 広視野角複合偏光板及び液晶表示装置 - Google Patents

広視野角複合偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2007097407A1
WO2007097407A1 PCT/JP2007/053337 JP2007053337W WO2007097407A1 WO 2007097407 A1 WO2007097407 A1 WO 2007097407A1 JP 2007053337 W JP2007053337 W JP 2007053337W WO 2007097407 A1 WO2007097407 A1 WO 2007097407A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
film
liquid crystal
optical compensation
viewing angle
Prior art date
Application number
PCT/JP2007/053337
Other languages
English (en)
French (fr)
Inventor
Mari Okamura
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US12/279,862 priority Critical patent/US20090059136A1/en
Publication of WO2007097407A1 publication Critical patent/WO2007097407A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a composite polarizing plate useful for widening the viewing angle of a horizontal electric field type (IPS mode) liquid crystal display device, and a horizontal electric field type liquid crystal display device using the same.
  • IPS mode horizontal electric field type
  • liquid crystal display devices LCDs
  • PDAs personal digital assistants
  • LCDs liquid crystal display devices
  • LCDs liquid crystal display devices
  • LCDs liquid crystal display devices
  • PDAs personal digital assistants
  • LCDs liquid crystal display devices
  • the viewing angle has been further improved by sandwiching the retardation plate between the polarizing plate and the glass substrate.
  • a horizontal electric field type liquid crystal display device has a liquid crystal cell having a pair of transparent substrates that sandwich the liquid crystal, and a pair of polarizing plates disposed on both sides of the cell.
  • the liquid crystal is parallel to the substrate surface and oriented in substantially the same direction, and a parallel comb-like electrode is disposed on the inner side (liquid crystal layer side) of at least one of the pair of transparent substrates, and the electrode
  • the orientation of the molecular long axis of the liquid crystal is changed in a plane parallel to the substrate, and the light passing through the front-side polarizing plate is controlled to perform display.
  • Japanese Unexamined Patent Application Publication No. 2004-264345 discloses a retardation film in which a retardation layer containing an oriented liquid crystalline compound is directly laminated on an optically anisotropic layer composed of a stretched film or a coating layer.
  • the liquid crystal compound is preferably aligned in a direction inclined with respect to the surface direction.
  • JP-A-2005-165239 discloses an optical structure having a structure in which a vertical alignment film is formed on a transparent substrate, and a polymerizable liquid crystal having a rod-like molecular shape is oriented on a home-to-mouth pick and cross-linked.
  • An element is disclosed.
  • Patent Document 3 it is intended to provide such an optical element on a substrate glass of a liquid crystal cell. Disclosure of the invention
  • An object of the present invention is to provide a composite polarizing plate in which an optical compensation film and a linear polarizing plate are integrated, which is useful for widening the viewing angle of a horizontal electric field type liquid crystal display device.
  • Another object of the present invention is to employ an optical compensation film in which an optically anisotropic layer having a positive uniaxial and optical axis in the film normal direction is formed and laminated with a linear polarizing plate.
  • an object of the present invention is to provide a composite polarizing plate having an arrangement effective for widening the viewing angle of a horizontal electric field type liquid crystal display device.
  • another aspect of the present invention The purpose is to increase the viewing angle by applying these composite polarizing plates to a liquid crystal display device of a horizontal electric field type.
  • an optical compensation film in which an optically anisotropic layer having an optical axis in the film normal direction is formed on one side of a transparent substrate exhibiting a retardation in the film plane.
  • the linear polarizing plate is laminated and integrated, and when the optically anisotropic layer side of the optical compensation film is used as the bonding surface, the slow axis of the transparent substrate constituting the optical compensation film and When the absorption axis of the linear polarizing plate is substantially parallel and the transparent substrate side of the optical compensation film is used as the bonding surface, the slow axis of the transparent substrate and the absorption of the linear polarizing plate are used.
  • a wide viewing angle composite polarizing plate having an axis substantially perpendicular to the axis is provided.
  • the transparent substrate exhibiting a retardation in the film plane is obtained by stretching a transparent resin film selected from a cellulose resin film, a cyclic polyolefin resin film, and a polycarbonate resin film. It is preferable to configure.
  • the optically anisotropic layer can be formed from, for example, a coating layer containing a rod-like liquid crystalline compound, and particularly preferably formed from a coating layer containing a nematic liquid crystalline compound.
  • the optically anisotropic layer may be composed of a side chain type liquid crystalline polymer compound in which the side chains are aligned in the film normal direction.
  • the linear polarizing plate constituting the above wide viewing angle composite polarizing plate can be composed of a polarizer with a transparent protective film bonded on both sides of the polarizer, and a transparent protective film bonded on one side of the polarizer. It is also effective to laminate the optical compensation film with a polarizer surface that is not bonded to the transparent protective film. Further, one or more retardation films can be arranged between the optical compensation film and the linear polarizing plate.
  • a liquid crystal display device comprising any one of the above wide viewing angle composite polarizing plates and a transverse electric field type liquid crystal cell.
  • the wide viewing angle composite polarizing plate is bonded to one side of a horizontal electric field type liquid crystal cell on the optical compensation film side, and a backlight is disposed outside the wide viewing angle composite polarizing plate.
  • the liquid A front-side polarizing plate is bonded to the other surface of the crystal cell, and both the in-plane retardation and the thickness direction retardation are almost zero between the polarizer constituting the front-side polarizing plate and the liquid crystal cell. It is advantageous to do so.
  • FIG. 1 is a perspective view (A) showing a laminated state of an optical compensation film and a perspective view (B) showing a refractive index ellipsoid of an optically anisotropic layer.
  • FIG. 2 is a perspective view showing a laminated state of the composite polarizing plate.
  • FIG. 3 is a perspective view showing a stacked state of the liquid crystal display device.
  • FIG. 4 is a perspective view showing the layer configuration and axial relationship of the liquid crystal display devices of Comparative Examples 1 and 3.
  • FIG. FIG. 5 is a perspective view showing the layer configuration and axial relationship of the liquid crystal display devices of Comparative Examples 2 and 4.
  • FIG. 6 is a perspective view showing the layer configuration and the axial relationship of the liquid crystal display devices of Examples 1 and 3.
  • FIG. 7 is a perspective view showing the layer configuration and axial relationship of the liquid crystal display devices of Examples 2 and 4.
  • FIG. Fig. 8 is the isocontrast curve of Comparative Example 1.
  • Figure 9 is the isocontrast curve of Comparative Example 2.
  • FIG. 10 is an isocontrast curve of Example 1.
  • FIG. 1 1 is an iso-contrast curve of Example 2.
  • Figure 1 2 is an isocontrast curve of Comparative Example 3.
  • Figure 1 3 is an iso-contrast curve of Comparative Example 4.
  • FIG. 14 is an isocontrast curve of Example 3.
  • FIG. 15 is an iso-contrast curve of Example 4.
  • an optical compensation film is obtained by forming an optically anisotropic layer having a positive uniaxial property and an optical axis in the film normal direction on one surface of a transparent substrate exhibiting a retardation within the film plane.
  • This state is shown in a schematic perspective view in FIG. That is, the optical compensation film 15 is configured by forming the optical anisotropic layer 13 having the above optical characteristics on one surface of the transparent substrate 11.
  • the optical compensation film 15 is provided in the form of a long roll, the longitudinal direction of which is the X axis, the direction perpendicular to it (the width direction) is the y axis, and the thickness direction is the z axis.
  • FIG. 1B is a perspective view showing the refractive index ellipsoid of the optically anisotropic layer 13.
  • the X, y, and z axes have the same meaning as (A).
  • the optically anisotropic layer 13 is positive uniaxial and has an optical axis in the film normal direction. Those exhibiting such optical properties are generally called positive C-plates.
  • the optical axis is the direction in which birefringence does not occur.
  • the ellipsoidal cross section when viewed from the z-axis direction is a circle.
  • the film normal direction is the optical axis.
  • the transparent substrate 11 may be transparent as long as it is transparent, but a thermoplastic resin film is particularly preferably used.
  • the thermoplastic resin that can be used as the transparent substrate 11 include cellulose resins such as triacetyl cellulose, diacetyl cellulose, cellulose acetate butyrate, and cellulose propionate, and rings such as norbornene.
  • examples thereof include cyclic polyolefin resins based on solid olefin as a monomer, polystrand resin, polyarylate resins, polyester resins, acrylic resins, and polysulfone resins.
  • cellulose resins, cyclic polyolefin resins, and polycarbonate resins are inexpensive in cost, excellent in transparency and processability, have good retardation, and can easily obtain uniform films.
  • Commercial products of cyclic polyolefin resin include “Arton” available from JSR Corporation, “Zeonex” and “Zeonoa” available from ZEON Corporation.
  • the transparent substrate 11 has substantially no phase difference in the plane, that is, is optically isotropic, it has a positive uniaxial optical axis in the film normal direction. If an optically anisotropic layer is formed to form an optical compensation film, and a linear polarizing plate is laminated on either side, a certain effect can be obtained in expanding the viewing angle of a horizontal electric field type liquid crystal display device.
  • the transparent base material 11 is constituted by a material that exhibits a phase difference within the film plane.
  • various thermoplastic resins exemplified above may be stretched in accordance with a conventional method.
  • the in-plane retardation of the transparent substrate 11 showing retardation in the film plane is preferably selected in accordance with the characteristics required for the liquid crystal display device from the range of about 50 to 35 O nm. More preferably, it is in the range of about 90 to 16 nm.
  • the thickness of the transparent substrate 11 is preferably about 10 to 300 m, more preferably about 10 to 150 m, and particularly preferably about 10 to 100 m.
  • an optically anisotropic layer 13 having a positive uniaxial property and an optical axis in the film normal direction is formed on one side of the transparent substrate 11.
  • the substance that provides such optical characteristics include a liquid crystal compound having a rod-like molecular structure and a side chain liquid crystal polymer compound.
  • a liquid crystal compound having a rod-like molecular structure exhibits liquid crystallinity at a certain range of temperature, and has a rod-like shape having a long and narrow molecular structure. The length direction of such a rod-like structure may be fixed in the normal direction on the surface of the transparent substrate 11.
  • a mesogenic group which is a core unit that develops liquid crystallinity
  • a mesogenic group is bonded as a side chain to a flexible main chain via a flexible chain.
  • the length direction of the mesogenic group which is a side chain may be fixed in the normal direction on the surface of the transparent substrate 11.
  • nematic liquid crystalline compounds are preferred.
  • a nematic liquid crystal compound can be dispersed and aligned in a polymer to form an optically anisotropic layer 13, for example.
  • the nematic liquid crystal compound exhibits a nematic liquid crystal phase in a certain temperature range, and It is preferable to use a multifunctional compound containing at least two polymerizable functional groups in the molecule and to polymerize the optically anisotropic layer 13 while being oriented in the normal direction.
  • polyfunctional nematic liquid crystalline compound examples include the following (1) to (5).
  • n represents an integer of 2-6.
  • nematic liquid crystal For example, a vertical alignment film can be used to align a rod-like liquid crystal compound such as a functional compound in the film normal direction. That is, first, a vertical alignment film is formed on the transparent substrate 11, and a coating liquid containing a rod-like liquid crystal compound is applied thereon and dried. Next, when the liquid crystalline compound is heated to a temperature at which a liquid crystal phase is exhibited, the rod-shaped liquid crystalline compound is aligned in the film normal direction.
  • the vertical alignment film for example, an organic silane film, a fluorine-based silicone resin film, a polyimide resin film, or the like can be used.
  • a coating liquid containing a rod-like liquid crystalline compound is applied to form the optically anisotropic layer 1 3, these liquid crystalline compounds are dissolved in a solvent to form a coating liquid, which is used as a transparent substrate 1. It is preferable to apply on 1.
  • a solvent an organic solvent capable of dissolving these liquid crystalline compounds may be appropriately selected.
  • a coating liquid containing a polymerizable nematic liquid crystalline compound is applied onto a transparent substrate 11 on which a vertical alignment film is formed, and the nematic liquid crystalline compound is oriented vertically.
  • the optical axis can be in the film normal direction with positive uniaxiality.
  • a photopolymerization initiator is blended together with the polymerizable nematic liquid crystalline compound and polymerized by light irradiation, particularly ultraviolet irradiation.
  • photopolymerization initiator used for this purpose examples include benzyl (also known as bibenzoyl), benzyldimethyl ketal, 2-hydroxy-2-methyl-1-monophenyl propane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2 —Methylone 1 [4- (Methylthio) phenyl] 1 2-morpholinopropane 1-one, 2-Benzylure 2-dimethylamino—1 (4 morpholinophenyl) Methyl benzoate, 4-monobenzoyl-4'-methyldiphenylsulfide, 2-chlorodithioxanthone, 2,4-jetylthioxanthone, 1-chloro-4 monopropoxythiosantone, 2, 4, 6-trimethylbenzoy Examples include rudiphenylphosphine oxide.
  • a rod-like liquid crystal compound preferably a nematic liquid crystal compound
  • a solvent together with a polymer to form a solution containing the liquid crystal compound and the polymer, and this is applied onto the substrate, and an electric or magnetic field for vertical alignment.
  • an optically anisotropic layer having positive uniaxiality and an optical axis in the film normal direction can be obtained.
  • an inorganic substrate such as a glass plate is used as a substrate, an optically anisotropic layer containing a polymer is formed on the substrate, and this is transferred to a transparent base material 11 showing a phase difference in the film plane.
  • a transparent base material 11 showing a phase difference in the film plane.
  • a side chain type liquid crystalline polymer compound as described above is formed into a film, and this is biaxially stretched. It is possible to vertically align the chains. That is, a film is formed from the side chain type liquid crystalline polymer compound by extrusion molding or the like. Next, if the film is stretched simultaneously or sequentially in the longitudinal direction and the width direction of the film, the side chain containing the mesogenic group is oriented so that the refractive index increases in the normal direction of the film.
  • the biaxially stretched film made of the side chain type liquid crystalline polymer compound thus formed may be bonded to the transparent substrate 11 exhibiting a retardation within the film plane.
  • an optical compensation film 15 is obtained in which the optically anisotropic layer 13 having the optical axis in the film normal direction is formed on one side of the transparent substrate 1.1. It is.
  • the optically anisotropic layer 13 since the optically anisotropic layer 13 has an optical axis in the normal direction of the film, its in-plane phase difference is almost 0, but the thickness direction phase difference is 150 to ⁇ 25 O. It is preferable to select from the range of about nm, particularly from about ⁇ 50 to 16 O nm, in accordance with the characteristics required for the liquid crystal display device.
  • the in-plane phase difference only needs to be in the range of about 0 ⁇ 10 nm.
  • the thickness of the optically anisotropic layer 13 is in the range of about 0.2 to 20 m, preferably about 0.2 to 5 im, and more preferably in the range of about 0.5 to 1.5 m. What is necessary is just to adjust so that the thickness direction phase difference to be expressed.
  • the in-plane retardation (Ro) and the thickness direction retardation (Rth) are the refractive index in the in-plane slow axis direction of the target film or layer nx, and in-plane orthogonal to the slow axis Direction
  • the refractive index in the direction (fast axis direction) is ny
  • the refractive index in the thickness direction is nz
  • the film thickness is d
  • the phase difference of the transparent substrate 11, the optical compensation film 15 having the optically anisotropic layer 13 formed on one side thereof, and the optically anisotropic layer 13 can be obtained as follows.
  • the in-plane retardation Ro of the film to be measured can be directly measured using a commercially available retardation measuring device, for example, “KOBRA-21ADH” manufactured by Oji Scientific Instruments.
  • a film to be measured is bonded to a glass plate via an adhesive.
  • the in-plane retardation Ro of the film is measured by a rotating analyzer method using monochromatic light having a wavelength of 559 nm using the above-described retardation measuring apparatus.
  • the thickness direction retardation Rth can be calculated by calculating nx, ny, and nz from V) and substituting them into the formula (II).
  • ny ' nyX nz / Cny2Xsin2 ((i)) + nz2Xcos2 ((i))] 1/2
  • the direction phase difference (R thoc ) is expressed by the following equation (VI) And (VI I).
  • R ooc R ototal _ R obase ( VI )
  • a linear polarizing plate is laminated on the optical compensation film 15 configured as described above to obtain the wide viewing angle composite polarizing plate of the present invention.
  • the optical compensation film 15 is bonded to the linearly polarizing plate on the transparent substrate 11 side or on the optically anisotropic layer 13 side, the transparent substrate 11 and linearly polarized light are used. It has been found that the axial relationship of the plates becomes important.
  • FIG. 2 shows an optical compensation film 15 having an optically anisotropic layer 13 formed on one side of a transparent substrate 11 1 showing retardation in the film plane, and a linearly polarizing plate.
  • a state in which the wide viewing angle composite polarizing plate 10 is formed by stacking 17 is shown together with the respective axial relationships. That is, in the present invention, as shown in FIG. 2 (A), an optical compensation film 15 in which an optically anisotropic layer 13 is formed on one surface of a transparent substrate 11 exhibiting a phase difference within the film surface.
  • the linear polarizing plate 17 transmits linearly polarized light that vibrates in one direction orthogonal to each other in the film plane and vibrates in the other direction.
  • Any material that absorbs polarized light may be used.
  • a transparent protective film may be bonded to one or both sides of the polarizer.
  • the polarizer can be composed of a polyvinyl alcohol resin film in which a dichroic dye is adsorbed and oriented, and iodine or a dichroic organic dye is generally used as the dichroic dye.
  • cellulose resin such as triacetyl cellulose cellulose diacetyl cellulose, cellulose acetate butyrate, cellulose propionate, cyclic polyolefin resin using cyclic olefin as a monomer such as norbornene, etc. are preferably used. .
  • the linear polarizing plate 17 is composed of a polarizer having a transparent protective film bonded to one side of the polarizer, and the polarizer surface to which the transparent protective film is not bonded is an optical compensation film 15. If the layers are laminated so as to be on the side, the composite polarizing plate can be thinned, and the influence of the phase difference of the layer existing between the polarizer and the optical compensation film 15 (especially the thickness direction retardation R th) is eliminated. From the point of view, it is advantageous.
  • the adhesive is used for laminating the optical compensation film 15 and the linearly polarizing plate 17.
  • the adhesive may be water-based, such as an aqueous solution of polyvinyl alcohol resin, or may be a pressure-sensitive adhesive exhibiting viscoelasticity.
  • a retardation film can be disposed between the optical compensation film 15 and the linear polarizing plate 17 as desired. In this case, only one retardation film may be used, or two or more retardation films may be used as necessary.
  • the wide viewing angle composite polarizing plate of the present invention includes various anti-reflection layers, anti-glare layers, light diffusion layers, anti-static layers, brightness enhancement films, etc., which are known in this field, depending on the application.
  • An optical functional layer can also be provided.
  • FIG. 3 is a schematic perspective view showing the basic layer structure of a liquid crystal display device in which the wide viewing angle composite polarizing plate 10 of the present invention is arranged. That is, the liquid crystal display device of the present invention includes the wide viewing angle composite polarizing plate 10 described above and the liquid crystal cell 20 of the horizontal electrolysis type.
  • the wide viewing angle composite polarizing plate 10 is a laminate of an optical compensation film 15 having an optically anisotropic layer formed on one side of a transparent substrate and a linear fluorescent light 17.
  • the optical compensation film 15 is bonded to the liquid crystal cell 20 on the optical compensation film 15 side.
  • Another polarizing plate 30 is disposed on the other surface of the liquid crystal cell 20.
  • Lateral electric field type liquid crystal cell 20 is known per se as described in the background section, and detailed description of the structure is omitted.
  • liquid crystal molecules are parallel to the substrate surface. Are arranged in almost the same direction, and a comb-like electrode parallel to the inner side (liquid crystal layer side) of at least one of the upper and lower transparent cell substrates is arranged, and the voltage applied between the electrodes With this change, the orientation of the molecular long axis of the liquid crystal is changed in a plane parallel to the substrate, and the light passing through the front-side polarizing plate is controlled to perform display.
  • the linear polarizing plate 17 constituting the wide viewing angle composite polarizing plate 10 and the other polarizing plate 30 are usually arranged so that their absorption axes are orthogonal to each other.
  • the polarizing plate is arranged such that the absorption axis of the polarizing plate substantially coincides with the major axis direction (alignment direction) of the liquid crystal molecules in the liquid crystal cell 20 in the voltage-free state.
  • the wide viewing angle composite polarizing plate 10 on the back side.
  • the back side is outside the wide viewing angle composite polarizing plate 10 (outside the linear polarizing plate 17). A light is placed. Then, the display is viewed on the other polarizing plate 30 side.
  • one polarizing plate 30 (which is the front side polarizing plate in the above advantageous example) is a linear polarizing plate with reference to FIG. 1 to 7 As explained above, it can be composed of a polarizer with a transparent protective film bonded to one or both sides of the polarizer. In particular, between the polarizer constituting the polarizing plate 30 and the liquid crystal cell 20, both the in-plane phase difference and the thickness direction retardation are almost zero even when a transparent protective film is present. In terms of wide viewing angle, it is preferable to set it to about 0 ⁇ 1 O nm.
  • This optical compensation film had a total thickness of 43.2 m.
  • Ro l 0 nm
  • R th 70 nm for the transparent substrate
  • Ro 0 nm
  • R th ⁇ 1 14 nm for the optically anisotropic layer
  • a linear polarizing plate was prepared in which a transparent protective film made of triacetyl cellulose was bonded to one side of a polarizer in which iodine was adsorbed and oriented on a polyvinyl alcohol film. Then, with the polyvinyl alcohol polarizer side of the linearly polarizing plate and the transparent base layer side of the optical compensation film as the bonding surface, the absorption axis of the linear polarizing plate and the transparent base layer slow axis of the optical compensation film Were bonded via a polyvinyl alcohol adhesive so that they were parallel to each other, and a composite polarizing plate was obtained.
  • Front side (viewing side) of a horizontal electric field type liquid crystal cell ["TO00 7000" manufactured by Hitachi, Ltd.]
  • a linear polarizing plate with a transparent protective film bonded on both sides prepared on the cell substrate On the non-oriented protective film side, it was bonded via an acrylic pressure sensitive adhesive.
  • Back side (backlight side) For the cell substrate, add the composite polarizing plate prepared in (a) above to the acrylic pressure sensitive adhesive in order from the cell substrate side to the optical compensation film and linear polarizing plate. Pasted through.
  • the linear polarizing plate is arranged so that the absorption axis of the linear polarizing plate is parallel to the major axis direction (alignment direction) of the liquid crystal molecules when no voltage is applied.
  • the side linear polarizing plates were arranged so that their absorption axes were orthogonal to each other.
  • FIG. 4 shows the layer configuration and the axial relationship of the liquid crystal display device manufactured here. That is, an upper polarizing plate 30 is arranged in front of the transverse electric field type liquid crystal cell 20, and its absorption axis 31 is parallel to the major axis direction (alignment direction) 21 of the liquid crystal molecules when no voltage is applied. ing. In addition, a composite polarizing plate 10 is disposed on the back surface of the liquid crystal cell 20, and the composite polarizing plate 10 is positive uniaxial on the transparent base material 11 that exhibits a phase difference in the plane.
  • the surface of the former transparent substrate 11 1 and the latter polyvinyl alcohol polarizer surface are joined, and the slow axis 12 of the transparent substrate 11 1 and the absorption axis 18 of the linear polarizing plate 17 are They are stacked so that they are parallel.
  • the absorption axis 31 of the upper polarizing plate 30 and the absorption axis 18 of the back-side linear polarizing plate 17 are arranged so as to be orthogonal to each other.
  • the backlight was turned on from the back of this liquid crystal display, and the luminance change (light leakage) according to the viewing angle was visually observed.
  • Table 1 shows the results.
  • the change in contrast due to the viewing angle of the manufactured liquid crystal display device was measured with a liquid crystal viewing angle “EZ Contrast” manufactured by ELDIM, and the equivalent contrast curve is shown in FIG.
  • the right direction of the screen is set to 0 degrees
  • the counterclockwise direction is set to positive
  • the azimuth is displayed (numbers from 0 degrees to 3 15 degrees are displayed every 45 degrees)
  • “1 0”, “2 0”... “7 0” on the horizontal axis means the inclination angle (elevation angle) from the normal in the azimuth angle.
  • the right edge of a circle means the contrast in the direction with an azimuth angle of 0 degrees (right side of the screen) and the elevation angle of 80 degrees, and the center of the circle has an elevation angle of 0 degrees, that is, the contrast in the normal direction of the screen Means.
  • Figures 9 to 15 showing the equi-contrast curves shown below have the same meaning, so a detailed explanation of these figures will be omitted.
  • the contrast here is the ratio of the brightness at the time of white display (voltage application to the liquid crystal cell) to the brightness at the time of black display (no voltage application to the liquid crystal cell).
  • this liquid crystal display device had a large change in luminance depending on the viewing angle and was highly dependent on the viewing angle.
  • a liquid crystal display device was produced in the same manner as in (b) of Comparative Example 1 except that the composite polarizing plate on the back side of the liquid crystal cell was changed to that produced in (a) above.
  • Layer structure of this liquid crystal display device Figure 5 shows the composition and axial relationship.
  • the upper polarizing plate 30 is arranged in front of the horizontal electric field type liquid crystal cell 20, and its absorption axis 3 1 is parallel to the major axis direction (alignment direction) 21 of the liquid crystal molecules when no voltage is applied.
  • a composite polarizing plate 10 is disposed on the back surface of the liquid crystal cell 20, and this composite polarizing plate 10 is positively uniaxially formed on the transparent substrate 11 that exhibits a phase difference in the plane.
  • An optical compensation film 15 having an optically anisotropic layer 1 3 having an optical axis in the normal direction of the film, and a polypinyl alcohol monoiodine linear polarizing plate 17 having a transparent protective film on one side,
  • the former optically anisotropic layer 1 3 and the latter polyvinyl alcohol polarized photon surface are used as the bonding surface, and the slow axis 1 2 of the transparent substrate 1 1 and the absorption axis 1 8 of the linear polarizing plate 1 7 are orthogonal to each other. It is laminated so as to.
  • the absorption axis 31 of the upper polarizing plate 30 and the absorption axis 18 of the back-side linear polarizing plate 17 are arranged so as to be orthogonal to each other.
  • This liquid crystal display device was evaluated in the same manner as in Comparative Example 1 with the pack light turned on from the back.
  • Table 1 shows the visual observation results
  • Fig. 9 shows the isocontrast curves. From the visual observation and the isocontrast curve in FIG. 9, this liquid crystal display device has a viewing angle slightly wider than that of Comparative Example 1, but the luminance change (viewing angle dependency) with the viewing angle is almost the same. I understood it.
  • the same linearly polarizing plate and optical compensation film as those used in (a) of Comparative Example 1 were prepared by using the polyvinyl alcohol polarizer side of the linear polarizing plate and the optically anisotropic layer side of the optical compensation film as the bonding surfaces.
  • the composite polarizing plate was obtained by laminating via a polyvinyl alcohol-based adhesive so that the absorption axis and the transparent substrate slow axis of the optical compensation film were parallel to each other.
  • a liquid crystal display device was produced in the same manner as in (b) of Comparative Example 1 except that the composite polarizing plate on the back side of the liquid crystal cell was changed to that produced in (a) above.
  • Figure 6 shows the layer structure and axial relationship of this liquid crystal display. That is, on the front surface of the horizontal electric field type liquid crystal cell 20, An upper polarizing plate 30 is arranged, and its absorption axis 31 is parallel to the major axis direction (alignment direction) 21 of the liquid crystal molecules when no voltage is applied.
  • a composite polarizing plate 10 is disposed on the back surface of the liquid crystal cell 20, and this composite polarizing plate 10 has positive uniaxiality on a transparent base material 11 that exhibits a phase difference in the plane.
  • An optical compensation film 15 having an optically anisotropic layer 13 having an optical axis in the normal direction of the film, and a polyvinyl alcohol monoiodine linear polarizing plate 17 having a transparent protective film on one side.
  • the former optically anisotropic layer 1 3 and the latter polyphenol alcohol polarizer surface are used as the bonding surface, and the slow axis 1 2 of the transparent substrate 1 1 and the absorption axis 1 8 of the linearly polarizing plate 1 7 are They are stacked in parallel.
  • the absorption axis 31 of the upper polarizing plate 30 and the absorption axis 18 of the back side linear polarizing plate 17 are arranged so as to be orthogonal to each other.
  • This liquid crystal display device was evaluated in the same manner as in Comparative Example 1 with the backlight turned on from the back.
  • the visual observation results are shown in Table 1, and the isocontrast curve is shown in FIG. From the visual observation and the iso-contrast curve in FIG. 10, it was confirmed that this liquid crystal display device had significantly improved luminance change due to the viewing angle compared to those of Comparative Example 1 and Comparative Example 2. .
  • the linear polarizing plate With the transparent base layer side of the optical compensation film as the bonding surface, the linear polarizing plate is attached via a polyvinyl alcohol adhesive so that the absorption axis of the linear polarizing plate and the transparent base slow axis of the optical compensation film are perpendicular to each other.
  • a composite polarizing plate was produced in the same manner as (a) of Example 1 except that an optical compensation film was bonded.
  • a liquid crystal display device was produced in the same manner as in (b) of Example 1 except that the composite polarizing plate on the back side of the liquid crystal cell was changed to that produced in (a) above.
  • Figure 7 shows the layer structure and the axial relationship of this liquid crystal display device. That is, on the front surface of the horizontal electric field type liquid crystal cell 20, An upper polarizing plate 30 is arranged, and its absorption axis 31 is parallel to the major axis direction (alignment direction) 21 of the liquid crystal molecules when no voltage is applied.
  • a composite polarizing plate 10 is disposed on the back surface of the liquid crystal cell 20, and this composite polarizing plate 10 has positive uniaxiality on a transparent base material 11 that exhibits a phase difference in the plane.
  • An optical compensation film 15 having an optically anisotropic layer 13 having an optical axis in the film normal direction, and a polyvinyl alcohol monoiodine linear polarizing plate 17 having a transparent protective film on one side,
  • the surface of the former transparent substrate 1 1 and the latter polyvinyl alcohol polarizer surface are used as the bonding surface, and the slow axis 1 2 of the transparent substrate 1 1 and the absorption axis 18 of the linearly polarizing plate 1 7 are orthogonal to each other. It is laminated so as to.
  • the absorption axis 31 of the upper polarizing plate 30 and the absorption axis 18 of the back side linear polarizing plate 17 are arranged so as to be orthogonal to each other.
  • the liquid crystal display device was evaluated in the same manner as in Example 1 with the backlight turned on from the back.
  • the visual evaluation results are shown in Table 1, and the isocontrast curve is shown in Fig. 11. From the visual observation and the isocontrast curve in Fig. 11, this liquid crystal display device has little change in luminance due to the viewing angle and is slightly better than that of Example 1, although a slight light leak is observed in the oblique direction. It was confirmed that.
  • a linear polarizing plate ["SRX842A" manufactured by Sumitomo Chemical Co., Ltd.] was prepared.
  • a liquid crystal display device was produced in the same manner as in (b) of Comparative Example 1.
  • the layer structure and axial relationship of this liquid crystal display device are the same as in FIG.
  • the upper polarizing plate 30 a film obtained by bonding a transparent protective film comprising a triacetyl cell mouth on both surfaces of a polyvinyl alcohol-iodine polarizer is used.
  • This liquid crystal display device was evaluated in the same manner as in Comparative Example 1 with the backlight turned on from the back. The visual observation results are shown in Table 1, and the isocontrast curve is shown in Fig. 12.
  • a liquid crystal display device was produced in the same manner as in (b) of Comparative Example 3 except that the composite polarizing plate on the back side of the liquid crystal cell was changed to that produced in (a) above.
  • the layer structure and the axial relationship of this liquid crystal display device are the same as in FIG.
  • the upper polarizing plate 30 a polyvinyl alcohol mono-iodine polarizer having a transparent protective film made of triacetyl cellulose bonded on both sides is used.
  • This liquid crystal display device was evaluated in the same manner as in Comparative Example 1 with the backlight turned on from the back. The visual observation results are shown in Table 1, and the isocontrast curve is shown in Fig. 13. From the visual observation and the isocontrast curve in Fig. 1 3, this liquid crystal display device has a slightly wider viewing angle than that of Comparative Example 3, but the luminance change due to the viewing angle (viewing angle dependence) is almost the same. I found out. [Example 3]
  • a composite polarizing plate was produced in the same manner as (a).
  • a liquid crystal display device was produced in the same manner as in (b) of Comparative Example 3 except that the composite polarizing plate on the back side of the liquid crystal cell was changed to that produced in (a) above.
  • the layer structure and the axial relationship of this liquid crystal display device are the same as in FIG.
  • the upper polarizing plate 30 one obtained by bonding a transparent protective film made of triacetyl cellulose on both sides of a polyalcohol monoiodine polarizer is used.
  • This liquid crystal display device was evaluated in the same manner as in Comparative Example 1 with the backlight turned on from the back. The visual observation results are shown in Table 1, and the isocontrast curve is shown in Fig. 14. From the visual observation and the iso-contrast curve in FIG. 14, it was confirmed that this liquid crystal display device had a significantly improved luminance change due to the viewing angle as compared with those of Comparative Example 3 and Comparative Example 4.
  • the linear polarizing plate and the optical material are passed through a polyvinyl alcohol adhesive so that the absorption axis of the linear polarizing plate and the transparent base material slow axis of the optical compensation film are orthogonal to each other.
  • a composite polarizing plate was produced in the same manner as in Example 3 (a) except that a compensation film was bonded.
  • a liquid crystal display device was produced in the same manner as in (b) of Example 3 except that the composite polarizing plate on the back side of the liquid crystal cell was changed to that produced in (a) above.
  • the layer structure and axial relationship of this liquid crystal display device are the same as in FIG.
  • the upper polarizer 30 is A polyvinyl alcohol monolithic polarizer with a transparent protective film made of triacetyl cellulose on both sides is used.
  • This liquid crystal display device was evaluated in the same manner as in Comparative Example 1 with the backlight turned on from the back. The visual observation results are shown in Table 1, and the isocontrast curve is shown in Fig. 15. From the visual observation and the iso-contrast curve in FIG. 15, it was confirmed that this liquid crystal display device also had a small change in luminance due to the viewing angle and was similar to Example 3.
  • Table 1 summarizes the main conditions and results of visual observation in Comparative Examples 1 to 4 and Examples 1 to 4 described above. Comparative Examples Examples Comparative Examples Comparative Examples Comparative Examples Comparative Examples Comparative Examples Comparative Examples
  • the composite polarizing plate of the present invention is effective for widening the viewing angle of a horizontal electric field type liquid crystal display device.
  • a liquid crystal display device to which this composite polarizing plate is applied has a wide viewing angle.

Abstract

フィルム面内で位相差を示す透明基材の片面に正の一軸性でフィルム法線方向に光学軸を有する光学異方性層が形成されている光学補償フィルムに、直線偏光板が積層され、前記光学補償フィルムの光学異方性層側を接合面とする場合は、該光学補償フィルムを構成する透明基材の遅相軸と前記直線偏光板の吸収軸とがほぼ平行になっており、前記光学補償フィルムの透明基材側を接合面とする場合は、該透明基材の遅相軸と前記直線偏光板の吸収軸とがほぼ直交している、広視野角複合偏光板を提供する。

Description

明細書
広視野角複合偏光板及び液晶表示装置 技術分野
本発明は、 横電界方式 (I P Sモード) の液晶表示装置の視野角を広げるのに 有用な複合偏光板、 及びそれを用いた横電界方式の液晶表示装置に関するもので ある。 背景技術
近年、 低消費電力、 低電圧動作、 軽量、 薄型などのさまざまな利点から、 液晶 表示装置 (L C D) は、 携帯電話、 携帯情報端末 (Personal Digi tal Ass is tant: P D A) 、 パーソナルコンピ ータやテレビなど、 情報用表示デバイスとしての 用途が急速に増加してきている。 液晶及びその関連技術の発展に伴い、 さまざま な方式の表示装置が提案されて、 応答速度やコントラスト、 狭視野角といった液 晶表示装置の問題点が解消されつつある。 '
また、 位相差板を偏光板とガラス基板との間に狭持することで、 より一層の視野 角改善がなされてきた。
これらの液晶表示装置のなかで、 横電界方式の液晶表示装置は、 液晶を挟持す る一対の透明基板を有する液晶セルとそのセルを挾んで両側に配置される一対の 偏光板とを有し、 液晶が基板面に平行でほぼ同じ向きに配向しており、 そして、 一対の透明基板のうち少なくとも一方の基板の内側 (液晶層側) に平行な櫛歯状 の電極を配置し、 その電極間に印加される電圧の変化によって、 液晶の分子長軸 の向きを基板に平行な面内で変化させ、 前面側偏光板を通る光を制御して表示を 行うように構成されたものである。
かかる横電界方式の液晶表示装置の複屈折を補償して視野角を改善するために は、 例えば、 SID 00 DIGEST, p. 1094-1097 (T. Ishinabe ei al., 'Novel Wide Viewing Angl e Polarizer wi th High Achromat ici ty' , SID 00 DIGEST, p. 1094-1097 (2000年) (表 1 ) ) に記載されるように、.厚み配向した位相差板が 有効であることが知られている。 一方、 特開平 11 - 133408号公報では、 横電界方 式の液晶表示装置に対して、 正の一軸性の光学異方性を有し、 基板面に垂直な方 向に光学軸を有する補償層を配置することにより、 視野角を改善することが提案 されている。
また、 液晶性化合物等の塗布により位相差を発現させることも知られている。 例えば、 特開 2004- 264345号公報には、 延伸フィルムや塗工層からなる光学的異 方性層の上に、 配向した液晶性化合物を含む位相差層を直接積層した位相差フィ ルムが開示されており、 横電界方式の液晶表示装置は記載されていないものの、 その液晶性化合物は面方向に対して傾斜する方向に傾斜して配向しているのが好 ましい旨の記載もある。 さらに、 特開 2005- 165239号公報には、 透明基材上に垂 直配向膜を形成し、 その上に分子形状が棒状の重合性液晶をホメオト口ピック配 向させ、 架橋させた構造の光学素子が開示されている。 特許文献 3では、 液晶セ ルの基板ガラスにこのような光学素子を設けることが意図されている。 発明の開示
さて、 先にも述べたように、 液晶表示装置では一般に、 液晶セルの両側に偏 光板が配置される。 そこで、 上記の如き光学補償のためのフィルムを偏光板に積 層し、光学補償フィルム一体型偏光板として供給することが望まれる。ところが、 これまでに提案されている光学補償の構成では、 カラーシフトや色調反転などの 問題が十分に解消されるに至っておらず、 さらなる最適化が望まれている。 本発明の目的の一つは、 横電界方式の液晶表示装置の視野角を広げるのに有用 な、 光学補償フィルムと直線偏光板とが一体化された複合偏光板を提供すること にある。本発明のもう一つの目的は、光学補償フィルムとして、正の一軸性でフィ ルム法線方向に光学軸を有する光学異方性層が形成されたものを採用し、 これを 直線偏光板と積層した場合に、 横電界方式の液晶表示装置の視野角を広げるのに 有効な配置の複合偏光板を提供することにある。 さらに、 本発明のもう一つ別の 目的は、 これらの複合偏光板を横電界方式の液晶表示装置に適用して、 視野角の 拡大を図ることにある。
すなわち本発明によれば、 フィルム面内で位相差を示す透明基材の片面に正の一 軸性でフィルム法線方向に光学軸を有する光学異方性層が形成されている光学補 償フィルムに、 直線偏光板とが積層され両者が一体化されており、 前記光学補償 フィルムの光学異方性層側を接合面とする場合は、 光学補償フィルムを構成する 透明基材の遅相軸と前記直線偏光板の吸収軸とがほぼ平行になっており、 前記光 学補償フィルムの透明基材側を接合面とする場合は、 その透明基材の遅相軸と前 記直線偏光板の吸収軸とがほぼ直交している、広視野角複合偏光板が提供される。 この広視野角複合偏光板において、 フィルム面内で位相差を示す透明基材は、 セルロース系樹脂フイルム、 環状ポリオレフィン系樹脂フィルム及びポリカーポ ネート系樹脂フィルムから選ばれる透明樹脂フィルムが延伸されたもので構成す るのが好ましい。
また、 光学異方性層は、 例えば、 棒状の液晶性化合物を含む塗布層から形成す ることができ、 とりわけ、 ネマチック液晶性化合物を含む塗布層から形成するの が好ましい。 一方で光学異方性層は、 側鎖型液晶性高分子化合物の側鎖がフィル ム法線方向に配向したもので構成することもできる。
上記の広視野角複合偏光板を構成する直線偏光板は、 偏光子の両面に透明保護 フィルムが貼合されたもので構成することができるほか、 偏光子の片面に透明保 護フィルムが貼合されたもので構成し、 その透明保護フィルムが貼合されていな い偏光子面で光学補償フィルムに積層することも有効である。また、光学補償フィ ルムと直線偏光板との間には、 位相差フィルムを 1枚又はそれ以上配置すること ができる。
さらに本発明によれば、 上記いずれかの広視野角複合偏光板と横電界方式の液 晶セルとを備える液晶表示装置も提供される。 この液晶表示装置においては、 横 電界方式の液晶セルの片面に、 前記広視野角複合偏光板をその光学補償フィルム 側で貼合し、 その広視野角複合偏光板の外側にはバックライトを配置し、 前記液 晶セルの他方の面には前面側偏光板を貼合し、 その前面側偏光板を構成する偏光 子から液晶セルまでの間では、 面内位相差及び厚み方向位相差がともにほぼ 0と なるようにするのが有利である。 図面の簡単な説明
図 1 光学補償フィルムの積層状態を表す斜視図 (A) 及び光学異方性層の屈 折率楕円体を表す斜視図 (B) である。
図 2 複合偏光板の積層状態を表す斜視図である。
図 3 液晶表示装置の積層状態を表す斜視図である。
図 4 比較例 1及び 3の液晶表示装置の層構成と軸関係を表す斜視図である。 図 5 比較例 2及び 4の液晶表示装置の層構成と軸関係を表す斜視図である。 図 6 実施例 1及び 3の液晶表示装置の層構成と軸関係を表す斜視図である。 図 7 実施例 2及び 4の液晶表示装置の層構成と軸関係を表す斜視図である。 図 8 比較例 1の等コントラスト曲線である。
図 9 比較例 2の等コントラスト曲線である。
図 1 0 実施例 1の等コントラスト曲線である。
図 1 1 実施例 2の等コントラスト曲線である。
図 1 2 比較例 3の等コントラスト曲線である。
図 1 3 比較例 4の等コントラスト曲線である。
図 1 4 実施例 3の等コントラスト曲線である。
図 1 5 実施例 4の等コントラスト曲線である。
符号の説明
1 0……複合偏光板、
1 1……透明基材、
1 2……透明基材の遅相軸、
1 3……正の一軸性でフィルム法線方向に光学軸を有する光学異方性層、 1 5……光学補償フィルム、 1 7……直線偏光板、
1 8……直線偏光板の吸収軸、
2 0……横電界方式液晶セル、
2 1……電圧無印加時の液晶の長軸方向 (配向方向) 、
3 0……上 (前面側) 偏光板、
3 1……上 (前面側) 偏光板の吸収軸。 発明を実施するための最良の形態
以下、 適宜添付の図面も参照しながら、 本発明を詳細に説明する。 本発明では、 フィルム面内で位相差を示す透明基材の片面に、 正の一軸性でフィルム法線方向 に光学軸を有する光学異方性層が形成されたものを、 光学補償フィルムとする。 図 1の (A) に、 この状態を模式的な斜視図で示した。 すなわち、 透明基材 1 1 の片面に、 上記のような光学特性を示す光学異方性層 1 3が形成されて、 光学補 償フィルム 1 5が構成されている。 この図においては、 光学補償フィルム 1 5が 長尺のロール状で提供され、その長手方向を X軸、それに直行する方向(幅方向) を y軸、 そして厚み方向を z軸としている。 図 1の (B ) には、 この光学異方性 層 1 3の屈折率楕円体を斜視図で示した。 図 1の (B) において、 X軸、 y軸及 び z軸は、同(A) と同じ意味である。 この図に示すように、光学異方性層 1 3、 正の一軸性でフィルム法線方向に光学軸を有するものとする。 このような光学特 性を示すものは、 一般にポジティブ C一プレートと呼ばれる。 光学軸とは、 複屈 折を生じない方向であり、 図 1の (B) に示す屈折率楕円体では、 z軸方向から 見たときの楕円体断面が円になることから、 この方向 (フィルム法線方向) が光 学軸となる。
透明基材 1 1は、 透明なものであればよいが、 特に熱可塑性の樹脂フィルムが 好ましく用いられる。 透明基材 1 1となりうる熱可塑性樹脂としては、 例えば、 トリァセチルセルロースゃジァセチルセルロース、セルロースアセテートブチレ一 ト、 セルロースプロピオネートの如きセルロース系樹脂、 ノルポルネンの如き環 状ォレフインをモノマ一とする環状ポリオレフイン系樹脂、 ポリ力一ポネート系 樹脂、 ポリアリレート系樹脂、 ポリエステル系樹脂、 アクリル系樹脂、 ポリサル フォン系樹脂などが挙げられる。なかでも、セルロース系樹脂、環状ポリオレフィ ン系樹脂及びポリカーボネート系樹脂は、 コスト的に安価で、 透明性や加工性に 優れ、 位相差の発現性がよいこと、 また均一なフィルムが容易に入手できること から、 好ましく用いられる。 環状ポリオレフイン系樹脂の市販品としては、 J S R株式会社から入手できる "アートン" や、 日本ゼォン株式会社から入手できる "ゼォネックス" 及び "ゼオノ.ァ" などがある。
透明基材 1 1が実質的に面内で位相差を示さないもの、 すなわち光学的に等方 性のものであっても、 そこに、 正の一軸性でフィルム法線方向に光学軸を有する 光学異方性層を形成して光学補償フィルムとし、 そのいずれかの面に直線偏光板 を積層すれば、 横電界方式の液晶表示装置の視野角拡大にある程度の効果が得ら れるが、 本発明では、 かかる視野角拡大効果を一層高めるために、 透明基材 1 1 を、 フィルム面内で位相差を示すもので構成する。 透明基材 1 1にフィルム面内 の位相差を発現させるためには、 上に例示した各種の熱可塑性樹脂を常法に従つ て延伸すればよい。
フィルム面内で位相差を示す透明基材 1 1の面内位相差は、 5 0〜3 5 O nm程 度の範囲から、液晶表示装置に求められる特性に.合わせて選択するのが好ましく、 さらには 9 0〜1 6 O nm程度の範囲にあるのがより好ましい。 また透明基材 1 1 の厚さは、 1 0〜3 0 0 m程度が好ましく、 さらには 1 0〜1 5 0 m程度、 とりわけ 1 0〜1 0 0 m程度であるのがより好ましい。
透明基材 1 1の片面には、 正の一軸性でフィルム法線方向に光学軸を有する光 学異方性層 1 3を形成する。 このような光学特性を与える物質として、 分子構造 が棒状の液晶性化合物や、 側鎖型液晶性高分子化合物を挙げることができる。 分子構造が棒状の液晶性化合物は、 ある範囲の温度で液晶性を示し、 かつ分子 構造が細長い棒状のものである。 このような棒状構造の長さ方向が透明基材 1 1 の表面で法線方向に固定されるようにすればよい。 また、 側鎖型液晶性高分子化 合物は、 柔軟な主鎖に柔軟鎖を介して、 液晶性を発現させる中核的単位であるメ ソゲン基が側鎖として結合したものであり、 例えば、 ポリアクリレ一トゃポリメ 夕クリレート、 ポリシロキサン、 ポリマロネート等を主鎖骨格とし、 必要に応じ て共役性の原子団からなるスぺ一サ部を介して、 側鎖として、 パラ置換の環状化 合物等の残基であるメソゲン基を有するものなどを挙げることができる。 棒状液 晶性化合物と同様、 側鎖であるメソゲン基の長さ方向が透明基材 1 1の表面で法 線方向に固定されるようにすればよい。
分子構造が棒状の液晶性化合物のなかでも、 ネマチック液晶性化合物が好まし い。 ネマチック液晶性化合物を、 例えばポリマー中に分散配向させて、 光学異方 性層 1 3とすることもできるが、 配向の安定性等を考慮すれば、 ある温度範囲で ネマチック液晶相を示し、 かつ分子内に重合性官能基を少なくとも二つ含む多官 能化合物を用い、 法線方向に配向させた状態で重合させ、 光学異方性層 1 3とす るのが好ましい。
多官能のネマチック液晶性化合物としては、 例えば、 次の (1 ) 〜 (5 ) に示 すようなものを挙げることができる。 これらの式において、 nは 2〜6の整数を 表す。
Figure imgf000009_0001
次に、 光学異方性層を配向させる方法について説明する。 まず、 ネマチック液晶 性化合物など、 棒状の液晶性化合物をフィルム法線方向に配向させるには、 例え ば、 垂直配向膜を使用することができる。 すなわち、 まず、 透明基材 1 1上に垂 直配向膜を形成し、 その上に、 棒状の液晶性化合物を含有する塗工液を塗布し、 乾燥させる。 次に、 その液晶性化合物が液晶相を示す温度に加熱すれば、 棒状の 液晶性化合物がフィルム法線方向に配向する。 垂直配向膜としては、 例えば、 有 機シラン膜、 フッ素系シリコーン樹脂膜、 ポリイミド樹脂膜などを用いることが できる。
棒状の液晶性化合物を含有する塗工液を塗布し、 光学異方性層 1 3を形成する にあたっては、 それらの液晶性化合物を溶剤に溶解させて塗工液とし、 これを透 明基材 1 1上に塗布するのが好ましい。 溶剤としては、 これらの液晶性化合物を 溶解しうる有機溶剤を適宜選択すればよい。
先にも述べたように、 重合性のネマチック液晶性化合物を含む塗工液を、 垂直 配向膜が形成された透明基材 1 1上に塗布し、 ネマチック液晶性化合物が垂直配 向した状態で重合させ、 その配向を固定することにより、 正の一軸性で光学軸が フィルム法線方向となるようにすることができる。この場合は、重合性のネマチッ ク液晶性化合物とともに、 光重合開始剤を配合し、 光照射、 特に紫外線照射によ り重合させるのが好ましい。
このために用いる光重合開始剤としては、 例えば、 ベンジル (別名ビベンゾィ ル) 、 ベンジルジメチルケタール、 2—ヒドロキシー 2—メチル— 1一フエニル プロパン一 1—オン、 1ーヒドロキシシクロへキシルフェニルケトン、 2—メチ ルー 1一 〔4— (メチルチオ) フエニル〕 一 2—モルフォリノプロパン一 1—ォ ン、 2—べンジルー 2—ジメチルァミノ— 1一 (4一モルフォリノフエ二ル) ブ テル、 ベンゾフエノン、 ベンゾィル安息香酸メチル、 4一ベンゾィル—4 ' ーメ チルジフエニルサルフアイド、 2—クロ口チォキサントン、 2 , 4—ジェチル チォキサントン、 1一クロロー 4一プロポキシチオサントン、 2, 4 , 6—トリ メチルベンゾィルジフエニルホスフィンォキサイドなどが挙げられる。 また例えば、 棒状の液晶性化合物、 好ましくはネマチック液晶性化合物をポリ マーとともに溶媒に溶かして液晶性化合物とポリマーを含む溶液とし、 これを基 板上に塗布し、 垂直配向のための電場又は磁場を基板面に垂直な方向に印加しつ つ乾燥させる方法によっても、 正の一軸性でフィルム法線方向に光学軸を有する 光学異方性層とすることができる。
この場合、 基板としてガラス板などの無機質基板を用い、 その上にポリマー入り の光学異方性層を形成し、 これを、 フィルム面内で位相差を示す透明基材 1 1に 転写するなどの方法をとることができる。
一方、 側鎖型液晶性高分子化合物を用いる場合は、 先に述べたような側鎖型液 晶性高分子化合物をフィルムに成形し、 これを二軸延伸することで、 ·液晶性の側 鎖を垂直配向させることが可能である。 すなわち、 側鎖型液晶性高分子化合物か ら、 押出成形などによりフィルムを形成する。 次いで、 フィルム長手方向及び幅 方向に同時に、 又は逐次に延伸すれば、 メソゲン基を含む側鎖が、 フィルム法線 方向に屈折率が大きくなるように配向する。
このようにして形成された側鎖型液晶性高分子化合物からなる二軸延伸フィルム を、 フィルム面内で位相差を示す透明基材 1 1に貼合すればよい。
以上のようにして、 透明基材 1 .1の片面に、 正の一軸性でフィルム法線方向に 光学軸を有する光学異方性層 1 3が形成されている光学補償フィルム 1 5が得ら れる。 ここで、 光学異方性層 1 3は、 フィルム法線方向に光学軸があるので、 そ の面内位相差はほぼ 0となるが、 厚み方向位相差は、 一 5 0〜― 2 5 O nm程度の 範囲、 とりわけ— 5 0〜一 1 6 O nm程度の範囲から、 液晶表示装置に求められる 特性に合わせて選択するのが好ましい。 なお面内位相差は、 0 ± 1 0 nm程度の範 囲にあればよい。また、光学異方性層 1 3の厚みは、 0 . 2〜2 0 m程度の範囲、 好ましくは 0 . 2〜5 im程度、 さらには 0 . 5〜1 . 5 m程度の範囲から、 目的 とする厚み方向位相差が発現できるように調整すればよい。
面内位相差 (Ro とする) 及び厚み方向位相差 (R thとする) は、 対象とする フィルムないし層の面内遅相軸方向の屈折率を nx 、 面内で遅相軸と直交する方 向 (進相軸方向) の屈折率を ny、 厚み方向の屈折率を nz、 そして膜厚を dとし たときに、 それぞれ次の式 (I) 及び (II) で定義されるものである。
Ro = (nx-nyj X d (I)
Rth= [(nx+ny)//2-nz]xd (II)
透明基材 11、 その片面に光学異方性層 13が形成された光学補償フィルム 15、 さらにその光学異方性層 13の位相差は、 次のようにして求めることがで きる。 まず、 測定対象のフィルムの面内位相差 Ro は、 市販の位相差測定装置、 例えば、 王子計測機器 (株) 製の "KOBRA- 21ADH" などを用いて、 直接測定する ことができる。 具体的には例えば、 測定対象のフィルムを、 粘着剤を介してガラ ス板に貼合する。 その状態で、 上記の如き位相差測定装置を用い、 波長 559nm の単色光で回転検光子法により、 そのフィルムの面内位相差 Ro を測定する。 一 方、 そのフィルムの面内遅相軸を傾斜軸として 40度傾斜させて測定した位相差 値 R40、フィルムの厚み d及びフィルムの平均屈折率 ηθを用いて、以下の式 (III) 〜 (V) から数値計算により nx、 ny及び nz を求め、 これらを前記式 (II) に 代入して、 厚み方向位相差 Rthを算出することができる。
RO = (nx-ny) X d (III)
R 0= (nx-ny') X ά/^{ ) (IV)
(nx+ny+nz)/3 = n0 (V)
ここで、
〔sin(40 ° )ZnO〕
ny' = nyX nz/ Cny2Xsin2((i)) + nz2Xcos2((i))] 1/2
そして、 透明基材 11の面内位相差 (Robaseとする) 及び厚み方向位相差 ( Rthbaseとする) 、 並びに、 透明基材 11の片面に光学異方性層 13が形成され た光学補償フィルム 15の面内位相差(Rotoialとする)及び厚み方向位相差 thtotalとする) を、 このようにして求め、 それらから、 光学異方性層 13の面 内位相差 (Roocとする) 及び厚み方向位相差 (Rthocとする) を次の式 (VI) 及び (VI I) により算出することができる。
Rooc = Rototal _ Robase (VI)
R thoc- R thtotal— thbase (v )
以上のように構成される光学補償フィルム 1 5に、 直線偏光板を積層して、 本 発明の広視野角複合偏光板とする。 このとき、 光学補償フィルム 1 5の直線偏光 板への接合面を、透明基材 1 1側とするか光学異方性層 1 3側とするかによつて、 透明基材 1 1と直線偏光板の軸関係が重要になることが見出された。
図 2の (A) 及び (B) には、 フィルム面内で位相差を示す透明基材 1 1の片 面に光学異方性層 1 3が形成された光学補償フィルム 1 5と直線偏光板 1 7を積 層して、 広視野角複合偏光板 1 0を構成した状態が、 各々の軸関係とともに示さ れている。 すなわち、 本発明では、 図 2の (A) に示すように、 フィルム面内で 位相差を示す透明基材 1 1の片面に光学異方性層 1 3が形成された光学補償フィ ルム 1 5の光学異方性層 1 3側を、 直線偏光板 1 7への接合面とする場合は、 光 学補償フィルム 1 5を構成する透明基材 1 1の遅相軸 1 2と直線偏光板 1 7の吸 収軸 1 8とをほぼ平行にする。 一方、 図 2の (B ) に示すように、 フィルム面内 で位相差を示す透明基材 1 1の片面に光学異方性層 1 3が形成された光学補償 フィルム 1 5の透明基材 1 1側を、 直線偏光板 1 7への接合面とする場合は、 光 学補償フィルム 1 5を構成する透明基材 1 1の遅相軸 1 2と直線偏光板 1 7の吸 収軸 1 8とをほぼ直交させる。
この関係が逆になつた場合、 すなわち; 光学補償フィルム 1 5の光学異方性層 1 3側を直線偏光板 1 7への接合面とし、 光学補償フィルム 1 5を構成する透明 基材 1 1の遅相軸 1 2と直線偏光板 1 7の吸収軸 1 8とを直交させた場合や、 光 学補償フィルム 1 5の透明基材 1 1側を直線偏光板 1 7への接合面とし、 光学補 償フィルム 1 5を構成する透明基材 1 1の遅相軸 1 2と直線偏光板 1 7の吸収軸 1 8とを平行にした場合には、 横電界方式の液晶表示装置に対して十分な視野角 拡大効果が得られにくい。
なお、 本明細書において 「ほぼ平行」 とか 「ほぼ直交」 とかいうときの 「ほぼ」 は、 実質的にそこに記載の配置 (平行又は直交、 すなわち 0度又は 9 0度) であ ることが好ましいが、 その角度を中心に、 ± 1 0度程度までのずれは許容される ことを意味する。
図 2に例を示す広視野角複合偏光板 1 0において、 直線偏光板 1 7は、 フィル ム面内で直交する一方の向きに振動する直線偏光を透過し、 他方の向きに振動す る直線偏光を吸収するものであればよい。 具体的には、 偏光子の片面又は両面に 透明保護フィルムが貼合されたものでありうる。 偏光子は例えば、 ポリビニルァ ルコール系樹脂フィルムに二色性色素が吸着配向しているもので構成することが でき、 二色性色素としては一般に、 ヨウ素又は二色性の有機染料が用いられる。 透明保護フィルムとしては、 例えば、 トリァセチルセルロースゃジァセチルセル ロース、 セルロースアセテートブチレート、 セルロースプロピオネートの如きセ ルロース系樹脂、 ノルポルネンの如き環状ォレフィンをモノマーとする環状ポリ ォレフィン系樹脂などが好ましく用いられる。
特に本発明においては、 直線偏光板 1 7を、 偏光子の片面に透明保護フィルム が貼合されたもので構成し、 その透明保護フィルムが貼合されていない偏光子面 が光学補償フィルム 1 5側となるように積層すれば、 複合偏光板を薄くできるこ と、 偏光子と光学補償フィルム 1 5との間に存在する層の位相差 (特に厚み方向 位相差 R th) の影響がなくなることなどの点から、 有利である。
光学補償フィルム 1 5と直線偏光板 1 7の積層には、 接着剤が用いられる。 接 着剤は、例えば、ポリビエルアルコール系樹脂の水溶液の如き、水系のものであつ てもよいし、 粘弾性を示す感圧接着剤であってもよい。
また、 本発明の広視野角複合偏光板 1 0においては、 光学補償フィルム 1 5と 直線偏光板 1 7との間に、 所望により位相差フィルムを配置することもできる。 この場合、 位相差フィルムは、 1枚だけであってもよいし、 必要に応じて 2枚又 はそれ以上用いてもよい。
さらに、 本発明の広視野角複合偏光板には、 その用途によって、 反射防止層、 防眩層、 光拡散層、 帯電防止層、 輝度向上フィルムなど、 この分野で公知の各種 光学機能層を設けることもできる。
以上のように構成される広視野角複合偏光板は、 横電界方式の液晶セルに適用 して、 その視野角を拡大するのに有効である。 図 3に、 本発明の広視野角複合偏 光板 1 0を配置した液晶表示装置の基本的な層構成を模式的な斜視図で示した。 すなわち、 本発明の液晶表示装置は、 上で説明した広視野角複合偏光板 1 0と、 横電解方式の液晶セル 2 0とを備えるものである。 広視野角複合偏光板 1 0は、 これまでに説明してきたとおり、 透明基材の片面に光学異方性層が形成された光 学補償フィルム 1 5と、 直線傳光扳 1 7とが積層されたものであり、 その光学補 償フィルム 1 5側で、 液晶セル 2 0に貼合される。 液晶セル 2 0のもう一方の面 には、 別の偏光板 3 0が配置されている。
横電界方式の液晶セル 2 0それ自体は、 背景技術の項でも述べた如く公知なの で、 その詳しい構造の説明は省略するが、 セル内において電圧無印加状態では、 液晶分子が基板面に平行でほぼ同じ向きに配向しており、 上下一対の透明セル基 板のうち少なくとも一方の基板の内側 (液晶層側) に平行な櫛歯状の電極が配置 され、 その電極間に印加される電圧の変化によって、 液晶の分子長軸の向きを基 板に平行な面内で変化させ、 前面側偏光板を通る光を制御して表示を行うように 構成されたものである。 そして、 広視野角複合偏光板 1 0を構成する直線偏光板 1 7ともう一方の偏光板 3 0は、 それぞれの吸収軸が直交するように配置するの が通例であり、 また、 いずれか一方の偏光板の吸収軸が、 液晶セル 2 0内の液晶 分子の電圧無印加状態における長軸方向 (配向方向) とほぼ一致するように配置 するのが通例である。
この液晶表示装置において、 広視野角複合偏光板 1 0を背面側とするのが有利 であり、 その場合は、 広視野角複合偏光板 1 0の外側 (直線偏光板 1 7の外側) にバックライトが配置される。 そして、 もう一方の偏光板 3 0側で表示を見るこ とになる。
液晶セル 2 0を挟んで配置される一対の偏光板のうち、 一方の偏光板 3 0 (上 の有利な例では前面側偏光板となる) は、 先に図 2を参照して直線偏光板 1 7に ついて説明したのと同様、 偏光子の片面又は両面に透明.保護フィルムが貼合され たもので構成することができる。 特に、 この偏光板 3 0を構成する偏光子から液 晶セル 2 0までの間では、 透明保護フィルムが存在する場合であっても、 面内位 相差及び厚み方向位相差がともにほぼ 0、 具体的には 0 ± 1 O nm程度となるよう にするのが、 広視野角化のうえで好ましい。 セルロース系樹脂フィルムや環状ポ リオレフィン系樹脂フィルムの市販品に、 このような面内位相差及び厚み方向位 相差がともにほぼ 0のフィルムがある。 以下、 本発明を実施例に基づいて具体的に説明するが、 本発明は実施例に制限 されるものではない。
[比較例 1 ]
( a ) 複合偏光板の作製
ノルポルネン系の樹脂フィルムがー軸延伸された透明基材の片面に、 正の一軸 性でフィルム法線方向に光学軸を有する塗布層からなる光学異方性層が形成され た光学補償フィルムを、 積水化学工業 (株) から入手した。 この光学補償フィル ムは、 全体で 4 3 . 2 mの厚みを有するものであった。 また、 メ一カー測定値で 透明基材の Ro= l 0 nm、 R th= 7 0 nm、光学異方性層の Ro= 0 nm、 R th= - 1 1 4nm、そして積層状態での Ro= 1 4 0 nm、 R th=— 4 4 nmとして示されたも のである。 積層状態での位相差を、 先に示した方法で測定したところ、 ほぼ同じ 結果が得られた。
別途、 ポリビニルアルコールフィルムにヨウ素が吸着配向している偏光子の片 面に、 トリァセチルセルロースからなる透明保護フィルムが貼合された直線偏光 板を用意した。 そして、 この直線偏光板のポリビニルアルコール偏光子側と、 上 記の光学補償フィルムの透明基材層側を接合面として、 直線偏光板の吸収軸と光 学補償フィルムの透明基材層遅相軸とが平行になるように、 ポリビニルアルコー ル系接着剤を介して貼合し、 複合偏光板とした。
( b ) 液晶表示装置の作製及び評価 ポリビュルアルコールフィルムにヨウ素が吸着配向している偏光子の片面に、 セルロース系樹脂からなる無配向の透明保護フィルム 〔富士写真フィルム (株) 製の " Z- TAC" 、 Ro= 2 nm、 R th= 0 nm〕 が貼合され、 もう一方の面にはトリ ァセチルセルロースからなる透明保護フィルムが貼合された直線偏光板を用意し た。
横電界方式の液晶セル 〔 (株) 日立製作所製の "TO00 7000" 〕 の前面 (視認 側) セル基板に、 上で用意した両面に透明保護フィルムが貼合されている直線偏 光板を、 その無配向の保護フィルム側で、 アクリル系感圧接着剤を介して貼り合 わせた。 背面 (バックライト側) セル基板には、 上記 (a ) で作製した複合偏光 板を、 セル基板側から光学補償フィルム及び直線偏光板の順となるように、 やは りアクリル系感圧接着剤を介して貼り合わせた。 この際、 前面 (視認側) では、 直線偏光板の吸収軸が電圧無印加時の液晶分子の長軸方向 (配向方向) と平行に なるように配置し、 また、 前面側直線偏光板と背面側直線偏光板はそれぞれの吸 収軸が直交するように配置した。
ここで作製した液晶表示装置の層構成及び軸関係を、 図 4に示す。 すなわち、 横電界方式液晶セル 2 0の前面には上偏光板 3 0が配置され、その吸収軸 3 1は、 電圧無印加時の液晶分子の長軸方向(配向方向) 2 1と平行になっている。また、 ' 液晶セル 2 0の背面には、 複合偏光板 1 0が配置されており、 この複合偏光板 1 0は、 面内で位相差を示す透明基材 1 1上に、 正の一軸性でフィルム法線方向に 光学軸を有する光学異方性層 1 3が形成されている光学補償フィルム 1 5と、 片 面に透明保護フィルムを有するポリピニルアルコール—ヨウ素系直線偏光板 1 7 とが、 前者の透明基材 1 1の面と後者のポリビニルアルコール偏光子面とを接合 面として、 かつ透明基材 1 1の遅相軸 1 2と直線偏光板 1 7の吸収軸 1 8とが平 行になるように積層されたものである。 そして、 上偏光板 3 0の吸収軸 3 1と背 面側直線偏光板 1 7の吸収軸 1 8とが直交するように配置されている。
この液晶表示装置の背面からバックライトを点灯し、視野角による輝度変化 (光 もれ) を目視で観察し、 結果を表 1に示した。 また、 作製した液晶表示装置の視野角によるコントラスト変化を、 ELDIM社製 の液晶視野角 '色度特性測定装置 "EZ Contras t" で測定し、 その等コントラス ト曲線を図 8に示した。 この等コントラスト曲線においては、 画面の右方向を 0 度とし、 反時計回りを正にして方位角を表示しており (0度から 3 1 5度まで 4 5度おきに数字を表示) 、 また横軸に 「1 0」 、 「2 0」 ……、 「7 0」 とある のは、それぞれ方位角における法線からの傾斜角度(仰角)を意味する。例えば、 円の右端は、 方位角が 0度 (画面の右側) で仰角が 8 0度の方向のコントラスト を意味し、 円の中心は、 仰角が, 0度、 すなわち画面の法線方向のコントラストを 意味する。 コントラストが 1 0 0である曲線に 「C R = 1 0 0」 の表示を付して おり、 それより内側へ行くにつれて順次、 コントラスト 2 0 0、 3 0 0……、 7 0 0のそれぞれ等コントラスト曲線となっている。 以下に出てくる等コントラス ト曲線を示す図 9〜図 1 5も同様の意味なので、 これらの図については詳しい説 明を省略する。
なお、 ここでいうコントラストは、 黒表示 (液晶セルへの電圧無印加) 時の輝度 に対する白表示 (液晶セルへの電圧印加) 時の輝度の比である。
目視観察及び図 8の等コントラスト曲線から、 この液晶表示装置は、 視野角に よる輝度変化が大きく、 視野角依存性が高いものであることがわかった。
[比較例 2 ]
( a) 複合偏光板の作製
光学補償フィルムの光学異方性層側を接合面として、 直線偏光板の吸収軸と光 学補償フィルムの透明基材遅相軸が直交するように、 ポリビニルアルコール系接 着剤を介して直線偏光板と光学補償フィルムを貼合した以外は、比較例 1の(a ) と同様にして複合偏光板を作製した。
( b ) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a ) で作製したものに変えた以外は、 比 較例 1の (b ) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係を、 図 5に示す。 すなわち、 横電界方式液晶セル 2 0の前面には上 偏光板 3 0が配置され、 その吸収軸 3 1は、 電圧無印加時の液晶分子の長軸方向 (配向方向) 2 1と平行になっている。 また、 液晶セル 2 0の背面には、 複合偏 光板 1 0が配置されており、 この複合偏光板 1 0は、 面内で位相差を示す透明基 材 1 1上に、 正の一軸性でフィルム法線方向に光学軸を有する光学異方性層 1 3 が形成されている光学補償フィルム 1 5と、 片面に透明保護フィルムを有するポ リピニルアルコール一ヨウ素系直線偏光板 1 7とが、 前者の光学異方性層 1 3と 後者のポリビニルアルコール偏.光子面とを接合面として、 かつ透明基材 1 1の遅 相軸 1 2と直線偏光板 1 7の吸収軸 1 8とが直交するように積層されたものであ る。 そして、 上偏光板 3 0の吸収軸 3 1と背面側直線偏光板 1 7の吸収軸 1 8と が直交するように配置されている。
この液晶表示装置につき、 背面からパックライトを点灯して、 比較例 1と同様 の方法で評価した。 目視での観察結果を表 1に、 また等コントラスト曲線を図 9 に示した。 目視観察及び図 9の等コントラスト曲線から、 この液晶表示装置は、 比較例 1のものに比べれば視野角が若干広がるものの、視野角による輝度変化 (視 野角依存性) としてはほぼ同程度であることがわかった。
[実施例 1 ]
( a ) 複合偏光板の作製
比較例 1の (a ) で用いたのと同じ直線偏光板及び光学補償フィルムを、 直線 偏光板のポリビニルアルコール偏光子側と光学補償フィルムの光学異方性層側を 接合面として、 偏光板の吸収軸と光学補償フィルムの透明基材遅相軸とが平行に なるように、ポリビニルアルコール系接着剤を介して貼合し、複合偏光板とした。
( b ) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a ) で作製したものに変えた以外は、 比 較例 1の (b ) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係を、 図 6に示す。 すなわち、 横電界方式液晶セル 2 0の前面には、 上偏光板 3 0が配置され、 その吸収軸 3 1は、 電圧無印加時の液晶分子の長軸方 向 (配向方向) 2 1と平行になっている。 また、 液晶セル 2 0の背面には、 複合 偏光板 1 0が配置されており、 この複合偏光板 1 0は、 面内で位相差を示す透明 基材 1 1上に、 正の一軸性でフィルム法線方向に光学軸を有する光学異方性層 1 3が形成されている光学補償フィルム 1 5と、 片面に透明保護フィルムを有す るポリビエルアルコール一ヨウ素系直線偏光板 1 7とが、 前者の光学異方性層 1 3と後者のポリピエルアルコール偏光子面とを接合面として、 かつ透明基材 1 1の遅相軸 1 2と直線偏光板 1 7の吸収軸 1 8とが平行になるように積層され たものである。
そして、 上偏光板 3 0の吸収軸 3 1と背面側直線偏光板 1 7の吸収軸 1 8とが直 交するように配置されている。
この液晶表示装置につき、 背面からバックライトを点灯して、 比較例 1と同様 の方法で評価した。 目視での観察結果を表 1に、 また等コントラスト曲線を図 1 0に示した。 目視観察及び図 1 0の等コントラスト曲線から、 この液晶表示装 置は、 比較例 1及び比較例 2のものに比べて、 視野角による輝度変化が大幅に改 善されていることが確認された。
[実施例 2 ]
( a ) 複合偏光板の作製
光学補償フィルムの透明基材層側を接合面として、 直線偏光板の吸収軸と光学 補償フィルムの透明基材遅相軸が直交するように、 ポリビエルアルコール系接着 剤を介して直線偏光板と光学補償フィルムを貼合した以外は、 実施例 1の (a) と同様にして複合偏光板を作製した。
( b) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a ) で作製したものに変えた以外は、 実 施例 1の (b) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係を、 図 7に示す。 すなわち、 横電界方式液晶セル 2 0の前面には、 上偏光板 3 0が配置され、 その吸収軸 3 1は、' 電圧無印加時の液晶分子の長軸方 向 (配向方向) 2 1と平行になっている。 また、 液晶セル 2 0の背面には、 複合 偏光板 1 0が配置されており、 この複合偏光板 1 0は、 面内で位相差を示す透明 基材 1 1上に、 正の一軸性でフィルム法線方向に光学軸を有する光学異方性層 1 3が形成されている光学補償フィルム 1 5と、 片面に透明保護フィルムを有す るポリビニルアルコール一ヨウ素系直線偏光板 1 7とが、 前者の透明基材 1 1の 面と後者のポリビエルアルコール偏光子面とを接合面として、 かつ透明基材 1 1 の遅相軸 1 2と直線偏光板 1 7の吸収軸 1 8とが直交するように積層されたもの である。 そして、 上偏光板 3 0の吸収軸 3 1と背面側直線偏光板 1 7の吸収軸 1 8とが直交するように配置されている。
この液晶表示装置につき、 背面からバックライトを点灯して、 実施例 1と同様 の方法で評価した。 目視での評価結果を表 1に、 また等コントラスト曲線を図 1 1に示した。 目視観察及び図 1 1の等コントラスト曲線から、 この液晶表示装 置は、 視野角による輝度変化が少なく、 実施例 1のものに比べれば斜め方向の光 もれが少し観察されるものの、 ほぼ良好であることが確認された。
[比較例 3 ]
( a ) 複合偏光板の作製
ポリビニルアルコールフィルムにョゥ素が吸着配向している偏光子の両面にト リアセチルセルロースからなる透明保護フィルム (透明保護層片面の Ro = l nm、 R t = 6 5 nm) が貼合された直線偏光板 〔住友化学 (株) 製の "SRX842A" 〕 を 用意した。そして、 この直線偏光板の一方の保護フィルム側に、 比較例 1の (a ) で用いたのと同じ光学補償フィルムを、 その透明基材層側を接合面として、 直線 偏光板の吸収軸と光学補償フィルムの透明基材遅相軸とが平行になるように、 ポ リピニルアルコール系接着剤を介して貼合し、 複合偏光板とした。
( b ) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a) で作製したものに変えた以外は、 比 較例 1の (b ) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係は、 図 4と同じである。 ただしこの例では、 上偏光板 3 0として、 ポリビニルアルコ一ルーヨウ素系偏光子の両面にトリァセチルセル口一スからな る透明保護フィルムが貼合されたものを用いている。 この液晶表示装置につき、 背面からバックライトを点灯して、 比較例 1と同様の方法で評価した。 目視での 観察結果を表 1に、 また等コントラスト曲線を図 1 2に示した。 目視観察及び図 1 2の等コントラスト曲線から、 この液晶表示装置も、 視野角による輝度変化が 大きく、 視野角依存性が高く、,比較例 1及び 2と同程度であることがわかった。 [比較例 4 ]
( a ) 複合偏光板の作製
光学補償フィルムの光学異方性層側を接合面として、 直線偏光板の吸収軸と光 学補償フィルムの透明基材遅相軸が直交するように、 ポリビニルアルコール系接 着剤を介して直線偏光板と光学補償フィルムを貼合した以外は、比較例 3の(a ) と同様にして複合偏光板を作製した。
( b ) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a ) で作製したものに変えた以外は、 比 較例 3の (b) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係は、 図 5と同じである。 ただしこの例では、 上偏光板 3 0として、 ポリビニルアルコール一ヨウ素系偏光子の両面にトリァセチルセルロースからな る透明保護フィルムが貼合されたものを用いている。 この液晶表示装置につき、 背面からバックライトを点灯して、 比較例 1と同様の方法で評価した。 目視での 観察結果を表 1に、 また等コントラスト曲線を図 1 3に示した。 目視観察及び図 1 3の等コントラスト曲線から、 この液晶表示装置は、 比較例 3のものに比べれ ば視野角が若干広がるものの、 視野角による輝度変化 (視野角依存性) としては ほぼ同程度であることがわかった。 [実施例 3 ]
( a ) 複合偏光板の作製
光学補償フィルムの光学異方性層側を接合面として、 直線偏光板の吸収軸と光 学補償フィルムの透明基材遅相軸とが平行になるように、 ポリビニルアルコール 系接着剤を介して直線偏光板と光学補償フィルムを貼合した以外は、 比較例 3の
( a ) と同様にして複合偏光板を作製した。
( b ) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a ) で作製したものに変えた以外は、 比 較例 3の (b ) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係は、 図 6と同じである。 ただしこの例では、 上偏光板 3 0として、 ポリピエルアルコール一ヨウ素系偏光子の両面にトリァセチルセルロースからな る透明保護フィルムが貼合されたものを用いている。 この液晶表示装置につき、 背面からバックライトを点灯して、 比較例 1と同様の方法で評価した。 目視での 観察結果を表 1に、 また等コントラスト曲線を図 1 4に示した。 目視観察及び図 1 4の等コントラスト曲線から、 この液晶表示装置は、 比較例 3及び比較例 4の ものに比べて、視野角による輝度変化が大幅に改善されていることが確認された。
[実施例 4 ]
( a ) 複合偏光板の作製
光学補償フィルムの透明基材層側を接合面として、 直線偏光板の吸収軸と光学 補償フィルムの透明基材遅相軸が直交するように、 ポリビニルアルコール系接着 剤を介して直線偏光板と光学補償フィルムを貼合した以外は、 実施例 3の (a ) と同様にして複合偏光板を作製した。
( b ) 液晶表示装置の作製及び評価
液晶セル背面側の複合偏光板を上記 (a ) で作製したものに変えた以外は、 実 施例 3の (b ) と同様にして液晶表示装置を作製した。 この液晶表示装置の層構 成及び軸関係は、 図 7と同じである。 ただしこの例では、 上偏光板 3 0として、 ポリビエルアルコール一ョゥ素系偏光子の両面にトリァセチルセルロースからな る透明保護フィルムが貼合されたものを用いている。 この液晶表示装置につき、 背面からバックライトを点灯して、 比較例 1と同様の方法で評価した。 目視での 観察結果を表 1に、 また等コントラスト曲線を図 1 5に示した。 目視観察及び図 1 5の等コントラスト曲線から、 この液晶表示装置も、 視野角による輝度変化が 少なく、 実施例 3と同程度であることが確認された。
以上の比較例 1〜 4及び実施例 1〜4における主な条件と目視観察の結果を、 表 1にまとめた。 比較例 実施例 比較例 実施例
1 2 1 2 3 4 3 4 前面側偏光板
セル側保護層の Rth 0 0 0 0 0 0 0 0 背面側
偏光板
セル側保護層の Rth ― ― ― ― 65nra 65nm 65nm 6¾nm 光学補償フィルム
偏光板との接合面 " B C C B B C C B 偏光板吸収軸と光学補償
フィルム遅相軸の関係 直交 平行 直交 平行 直交 平行 直交 光もれ *2 X Δ ◎ 〇 X Δ 〇 〇 偏光板との接合面 B :透明 層
C:光学異方性層
光もれ . ◎:良好
o:斜め方向の光もれが少し認められるが、 ほぼ良好
△:斜め方向の光もれあり
X:斜め方向の光もれ大 また、各実施例及び比較例において、コントラスト 1 0 0が得られる傾斜角度(仰 角) を方位角 4 5度毎に読み取り、 結果を表 2に示した。 実施例のものは比較例 に比べ、方位角 4 5度一 2 2 5度方向、及び 1 3 5度— 3 1 5度方向の視野角が、 総じて広くなつていることがわかる。 コントラスト 100が得られる傾斜角度 方位角 0度 45度 90度 135度 180度 225度 270度 315度 右 右上 上 左上 左 左下 下 右下 比較例 1 >80° 23.4° >80° 31.2。 >80° 28.2° >80° 26.4°
" 2 >80° 31.9。 >80° 34,9° >80° 34.7° 〉80° 33.8° 実施例 1 >80° 79.8。 >80° 53.1° >80° 60.9° >80° 79.8。
" 2 >80° 45.1。 >80° 38.4。 >80° 39.2。 >80° 47.3° 比較例 3 >80° 23.6° 80° 29.3。 >80° 29.7。 〉80° 26.4°
II 4 〉80° 36.6。 >80° 32, 1。 >80° 37.5。 >80° 32, 3° 実施例 3 >80° 47.3° 80° 39.5。 >80° 41.2° >80° 46.2°
,, 4 〉80° 35.8° 79.3° 66.1。 >80° 50.0。 >80° 44.7°
本発明の複合偏光板は、 横電界方式の液晶表示装置の視野角を広げるのに有効 である。 また、 この複合偏光板を適用した液晶表示装置は、 視野角の広いものと なる。

Claims

24 請求の範囲
1 . フィルム面内で位相差を示す透明基材の片面に正の一軸性でフィルム法線方 向に光学軸を有する光学異方性層が形成されている光学補償フィルムに、 直線偏 光板が積層され、
前記光学補償フィルムの光学異方性層側を接合面とする場合は、該光学補償フィ ルムを構成する透明基材の遅相軸と前記直線偏光板の吸収軸とがほぼ平行になつ ており、
前記光学補償フィルムの透明碁材側を接合面とする場合は、 該透明基材の遅相 軸と前記直線偏光板の吸収軸とがほぼ直交している、
広視野角複合偏光板。
2 . フィルム面内で位相差を示す透明基材は、 セルロース系樹脂フィルム、 環状 ポリオレフィン系樹脂フィルム及びポリカーボネート系樹脂フィルムから選ばれ る透明樹脂フィルムが延伸されたものである請求項 1に記載の広視野角複合偏光 板。
3 . 光学異方性層は、 棒状の液晶性化合物を含む塗布層から形成される請求項 1 又は 2に記載の広視野角複合偏光板。
4. 光学異方性層は、 ネマチック液晶性化合物を含む塗布層から形成される請求 項 3に記載の広視野角複合偏光板。
5 . 光学異方性層は、 側鎖型液晶性高分子化合物の側鎖がフィルム法線方向に配 向したものである請求項 1又は 2に記載の広視野角複合偏光板。
6 . 直線偏光板は、 偏光子の片面に透明保護フィルムが貼合されたものであり、 その透明保護フィルムが貼合されていない偏光子面が光学補償フィルム側となる ように前記光学補償フィルムと積層されている請求項 1に記載の広視野角複合偏 光板。
7 . 光学補償フィルムと直線偏光板との間に位相差フィルムが挟まれている請求 項 1に記載の広視野角複合偏光板。
8 . 請求項 1〜 7のいずれかに記載の広視野角複合偏光板と横電界方式の液晶セ ルとを備える液晶表示装置。 ,
9 .横電界方式の液晶セルの片面に、前記広視野角複合偏光板がその光学補償フィ ルム側で貼合され、その広視野角複合偏光板の外側にはバックライトが配置され、 前記液晶セルの他方の面には前面側偏光板が貼合され、 該前面側偏光板を構成す る偏光子から液晶セルまでの間では、 面内位相差及び厚み方向位相差がともにほ ぼ 0である、 請求項 8に記載の液晶表示装置。
PCT/JP2007/053337 2006-02-21 2007-02-16 広視野角複合偏光板及び液晶表示装置 WO2007097407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/279,862 US20090059136A1 (en) 2006-02-21 2007-02-16 Composite polarizing plate with wide field of view and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-043463 2006-02-21
JP2006043463A JP2007225648A (ja) 2006-02-21 2006-02-21 広視野角複合偏光板及び液晶表示装置

Publications (1)

Publication Number Publication Date
WO2007097407A1 true WO2007097407A1 (ja) 2007-08-30

Family

ID=38437443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053337 WO2007097407A1 (ja) 2006-02-21 2007-02-16 広視野角複合偏光板及び液晶表示装置

Country Status (7)

Country Link
US (1) US20090059136A1 (ja)
JP (1) JP2007225648A (ja)
KR (1) KR20080114729A (ja)
CN (1) CN101389984A (ja)
PL (1) PL386666A1 (ja)
TW (1) TW200739148A (ja)
WO (1) WO2007097407A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855493B2 (ja) * 2008-04-14 2012-01-18 日東電工株式会社 光学表示装置製造システム及び光学表示装置製造方法
JP5529600B2 (ja) * 2009-03-23 2014-06-25 日東電工株式会社 複合偏光板および液晶表示装置
EP2508940A1 (en) * 2009-12-03 2012-10-10 Sharp Kabushiki Kaisha Liquid crystal display device
KR101656550B1 (ko) * 2013-09-30 2016-09-09 주식회사 엘지화학 위상차 필름 및 그 제조 방법
US9316860B2 (en) 2013-12-20 2016-04-19 Apple Inc. Electronic device display with damage-resistant polarizer
JP6285176B2 (ja) * 2013-12-25 2018-02-28 日東電工株式会社 光学積層体の製造方法
CN109341909B (zh) * 2018-11-20 2020-11-10 郑州大学 一种多功能柔性应力传感器
JP7382801B2 (ja) * 2019-11-12 2023-11-17 日東電工株式会社 位相差層付偏光板および画像表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265889A (ja) * 2004-03-16 2005-09-29 Fuji Photo Film Co Ltd 液晶表示装置
JP2005321528A (ja) * 2004-05-07 2005-11-17 Fuji Photo Film Co Ltd 液晶表示装置
WO2005116700A1 (ja) * 2004-05-26 2005-12-08 Nitto Denko Corporation 楕円偏光板および画像表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204182B2 (ja) * 1997-10-24 2001-09-04 日本電気株式会社 横電界方式の液晶表示装置
JP2004264345A (ja) * 2003-02-03 2004-09-24 Nitto Denko Corp 位相差フィルムおよびその製造方法
US7622166B2 (en) * 2003-11-28 2009-11-24 Dai Nippon Printing Co., Ltd. Optical element, process for producing the same, substrate for liquid crystal alignment, liquid crystal display device, and birefringent material
JP4647315B2 (ja) * 2004-02-16 2011-03-09 富士フイルム株式会社 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265889A (ja) * 2004-03-16 2005-09-29 Fuji Photo Film Co Ltd 液晶表示装置
JP2005321528A (ja) * 2004-05-07 2005-11-17 Fuji Photo Film Co Ltd 液晶表示装置
WO2005116700A1 (ja) * 2004-05-26 2005-12-08 Nitto Denko Corporation 楕円偏光板および画像表示装置

Also Published As

Publication number Publication date
US20090059136A1 (en) 2009-03-05
TW200739148A (en) 2007-10-16
CN101389984A (zh) 2009-03-18
PL386666A1 (pl) 2009-04-14
KR20080114729A (ko) 2008-12-31
JP2007225648A (ja) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5000729B2 (ja) 液晶表示装置の製造方法、及び、液晶表示装置
JP4538096B2 (ja) 液晶表示装置
US7336330B2 (en) Optical film and polarizing film using the same, and method for improving view angle of the polarizing film
JP4329983B2 (ja) 液晶ディスプレイ
JP3926824B2 (ja) 液晶パネル及び液晶表示装置
EP1757977B1 (en) Liquid crystal panel, liquid crystal television, and liquid crystal display device
US8179508B2 (en) Liquid crystal display device having first and second polarizers and first and second birefringent layers
JP2006267625A (ja) 液晶パネル、液晶テレビおよび液晶表示装置
WO2006090617A1 (ja) 偏光素子、液晶パネル、液晶テレビ、および液晶表示装置
JP2004326089A (ja) 積層位相差層、その製造方法及びそれを用いた液晶表示装置
WO2007097407A1 (ja) 広視野角複合偏光板及び液晶表示装置
JP2007163894A (ja) 液晶表示装置
JP2006268018A (ja) 偏光素子、液晶パネル、液晶テレビ、および液晶表示装置
WO2007094103A1 (ja) 透過型液晶表示装置
WO2007135797A1 (ja) 透過型液晶表示装置
WO2019017483A1 (ja) 液晶表示装置
JP2007148099A (ja) ポジティブcプレートの製造方法及びポジティブcプレート、そのポジティブcプレートを用いた液晶パネル及び液晶表示装置
KR20060002961A (ko) Ips 모드의 보상된 lcd
JP5076302B2 (ja) 液晶表示装置及びそれに有用な偏光板のセット
JP2005062670A (ja) 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置
JP2004309598A (ja) 位相差板、楕円偏光板および液晶表示装置
JP2003090913A (ja) 楕円偏光板及びそれを用いた液晶表示装置
JP2008176295A (ja) 液晶パネルおよびそれを用いた液晶表示装置
JP2009258606A (ja) 偏光板及びそれを用いた液晶表示装置
JP2005099237A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12279862

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780006073.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022235

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07737329

Country of ref document: EP

Kind code of ref document: A1