JP3926824B2 - 液晶パネル及び液晶表示装置 - Google Patents

液晶パネル及び液晶表示装置 Download PDF

Info

Publication number
JP3926824B2
JP3926824B2 JP2005244847A JP2005244847A JP3926824B2 JP 3926824 B2 JP3926824 B2 JP 3926824B2 JP 2005244847 A JP2005244847 A JP 2005244847A JP 2005244847 A JP2005244847 A JP 2005244847A JP 3926824 B2 JP3926824 B2 JP 3926824B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizer
optical element
film
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005244847A
Other languages
English (en)
Other versions
JP2006178401A (ja
JP2006178401A5 (ja
Inventor
顕太郎 小林
周治 矢野
直樹 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005244847A priority Critical patent/JP3926824B2/ja
Priority to TW094137607A priority patent/TWI285275B/zh
Priority to US11/265,202 priority patent/US7463320B2/en
Priority to CNB2005101243800A priority patent/CN100426082C/zh
Priority to KR1020050114917A priority patent/KR100692939B1/ko
Publication of JP2006178401A publication Critical patent/JP2006178401A/ja
Publication of JP2006178401A5 publication Critical patent/JP2006178401A5/ja
Application granted granted Critical
Publication of JP3926824B2 publication Critical patent/JP3926824B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Description

本発明は、液晶セルと偏光子と光学素子とを有する液晶パネルに関する。また、本発明は、上記液晶パネルを用いた液晶テレビおよび液晶表示装置に関する。
インプレーンスイッチング(IPS)方式の液晶セルを備えた液晶表示装置は、電界無印加時において、略水平な一方向に配向した液晶分子が、横方向の電界印加によって、約45度回転して光の透過(白表示)・遮蔽(黒表示)を制御するものである。従来のIPS方式の液晶セルを備えた液晶表示装置は、偏光板の吸収軸に対して45度の角度(方位角45度、135度、225度、315度)において斜め方向から画面を見た場合に、コントラスト比が低下し、また、表示色が見る角度によって異なる現象(カラーシフトともいう)が大きくなるという問題があった。そこで、液晶セルの片側に複数枚の位相差フィルムを配置して、カラーシフトを改善する方法が開示されている(例えば、特許文献1参考)。しかし、このような技術では、カラーシフトは改善されるものの、斜め方向のコントラスト比の改善は、十分ではない。
特開平11−133408号公報
本発明はこのような問題を解決するためになされたもので、その目的は、斜め方向のコントラスト比と斜め方向のカラーシフト量が改善された液晶セルを備えた液晶パネルを提供することである。
本発明者らは、前記課題を解決すべく、鋭意検討した結果、以下に示す液晶パネル及び液晶表示装置により、上記目的を達成できることを見出し、本発明を完成するに至った。
本発明の液晶パネルは、液晶セルと、該液晶セルの一方の側に配置された第1の偏光子と、該液晶セルの他方の側に配置された第2の偏光子と、該液晶セルと該第1の偏光子との間に配置された負の二軸性光学素子およびポジティブCプレートと、該液晶セルと該第2の偏光子との間に配置された等方性光学素子とを備え、該負の二軸性光学素子が、第1の偏光子とポジティブCプレートとの間に配置されてなる。
好ましい実施形態においては、上記液晶セルは、電界が存在しない状態でホモジニアス配列に配向させたネマチック液晶を含む液晶層を備える。
好ましい実施形態においては、上記液晶セルは、IPSモード、FFSモードまたはFLCモードである。
好ましい実施形態においては、上記液晶セルの初期配向方向と、上記第2の偏光子の吸収軸の方向とは、実質的に平行である。
さらに好ましい実施形態においては、上記液晶セルの初期配向方向と、該液晶セルのバックライト側に配置された偏光子の吸収軸の方向とは、実質的に平行である。あるいは、上記液晶セルの初期配向方向と、該液晶セルのバックライト側に配置された偏光子の吸収軸の方向とは、実質的に直交している。
好ましい実施形態においては、上記負の二軸性光学素子の遅相軸は、上記第1の偏光子の吸収軸と実質的に直交である。
好ましい実施形態においては、上記負の二軸性光学素子の23℃における波長590nmの光で測定した面内の位相差値(Re[590])は50〜180nmである。
好ましい実施形態においては、上記負の二軸性光学素子は、セルロースエステルを主成分とする高分子フィルムの延伸フィルムを含む。
好ましい実施形態においては、上記ポジティブCプレートの23℃における波長590nmの光で測定した厚み方向の位相差値(Rth[590])は−200〜−30nmである。
好ましい実施形態においては、上記ポジティブCプレートは、ホメオトロピック配列に配向させた液晶性組成物の固化層または硬化層を含む。
好ましい実施形態においては、上記等方性光学素子は、ポリノルボルネン、セルロースエステル、イソブチレン・N−メチルマレイミド共重体、およびアクリロニトリル・スチレン共重合体から選ばれる少なくとも1つの樹脂を主成分とする高分子フィルムを含む。
本発明の別の局面によれば、液晶テレビが提供される。この液晶テレビは、上記液晶パネルを含む。
本発明のさらに別の局面によれば、液晶表示装置が提供される。この液晶表示装置は、上記液晶パネルを含む。
本発明の液晶パネルは、負の二軸性光学素子およびポジティブCプレートを液晶セルと該液晶セルの一方の側に配置された第1の偏光子との間に配置し、うち、負の二軸性光学素子を第1の偏光子とポジティブCプレートとの間に配置し、等方性光学素子を液晶セルと該液晶セルの他方の側に配置された第2の偏光子との間に配置することによって、液晶表示装置の斜め方向のコントラスト比を高め、斜め方向のカラーシフト量を低減することができる。
A.液晶パネル全体の概略
図1は、本発明の好ましい実施形態による液晶パネルの概略断面図である。図2(a)は、この液晶パネルがOモードを採用する場合の概略斜視図であり、図2(b)は、この液晶パネルがEモードを採用する場合の概略斜視図である。なお、見やすくするために、図1ならびに図2(a)および(b)における各構成部材の縦、横および厚みの比率は実際とは異なって記載されていることに留意されたい。例えば液晶パネルがOモードを採用する場合(図2(a))には、液晶パネル100は、液晶セル10と、液晶セル10の一方の側(図2(a)では視認側)に配置された第1の偏光子20と、液晶セル10の他方の側(図2(a)ではバックライト側)に配置された第2の偏光子20’と、第1の偏光子20と液晶セル10の間に配置された負の二軸性光学素子30およびポジティブCプレート40と、第2の偏光子20’と液晶セル10との間に配置された等方性光学素子50とを備える。負の二軸性光学素子30は、第1の偏光子20とポジティブCプレート40との間に、その遅相軸が第1の偏光子20の吸収軸と互いに直交するように配置される。ポジティブCプレート40は負の二軸性光学素子30と液晶セル10との間に配置される。また、偏光子20、20’は、それぞれの吸収軸が互いに直交するように配置される。なお、実用的には、偏光子20、20’の外側には、任意の適切な保護層(図示せず)が配置され得る。また、別の実施形態においては、図1に示した各構成部材の間に他の構成部材(好ましくは、等方性光学素子)が配置され得る。
好ましくは、第2の偏光子20’(すなわち、等方性光学素子50が配置される側の偏光子)は、その吸収軸が液晶セル10の初期配向方向と実質的に平行となるように配置される。第1の偏光子20は、その吸収軸が液晶セル10の初期配向方向と実質的に直交するように配置される。
本発明の液晶パネルは、いわゆるOモードであってもよく、いわゆるEモードであってもよい。「Oモードの液晶パネル」とは、液晶セルのバックライト側に配置された偏光子の吸収軸と、液晶セルの初期配向方向が互いに平行であるものをいう。「Eモードの液晶パネル」とは、液晶セルのバックライト側に配置された偏光子の吸収軸と、液晶セルの初期配向方向が互いに直交しているものをいう。Oモードの液晶パネルの場合、好ましくは図2(a)のように、第1の偏光子20、負の二軸性光学素子30およびポジティブCプレート40は液晶セル10の視認側に配置され、等方性光学素子50および第2の偏光子20’は液晶セル10のバックライト側に配置される。Eモードの液晶パネルの場合、好ましくは図2(b)のように、第1の偏光子20、負の二軸性光学素子30およびポジティブCプレート40は液晶セル10のバックライト側に配置され、等方性光学素子50および第2の偏光子20’は液晶セル10の視認側に配置される。本発明においては、図2(a)に示すようなOモードが好ましい。Oモードの配置のほうが、より良好な光学補償が実現されるからである。具体的には、Oモードの配置においては、負の二軸性光学素子およびポジティブCプレートがバックライトから遠い側に配置されるので、バックライトの熱による悪影響を受けにくく、位相差値のズレやムラを低減できるからである。
B.液晶セル
上記図1を参照すると、本発明の液晶パネルに用いられる液晶セル10は、一対の基板11、11’と、基板11、11’間に挟持された表示媒体としての液晶層12とを有する。一方の基板(カラーフィルター基板)11には、カラーフィルターおよびブラックマトリクス(いずれも図示せず)が設けられている。他方の基板(アクティブマトリクス基板)11’には、液晶の電気光学特性を制御するスイッチング素子(代表的にはTFT)と、このスイッチング素子にゲート信号を与える走査線およびソース信号を与える信号線と、画素電極および対向電極とが設けられている(いずれも図示せず)。なお、カラーフィルターは、アクティブマトリクス基板11’側に設けてもよい。上記基板11、11’の間隔(セルギャップ)は、スペーサー(図示せず)によって制御されている。上記基板11、11’の液晶層12と接する側には、例えば、ポリイミドからなる配向膜(図示せず)が設けられている。
上記液晶層12は、好ましくは、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む。このような液晶層(結果として、液晶セル)は、代表的には、nx>ny=nzの屈折率分布を示す(ただし、液晶層の遅相軸方向、進相軸方向、および厚さ方向の屈折率をそれぞれ、nx、ny、nzとする。)なお、本明細書において、ny=nzとは、nyとnzが完全に同一である場合だけでなく、nyとnzとが実質的に同一である場合も包含する。また、「液晶セルの初期配向方向」とは、電界が存在しない状態で、液晶層に含まれる液晶分子が配向した結果生じる液晶層の面内屈折率が最大となる方向をいう。このような屈折率分布を示す液晶層を用いる駆動モードの代表例としては、インプレーンスイッチング(IPS)モード、フリンジフィールドスイッチング(FFS)モードおよび強誘電性液晶(FLC)モード等が挙げられる。このような駆動モードに用いられる液晶の具体例としては、ネマチック液晶、スメクチック液晶が挙げられる。例えば、IPSモードおよびFFSモードにはネマチック液晶が用いられ、FLCモードにはスメクチック液晶が用いられる。
上記IPSモードは、電圧制御複屈折(ECB:Electrically Controlled Birefringnence)効果を利用し、電界が存在しない状態でホモジニアス配向させた液晶分子を、例えば、金属で形成された対向電極と画素電極とで発生させた基板に平行な電界(横電界ともいう)で応答させる。より具体的には、例えば、テクノタイムズ社出版「月刊ディスプレイ7月号」p.83〜p.88(1997年版)や、日本液晶学会出版「液晶vol.2 No.4」p.303〜p.316(1998年版)に記載されているように、ノーマリブッラク方式では、液晶セルの電界無印加時の配向方向と一方の側の偏光子の吸収軸とを一致させて、上下の偏光板を直交配置させると、電界のない状態で完全に黒表示になる。電界があるときは、液晶分子が基板に平行を保ちながら回転動作することによって、回転角に応じた透過率を得ることができる。なお、上記のIPSモードは、V字型電極またはジグザグ電極等を採用した、スーパー・インプレーンスイッチング(S−IPS)モードや、アドバンスド・スーパー・インプレーンスイッチング(AS−IPS)モードを包含する。上記のようなIPSモードを採用した市販の液晶表示装置としては、例えば、日立製作所(株)20V型ワイド液晶テレビ 商品名「Wooo」、イーヤマ(株)19型液晶ディスプレイ 商品名「ProLite E481S−1」、(株)ナナオ製 17型TFT液晶ディスプレイ 商品名「FlexScan L565」等が挙げられる。
上記FFSモードは、電圧制御複屈折効果を利用し、電界が存在しない状態でホモジニアス分子配列に配向させた液晶分子を、例えば、透明導電体で形成された対向電極と画素電極とで発生させた基板に平行な電界(横電界ともいう)で応答させるものをいう。なお、FFSモードにおける横電界は、フリンジ電界ともいう。このフリンジ電界は、透明導電体で形成された対向電極と画素電極との間隔を、セルギャップより狭く設定することによって発生させることができる。より具体的には、SID(Society for Information Display)2001 Digest,p.484−p.487や、特開2002−031812号公報に記載されているように、ノーマリーブラック方式では、液晶セルの電界無印加時の配向方向と、一方の側の偏光子の吸収軸とを一致させて、上下の偏光板を直交配置させると、電界のない状態で完全に黒表示になる。電界があるときは、液晶分子が基板に平行を保ちながら回転動作することによって、回転角に応じた透過率を得ることができる。なお、上記のFFSモードは、V字型電極またはジグザグ電極等を採用した、アドバンスド・フリンジフィールドスイッチング(A−FFS)モードや、ウルトラ・フリンジフィールドスイッチング(U−FFS)モードを包含する。上記のようなFFSモードを採用した市販の液晶表示装置としては、例えば、Motion Computing社 タブレットPC 商品名「M1400」が挙げられる。
上記FLCモードは、例えば、強誘電性のカイラルスメクチック液晶を、厚さ1μm〜2μm程度の電極基板間に封入した場合に、2つの安定な分子配向状態を示すという性質を利用する。より具体的には、印加電圧によって、上記強誘電性カイラルスメクチック液晶分子を基板に平行な面内で回転させて応答させる。このFLCモードは、上記IPSモードや上記FFSモードと同様の原理で、黒白表示を得ることができる。さらに、上記FLCモードは、他の駆動モードと比較して、応答速度が速いという特徴を有する。なお、本明細書において、上記FLCモードは、表面安定化(SS−FLC)モード、反強誘電性(AFLC)モード、高分子安定化(PS−FLC)モード、およびV字特性(V−FLC)モードを包含する。
上記ホモジニアス配向させた液晶分子とは、配向処理された基板と液晶分子の相互作用の結果として、上記液晶分子の配向ベクトルが基板平面に対し、平行かつ一様に配向した状態のものをいう。なお、本明細書においては、上記配向ベクトルが基板平面に対し、わずかに傾いている場合、すなわち上記液晶分子がプレチルトをもつ場合も、ホモジニアス配向に包含される。液晶分子がプレチルトをもつ場合は、そのプレチルト角は、20°以下であるほうが、コントラスト比を高く保ち、良好な表示特性が得られる点で好ましい。
上記ネマチック液晶としては、目的に応じて任意の適切なネマチック液晶が採用され得る。例えば、ネマチック液晶は、誘電率異方性が正のものであっても、負のものであっても良い。誘電率異方性が正のネマチック液晶の具体例としては、メルク社製 商品名「ZLI−4535」が挙げられる。誘電率異方性が負のネマチック液晶の具体例としては、メルク社製 商品名「ZLI−2806」が挙げられる。また、上記ネマチック液晶の常光屈折率(no)と異常光屈折率(ne)との差、即ち複屈折率(ΔnLC)は、前記液晶の応答速度や透過率等によって適宜選択され得るが、通常0.05〜0.30であることが好ましい。
上記スメクチック液晶としては、目的に応じて任意の適切なスメクチック液晶が採用され得る。好ましくは、スメクチック液晶は、分子構造の一部に不斉炭素原子を有し、強誘電性を示すもの(強誘電液晶ともいう)が用いられる。強誘電性を示すスメクチック液晶の具体例としては、p-デシロキシベンジリデン−p’−アミノ−2−メチルブチルシンナメート、p-ヘキシルオキシベンジリデン−p’−アミノ−2−クロロプロピルシンナメート、4−o−(2−メチル)ブチルレゾルシリデン−4’−オクチルアニリンが挙げられる。また、市販の強誘電性液晶としては、メルク社製 商品名ZLI−5014−000(電気容量2.88nF、自発分極−2.8C/cm)、メルク社製 商品名ZLI−5014−100(電気容量3.19nF、自発分極−20.0C/cm)、ヘキスト社製商品名FELIX−008(電気容量2.26nF、自発分極−9.6C/cm)等が挙げられる。
上記液晶セルのセルギャップ(基板間隔)としては、目的に応じて任意の適切なセルギャップが採用され得る。セルギャップは、好ましくは1.0〜7.0μmである。上記の範囲内であれば、応答時間を短くすることができ、良好な表示特性を得ることができる。
C.偏光子
本明細書においては、偏光子とは、自然光や偏光から任意の偏光に変換し得るフィルムをいう。本発明に用いられる偏光子としては、任意の適切な偏光子が採用され得るが、自然光又は偏光を直線偏光に変換するものが好ましく用いられる。
上記偏光子の厚みとしては、任意の適切な厚みが採用され得る。偏光子の厚みは、代表的には5〜80μmであり、好ましくは10〜50μmであり、さらに好ましくは20〜40μmである。上記の範囲であれば、光学特性や機械的強度に優れる。
上記偏光子の23℃で測定した波長440nmの透過率(単体透過率ともいう)は、好ましくは41%以上、さらに好ましくは43%以上である。なお、単体透過率の理論的な上限は50%である。また、偏光度は、好ましくは99.8〜100%であり、更に好ましくは、99.9〜100%である。上記の範囲であれば、液晶表示装置に用いた際に正面方向のコントラスト比をより一層高くすることができる。
上記単体透過率および偏光度は、分光光度計[村上色彩技術研究所(株)製 製品名「DOT−3」]を用いて測定することができる。上記偏光度の具体的な測定方法としては、上記偏光子の平行透過率(H)および直交透過率(H90)を測定し、式:偏光度(%)={(H−H90)/(H+H90)}1/2×100より求めることができる。上記平行透過率(H)は、同じ偏光子2枚を互いの吸収軸が平行となるように重ね合わせて作製した平行型積層偏光子の透過率の値である。また、上記直交透過率(H90)は、同じ偏光子2枚を互いの吸収軸が直交するように重ね合わせて作製した直交型積層偏光子の透過率の値である。なお、これらの透過率は、JlSZ8701−1982の2度視野(C光源)により、視感度補正を行ったY値である。
本発明に用いられる偏光子としては、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。
ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗しても良い。
ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
また、本発明に用いられる偏光子としては、上述した偏光子の他に、例えば、ヨウ素や二色性染料等の二色性物質を含む高分子フィルムの延伸フィルム、二色性物質と液晶性化合物とを含む液晶性組成物を一定方向に配向させたゲスト・ホストタイプのO型偏光子(米国特許5,523,863号)、およびリオトロピック液晶を一定方向に配向させたE型偏光子(米国特許6,049,428号)等も用いることができる。
なお、本発明の液晶パネルにおいて、液晶セルの両側に配置される偏光子は、同一であってもよく、それぞれ異なっていてもよい。
図2(a)および(b)を参照すると、第1の偏光子20および第2の偏光子20’を配置する方法としては、目的に応じて任意の適切な方法が採用され得る。好ましくは、上記第1の偏光子20、および第2の偏光子20’は、液晶セルに対向する側の表面に接着剤層または粘着剤層(図示せず)を設け、第1の偏光子20は負の二軸性光学素子30の表面に、第2の偏光子20’は、等方性光学素子50の表面に接着させられる。このようにすることによって、液晶表示装置に用いた際に、コントラストを高くすることができる。
上記接着剤または粘着剤の厚みは、使用目的や接着力などに応じて適宜に決定でき、接着剤の好適な厚みの範囲は、一般には、0.1〜50μmであり、好ましくは0.1〜20μmであり、特に好ましくは0.1〜10μmである。粘着剤の好適な厚みの範囲は、一般には、1〜100μmであり、好ましくは5〜80μmであり、特に好ましくは10〜50μmである。
上記接着剤または粘着剤層を形成する接着剤または粘着剤としては、被着体の種類に応じて、任意の適切な接着剤または粘着剤が採用され得る。接着剤としては、特に偏光子にポリビニルアルコール系フィルムが使用された場合には、水性接着剤が好ましく用いられる。特に好ましくは、ポリビニルアルコール系樹脂を主成分とするものが用いられる。具体例としては、アセトアセチル基を有する変性ポリビニルアルコールを主成分とする接着剤[日本合成化学(株)製 商品名「ゴーセファイマーZ200」]が挙げられる。粘着剤としては、特に光学的透明性に優れ、適度なぬれ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるという点で、アクリル系重合体をベースポリマーとするアクリル系粘着剤が好ましく用いられる。具体例としては、アクリル系粘着剤を粘着剤層として備える光学用両面テープ[綜研化学(株)製 商品名「SK−2057」]が挙げられる。
好ましくは、上記第1の偏光子20は、その吸収軸が、対向する第2の偏光子20’の吸収軸と実質的に直交するように配置される。なお、本明細書において、「実質的に直交」とは、第1の偏光子20の吸収軸と第2の偏光子20’の吸収軸とのなす角度が、90°±2.0°である場合を包含し、好ましくは90°±1.0°であり、更に好ましくは90°±0.5°である。これらの角度範囲から外れる程度が大きくなるほど、液晶表示装置に用いた際に、コントラストが低下する傾向がある。
D.負の二軸性光学素子
本明細書において、負の二軸性光学素子とは、面内の主屈折率をnx(遅相軸方向)、ny(進相軸方向)とし、厚み方向の屈折率をnzとしたとき、屈折率分布がnx>ny>nzを満足する光学素子をいう。また、屈折率分布がnx>ny>nzを満足する光学素子は、Rth[590]>Re[590]の関係を満足する光学素子とも言うことができる。なお、Re[590]およびRth[590]については、後述する。
上記図1ならびに図2(a)および(b)を参照すると、負の二軸性光学素子30は、第1の偏光子20とポジティブCプレート40との間に配置される。
D−1.負の二軸性光学素子の光学特性
本明細書において、Re[590]とは、23℃における波長590nmの光で測定した面内の位相差値をいう。Re[590]は、波長590nmにおける光学素子(又は位相差フィルム)の遅相軸方向、進相軸方向の屈折率をそれぞれ、nx、nyとし、d(nm)を光学素子(又は位相差フィルム)の厚みとしたとき、式:Re[590]=(nx−ny)×dによって求めることができる。なお、遅相軸とは面内の屈折率の最大となる方向をいう。
本発明に用いられる負の二軸性光学素子のRe[590]は、好ましくは50〜180nmであり、更に好ましくは60〜160nmであり、特に好ましくは70〜150nmであり、最も好ましくは80〜130nmである。上記Re[590]は、上記の範囲とすることによって、液晶表示装置の斜め方向のコントラスト比を高めることができる。
本明細書において、Rth[590]とは、23℃における波長590nmの光で測定したフィルム厚み方向の位相差値をいう。Rth[590]は、波長590nmにおける光学素子(又は位相差フィルム)の遅相軸方向、厚み方向の屈折率をそれぞれnx、nzとし、d(nm)を光学素子(又は位相差フィルム)の厚みとしたとき、式:Rth[590]=(nx−nz)×dによって求めることができる。なお、遅相軸とは、面内の屈折率の最大となる方向をいう。
本発明に用いられる負の二軸性光学素子のRth[590]は、Rth[590]>Re[590]の関係を満足する限りにおいて、好ましくは110〜250nmであり、更に好ましくは120〜230nmであり、特に好ましくは130〜200nmであり、最も好ましくは140〜180nmである。上記Re[590]は、上記の範囲とすることによって、液晶表示装置の斜め方向のコントラスト比を高めることができる。
Re[590]およびRth[590]は、王子計測機器(株)製 商品名「KOBRA21−ADH」〕を用いても求めることができる。23℃における波長590nmの面内の位相差値(Re)、遅相軸を傾斜軸として40度傾斜させて測定した位相差値(R40)、位相差フィルムの厚み(d)及び位相差フィルムの平均屈折率(n0)を用いて、以下の式(i)〜(iv)からコンピュータ数値計算によりnx、ny及びnzを求め、次いで式(iv)によりRthを計算できる。ここで、φ及びny’はそれぞれ以下の式(v)及び(vi)で示される。
Re=(nx−ny)×d …(i)
R40=(nx−ny’)×d/cos(φ) …(ii)
(nx+ny+nz)/3=n0 …(iii)
Rth=(nx−nz)×d …(iv)
φ =sin−1[sin(40°)/n0] …(v)
ny’=ny×nz[ny×sin(φ)+nz×cos(φ)]1/2 …(vi)
一般的に、位相差値は、測定波長に依存して変化する場合がある。これを位相差値の波長分散特性という。本明細書において、上記波長分散特性は、23℃における波長480nmおよび590nmの光で測定した面内の位相差値の比:Re[480]/Re[590]によって求めることができる。
上記負の二軸性光学素子のRe[480]/Re[590]は、好ましくは0.8〜1.2であり、更に好ましくは0.8〜1.1であり、特に好ましくは0.8〜1.0である。上記の範囲内で値が小さいほど、可視光の広い領域で位相差値が一定になるため、液晶表示装置に用いた場合に、特定波長の光漏れが生じ難く、液晶表示装置の黒表示における斜め方向のカラーシフトをより一層改善することができる。
D−2.負の二軸性光学素子の配置手段
図1ならびに図2(a)および(b)を参照すると、負の二軸性光学素子30は、第1の偏光子20とポジティブCプレート40との間に配置される。負の二軸性光学素子30を第1の偏光子20とポジティブCプレート40との間に配置する方法としては、目的に応じて任意の適切な方法が採用され得る。好ましくは、上記負の二軸性光学素子30は、その両側に接着剤層または粘着剤層(図示せず)を設け、第1の偏光子20およびポジティブCプレート40に接着させられる。このようにすることによって、液晶表示装置に用いた際に、コントラストを高くすることができる。
上記接着剤または粘着剤の厚みは、使用目的や接着力などに応じて適宜に決定でき、接着剤の好適な厚みの範囲は、一般には、0.1〜50μmであり、好ましくは0.1〜20μmであり、特に好ましくは0.1〜10μmである。粘着剤の好適な厚みの範囲は、一般には、1〜100μmであり、好ましくは5〜80μmであり、特に好ましくは10〜50μmである。
上記接着剤または粘着剤層を形成する接着剤または粘着剤としては、任意の適切な接着剤または粘着剤が採用され得る。例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム系、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。接着剤としては、特に、一方の被着体が、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子である場合には、水性接着剤が好ましく用いられる。特に好ましくは、ポリビニルアルコール系樹脂を主成分とするものが用いられる。具体例としては、アセトアセチル基を有する変性ポリビニルアルコールを主成分とする接着剤[日本合成化学(株)製 商品名「ゴーセファイマーZ200」]が挙げられる。粘着剤としては、特に光学的透明性に優れ、適度なぬれ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるという点で、アクリル系重合体をベースポリマーとするアクリル系粘着剤が好ましく用いられる。具体例としては、アクリル系粘着剤を粘着剤層として備える光学用両面テープ[綜研化学(株)製 商品名「SK−2057」]が挙げられる。
好ましくは、上記負の二軸性光学素子30は、その遅相軸が隣接する第1の偏光子20の吸収軸と実質的に直交するように配置される。なお、本明細書において、「実質的に直交」とは、負の二軸性光学素子30の遅相軸と第1の偏光子20の吸収軸とのなす角度が、90°±2.0°である場合を包含し、好ましくは90°±1.0°であり、更に好ましくは90°±0.5°である。これらの角度範囲から外れる程度が大きくなるほど、液晶表示装置に用いた際に、コントラストが低下する傾向がある。
D−3.負の二軸性光学素子の構成
負の二軸性光学素子の構成(積層構造)は、上記D−1項に記載の光学的特性を満足するものであれば、特に制限はない。上記負の二軸性光学素子は、位相差フィルム単独であってもよく、2枚以上の位相差フィルムの積層体であってもよい。好ましくは、負の二軸性光学素子は、単独の位相差フィルムである。偏光子の収縮応力やバックライトの熱による位相差値のズレやムラを低減し、且つ、液晶パネルを薄くすることができるからである。負の二軸性光学素子が積層体である場合には、2枚以上の位相差フィルムを貼着するための粘着剤層や接着剤層を含んでも良い。積層体が2枚以上の位相差フィルムを含む場合には、これらの位相差フィルムは、同一であっても異なっていても良い。なお、位相差フィルムの詳細については後述する。
負の二軸性光学素子に用いられる位相差フィルムのRe[590]は、用いられる位相差フィルムの枚数によって、適宜選択することができる。例えば、負の二軸性光学素子が位相差フィルム単独で構成される場合には、位相差フィルムのRe[590]は、負の二軸性光学素子のRe[590]と等しくすることが好ましい。従って、偏光子やポジティブCプレートに上記負の二軸性光学素子を積層する際に用いられる粘着剤層や接着剤層等の位相差は、できる限り小さいことが好ましい。また、例えば、負の二軸性光学素子が2枚以上の位相差フィルムを含む積層体である場合には、それぞれの位相差フィルムのRe[590]の合計が、負の二軸性光学素子のRe[590]と等しくなるように設計することが好ましい。具体的には、Re[590]が100nmである負の二軸性光学素子は、Re[590]が50nmである位相差フィルムを、それぞれの遅相軸が互いに平行となるように積層して得ることができる。なお、簡単のため、位相差フィルムが2枚以下の場合についてのみ例示したが、3枚以上の位相差フィルムを含む積層体についても、本発明が適用可能であることはいうまでもない。
上記負の二軸性光学素子の全体厚みは、好ましくは10〜500μm、更に好ましくは20〜400μm、最も好ましくは30〜300μmである、負の二軸性光学素子がこのような範囲の厚みを有することにより、光学的均一性に優れた液晶表示装置を得ることができる。
D−4.負の二軸性光学素子に用いられる位相差フィルム
負の二軸性光学素子に用いられる位相差フィルムとしては、透明性、機械的強度、熱安定性、水分遮蔽性などに優れ、歪によって光学的なムラの生じにくいものが好ましく用いられる。上記位相差フィルムとしては、熱可塑性樹脂を主成分とする高分子フィルムの延伸フィルムが好ましく用いられる。本明細書において、「延伸フィルム」とは適当な温度で未延伸のフィルムに張力を加え、または予め延伸されたフィルムに更に張力を加え、特定の方向に分子の配向を高めたプラスチックフィルムをいう。
上記位相差フィルムの23℃における波長590nmの光で測定した透過率としては、好ましくは80%以上であり、更に好ましくは85%以上であり、特に好ましくは90%以上である。光透過率の理論的な上限は100%であり、実現可能な上限は94%である。なお、負の二軸性光学素子全体としても、同様の透過率を有することが好ましい。
上記位相差フィルムの光弾性係数の絶対値:C[590](m/N)は、好ましくは2.0×10−13〜1.0×10−10であり、更に好ましくは1.0×10−12〜1.0×10−10であり、特に好ましくは1.0×10−12〜3.0×10−11である。上記の範囲とすることによって、光学的均一性に優れた液晶表示装置を得ることができる。
上記位相差フィルムの厚みは、目的や負の二軸性光学素子の積層構造に応じて適宜選択され得る。負の二軸性光学素子が位相差フィルム単独で構成される場合には、位相差フィルムの厚みは、上記の負の二軸性光学素子の全体厚みに等しい。負の二軸性光学素子が積層構造を有する場合には、それぞれの位相差フィルムの厚みは、その合計が負の二軸性光学素子の好ましい全体厚みとなるように設定され得る。それぞれの位相差フィルムの厚みは同一であっても異なっていてもよい。具体的には、位相差フィルムの厚みは、好ましくは10〜250μmであり、更に好ましくは20〜200μmであり、特に好ましくは、30〜150μmである。上記の範囲であれば、機械的強度や表示均一性に優れた位相差フィルムを得ることができる。
上記熱可塑性樹脂を主成分とする高分子フィルムを得る方法としては、任意の適切な成形加工法が用いられ、例えば、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、およびソルベントキャスティング法等から適宜、適切なものが選択され得る。これらの製法の中でも好ましくは、押出成形法またはソルベントキャスティング法が用いられる。平滑性が高く、かつ、良好な光学的均一性を有する位相差フィルムを得ることができるからである。更に詳細には、上記押出成形法は、主成分となる熱可塑性樹脂、可塑剤、添加剤等を含む樹脂組成物を加熱して溶融し、これをTダイ等によりキャスティングロールの表面に薄膜状に押出して、冷却させてフィルムを製造する方法である。また、上記ソルベントキャスティング法は、主成分となる熱可塑性樹脂、可塑剤、添加剤等を含む樹脂組成物を溶剤に溶解した濃厚溶液(ドープ)を脱泡し、エンドレスステンレススチールベルト又は回転ドラム表面に均一に薄膜状に流延し、溶剤を蒸発させてフィルムを製造する方法である。なお、成形条件は、用いる樹脂の組成や種類、成形加工法等によって、適宜選択され得る。
上記熱可塑性樹脂を形成する材料としては、ポリエチレン、ポリプロピレン、ポリノルボルネン、ポリ塩化ビニル、セルロースエステル、ポリスチレン、ABS樹脂、AS樹脂、ポリメタクリル酸メチル、ポリ酢酸ビニル、ポリ塩化ビニリデン等の汎用プラスチック;ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の汎用エンジニアリングプラスチック;ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリレート、液晶ポリマー、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン等のスーパーエンジニアリングプラスチック等が挙げられる。また、上記の熱可塑性樹脂は、任意の適切なポリマー変性を行ってから用いることもできる。上記のポリマー変性の例としては、共重合、分岐、架橋、分子末端、および立体規則性等の変性が挙げられる。また、上記の熱可塑性樹脂を2種類以上混合して用いても良い。
上記熱可塑性樹脂を主成分とする高分子フィルムは、必要に応じて任意の適切な添加剤をさらに含有し得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、および増粘剤等が挙げられる。使用される添加剤の種類および量は、目的に応じて適宜設定され得る。添加剤の使用量は、代表的には、当該高分子フィルムの全固形分100に対して、0.1〜10(重量比)以下である。
本発明の負の二軸性光学素子に用いられる位相差フィルムとして好ましくは、セルロースエステルを主成分とする高分子フィルムの延伸フィルムである。透明性、機械的強度、熱安定性、水分遮蔽性などに優れるほか、位相差値の発現性、位相差値の制御のし易さ、偏光子との接着性等に優れるからである。
上記セルロースエステルとしては、任意の適切なセルロースエステルが採用され得る。具体例としては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート等の有機酸エステルが挙げられる。また、上記セルロースエステルは、例えば、セルロースの水酸基の一部がアセチル基とプロピオニル基で置換された混合有機酸エステルであってもよい。上記セルロースエステルは、例えば、特開2001−188128号公報[0040]〜[0041]に記載の方法により製造される。
上記セルロースエステルは、テトラヒドロフラン溶媒によるゲル・パーミエーション・クロマトグラフ(GPC)法で測定した重量平均分子量(Mw)が好ましくは30,000〜500,000、更に好ましくは、50,000〜400,000、特に好ましくは80,000〜300,000の範囲のものである。重量平均分子量が上記の範囲であれば、機械的強度に優れ、溶解性、成形性、流延の操作性が良いものができる。
負の二軸性光学素子に用いられる位相差フィルムを形成する材料として好ましくは、上記セルロースエステルのなかでも、下記一般式(1)で表される繰り返し単位を含むセルロースエステルである。位相差値の波長分散特性に優れ、位相差値が発現しやすいからである。
式中、R1〜R3は、アシル基であり、nは1以上の整数である。上記R1〜R3として更に好ましくは、それぞれ独立して、アセチル基またはプロピオニル基である。
なお、本明細書において、アセチル置換度(又はプロピオニル置換度)とは、セルロース骨格における2、3、6位の炭素についた水酸基をアセチル基(又はプロピオニル基)で置換した数を示す。セルロース骨格における2、3、6位の炭素のどれかにアセチル基(又はプロピオニル基)が偏って存在しても良く、また平均的に存在しても良い。上記アセチル置換度は、ASTM−D817−91(セルロースアセテート等の試験法)によって求めることができる。また、上記プロピオニル置換度は、ASTM−D817−96(セルロースアセテート等の試験法)によって求めることができる。
上記セルロースエステルがアセチル基を含む場合、そのアセチル置換度は、好ましくは1.5〜3.0であり、更に好ましくは2.0〜3.0であり、特に好ましくは2.4〜2.9である。上記セルロースエステルがプロピオニル基を含む場合、そのプロピオニル置換度は、好ましくは0.5〜3.0であり、更に好ましくは0.5〜2.0であり、特に好ましくは0.5〜1.5である。また、上記セルロースエステルが、セルロースの水酸基の一部がアセチル基で置換され一部がプロピオニル基で置換された混合有機酸エステルである場合、アセチル置換度とプロピオニル置換度の合計は、好ましくは1.5〜3.0であり、更に好ましくは2.0〜3.0であり、特に好ましくは2.4〜2.9である。この場合、好ましくは、アセチル置換度は1.0〜2.8であり、プロピオニル置換度は0.2〜2.0である。さらに好ましくは、アセチル置換度は1.0〜2.5であり、プロピオニル置換度は0.5〜2.0である。
熱可塑性樹脂を主成分とする高分子フィルムの延伸フィルムを形成する方法としては、任意の適切な延伸方法が採用され得る。具体例としては、縦一軸延伸法、横一軸延伸法、縦横同時二軸延伸法、縦横逐次二軸延伸法等が挙げられる。延伸手段としては、ロール延伸機、テンター延伸機や二軸延伸機等の任意の適切な延伸機が用いられ得る。加熱しながら延伸を行う場合には、温度を連続的に変化させてもよく、段階的に変化させてもよい。また、延伸工程を2回以上に分割してもよい。好ましくは、縦一軸延伸法または横一軸延伸法が用いられる。これらの延伸法は、フィルム幅方向で遅相軸のバラツキが小さい位相差フィルムが得られ得るからである。更に、縦一軸延伸法は、分子の一軸性を高めるのに適すため(分子の配向方向を一方向に揃え易い)、位相差値が生じにくい材料を用いても、大きな位相差値が得られるという特徴を有する。また、横一軸延伸法は、位相差フィルムの遅相軸と偏光子の吸収軸とが互いに直交する、位相差フィルムと偏光子とが貼着された積層体のロール作製が可能であるため、生産性を大幅に向上し得るという特徴を有する。
上記高分子フィルムを延伸する際の延伸オーブン内の温度(延伸温度ともいう)は、当該高分子フィルムのガラス転移温度(Tg)以上であることが、位相差値が幅方向で均一になり易く、また、フィルムが結晶化(白濁)しにくいなどの点より好ましい。上記延伸温度として好ましくは、Tg+1℃〜Tg+30℃である。代表的には、110〜200℃であり、更に好ましくは120〜170℃である。なお、ガラス転移温度は、JISK7121−1987に準じたDSC法により求めることができる。
上記延伸オーブン内の温度を制御する具体的な方法については、特に制限はないく、熱風又は冷風が循環する空気循環式恒温オーブン、マイクロ波もしくは遠赤外線などを利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロール又は金属ベルトなどの加熱方法や温度制御方法から、適宜、適切なものが選択される。
上記高分子フィルムを延伸する際の延伸倍率は、当該高分子フィルムの組成、揮発性成分等の種類、揮発性成分等の残留量、設計する位相差値等から決められるものであって、特に限定されるものではないが、例えば、1.05〜2.00倍が好ましく用いられる。また、延伸時の送り速度は、特に制限はないが、延伸装置の機械精度、安定性等から好ましくは0.5〜20m/分である。
また、負の二軸性光学素子に用いられる位相差フィルムには、上述した他にも、市販の光学フィルムをそのまま用いることもできる。また、市販の光学フィルムに延伸処理および/または緩和処理などの2次加工を施してから用いても良い。市販のポリノルボルネンフィルムとしては、具体的には、日本ゼオン(株)製 商品名「ゼオネックスシリーズ」(480、480R等)、同社製 商品名「ゼオノアシリーズ」(ZF14、ZF16等)、JSR(株)製 商品名「アートンシリーズ」(ARTON G、ARTON F等)等が挙げられる。また、市販のポリカーボネートフィルムとしては、具体的には、帝人化成(株)製 商品名「ピュアエースシリーズ」、(株)カネカ製 商品名「エルメックシリーズ」(R140,R435等)、日本GEプラスチックス製 商品名「イルミネックスシリーズ」等が挙げられる。
E.ポジティブCプレート
本明細書において、ポジティブCプレートとは、面内の主屈折率をnx(遅相軸方向)、ny(進相軸方向)とし、厚み方向の屈折率をnzとしたとき、屈折率分布がnz>nx=nyを満足する正の一軸性位相差光学素子をいう。正の一軸性位相差光学素子は、理想的には、フィルム法線方向に光学軸を有する。なお、本明細書において、nx=nyとは、nxとnyが完全に同一である場合だけでなく、nxとnyとが実質的に同一である場合も包含する。ここで、「nxとnyとが実質的に同一である場合」とは、面内の位相差値(Re[590])が、10nm以下であるものを包含する。
図1ならびに図2(a)および(b)を参照すると、ポジティブCプレート40は、負の二軸性光学素子30と液晶セル10との間に配置される。
E−1.ポジティブCプレートの光学特性
本発明に用いられるポジティブCプレートのRe[590]は、好ましくは0〜5nmであり、更に好ましくは0〜2nmである。上記の範囲とすることによって、液晶表示装置の斜め方向のコントラスト比を高めることができる。
本発明に用いられるポジティブCプレートのRth[590]は、好ましくは−200〜−30nmであり、更に好ましくは−180〜−40nmであり、特に好ましくは−150〜−50nmであり、最も好ましくは−130〜−70nmである。上記の範囲とすることによって、液晶表示装置の斜め方向のコントラスト比を高めることができる。
E−2.ポジティブCプレートの配置手段
ポジティブCプレート40を負の二軸性光学素子30と液晶セル10との間に配置する方法としては、目的に応じて任意の適切な方法が採用され得る。好ましくは、上記ポジティブCプレート40は、その両側に接着剤層または粘着剤層(図示せず)を設け、負の二軸性光学素子30および液晶セル10に接着させられる。このようにすることによって、液晶表示装置に用いた際に、コントラストを高くすることができる。
上記接着剤または粘着剤の厚みは、使用目的や接着力などに応じて適宜に決定でき、接着剤の好適な厚みの範囲は、一般には、0.1〜50μmであり、好ましくは0.1〜20μmであり、特に好ましくは0.1〜10μmである。粘着剤の好適な厚みの範囲は、一般には、1〜100μmであり、好ましくは5〜80μmであり、特に好ましくは10〜50μmである。
上記接着剤または粘着剤層を形成する接着剤または粘着剤としては、任意の適切な接着剤または粘着剤が採用され得る。例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム系、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、一方の被着体が液晶セルに用いられる基板(代表的には、ガラス基板)である場合には、粘着剤が好ましく用いられる。これは、偏光子の貼着時に、軸ズレが生じた際に、液晶セルを再利用するために、偏光子を剥がす(リワークともいう)場合があるからである。液晶セル10の表面に貼着するためのポジティブCプレート40に用いられる粘着剤としては、特に光学的透明性に優れ、適度なぬれ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるという点で、アクリル系重合体をベースポリマーとするアクリル系粘着剤が好ましく用いられる。具体例としては、アクリル系粘着剤を粘着剤層として備える光学用両面テープ[綜研化学(株)製 商品名「SK−2057」]が挙げられる。
上記ポジティブCプレート40は、nxとnyが完全に同一である場合は、面内に複屈折を生じないため、遅相軸は検出されず、第1の偏光子20の吸収軸、負の二軸性光学素子30の遅相軸および液晶セル10内の液晶分子の配向方向とは無関係に配置され得る。nxとnyとが実質的に同一であっても、nxとnyが僅かに異なる場合は、遅相軸が検出される場合がある。この場合、好ましくは、上記ポジティブCプレート40は、その遅相軸が、第1の偏光子20の吸収軸と実質的に平行または直交するように配置される。なお、本明細書において、「実質的に平行」とは、ポジティブCプレート40の遅相軸と第1の偏光子20の吸収軸とのなす角度が、0°±2.0°である場合を包含し、好ましくは0°±1.0°であり、更に好ましくは0°±0.5°である。また、「実質的に直交」とは、ポジティブCプレート40の遅相軸と第1の偏光子20の吸収軸とのなす角度が、90°±2.0°である場合を包含し、好ましくは90°±1.0°であり、更に好ましくは90°±0.5°である。これらの角度範囲から外れる程度が大きくなるほど、液晶表示装置に用いた際に、コントラストが低下する傾向がある。
E−3.ポジティブCプレートの構成
ポジティブCプレートの構成(積層構造)は、上記E−1項に記載の光学的特性を満足するものであれば、特に制限はない。上記ポジティブCプレートは、位相差フィルム単独であってもよく、2枚以上の位相差フィルムの積層体であってもよい。好ましくは、ポジティブCプレートは、単独の位相差フィルムである。偏光子の収縮応力やバックライトの熱による位相差値のズレやムラを低減し、液晶パネルを薄くすることができるからである。ポジティブCプレートが積層体である場合には、2枚以上の位相差フィルムを貼着するための粘着剤層や接着剤層を含んでも良い。積層体が2枚以上の位相差フィルムを含む場合には、これらの位相差フィルムは、同一であっても異なっていても良い。なお、位相差フィルムの詳細については後述する。
ポジティブCプレートに用いられる位相差フィルムのRth[590]は、用いられる位相差フィルムの枚数によって、適宜選択することができる。例えば、ポジティブCプレートが位相差フィルム単独で構成される場合には、位相差フィルムのRth[590]は、ポジティブCプレートのRth[590]と等しくすることが好ましい。従って、負の二軸性光学素子や液晶セルに上記ポジティブCプレートを積層する際に用いられる粘着剤層や接着剤層等の位相差は、できる限り小さいことが好ましい。また、例えば、ポジティブCプレートが2枚以上の位相差フィルムを含む積層体である場合には、それぞれの位相差フィルムのRth[590]の合計が、ポジティブCプレートのRth[590]と等しくなるように設計することが好ましい。更に具体的には、例えば、Rth[590]が−100nmであるポジティブCプレートは、Rth[590]が−50nmである位相差フィルムを2枚積層して得ることができる。また、Rth[590]が+50nmである位相差フィルムと、Rth[590]が−150nmである位相差フィルムとを積層しても得ることもできる。このとき、2枚の位相差フィルムの遅相軸は、それぞれ直交するように積層されることが好ましい。面内の位相差値を小さくすることができるからである。なお、簡単のため、位相差フィルムが2枚以下の場合についてのみ例示したが、3枚以上の位相差フィルムを含む積層体についても本発明が適用可能であることはいうまでもない。
上記ポジティブCプレートの全体厚みは、ポジティブCプレートが位相差フィルム単独で構成される場合は、好ましい厚みの範囲としては0.1〜3μmであり、更に好ましくは0.3〜2μmであり、特に好ましくは0.5〜2μmである。ポジティブCプレートが2枚以上の位相差フィルムで構成される場合、好ましい厚みの範囲としては1〜200μmであり、更に好ましくは1〜150μmであり、特に好ましくは1〜120μmである。
E−4.ポジティブCプレートに用いられる位相差フィルム
ポジティブCプレートに用いられる位相差フィルムとしては、透明性、機械的強度、熱安定性、水分遮蔽性などに優れ、歪によって光学的なムラの生じにくいものが好ましく用いられる。上記位相差フィルムとして好ましくは、ホメオトロピック配列に配向させた液晶性組成物の固化層または硬化層である。
なお、本明細書において、「ホメオトロピック配列」とは、液晶性組成物に含まれる液晶化合物がフィルム法線方向に対し、平行かつ一様に配向した状態をいう。また、「固化層」とは、軟化、溶融または溶液状態の液晶性組成物が冷却されて、固まった状態のものをいう。「硬化層」とは、上記液晶性組成物が、熱、触媒、光および/または放射線により架橋されて、不溶不融または難溶難融の安定した状態となったものをいう。なお、上記「硬化層」には、液晶性組成物の固化層を経由して、硬化層となったものも包含する。
本明細書において、「液晶性組成物」とは、液晶相を呈し液晶性を示すものをいう。上記液晶相としては、ネマチック液晶相、スメクチック液晶相、コレステリック液晶相などが挙げられる。本発明に用いられる液晶性組成物として好ましくは、ネマチック液晶相を呈するものである。透明性の高い位相差フィルムが得られるからである。上記液晶相は、通常、分子構造中に環状単位等からなるメソゲン基を有する液晶化合物によって発現される。
上記液晶性組成物中の液晶化合物の含有量は、全固形分100に対して、好ましくは、40〜100(重量比)であり、更に好ましくは50〜99(重量比)であり、特に好ましくは、70〜98(重量比)である。上記液晶性組成物には、本発明の目的を損なわない範囲で、レベリング剤、重合開始剤、配向剤、熱安定剤、滑剤、潤滑剤、可塑剤、帯電防止剤などの各種添加剤を含んでいてもよい。
上記液晶化合物の環状単位等からなるメソゲン基としては、例えば、ビフェニル基、フェニルベンゾエート基、フェニルシクロヘキサン基、アゾキシベンゼン基、アゾメチン基、アゾベンゼン基、フェニルピリミジン基、ジフェニルアセチレン基、ジフェニルベンゾエート基、ビシクロヘキサン基、シクロヘキシルベンゼン基、ターフェニル基等が挙げられる。なお、これらの環状単位の末端は、例えば、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。なかでも、環状単位等からなるメソゲン基としては、ビフェニル基、フェニルベンゾエート基を有するものが好ましく用いられる。
上記液晶化合物としては、分子の一部分に少なくとも1つ以上の重合性官能基を有するものが好ましく用いられる。上記重合性官能基としては、アクリロイル基、メタクリロイル基、エポキシ基、ビニルエーテル基等が挙げられる。なかでも、アクリロイル基、メタクリロイル基が好ましく用いられる。また、上記液晶化合物は、重合性官能基を分子の一部分に2つ以上有するものが好ましい。重合反応によって生じる架橋構造によって、耐久性を向上させることができるからである。重合性官能基を分子の一部分に2つ有する液晶化合物の具体例としては、BASF社製 商品名「PaliocolorLC242」が挙げられる。
また、ポジティブCプレートに用いられる位相差フィルムとして更に好ましくは、特開2002−174725号公報に記載の液晶化合物を含む液晶性組成物であって、該液晶性組成物をホメオトロピック配列させた固化層又は硬化層である。特に好ましくは、下記一般式(2)で表される液晶ポリマーを含む液晶性組成物であって、該液晶性組成物をホメオトロピック配列させた固化層又は硬化層である。最も好ましくは、下記一般式(2)で表される液晶ポリマーと、分子の一部分に少なくとも1つ以上の重合性官能基を有する液晶化合物とを含む液晶性組成物であって、該液晶性組成物をホメオトロピック配列させた硬化層である。このような液晶性組成物であれば、光学的均一性に優れ、透明性の高い位相差フィルムを得ることができる。
式中、hは14〜20の整数であり、mとnとの和を100とした場合に、mは50〜70であり、nは30〜50である。
ホメオトロピック配列に配向させた液晶性組成物を得る方法としては、例えば、液晶性組成物の溶融物または溶液を、配向処理された基材上に塗工する方法が挙げられる。好ましくは、液晶性組成物を溶剤に溶解した溶液(塗工溶液ともいう)を、配向処理された基材上に塗工する方法である。上記の方法であれば、液晶性組成物の配向欠陥(ディスクリネーションともいう)が少ない位相差フィルムを得ることができる。
上記塗工溶液を調製する方法としては、市販の液晶性組成物の溶液を用いても良く、市販の液晶性組成物を含む溶液にさらに溶剤を添加して用いてもよい。また、液晶性組成物の固形分を各種溶剤に溶解して用いてもよく、液晶化合物に必要に応じて各種添加剤を加え、さらに溶剤を添加し、溶解して用いてもよい。
上記塗工溶液の全固形分濃度は、溶解性、塗工粘度、基材上へのぬれ性、塗工後の厚みなどによって異なるが、通常、溶剤100に対して固形分を2〜100(重量比)、更に好ましくは10〜50(重量比)、特に好ましくは20〜40(重量比)である。上記の範囲であれば、表面均一性の高い位相差フィルムを得ることができる。
上記溶剤としては、液晶性組成物を均一に溶解して溶液とする液体物質が好ましく用いられる。上記溶剤は、ベンゼンやヘキサンなどの非極性溶媒であってもよいし、水やアルコールなどの極性溶媒であってもよい。また、上記溶剤は、水などの無機溶剤であってもよいし、アルコール類、ケトン類、エーテル類、エステル類、脂肪族および芳香族炭化水素類、ハロゲン化炭化水素類、アミド類、セロソルブ類などの有機溶剤であってもよい。好ましくは、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトン、トルエン、酢酸エチルおよびテトラヒドロフランから選ばれる少なくとも1種の溶剤である。これらの溶剤は、基材に対して実用上悪影響を及ぼすような侵食をせず、上記組成物を十分に溶解することができるため好ましい。
上記基材としては、特に制限はなく、ガラス板や石英基板などのガラス基材、フィルムやプラスチックス基板などの高分子基材の他、アルミや鉄などの金属基材、セラミックス基板などの無機基材、シリコンウエハーなどの半導体基材なども用いられる。特に好ましくは、高分子基材である。基材表面の平滑性や、液晶性組成物のぬれ性に優れるほか、ロールによる連続生産が可能で、生産性を大幅に向上させ得るからである。
上記高分子基材を形成する材料としては、熱硬化性樹脂、紫外線硬化性樹脂、熱可塑性樹脂、熱可塑性エラストマー、生分解性プラスチック等が挙げられる。なかでも、熱可塑性樹脂が好ましく用いられる。上記熱可塑性樹脂は、非晶性ポリマーであっても、結晶性ポリマーであってもよい。非晶性ポリマーは、透明性に優れるため、位相差フィルム(ポジティブCプレート)を基材から剥離せずに、そのまま液晶パネル等に用いることができるという利点を有する。一方、結晶性ポリマーは、剛性、強度、耐薬品性に優れるため、位相差フィルム(ポジティブCプレート)を製造する際の生産安定性に優れるという利点を有する。上記高分子基材として最も好ましくは、ポリエチレンテレフタレートである。表面均一性、強度、耐薬品性、生産安定性等に優れるからである。上記ポリエチレンテレフタレートは、通常、ホメオトロピック配列させた液晶性組成物を固化または硬化させた後に剥離される。
上記配向処理は、液晶化合物の種類や基材の材質等によって、適宜、適切なものが選択され得る。具体例としては、(A)基材面直接配向処理法、(B)基材面間接配向処理法、および(C)基材面変形配向処理法などが挙げられる。なお、本明細書において、(A)「基材面直接配向処理法」とは、配向剤を溶液塗工(湿式処理)またはプラズマ重合もしくはスパッタリング(乾式処理)などの方法により、基材表面に配向剤を薄層状に形成させ、配向剤と液晶化合物との相互作用を利用して、液晶化合物の配列方位を一定に揃える方法をいう。(B)「基材面間接配向処理法」とは、予め配向剤を溶解した液晶性組成物を基材表面に塗工し、液晶性組成物から浸みだした配向剤が基材表面に吸着する現象を利用して、配向剤と液晶化合物との相互作用を利用して、液晶化合物の配列方位を一定に揃える方法をいう。(C)「基材面変形配向処理法」とは、基材表面を形状的に変形して非平滑面化し、この非平滑面と液晶化合物との相互作用を利用して、液晶化合物の配列方位を一定に揃える方法をいう。本発明には、これらのなかでも、(A)基材面直接配向処理法が好ましく用いられる。液晶化合物の配向性に優れるため、結果として、光学的均一性に優れ、透明性の高い位相差フィルムが得られるからである。
上記配向剤として、基材表面に溶液塗工されるものの具体例としては、レシチン、ステアリン酸、ヘキサデシルトリメチルアンモニウムブロマイド、オクタデシルアミンハイドロクロライド、一塩基性カルボン酸クロム錯体(例:ミリスチン酸クロム錯体、パーフルオロノナン酸クロム錯体等)、有機シラン(例:シランカップリング剤、シロキサン等)等が挙げられる。また、基材表面にプラズマ重合されるものの具体例としては、パーフルオロジメチルシクロヘキサン、テトラフルオロエチレン等が挙げられる。また、基材表面にスパッタリングされるものの具体例としては、ポリテトラフルオロエチレン等が挙げられる。上記配向剤として特に好ましくは、有機シランである。作業性、製品の品質、液晶化合物の配向能に優れるからである。有機シランの配向剤の具体例としては、テトラエトキシシランを主成分とする配向剤[コルコート(株) 商品名「エチルシリケート」]が挙げられる。
上記配向剤を調製する方法としては、上記のほかにも、市販の配向剤または配向剤を含む市販の溶液もしくは分散液を用いても良く、市販の配向剤または配向剤を含む市販の溶液もしくは分散液にさらに溶剤を添加して用いてもよく、固形分を各種溶剤に溶解または分散して用いてもよい。
上記塗工溶液の基材への塗工方法については、特に限定はなく、任意の適切なコータを用いた塗工方式を用いることができる。上記コータの具体例としては、リバースロールコータ、正回転ロールコータ、グラビアコータ、ナイフコータ、ロッドコータ、スロットオリフィスコータ、カーテンコータ、ファウンテンコータ、エアドクタコータ、キスコータ、ディップコータ、ビードコータ、ブレードコータ、キャストコータ、スプレイコータ、スピンコータ、押出コータ、ホットメルトコータ等が挙げられる。これらのなかでも、本発明にはリバースロールコータ、正回転ロールコータ、グラビアコータ、ロッドコータ、スロットオリフィスコータ、カーテンコータ、ファウンテンコータ、スピンコータが好ましく用いられる。上記のコータを用いた塗工方式であれば、非常に薄く、かつ、表面均一性、光学的均一性に優れた位相差フィルムを得ることができる。
ホメオトロピック配列に配向させた液晶性組成物を固定化する方法としては、用いる液晶化合物の種類に応じて、固化および/または硬化のいずれかの方法が採用され得る。例えば、液晶性組成物中に液晶化合物として、液晶ポリマーを含む場合には、液晶ポリマーを含む溶融物または溶液を固化することにより実用上十分な機械的強度を得ることができる。一方、液晶性組成物中に液晶化合物として、液晶モノマーを含む場合には、液晶ポリマーの溶液を固化では機械的強度を十分に得ることができない場合がある。このような場合は、分子の一部分に少なくとも1つ以上の重合性官能基を有する重合性液晶モノマーを用い、紫外線を照射して硬化させることによって、実用上十分な機械的強度を得ることができる。
上記紫外線を照射するために、用いられる光源としては、超高圧水銀ランプ、フラッシュUVランプ、高圧水銀ランプ、低圧水銀ランプ、ディープUVランプ、キセノンランプ、キセノンフラッシュランプ及びメタルハライドランプ等が挙げられる。上記光源から出射された紫外線は非偏光でも偏光であってもよい。
上記紫外線照射に用いられる光源の波長は、本発明に用いられる液晶化合物の重合性官能基が光学吸収を有する波長領域に応じて決定できるが、通常、210〜380nmであるものが用いられる。更に好ましくは、250〜380nmである。また、上記光源の波長は、液晶化合物の光分解反応を抑えるために、100〜200nmの真空紫外線領域をフィルター等でカットして用いることが好ましい。上記の範囲であれば、液晶性組成物が架橋反応によって十分に硬化し、液晶性組成物の配列を固定化することができる。
上記紫外線の照射光量は、100〜1500mJ/cm であることが好ましい。更に好ましくは、100〜800mJ/cmである。上記範囲の照射光量であれば、液晶性組成物が、架橋反応によって十分に硬化し、基材上で得られた上記液晶性組成物の配向を固定化することができる。
上記紫外線の照射光量時における照射装置内の温度(照射温度ともいう)は、特に制限はないが、本発明に用いられる液晶性組成物の液晶相−等方相転移温度(Ti)以下に保持しながら、放射線照射を行うことが好ましい。前記照射温度の範囲として好ましくは、Ti−5℃以下の範囲であり、更に好ましくは、Ti−10℃以下の範囲である。上記照射温度としては、15〜90℃の範囲が好ましく、更に好ましくは、15〜60℃である。上記の温度範囲であれば、均一性の高い位相差フィルムを作製することができる。
上記液晶相−等方相転移温度(Ti)は、本発明に用いられる液晶性組成物を2枚のスライドガラスで挟持し、温度コントローラー(例えばジャパンハイテック(株)製 製品名「LK−600PM」)上に配して、2枚の偏光子をクロスニコル配置にした偏光顕微鏡にて、昇温しながら観察したときに、明視野から暗視野が得られたときの温度を測定することによって求めることができる。
上記照射温度を一定に保持する具体的な方法については、特に制限はなく、熱風又は冷風が循環する空気循環式恒温オーブン、マイクロ波もしくは遠赤外線などを利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロール又は金属ベルトなどの加熱方法や温度制御方法から、適宜、適切なものが選択される。
本発明において、塗工溶液を塗工した基材は、紫外線照射を行う前および/または後に乾燥処理を行ってもよい。上記乾燥処理における温度(乾燥温度)としては、特に制限はないが、前記液晶性組成物の液晶相を示す温度範囲で行うことが好ましい。また、基材のガラス転移温度(Tg)以下であることが好ましい。乾燥温度の好ましい範囲としては、50〜130℃である。更に好ましくは、80〜100℃である。上記の温度範囲であれば、均一性の高い位相差フィルムを作製することができる。
前記乾燥処理する時間(乾燥時間)は、特に制限されるものではないが、良好な光学的均一性を有する位相差フィルムを得るためには、例えば1〜20分であり、好ましくは1〜15分、更に好ましくは、2〜10分である。
上記ポジティブCプレートに用いられる位相差フィルムの23℃における波長590nmの光で測定した透過率としては、好ましくは80%以上であり、更に好ましくは85%以上であり、特に好ましくは90%以上である。なお、ポジティブCプレートも同様の透過率を有することが好ましい。
上記ポジティブCプレートに用いられる位相差フィルムの23℃における波長589nmの光で測定したフィルム厚み方向の複屈折率(nx−nz)は、−0.2〜−0.03であることが好ましい。更に好ましくは、−0.15〜−0.05であり、特に好ましくは、−0.12〜−0.05である。上記の範囲であれば、面内で位相差値のバラツキが小さい薄型の位相差フィルムを得ることができる。
上記ポジティブCプレートに用いられる位相差フィルムの厚みは、目的やポジティブCプレートの積層構造に応じて適宜選択され得る。ポジティブCプレートが位相差フィルム単独で構成される場合には、位相差フィルムの厚みは、上記のポジティブCプレートの全体厚みに等しい。ポジティブCプレートが積層構造を有する場合には、それぞれの位相差フィルムの厚みは、その合計がポジティブCプレートの好ましい全体厚みとなるように設定され得る。それぞれの位相差フィルムの厚みは同一であっても異なっていてもよい。具体的には、位相差フィルムの厚みは、好ましくは0.1〜100μmであり、更に好ましくは0.1〜80μmであり、特に好ましくは、0.1〜50μmである。上記の範囲であれば、機械的強度や表示均一性に優れた位相差フィルムを得ることができる。
F.等方性光学素子
図1ならびに図2(a)および(b)を参照すると、等方性光学素子50は、液晶セル10と第2の偏光子20’との間に配置される。このような形態によれば、当該等方性光学素子が、偏光子の液晶セル側の保護フィルムとして機能することとなり、偏光子の劣化を防ぎ、結果として、液晶パネルの表示特性を長時間高く維持することができる。
本明細書において、「等方性光学素子」とは、面内の主屈折率をnx、nyとし、厚み方向の屈折率をnzとしたとき、屈折率分布がnx=ny=nzを満足するものをいう。なお、本明細書において、nx、nyおよびnzは、それぞれ完全に同一である場合だけでなく、nx、nyおよびnzが実質的に同一である場合も包含する。ここで、「nx、nyおよびnzが実質的に同一である場合」とは、例えば、面内の位相差値(Re[590])が10nm以下であり、フィルム厚み方向の位相差値(Rth[590])が10nm以下であるものを包含する。
F−1.等方性光学素子の光学特性
本発明に用いられる等方性光学素子のRe[590]は、できる限り小さいほうが好ましい。液晶表示装置の正面および斜め方向のコントラスト比を高くすることができるからである。Re[590]は、好ましくは5nm以下であり、最も好ましくは3nm以下である。
上記等方性光学素子のRth[590]もまた、できる限り小さいほうが好ましい。液晶表示装置の斜め方向のコントラスト比を高くすることができるからである。Rth[590]は、好ましくは7nm以下であり、最も好ましくは5nm以下である。上記の範囲とすることによって、液晶表示装置の表示特性に及ぼすRthに起因する悪影響を排除することができる。
F−2.等方性光学素子の配置手段
図2(a)および(b)を参照すると、上記等方性光学素子50を液晶セル10と偏光子20’の間に配置する方法としては、目的に応じて任意の適切な方法が採用され得る。好ましくは、上記等方性光学素子50は、その両側に接着剤層または粘着剤層(図示せず)を設け、液晶セル10および偏光子20’に接着させられる。このようにすることによって、液晶表示装置に用いた際に、コントラストを高くすることができる。
上記接着剤または粘着剤の厚みは、使用目的や接着力などに応じて適宜に決定でき、一般には1〜500μmであり、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。
上記接着剤または粘着剤層を形成する接着剤または粘着剤としては、任意の適切な接着剤または粘着剤が採用され得る。例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム系、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、一方の被着体が液晶セルに用いられる基板(代表的には、ガラス基板)である場合には、粘着剤が好ましく用いられる。これは、偏光子の貼着時に、軸ズレが生じた際に、液晶セルを再利用するために、偏光子を剥がす(リワークともいう)場合があるからである。液晶セル10の表面に貼着するための等方性光学素子50に用いられる粘着剤としては、特に光学的透明性に優れ、適度なぬれ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるという点で、アクリル系重合体をベースポリマーとするアクリル系粘着剤が好ましく用いられる。具体例としては、アクリル系粘着剤を粘着剤層として備える光学用両面テープ[綜研化学(株)製 商品名「SK−2057」]が挙げられる。
上記等方性光学素子50は、nxとnyが完全に同一である場合は、面内に複屈折を生じないため、遅相軸は検出されず、偏光子20’の吸収軸とは無関係に配置され得る。nxとnyとが実質的に同一であっても、nxとnyが僅かに異なる場合は、遅相軸が検出される場合がある。この場合、好ましくは、上記ポジティブCプレート40は、その遅相軸が、偏光子20の吸収軸と実質的に平行または直交するように配置される。なお、本明細書において、「実質的に平行」とは、ポジティブCプレート40の遅相軸と偏光子20の吸収軸とのなす角度が、0°±2.0°である場合を包含し、好ましくは0°±1.0°であり、更に好ましくは0°±0.5°である。また、「実質的に直交」とは、ポジティブCプレート40の遅相軸と偏光子20の吸収軸とのなす角度が、90°±2.0°である場合を包含し、好ましくは90°±1.0°であり、更に好ましくは90°±0.5°である。これらの角度範囲から外れる程度が大きくなるほど、液晶表示装置に用いた際に、コントラストが低下する傾向がある。
F−3.等方性光学素子の構成
等方性光学素子の構成(積層構造)は、上記F−1項に記載の光学的特性を満足するものであれば、特に制限はない。上記等方性光学素子は、単独の光学フィルムであってもよく、2枚以上の光学フィルムの積層体であってもよい。等方性光学素子が積層体である場合には、上記光学フィルムを貼着するための接着剤層や粘着剤層を含んでもよい。等方性光学素子が実質的に光学的に等方性を有する限りにおいて、上記光学フィルムは、等方性フィルムであってもよく、位相差フィルムであってもよい。例えば、2枚の位相差フィルムを積層する場合、各位相差フィルムは、それぞれの遅相軸が互いに直交するように配置することが好ましい。このように配置することによって、面内の位相差値を小さくすることができる。また、各位相差フィルムは、厚み方向の位相差値の正負が互いに逆であるフィルムを積層することが好ましい。このように積層することで、厚み方向の位相差値を小さくすることができる。
上記等方性光学素子の全体厚みとしては、好ましくは10〜200μmであり、更に好ましくは15〜150μmであり、特に好ましくは20〜100μmである。上記の厚みの範囲とすることによって、光学的均一性に優れた等方性光学素子を得ることができる。
F−4.等方性光学素子に用いられる光学フィルム
等方性光学素子に用いられる光学フィルムとして好ましくは、等方性フィルムである。本明細書においては、「等方性フィルム」とは、3次元的に方向によって光学的に差が小さく、複屈折などの異方的な光学的性質を実質的に示さないフィルムをいう。なお、「異方的な光学的性質を実質的に示さない」とは、複屈折が僅かにある場合であっても液晶表示装置の表示特性に実用上悪影響を及ぼさない場合は等方性に包含する。
上記等方性フィルムを得る方法としては、任意の適切な方法が採用され得る。具体例としては、押出し法、ソルベントキャスティング法、インフレーション法等が挙げられる。等方性フィルムの成形には、押出し法が好ましく用いられる。
上記等方性フィルムを構成する材料としては、ポリエチレン、ポリプロピレン、ポリノルボルネン、ポリ塩化ビニル、セルロースエステル、ポリスチレン、ABS樹脂、AS樹脂、ポリメタクリル酸メチル、ポリ酢酸ビニル、ポリ塩化ビニリデン等の汎用プラスチック;ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の汎用エンジニアリングプラスチック;ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリレート、液晶ポリマー、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン等のスーパーエンジニアリングプラスチック等が挙げられる。また、上記の熱可塑性樹脂は、任意の適切なポリマー変性を行ってから用いることもできる。上記のポリマー変性の例としては、共重合、分岐、架橋、分子末端、および立体規則性等の変性が挙げられる。また、上記の熱可塑性樹脂を2種類以上混合して用いても良い。
上記等方性フィルムを構成する材料として好ましくは、透明性、機械的強度、熱安定性、水分遮蔽性などに優れるほか、光弾性係数の絶対値が小さく、偏光子との接着性に優れるという点で、ポリノルボルネン、セルロースエステル、イソブチレン・N−メチルマレイミド共重体、およびアクリロニトリル・スチレン共重合体から選ばれる少なくとも1つの樹脂を主成分とする高分子フィルムが用いられる。
特に好ましくは、光弾性係数の絶対値が特に小さく、位相差値が発現しにくい点で、エチレンとノルボルネン系モノマーを付加共重合したポリノルボルネンが用いられ、最も好ましくは、下記一般式(3)で表される繰り返し単位を含むポリノルボルネンが用いられる。
式中、R1〜R4は、それぞれ独立して、水素、ハロゲン、ハロゲン化アルキル基、1〜5個の炭素原子を有するアルキル基、1〜5個の炭素原子を有するアルコキシ基、1〜5個の炭素原子を有するアルコキシカルボニル基、1〜5個の炭素原子を有するアルキルカルボニルオキシ基およびそれらの置換誘導体から選ばれる基であり、nは1以上の整数である。最も好ましくは、R1〜R4は水素原子である。
上記等方性光学素子に用いられる等方性フィルムの23℃における波長590nmの光で測定した透過率としては、好ましくは80%以上であり、更に好ましくは85%以上であり、特に好ましくは90%以上である。なお、等方性光学素子も同様の透過率を有することが好ましい。
上記等方性フィルムの光弾性係数の絶対値:C[590](m/N)は、好ましくは2.0×10−13〜1.0×10−10であり、更に好ましくは1.0×10−12〜1.0×10−10であり、特に好ましくは1.0×10−12〜2.0×10−11である。上記の範囲とすることによって、光学的均一性に優れた液晶表示装置を得ることができる。
上記等方性フィルムの厚みは、目的や等方性光学素子の積層構造に応じて適宜選択され得る。等方性光学素子が等方性フィルム単独で構成される場合には、等方性フィルムの厚みは、上記の等方性光学素子の全体厚みに等しい。等方性光学素子が積層構造を有する場合には、それぞれの等方性フィルムの厚みは、その合計が等方性光学素子の好ましい全体厚みとなるように設定され得る。それぞれの等方性フィルムの厚みは同一であっても異なっていてもよい。好ましくは10〜100μmであり、更に好ましくは10〜80μmであり、特に好ましくは、10〜50μmである。上記の範囲であれば、機械的強度や表示均一性に優れた等方性フィルムを得ることができる。
G.液晶表示装置
本発明の液晶パネルは、パーソナルコンピューター、液晶テレビ、携帯電話、携帯情報端末(PDA)等の液晶表示装置や、有機エレクトロルミネッセンスディスプレイ(有機EL)、プロジェクター、プロジェクションテレビ、プラズマテレビ等の画像表示装置に用いることができる。なかでも、本発明の液晶パネルは、液晶表示装置に好適に用いられ、液晶テレビに特に好適に用いられる。
図3は、本発明の好ましい実施形態による液晶表示装置の概略断面図である。この液晶表示装置200は、液晶パネル100と、液晶パネルの両側に配置された保護層60、60’と、保護層60、60’の更に外側に配置された表面処理層70、70’と、表面処理層70’の外側(バックライト側)に配置された、輝度向上フィルム80、プリズムシート110、導光板120およびバックライト130とを備える。上記表面処理層70、70’としては、ハードコート処理、反射防止処理、スティッキング防止処理、拡散処理(アンチグレア処理ともいう)などを施した処理層が用いられる。また、上記輝度向上フィルムとしては、偏光選択層を有する偏光分離フィルム(例:住友3M(株)製 商品名「D−BEFシリーズ」)などが用いられる。これらの光学部材を用いることによって、更に表示特性の高い表示装置を得ることができる。また、別の実施形態においては、図3に例示した光学部材は、本発明を満足する限りにおいて、用いられる液晶セルの駆動モードや用途に応じて、その一部が省略されるか、若しくは他の光学部材に代替され得る。
本発明の液晶パネルを備えた液晶表示装置の方位角45°方向、極角60°方向におけるコントラスト比(YW/YB)として好ましくは15〜200であり、更に好ましくは25〜200であり、特に好ましくは40〜200である。
また、上記液晶表示装置の方位角45°方向、極角60°方向におけるカラーシフト量(Δab値)として好ましくは0.05〜1.0であり、更に好ましくは0.05〜0.6であり、特に好ましくは0.05〜0.5である。
H.本発明の液晶パネルの用途
本発明の液晶パネルおよび液晶表示装置が用いられる用途は、特に制限はないが、パソコンモニター,ノートパソコン,コピー機などのOA機器、携帯電話,時計,デジタルカメラ,携帯情報端末(PDA),携帯ゲーム機などの携帯機器、ビデオカメラ,液晶テレビ,電子レンジなどの家庭用電気機器、バックモニター,カーナビゲーションシステム用モニター,カーオーディオなどの車載用機器、商業店舗用インフォメーション用モニターなどの展示機器、監視用モニターなどの警備機器、介護用モニター,医療用モニターなどの介護・医療機器などの各種用途に用いることができる。
特に好ましくは、本発明の液晶パネルおよび液晶表示装置は大型の液晶テレビに用いられる。本発明の液晶パネルおよび液晶表示装置が用いられる液晶テレビの画面サイズとしては、好ましくはワイド17型(373mm×224mm)以上であり、さらに好ましくはワイド23型(499mm×300mm)以上であり、特に好ましくはワイド26型(566mm×339mm)以上であり、最も好ましくはワイド32型(687mm×412mm)以上である。
本発明について、以下の実施例および比較例を用いて更に説明する。なお、本発明は、これらの実施例のみに限定されるものではない。なお、実施例で用いた各分析方法は、以下の通りである。
(1)偏光子の単体透過率、偏光度の測定方法:
分光光度計[村上色彩技術研究所(株)製 製品名「DOT−3」]を用いて、23℃で測定した。
(2)分子量の測定方法:
ゲル・パーミエーション・クロマトグラフ(GPC)法よりポリスチレンを標準試料として算出した。具体的には、以下の装置、器具および測定条件により測定した。
・分析装置:TOSOH製「HLC−8120GPC」
・カラム:TSKgel SuperHM−H/H4000/H3000/H2000
・カラムサイズ:6.0mmI.D.×150mm
・溶離液:テトラヒドロフラン
・流量:0.6ml/min.
・検出器:RI
・カラム温度:40℃
・注入量:20μl
(3)厚みの測定方法:
厚みが10μm未満の場合、薄膜用分光光度計[大塚電子(株)製 製品名「瞬間マルチ測光システム MCPD−2000」]を用いて測定した。厚みが10μm以上の場合、アンリツ製デジタルマイクロメーター「KC−351C型」を使用して測定した。
(4)位相差値(Re、Rth)の測定方法:
平行ニコル回転法を原理とする位相差計[王子計測機器(株)製 製品名「KOBRA21−ADH」]を用いて、23℃における波長590nmの光で測定した。なお、波長分散測定については、波長480nmの光も用いた。
(5)フィルムの屈折率の測定方法:
アッベ屈折率計[アタゴ(株)製 製品名「DR−M4」]を用いて、23℃における波長589nmの光で測定した屈折率より求めた。
(6)透過率の測定方法:
紫外可視分光光度計[日本分光(株)製 製品名「V−560」]を用いて、23℃における波長590nmの光で測定した。
(7)光弾性係数の測定方法:
分光エリプソメーター[日本分光(株)製 製品名「M−220」]を用いて、サンプル(サイズ2cm×10cm)の両端を挟持して応力(5〜15N)をかけながら、サンプル中央の位相差値(23℃/波長590nm)を測定し、応力と位相差値の関数の傾きから算出した。
(8)液晶表示装置のコントラスト比の測定方法:
以下の方法、液晶セル、測定装置を用いて23℃の暗室で測定した。液晶表示装置に、白画像および黒画像を表示させ、ELDIM社製 製品名「EZ Contrast160D」により、表示画面の方位角45°方向、極角60°方向におけるXYZ表示系のY値を測定した。そして、白画像におけるY値(YW)と、黒画像におけるY値(YB)とから、斜め方向のコントラスト比「YW/YB」を算出した。なお、方位角45°とは、パネルの長辺を0°としたときに反時計周りに45°回転させた方位を表し、極角60°とは表示画面の正面方向を0°としたときに、角度60°に傾斜した方向を表す。
・液晶セル:SONY製 KLV−17HR2に搭載されているもの
・パネルサイズ: 375mm×230mm
(9)液晶表示装置のカラーシフト量の測定方法:
液晶表示装置に、黒画像を表示させ、ELDIM社製 製品名「EZ Contrast160D」を用いて、極角60°方向における全方位(360°)の色相、a値およびb値を測定した。極角60°方向における全方位のa値、b値の平均値をそれぞれ、aave.値、bave.値とし、また、極角60°方位角45°におけるa値、b値をそれぞれa45°値、b45°値とした。斜め方向のカラーシフト量(Δab値)は、次式:{(a45°−aave.+(b45°−bave.}1/2から算出した。なお、方位角45°とは、パネルの長辺を0°としたときに反時計回りに45°回転させた方位を表す。また、極角60°とは、パネルに対し鉛直方向を0°としたときに60°斜めから見た方位を表す。
負の二軸性光学素子の製法
[参考例1]
セルロースエステルを主成分とする市販の高分子フィルム[コニカ(株)製 商品名「KC12UR」(厚み:120μm)]をロール延伸機でフィルムの長手方向を保持して、150℃の空気循環式恒温オーブン内(フィルム裏面から3cmの距離の温度を測定、温度バラツキ±1℃)で1.30倍に縦一軸延伸し、位相差フィルムAを作製した。得られた位相差フィルムAの特性は、表1の通りである。なお、上記高分子フィルム(延伸前)のRe[590]は12nm、Rth[590]は113nmであった。
[参考例2]
アセチル置換度が2.0、プロピオニル置換度が0.8であるセルロースの水酸基の一部がアセチル基で置換され一部がプロピオニル基で置換された混合有機酸エステルを主成分とするセルロースエステル(製法は特開2001−188128号公報の実施例1に準じた)を用いて、ソルベントキャスティング法で製膜した高分子フィルム(厚み:160μm)をロール延伸機でフィルムの長手方向を保持して、150℃の空気循環式恒温オーブン内(フィルム裏面から3cmの距離の温度を測定、温度バラツキ±1℃)で1.15倍に縦一軸延伸し、位相差フィルムBを作製した。得られた位相差フィルムBの特性は、表1の通りである。なお、上記高分子フィルム(延伸前)のRe[590]は12nm、Rth[590]は113nmであった。
[参考例3]
ポリノルボルネンを主成分とする市販の高分子フィルム[日本ゼオン(株) 商品名「ゼオノアZF14−060(厚み:60μm、ガラス転移温度:136℃)」]をテンター延伸機でフィルムの長手方向を保持固定して、140℃の空気循環式恒温オーブン内(フィルム裏面から3cmの距離の温度を測定、温度バラツキ±1℃)で、幅方向に、1.8倍に横一軸延伸し、位相差フィルムCを作製した。得られた位相差フィルムCの特性は、表1の通りである。なお、上記高分子フィルム(延伸前)のRe[590]は2.7nm、Rth[590]は0.5nmであった。
ポジティブCプレートの製法
[参考例4]
市販のポリエチレンテレフタレートフィルム[東レ(株)製 商品名「S−27E」(厚み:75μm)]にエチルシリケート溶液[コルコート(株)製(酢酸エチル、イソプロピルアルコールの混合溶液、2wt%)]をグラビアコータで塗工し、130℃の空気循環式恒温オーブン(温度バラツキ±1℃)で1分間乾燥させて、厚み0.1μmのガラス質高分子膜を有するポリエチレンテレフタレートフィルムを作製した。
下記式(4)で表される液晶ポリマー(重量平均分子量:5,000)を5重量部、メソゲン基としてフェニルベンゾエート基を有し、分子構造中に2つの重合性官能基を有する市販の液晶化合物[BSAF社製、商品名「PaliocolorLC242」]20重量部、および光重合開始剤[チバスペシャリティケミカルズ(株)製、商品名「イルガキュア907」]1.25重量部を混合して、液晶性組成物を調製し、これをシクロヘキサノン75重量部に溶解して、塗工溶液を作製した。上記塗工溶液を、上記ポリエチレンテレフタレートフィルムのガラス質高分子膜上にロッドコータを用いて塗工し、80℃の空気循環式恒温オーブン(温度バラツキ±1℃)で2分間乾燥後、室温(23℃)に冷却して、基材上に、ホメオトロピック配列に配向させた液晶性組成物の固化層を形成した。次いで、30℃の空気雰囲気下、上記塗工溶液を塗工した側から紫外線(メタルハライドランプを光源とした照射装置を使用)を400mJ/cm(波長365nmの値を測定)照射して、基材上に、ホメオトロピック配列に配向させた液晶性組成物の硬化層を形成した。基材は剥離して、位相差フィルムDを作製した。上記位相差フィルムDの特性は、表1の通りである。
[参考例5]
塗工溶液の塗工厚みを代えた以外は、参考例4と同様の方法で位相差フィルムEを作製した。上記位相差フィルムEの特性は、表1の通りである。
[参考例6]
塗工溶液の塗工厚みを代えた以外は、参考例4と同様の方法で位相差フィルムFを作製した。上記位相差フィルムFの特性は、表1の通りである。
等方性光学素子の製法
[参考例7]
エチレンとノルボルネンとを付加共重したポリノルボルネン[TICONA社製 商品名「TOPAS」(ガラス転移温度:140℃、重量平均分子量:90,000)]のペレットを、100℃で5時間乾燥後、40nmφm単軸押出機と400mm幅のTダイを用いて、270℃で押出し、シート状の溶融樹脂を冷却ドラムで冷却して幅約600mm、厚み40μmの高分子フィルムAを作製した。上記高分子フィルムAの特性は、表2の通りである。
[参考例8]
市販のセルロースエステルフィルム[富士写真フィルム(株)製 商品名「UZ−TAC」(厚み40μm)]の表面に、ポリノルボルネン[JSR(株)製 商品名「ARTON G」]20重量部をシクロペンタノン(溶剤)80重量部に溶解させて調整した溶液を、塗工厚み150μmで塗工した。次いで、140℃の空気循環式恒温オーブン(温度バラツキ±1℃)で3分間乾燥させて、溶剤を蒸発させ、上記セルロースエステルフィルムの表面にポリノルボルネン層を形成した。ポリノルボルネン層は剥離して、透明なセルロースエステルフィルムを得、これを高分子フィルムBとした。上記高分子フィルムBの特性は、表2の通りである。なお、膨潤させる前のセルロースエステルフィルムのRe[590]は2.2nm、Rth[590]は39.8nmであった。
[参考例9]
イソブチレンとN−メチルマレイミドからなる交互共重合体(N−メチルマレイミドの含有量50%モル、ガラス転移温度157℃)65重量部、アクリロニトリル・スチレン共重合体(アクリロニトリルの含有量27%モル)35重量部、および2−[4,6−ジフェニル−1,3,5−トリアジン−2−イル]−5−[(ヘキシル)オキシ]−フェノール(紫外線吸収剤)1重量部を押出機にてペレットにしたものを、100℃で5時間乾燥後、40nmφm単軸押出機と400mm幅のTダイを用いて、270℃で押出し、シート状の溶融樹脂を冷却ドラムで冷却して幅約600mm、厚み40μmの高分子フィルムCを作製した。上記高分子フィルムCの特性は、表2の通りである。
[参考例10]
市販のセルロースエステルフィルム[富士写真フィルム(株)製 商品名「UZ−TAC」(厚み80μm)]を高分子フィルムDとしてそのまま用いた。上記高分子フィルムDの特性は、表2の通りである。
偏光子の製法
[参考例11]
ポリビニルアルコールを主成分とする高分子フィルム[クラレ(株)製 商品名「9P75R(厚み:75μm、平均重合度:2,400、けん化度99.9モル%)」]を30℃±3℃に保持したヨウ素とヨウ化カリウム配合の染色浴にて、ロール延伸機を用いて、染色しながら2.5倍に一軸延伸した。次いで、60±3℃に保持したホウ酸とヨウ化カリウム配合の水溶液中で、架橋反応を行いながら、ポリビニルアルコールフィルムの元長の6倍となるように一軸延伸した。得られたフィルムを50℃±1℃の空気循環式恒温オーブン内で30分間乾燥させて、水分率26%,厚み28μm、偏光度99.9%、単体透過率43.5%の偏光子P1、P2を得た。
[実施例1]
IPSモードの液晶セルを備える液晶表示装置[SONY製 KLV−17HR2]から液晶パネルを取り出し、液晶セルの上下に配置されていた偏光板を取り除いて、該液晶セルのガラス面(表裏)を洗浄した。続いて、上記液晶セルの視認側の表面に、ポジティブCプレートとして、参考例5で作製した位相差フィルムEを、その遅相軸が、上記液晶セルの長辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:20μm)を用いて貼着した。次いで、位相差フィルムEの表面に、負の二軸性光学素子として、参考例1で作製した位相差フィルムAを、その遅相軸が、上記液晶セルの長辺と直交(90°±0.2°)するように、アクリル系粘着剤(厚み:10μm)を用いて貼着した。更に、位相差フィルムAの表面に、第1の偏光子として、参考例11で作製した偏光子P1を、その吸収軸が、上記液晶セルの長辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着した。このとき、位相差フィルムAの遅相軸と偏光子P1の吸収軸は、互いに直交(90°±0.4°)である。
続いて、上記液晶セルのバックライト側の表面に、等方性光学素子として、参考例7で作製した高分子フィルムAを、その遅相軸が、上記液晶セルの短辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着した。次いで、高分子フィルムAの表面に、第2の偏光子として、参考例11で作製した偏光子P2を、その吸収軸が、上記液晶セルの短辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着した。このとき、偏光子P1の吸収軸と偏光子P2の吸収軸は、互いに直交(90°±0.4°)である。このようにして、図2(a)と同等の構成を有するOモードの液晶パネルを作製した。
前記液晶パネルを、元の液晶表示装置に組み込み、バックライトを点灯させて10分後に斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[実施例2]
負の二軸性光学素子として、位相差フィルムAに代えて、位相差フィルムBを用いた以外は実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[実施例3]
負の二軸性光学素子として、位相差フィルムAに代えて、位相差フィルムCを用いた以外は実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[実施例4]
ポジティブCプレートとして、位相差フィルムEに代えて、位相差フィルムDを用いた以外は実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[実施例5]
ポジティブCプレートとして、位相差フィルムEに代えて、位相差フィルムFを用いた以外は実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[実施例6]
等方性光学素子として、高分子フィルムAに代えて、高分子フィルムCを用いた以外は、実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[比較例1]
等方性光学素子として用いた高分子フィルムAに代えて、参考例10で作製した高分子フィルムDを用いた以外は、実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[比較例2]
実施例1と同様に、IPSモードの液晶セルを備える液晶表示装置[SONY製 KLV−17HR2]から液晶パネルを取り出し、液晶セルの上下に配置されていた偏光板を取り除いて、該液晶セルのガラス面(表裏)を洗浄した。上記液晶セルの視認側の表面に、第1の偏光子として、参考例11で作製した偏光子P1を、その吸収軸が、上記液晶セルの長辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着し、次いで、上記液晶セルのバックライト側の表面に、第2の偏光子として、参考例11で作製した偏光子P2を、その吸収軸が、上記液晶セルの短辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着して液晶パネルを作製した(すなわち、負の二軸性光学素子もポジティブCプレートも用いなかった)。
続いて、上記液晶セルのバックライト側の表面に、等方性光学素子として、参考例7で作製した高分子フィルムAを、その遅相軸が、上記液晶セルの短辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着した。次いで、高分子フィルムAの表面に、第2の偏光子として、参考例11で作製した偏光子P2を、その吸収軸が、上記液晶セルの短辺と平行(0°±0.2°)となるように、アクリル系粘着剤(厚み:10μm)を用いて貼着した。このとき、偏光子P1の吸収軸と偏光子P2の吸収軸は、互いに直交(90°±0.4°)である。
実施例1と同様の方法で、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[比較例3]
上記液晶セルの視認側の表面に配置した位相差フィルムEと位相差フィルムAの貼着順序を実施例1とは逆にした(すなわち、位相差フィルムAを液晶セルと位相差フィルムEとの間に配置した)以外は、実施例1と同様の方法で液晶パネルを作製し、斜め方向のコントラスト比および斜め方向のカラーシフト量を測定した。得られた特性は表3の通りである。
[評価]
実施例1〜6に示すように、負の二軸性光学素子、ポジティブCプレートおよび等方性光学素子を、図2(a)に示すように配置した液晶パネルは、斜め方向のコントラスト比が高く、斜め方向のカラーシフト量の小さい液晶表示装置が得られた。また、図2(b)のような構成の液晶パネルについても、斜め方向のコントラスト比が高く、斜め方向のカラーシフト量の小さい液晶表示装置が得られることが実際に確認された。実施例1〜3の結果を考慮すると、負の二軸性光学素子のRe[590]は、斜め方向のコントラスト比を高めるためには、100nm付近が最も好ましいことが分かる。また、実施例1、4および5の結果を考慮すると、ポジティブCプレートのRth[590]は−100nm付近が最も好ましいことが分かる。一方、比較例1は、等方性光学素子として用いた高分子フィルムAに代えて、従来から偏光子の保護層として用いられてきた高分子フィルムDを用いた液晶パネルである。この液晶パネルは、斜め方向のコントラスト比が低く、斜め方向のカラーシフト量の大きな液晶表示装置しか得ることができなかった。また、負の二軸性光学素子もポジティブCプレートも用いない比較例2の液晶パネルも同様に、これも斜め方向のコントラスト比が低く、斜め方向のカラーシフト量の大きな液晶表示装置しか得ることができなかった。更に、比較例3の液晶パネルは、負の二軸性光学素子とポジティブCプレートの配置順序を、実施例1の液晶パネルとは逆にしたものであるが、これも斜め方向のコントラスト比が低く、斜め方向のカラーシフト量の大きな液晶表示装置しか得ることができなかった。すなわち、偏光子とポジティブCプレートとの間に負の二軸性光学素子を配置することが重要であることがわかる。
以上のように、本発明の液晶パネルによれば、斜め方向のコントラスト比を高め、斜め方向のカラーシフト量を低減することができるため、液晶表示装置の表示特性向上に、極めて有用であると言える。本発明の液晶パネルは、液晶表示装置および液晶テレビに好適に用いられる。
本発明の好ましい実施形態による液晶パネルの概略断面図である。 (a)は本発明の液晶パネルがOモードを採用する場合の概略斜視図であり、(b)は本発明の液晶パネルがEモードを採用する場合の概略斜視図である。 本発明の好ましい実施形態による液晶表示装置の概略断面図である。
符号の説明
100:液晶パネル
10:液晶セル
11、11’:基板
12:液晶層
20、20’:第1の偏光子、第2の偏光子
30:負の二軸性光学素子
40:ポジティブCプレート
50:等方性光学素子
60、60’:保護層
70、70’:表面処理層
80:輝度向上フィルム
110:プリズムシート
120:導光板
130:バックライト
200:液晶表示装置

Claims (13)

  1. 電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層を備える液晶セルと、該液晶セルの一方の側に配置された第1の偏光子と、該液晶セルの他方の側に配置された第2の偏光子と、該液晶セルと該第1の偏光子との間に配置されたnx>ny>nzの屈折率分布を有する負の二軸性光学素子およびnz>nx=nyの屈折率分布を有するポジティブCプレートと、該液晶セルと該第2の偏光子との間に配置された等方性光学素子とを備え、
    該負の二軸性光学素子が、第1の偏光子とポジティブCプレートとの間に配置され、そのRe[480]/Re[590]が0.8〜1.2である、
    液晶パネル。
  2. 前記液晶セルがIPSモード、FFSモードまたはFLCモードである、請求項1に記載の液晶パネル。
  3. 前記液晶セルの初期配向方向と、前記第2の偏光子の吸収軸の方向とが、実質的に平行である、請求項1または2に記載の液晶パネル。
  4. 前記液晶セルの初期配向方向と、該液晶セルのバックライト側に配置された偏光子の吸収軸の方向とが、実質的に平行である、請求項1から3のいずれかに記載の液晶パネル。
  5. 前記液晶セルの初期配向方向と、該液晶セルのバックライト側に配置された偏光子の吸収軸の方向とが、実質的に直交している、請求項1から3のいずれかに記載の液晶パネル。
  6. 前記負の二軸性光学素子の遅相軸が、前記第1の偏光子の吸収軸と実質的に直交である、請求項1から5のいずれかに記載の液晶パネル。
  7. 前記負の二軸性光学素子の23℃における波長590nmの光で測定した面内の位相差値(Re[590])が50〜180nmである、請求項1から6のいずれかに記載の液晶パネル。
  8. 前記負の二軸性光学素子が、セルロースエステルを主成分とする高分子フィルムの延伸フィルムを含む、請求項1から7のいずれかに記載の液晶パネル。
  9. 前記ポジティブCプレートの23℃における波長590nmの光で測定した厚み方向の位相差値(Rth[590])が−200〜−30nmである、請求項1から8のいずれかに記載の液晶パネル。
  10. 前記ポジティブCプレートが、ホメオトロピック配列に配向させた液晶性組成物の固化層または硬化層を含む、請求項1から9のいずれかに記載の液晶パネル。
  11. 前記等方性光学素子が、ポリノルボルネン、セルロースエステル、イソブチレン・N−メチルマレイミド共重体、およびアクリロニトリル・スチレン共重合体から選ばれる少なくとも1つの樹脂を主成分とする高分子フィルムを含む、請求項1から10のいずれかに記載の液晶パネル。
  12. 請求項1から11のいずれかに記載の液晶パネルを含む、液晶テレビ。
  13. 請求項1から11のいずれかに記載の液晶パネルを含む、液晶表示装置。
JP2005244847A 2004-11-29 2005-08-25 液晶パネル及び液晶表示装置 Active JP3926824B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005244847A JP3926824B2 (ja) 2004-11-29 2005-08-25 液晶パネル及び液晶表示装置
TW094137607A TWI285275B (en) 2004-11-29 2005-10-27 Liquid crystal panel and liquid crystal display apparatus
US11/265,202 US7463320B2 (en) 2004-11-29 2005-11-03 Liquid crystal panel and display apparatus having a negative biaxial element of 110 to 250 nm thickness direction retardation value and an Nz coefficient of 1.4 or more
CNB2005101243800A CN100426082C (zh) 2004-11-29 2005-11-29 液晶面板和液晶显示装置
KR1020050114917A KR100692939B1 (ko) 2004-11-29 2005-11-29 액정 패널 및 액정 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004344053 2004-11-29
JP2005244847A JP3926824B2 (ja) 2004-11-29 2005-08-25 液晶パネル及び液晶表示装置

Publications (3)

Publication Number Publication Date
JP2006178401A JP2006178401A (ja) 2006-07-06
JP2006178401A5 JP2006178401A5 (ja) 2006-09-21
JP3926824B2 true JP3926824B2 (ja) 2007-06-06

Family

ID=36566998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244847A Active JP3926824B2 (ja) 2004-11-29 2005-08-25 液晶パネル及び液晶表示装置

Country Status (5)

Country Link
US (1) US7463320B2 (ja)
JP (1) JP3926824B2 (ja)
KR (1) KR100692939B1 (ja)
CN (1) CN100426082C (ja)
TW (1) TWI285275B (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605895B2 (en) * 2005-06-14 2009-10-20 Lg Chem, Ltd. IPS mode liquid crystal display using two sheets of biaxial negative retardation film and a plate
CN101512400B (zh) * 2006-09-07 2011-07-27 夏普株式会社 偏光控制系统和显示装置
US8269929B2 (en) * 2006-09-28 2012-09-18 Stanley Electric Co., Ltd. Vertically aligned liquid crystal display device with visual angle compensation
KR101314030B1 (ko) * 2006-12-05 2013-10-01 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 광학 필름, 및 이를 이용한 편광판 및 액정 표시 장치
JP2008158310A (ja) * 2006-12-25 2008-07-10 Nitto Denko Corp 積層体、液晶パネル、および液晶表示装置
JP2008197536A (ja) * 2007-02-15 2008-08-28 Nitto Denko Corp 液晶パネルおよび液晶表示装置
US8889043B2 (en) 2007-03-29 2014-11-18 Akron Polymer Systems, Inc. Optical films cast from styrenic fluoropolymer solutions
US7989036B2 (en) 2007-03-29 2011-08-02 Akron Polymer Systems Optical compensation films with disk groups for liquid crystal display
US8304079B2 (en) * 2007-03-29 2012-11-06 Akron Polymer Systems Optical compensation films with birefringence enhancing substituents for liquid crystal display
US8821994B2 (en) 2007-03-29 2014-09-02 Akron Polymer Systems Liquid crystal display having improved wavelength dispersion characteristics
US8226860B2 (en) 2007-03-29 2012-07-24 Akron Polymer Systems Optical compensation films having positive birefringence for liquid crystal display
US9011992B2 (en) 2007-03-29 2015-04-21 Akron Polymer Systems Optical compensation films based on stretched polymer films
US9096719B2 (en) 2007-03-29 2015-08-04 Akron Polymer Systems Optical compensation films with mesogen groups for liquid crystal display
US8435636B2 (en) * 2007-03-29 2013-05-07 Akron Polymer Systems, Inc. Optical compensation films of brominated styrenic polymers and related methods
US8802238B2 (en) * 2007-03-29 2014-08-12 Akron Polymer Systems, Inc. Optical compensation films based on fluoropolymers
US20090096962A1 (en) * 2007-05-14 2009-04-16 Eastman Chemical Company Cellulose Esters with High Hyrdoxyl Content and Their Use in Liquid Crystal Displays
JP2009025780A (ja) 2007-06-18 2009-02-05 Nitto Denko Corp 液晶パネルおよび液晶表示装置
CN101688995B (zh) 2007-12-04 2012-02-01 Lg化学株式会社 集成宽视角膜和使用该集成宽视角膜的面内转换液晶显示器
JP4938632B2 (ja) 2007-12-07 2012-05-23 日東電工株式会社 液晶パネル及び液晶表示装置
KR101253048B1 (ko) * 2008-12-31 2013-04-12 엘지디스플레이 주식회사 광시야각 액정표시소자
KR101560399B1 (ko) * 2009-01-20 2015-10-15 엘지디스플레이 주식회사 액정표시장치
US8836879B2 (en) 2010-06-10 2014-09-16 Apple Inc. Displays with minimized curtain mura
US9457496B2 (en) 2011-03-23 2016-10-04 Akron Polymer Systems, Inc. Aromatic polyamide films for transparent flexible substrates
US9856376B2 (en) 2011-07-05 2018-01-02 Akron Polymer Systems, Inc. Aromatic polyamide films for solvent resistant flexible substrates
CN103987763B (zh) 2011-08-19 2017-12-29 阿克伦聚合物体系有限公司 热稳定的低双折射共聚聚酰亚胺膜
US8780301B2 (en) * 2011-10-07 2014-07-15 Japan Display West Inc. Liquid crystal display device
KR101525998B1 (ko) * 2011-12-12 2015-06-04 제일모직주식회사 유기발광소자용 편광판 및 이를 포함하는 유기발광소자 표시 장치
US8871882B2 (en) 2012-02-14 2014-10-28 Akron Polymer Systems, Inc. Method for the preparation of styrenic fluoropolymers
JP2016106241A (ja) * 2013-03-28 2016-06-16 Jxエネルギー株式会社 積層偏光板及び水平配向型液晶表示装置
JP2016106240A (ja) * 2013-03-28 2016-06-16 Jxエネルギー株式会社 水平配向型液晶表示装置用積層偏光板及び水平配向型液晶表示装置
KR20140126039A (ko) * 2013-04-22 2014-10-30 삼성전자주식회사 디스플레이 장치
JP6304664B2 (ja) * 2013-10-01 2018-04-04 エルジー・ケム・リミテッド 光学フィルム、これを含む複合偏光板および液晶ディスプレイ
JP6159290B2 (ja) 2013-10-31 2017-07-05 日東電工株式会社 液晶パネル及び該液晶パネルに用いられる偏光子積層体
EP2990860B1 (en) * 2014-08-29 2018-06-13 LG Display Co., Ltd. Light controlling apparatus and method of fabricating the same
KR102274545B1 (ko) * 2014-12-01 2021-07-06 삼성전자주식회사 광학 필름용 조성물, 필름 및 표시 장치
CN106940486B (zh) * 2017-04-25 2022-06-24 京东方科技集团股份有限公司 一种显示装置及其显示方法
KR102628672B1 (ko) * 2020-06-18 2024-01-23 삼성에스디아이 주식회사 Ips 모드용 편광판 및 이를 포함하는 광학표시장치

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888382B2 (ja) * 1991-05-15 1999-05-10 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置並びにその駆動方法及び駆動装置
GB2321529A (en) * 1997-01-24 1998-07-29 Sharp Kk Broadband cholesteric optical device
KR100223601B1 (ko) 1997-05-29 1999-10-15 윤종용 액정 표시 장치
JP3204182B2 (ja) 1997-10-24 2001-09-04 日本電気株式会社 横電界方式の液晶表示装置
US6650386B1 (en) 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
JP3342417B2 (ja) 1998-08-25 2002-11-11 シャープ株式会社 液晶表示装置
JP3114723B2 (ja) * 1998-08-03 2000-12-04 日本電気株式会社 液晶表示装置およびその製造方法
US6468609B2 (en) * 1999-12-01 2002-10-22 Agfa-Gevaert UV-absorbing film and its use as protective sheet
KR100595295B1 (ko) * 2000-06-27 2006-07-03 엘지.필립스 엘시디 주식회사 멀티 도메인 액정표시장치 및 그 제조방법
JP2002072215A (ja) 2000-08-31 2002-03-12 Sharp Corp 液晶表示装置
US6995816B2 (en) * 2002-04-12 2006-02-07 Eastman Kodak Company Optical devices comprising high performance polarizer package
TWI284230B (en) * 2002-05-17 2007-07-21 Merck Patent Gmbh Compensator comprising a positive and a negative birefringent retardation film and use thereof
US6958797B2 (en) * 2002-07-23 2005-10-25 Nitto Denko Corporation Optical film having low chromaticity variation and quarter wavelength plate, and liquid crystal display using the same
US7046443B2 (en) * 2002-07-24 2006-05-16 Nitto Denko Corporation Anisotropic light scattering element, anisotropic light scattering polarizing plate using the same, and image display device using the same
AU2003282048A1 (en) * 2002-11-02 2004-06-07 Merck Patent Gmbh Optically compensated electro-optical light modulation elementwith optically isotropic phase
JP4234755B2 (ja) 2003-04-08 2009-03-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶ディスプレイ内側の光学フィルム
KR20060002961A (ko) 2003-04-08 2006-01-09 메르크 파텐트 게엠베하 Ips 모드의 보상된 lcd
JP2004325468A (ja) 2003-04-21 2004-11-18 Nitto Denko Corp 偏光板、その製造方法、光学フィルムおよび画像表示装置
KR101023974B1 (ko) * 2003-05-13 2011-03-28 삼성전자주식회사 액정표시장치 및 이의 제조 방법
JP4564795B2 (ja) 2003-09-30 2010-10-20 株式会社日立製作所 液晶表示装置
KR100677050B1 (ko) * 2003-10-22 2007-01-31 주식회사 엘지화학 +a-플레이트와 +c-플레이트를 이용한 시야각보상필름을 포함하는 면상 스위칭 액정 표시장치
US7622166B2 (en) 2003-11-28 2009-11-24 Dai Nippon Printing Co., Ltd. Optical element, process for producing the same, substrate for liquid crystal alignment, liquid crystal display device, and birefringent material
JP4386718B2 (ja) 2003-11-28 2009-12-16 大日本印刷株式会社 光学素子及びその製造方法、並びに液晶配向用基板及び液晶表示装置
KR100601920B1 (ko) * 2004-01-09 2006-07-14 주식회사 엘지화학 음의 이축성 위상차 필름과 +c-플레이트를 이용한 시야각보상필름을 포함하는 면상 스위칭 액정 표시장치
JP4383903B2 (ja) 2004-01-23 2009-12-16 株式会社 日立ディスプレイズ 偏光板及びそれを用いた液晶表示装置
JP4328243B2 (ja) 2004-03-16 2009-09-09 富士フイルム株式会社 液晶表示装置
JP2005321528A (ja) 2004-05-07 2005-11-17 Fuji Photo Film Co Ltd 液晶表示装置
TWI249625B (en) * 2004-10-08 2006-02-21 Optimax Tech Corp Structure of polarizer

Also Published As

Publication number Publication date
TW200619700A (en) 2006-06-16
TWI285275B (en) 2007-08-11
CN100426082C (zh) 2008-10-15
KR100692939B1 (ko) 2007-03-12
US7463320B2 (en) 2008-12-09
US20060114383A1 (en) 2006-06-01
JP2006178401A (ja) 2006-07-06
CN1782810A (zh) 2006-06-07
KR20060059841A (ko) 2006-06-02

Similar Documents

Publication Publication Date Title
JP3926824B2 (ja) 液晶パネル及び液晶表示装置
US7602462B2 (en) Polarizing element, liquid crystal panel, liquid crystal television, and liquid crystal display apparatus
KR100831918B1 (ko) 액정 패널, 액정 텔레비전 및 액정 표시 장치
KR100831919B1 (ko) 액정 패널, 액정 텔레비전 및 액정 표시 장치
JP2007148099A (ja) ポジティブcプレートの製造方法及びポジティブcプレート、そのポジティブcプレートを用いた液晶パネル及び液晶表示装置
KR100692940B1 (ko) 액정 패널 및 액정 표시 장치
US7782429B2 (en) Liquid crystal panel and liquid crystal display apparatus
JP5311605B2 (ja) 液晶パネルおよび液晶表示装置
JP3880996B2 (ja) 楕円偏光板および液晶表示装置
JP2006268018A (ja) 偏光素子、液晶パネル、液晶テレビ、および液晶表示装置
JP2008158310A (ja) 積層体、液晶パネル、および液晶表示装置
US20110058127A1 (en) Optical compensation sheet, polarizing plate, liquid crystal display and method of manufacturing optical compensation sheet
WO2007129516A1 (ja) 液晶パネル及び液晶表示装置
JP3935489B2 (ja) 液晶表示装置
JP2005520209A (ja) 光学補償フィルム、偏光板および画像表示装置
JP5274929B2 (ja) 液晶パネル及び液晶表示装置
JP2008197536A (ja) 液晶パネルおよび液晶表示装置
JP2008076706A (ja) 液晶パネルおよび液晶表示装置
JP2005242345A (ja) 液晶表示装置
JP2005099237A (ja) 液晶表示装置
JP2009157244A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Ref document number: 3926824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160309

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250