WO2008010412A1 - Céramique diélectrique, procédé pour la produire et condensateur multicouche en céramique - Google Patents

Céramique diélectrique, procédé pour la produire et condensateur multicouche en céramique Download PDF

Info

Publication number
WO2008010412A1
WO2008010412A1 PCT/JP2007/063294 JP2007063294W WO2008010412A1 WO 2008010412 A1 WO2008010412 A1 WO 2008010412A1 JP 2007063294 W JP2007063294 W JP 2007063294W WO 2008010412 A1 WO2008010412 A1 WO 2008010412A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric ceramic
composite oxide
ceramic
rare earth
powder
Prior art date
Application number
PCT/JP2007/063294
Other languages
English (en)
French (fr)
Inventor
Noriyuki Inoue
Toshihiro Okamatsu
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2007800269995A priority Critical patent/CN101489953B/zh
Priority to JP2008525825A priority patent/JP5120255B2/ja
Publication of WO2008010412A1 publication Critical patent/WO2008010412A1/ja
Priority to US12/355,706 priority patent/US7638451B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • C04B2235/3282Cuprates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a dielectric ceramic, a method for manufacturing the same, and a multilayer ceramic capacitor, and more specifically, an dielectric ceramic suitable for a dielectric material of a small-sized / large capacity multilayer ceramic capacitor, a method for manufacturing the dielectric ceramic, and the method
  • the present invention relates to a multilayer ceramic capacitor manufactured using a dielectric ceramic.
  • Patent Document 1 ABO (however, the A site is Ba or Ba and at least Ca, Sr
  • the B site represents a perovskite-type crystal containing T or Ti and at least one of Zr and Hf.
  • Main phase particles rare earth element R (where R is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
  • R is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
  • secondary phase particles composed of a crystalline composite oxide containing the rare earth elements R and Mg as main components are present.
  • 0.06 ⁇ Zr / (Zr + Ti + Hf) ⁇ 0.40 is established in terms of mole, and the rare earth element R, Mg, Si ABO
  • a dielectric ceramic composition has been proposed in which the content of the rare earth element R is 4 to 40%, Mg is 2 to 20%, and Si is 2 to 15% in terms of mole.
  • a secondary phase particle composed of a crystalline composite oxide mainly composed of rare earth elements R and Mg is present in a dielectric ceramic composition, so that a high temperature of 125 ° C can be obtained. Therefore, the insulation resistance can be maintained at 100 k ⁇ or higher even when an electric field of 16.6 kV / mm is applied for 1000 hours, which ensures reliability at high temperature loads.
  • Patent Document 1 Pamphlet of International Publication No. 06/025205
  • Patent Document 1 As described above, a satisfactory high-temperature load life can be obtained even when an electric field of 16.6 kV / mm is applied, as described above.
  • the present invention has been made in view of such circumstances, and is a dielectric that can ensure high reliability even when a larger electric field is applied continuously for a long time in a high-temperature atmosphere. It is an object of the present invention to provide a ceramic, a method for manufacturing the same, and a multilayer ceramic capacitor manufactured using the dielectric ceramic. Means for solving the problem
  • the inventors of the present invention have made extensive studies to achieve the above object.
  • the dielectric ceramic mainly composed of a barium titanate-based composite oxide having a perovskite structure the rare earth elements R, Ni
  • a high-electric field of 20kVZmm is continuously applied for a long time in a high-temperature atmosphere by allowing the R—Ni—TiO-based crystalline composite oxide containing Ti as the main component to be present in the dielectric ceramic as secondary phase particles.
  • the dielectric ceramic according to the present invention is mainly composed of a barium titanate-based composite oxide, and includes Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu group forces In dielectric ceramics containing at least one selected rare earth element R, and Mg, Ni
  • the rare earth element R It is characterized by the presence of crystalline composite oxides with Ni and Ti as the main component.
  • the above-described crystalline composite oxide has a rare earth element R content of 8 mol% or more, Ni content of 8 mol% or more, and a total amount of metal elements of Ti.
  • a particle phase satisfying all of the content of 8 mol% or more and the total content of rare earth elements R, Ni and Ti of 50 mol% or more shall be considered.
  • the molar ratio NiZR of Ni and rare earth element R is at least more than 0.15, preferably 0. It is necessary to exceed 35, and the crystalline composite oxide is represented by the composition formula R NiTiO.
  • the ratio of the molar amount of Ni and the molar amount of the rare earth element R in the crystalline composite oxide is Ni / R: Ni / R> 0.15 It is characterized by being.
  • the dielectric ceramic of the present invention is characterized in that the ratio Ni / R is Ni / R> 0.35.
  • the crystalline composite oxide has a composition formula R NiTiO
  • Mg is contained in the dielectric ceramic as an essential component for the expression of electrical characteristics.
  • a part of Ni is replaced with Mg, and the Mg is It may be contained in the crystalline composite oxide.
  • Mg is contained in the crystalline composite oxide, and the ratio of the Ni content molar amount to the total content of Ni and Mg is NiZ (Ni + Mg) is characterized by Ni / (Ni + Mg) ⁇ 0.3.
  • the ratio Ni / (Ni + Mg) is Ni / (Ni + Mg) ⁇
  • the crystalline composite oxide has a composition formula R (Ni,
  • the dielectric ceramic is prepared by previously preparing a heat-treated powder by mixing at least a rare earth compound and a Nikkenore compound, and if necessary, a titanium compound, and performing a heat treatment. It can be manufactured by mixing component powders and additive substances such as magnesium compounds and performing a baking treatment after molding.
  • the method for producing a dielectric ceramic according to the present invention mainly produces a main component powder composed of a barium titanate-based composite oxide using a ceramic raw material containing at least a barium compound and a titanium compound as a starting material.
  • Component powder preparation process and at least one rare earth selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu A predetermined amount of the rare earth compound and nickel compound containing element R are weighed and heat-treated to produce a heat-treated powder, and at least the main component powder, the heat-treated powder, and the magnesium compound are mixed and molded. It is characterized by including a firing step of performing a processing and then performing a firing treatment.
  • the dielectric ceramic manufacturing method of the present invention is characterized in that, in the heat treatment powder preparation step, a predetermined amount of a titanium compound is weighed in addition to the rare earth compound and the nickel compound and heat treatment is performed. .
  • the multilayer ceramic capacitor according to the present invention includes a ceramic sintered body in which dielectric ceramic layers and internal electrode layers are alternately laminated and fired, and external electrodes are provided at both ends of the ceramic sintered body.
  • the dielectric ceramic layer force is formed of the dielectric ceramic described above.
  • the main component is a barium titanate-based composite oxide, and Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu group power
  • a dielectric ceramic containing at least one selected rare earth element R and Mg and Ni a crystalline composite oxide containing the rare earth elements R, Ni and Ti as main components Exist Therefore, even when a larger electric field is applied for a longer time in a high temperature atmosphere than in the prior art, it is possible to avoid the occurrence of an abnormality as much as possible and to obtain a highly reliable dielectric ceramic.
  • Ni / (Ni + Mg) Ni / (Ni + Mg) ⁇ 0.3 (preferably NiZ (Ni + Mg) ⁇ 0.7), so even if a part of Ni in the crystalline composite oxide is replaced with Mg, the reliability under high temperature load is hardly affected.
  • a dielectric ceramic having the same can be obtained.
  • the main component powder composed of a barium titanate-based composite oxide starting from a ceramic raw material containing at least a barium compound and a titanium compound. And at least 1 selected from the group power of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • a heat-treated powder preparation step for preparing a heat-treated powder by weighing a predetermined amount of a rare-earth compound containing a rare earth element R and a Nikkenore compound
  • a heat treatment powder and a main component powder are mixed, and a part of Ti in the main component reacts with the heat treatment powder to cause a crystalline composite oxidation. It can form, thereby making it possible to easily produce the dielectric ceramic.
  • a desired crystallinity can be easily formed in the dielectric ceramic by weighing a predetermined amount of a titanium compound in addition to the rare earth compound and the nickel compound and performing heat treatment.
  • a composite oxide can be formed.
  • the multilayer ceramic capacitor according to the present invention includes a multilayer sintered body in which dielectric ceramic layers and internal electrode layers are alternately laminated and fired, and both end portions of the multilayer sintered body.
  • the dielectric ceramic layer is formed of the above-described dielectric ceramic.
  • a capacitor can be obtained. Specifically, even if a high electric field of 20 kV / mm is applied continuously for 1000 hours, the defect rate can be suppressed to 5% or less, and a thin layer and a small stack with high capacity and excellent reliability. A ceramic capacitor can be obtained.
  • FIG. 1 is a cross-sectional view showing an embodiment of a multilayer ceramic capacitor manufactured using a dielectric ceramic of the present invention.
  • the dielectric ceramic according to one embodiment of the present invention contains a barium titanate-based composite oxide as a main component, and contains rare earth elements Mg and Ni, and also contains rare earth elements Ni and Ti as main components. Crystalline composite oxide is formed as secondary phase particles.
  • the rare earth element R is at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Seeds can be used.
  • barium titanate-based composite oxide is a perovskite represented by the general formula ABO.
  • the A site is Ba
  • the B site is formed of BaTiO
  • a part of Ba is substituted with at least one element of Ca and Sr.
  • the A / B ratio is 1.000 stoichiometrically, but the A site or B site may be excessive as necessary to the extent that it does not affect various properties and sinterability. Formulated in Is done.
  • the crystalline composite oxide mainly composed of rare earth elements Ni and Ti is present in the dielectric ceramic as secondary phase particles, and thereby a high electric field (for example, 20 kV / mm) can be suppressed as much as possible even if it is applied continuously for a long time (for example, 1000 hours) in a high temperature atmosphere. Therefore, desired reliability can be ensured even if the dielectric ceramic layer is made thinner.
  • the total amount of metal elements is less than the molar amount of rare earth elements, the molar amount of Ni is 8 mol% or more, the molar amount of Ti is 8 mol% or more, and the molar amount of Ti is contained. there 8 mol% or more, and deemed to total molar content of Dy and Ni and Ti are present crystalline composite oxide particle phase power R-Ni-Ti- O system is 50 mole 0/0 or more is doing.
  • the molar ratio Ni / R between the Ni content and the rare earth element R content in the crystalline composite oxide is such that NiZR> 0.15.
  • NiZR is 0.15 or less, it is difficult to obtain a desired R—Ni—Ti—O-based crystalline composite oxide having the above-described particle phase.
  • the molar ratio Ni / R is Ni / R> 0.35.
  • the molar ratio Ni / R is 0.5, that is, a crystalline composite. More preferably, the oxide is represented by the composition formula R NiTiO.
  • the dielectric ceramic contains Mg as an essential component for the expression of electrical characteristics, but this Mg is replaced with a part of Ni in the firing step, and the crystalline composite oxide It may be contained in the inside. Even in such a case, if the content of Mg in the crystalline composite oxide is less than a predetermined amount, the reliability is hardly affected. Specifically, when the Mg content is evaluated by the molar ratio NiZ (Ni + Mg) between the Ni content and the total content of Ni and Mg, NiZ (Ni + Mg) ⁇ 0.3 Even if a small amount of Mg is contained, the reliability is hardly affected. If the molar ratio Ni / (Ni + Mg) force Ni / (Ni + Mg) ⁇ 0.7, the reliability is almost the same as when Mg is not contained in the crystalline composite oxide. And can secure higher reliability.
  • the crystalline composite oxide is preferably represented by the composition formula R (Ni, Mg) TiO.
  • the present dielectric ceramic contains rare earth elements Mg and Ni, but the existence form thereof exists as a constituent component of the crystalline composite oxide, and also in the main component.
  • Various forms are conceivable, for example, in the case of solid solution in a crystal, segregation at a crystal grain boundary, or a crystal triple point.
  • a crystalline composite oxide exists as secondary phase particles in the present dielectric ceramic.
  • the existence ratio is not particularly limited, but is preferably 0.3% or more in area ratio in arbitrary cross-sectional observation.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a multilayer ceramic capacitor manufactured using a dielectric ceramic according to the present invention.
  • internal electrodes 2a to 2f are embedded in a ceramic sintered body 10, and external electrodes 3a and 3b are formed at both ends of the ceramic sintered body 10, and the external electrodes First surface coatings 4a and 4b and second surface coatings 5a and 5b are formed on the surfaces of 3a and 3b.
  • the ceramic sintered body 10 is formed by alternately laminating and firing the dielectric ceramic layers la ⁇ : lg and the internal electrode layers 2a-2f formed of the dielectric ceramic of the present invention.
  • the partial electrode layers 2a, 2c, 2e are electrically connected to the external electrode 3a
  • the internal electrode layers 2b, 2d, 2f are electrically connected to the external electrode 3b.
  • Capacitance is formed between the opposing surfaces of the internal electrode layers 2a, 2c, 2e and the internal electrode layers 2b, 2d, 2f.
  • barium compounds and titanium compounds are prepared as ceramic raw materials, and calcium compounds, strontium compounds, zirconium compounds, hafnium compounds, and the like are prepared as necessary. Then, a predetermined amount of these ceramic raw materials are weighed, and these weighed materials are put into a ball mill together with a grinding medium such as PSZ (Partially Stabilized Zirconia) balls and pure water, and sufficiently wet mixed and ground. After drying, calcination treatment is performed for a predetermined time at a temperature of 950 to: 1150 ° C., thereby producing a main component powder made of a barium titanate-based composite oxide having an average particle size of 0.:! To 0. To do.
  • a grinding medium such as PSZ (Partially Stabilized Zirconia) balls and pure water
  • rare earth element R (where R is selected from Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu 1 Rare earth compounds containing more than species), and Prepare a Nikkenore compound. These rare earth compounds and nickel compounds are weighed and mixed so that the molar ratio Ni / R force Ni / R> 0.15, preferably 0.35 Ni / R ⁇ 0.50, Heat treatment is performed at a temperature of 1200 ° C to produce crystalline oxide powder (heat treated powder) containing R and Ni.
  • the crystalline oxide powder is added in an amount of 0.5 to 20 mol parts in terms of R with respect to 100 mol parts of the main component powder.
  • the main component powder and the crystalline oxide powder are weighed. Then, these weighed materials are put into a ball mill together with the pulverizing medium and pure water, sufficiently wet-mixed and pulverized, and dried to obtain a ceramic raw material.
  • this ceramic raw material is subjected to a firing process in the manufacturing process of the multilayer ceramic capacitor to form the dielectric ceramic of the present invention.
  • the ceramic raw material is put into a ball mill together with an organic binder and an organic solvent and a grinding medium and wet mixed to produce a ceramic slurry, and a molding force is applied to the ceramic slurry by a doctor blade method or the like.
  • a ceramic green sheet is prepared so that the thickness is about 3 / m or less.
  • the conductive material contained in the internal electrode conductive paste is not particularly limited. However, from the viewpoint of cost reduction, Ni, Cu, and these alloys are mainly used as the main component. It is preferable to use metal materials.
  • a conductive paste for external electrodes is applied to both end faces of the ceramic sintered body 10, and 600 ⁇ Bake treatment is performed at a temperature of 800 ° C to form external electrodes 3a and 3b.
  • the conductive material contained in the conductive paste for external electrodes is not particularly limited, but Ag, Cu, or an alloy thereof is the main component from the viewpoint of cost reduction. It is preferred to use the materials made.
  • the conductive paste for external electrodes may be applied to both end faces of the ceramic laminate, and then fired at the same time as the ceramic laminate.
  • first plating films 4a and 4b made of Ni, Cu, Ni_Cu alloy, etc. on the surfaces of the external electrodes 3a and 3b.
  • a second ceramic film 5a, 5b made of solder, tin, or the like is formed on the surface of the metal films 4a, 4b, thereby producing a multilayer ceramic capacitor.
  • the present multilayer ceramic capacitor is manufactured using the above-described dielectric ceramic, even the multilayer ceramic capacitor in which the dielectric ceramic layer la ⁇ : lg is made thinner is used. In addition, it is possible to suppress deterioration of insulation even when a high electric field is applied for a long time in a high-temperature atmosphere, and to prevent the occurrence of abnormalities as much as possible, and to provide a highly reliable multilayer ceramic capacitor. Can be easily obtained.
  • a crystalline oxide powder (heat treated powder) containing rare earth elements R and Ni is prepared in advance, and the crystalline oxide powder and the main component powder are mixed and fired.
  • An oxide powder may be prepared in advance and added to the main component to prepare a ceramic raw material.
  • additive components other than the rare earth elements R, Mg, and Ni are not mentioned.
  • MgO , MnO, SiO, CuO and the like are preferably added as necessary.
  • ceramic raw materials such as barium compounds and titanium compounds are also appropriately selected according to the form of the synthetic reaction, such as carbonates, oxides, nitrates, hydroxides, organic acid salts, alkoxides, chelate compounds, and the like. be able to.
  • ceramic raw materials such as barium compounds and titanium compounds are also appropriately selected according to the form of the synthetic reaction, such as carbonates, oxides, nitrates, hydroxides, organic acid salts, alkoxides, chelate compounds, and the like. be able to.
  • Al, Sr, Zr, Fe, Hf, Na In the manufacturing process of the multilayer ceramic capacitor described above, Al, Sr, Zr, Fe, Hf, Na,
  • Co or the like may be mixed as an impurity and may exist in the crystal grain or in the crystal grain boundary, but it does not affect the electrical characteristics of the capacitor.
  • the internal electrode component may diffuse into the crystal grains or the crystal grain boundaries during the firing process of the multilayer ceramic capacitor, but this also does not affect the electrical characteristics of the capacitor.
  • DyO is prepared as a rare earth compound containing the rare earth element R, and NiO is further added.
  • the oxide powder is 1 mol part in terms of Dy, MgO is 1.5 mol parts, MnO is 0.2 mol parts, and SiO is 1.5 mol parts.
  • the ceramic raw material is charged into a ball mill together with ethanol, polybutyral binder, and PSZ balls and wet-mixed to produce a ceramic slurry, which is further subjected to forming force into the ceramic slurry by the doctor blade method.
  • Two types of ceramic green sheets with thickness of 3 • 0 / im and 2.4 ⁇ m were prepared.
  • the thickness of the dielectric ceramic layer of the obtained sample is 2.0 ⁇ m and 1.6 ⁇ m, and the external dimensions are both length: 3.2 mm, width: 1.6 mm Thickness: 0.9 mm, the counter electrode area per dielectric ceramic layer was 2. lmm 2 , and the effective number of layers was 200 layers.
  • the molar content of Dy is 8 mol% or more
  • the molar content of Ni is 8 mol% or more
  • the molar content of Ti is 8 mol% or more
  • Ni / (Ni + Mg) was obtained by analyzing three arbitrary points in the crystalline composite oxide and calculating the average value.
  • a voltage of 32 V was applied for 1000 hours at a temperature of 125 ° C for 100 samples of each of two types of dielectric ceramic layers of 2. O zm and 1.6 ⁇ m (thickness 2. (In case of 0 ⁇ m, electric field strength 16kV / mm, thickness 1.6 ⁇ m, electric field strength 20kV / mm), high temperature load test was conducted, and the sample with insulation resistance of 100k ⁇ or less was abnormal And determine the failure rate I measured.
  • Table 1 shows the main component composition of sample numbers:! ⁇ 7, molar ratio Ni / Dy, presence / absence of crystalline composite oxide, molar ratio Ni / (Ni + Mg), and high temperature load test results. Show.
  • Sample No. 1 has a molar ratio of Ni / Dy of 0.05, and the content of Ni relative to Dy is too small, so the presence of a Dy-Ni-TiO-based crystalline composite oxide was not observed.
  • the failure rate was 14% at an electric field strength of 16 kVZmm, and the failure rate was 62% at an electric field strength of 20 kV / mm.
  • Sample No. 2 has a molar ratio of Ni / Dy of 0.15, and since the content of Ni relative to Dy is small, the presence of Dy_Ni_Ti_0-based crystalline composite oxide was not observed, and the electric field strength was Sl6kVZmm. The defect occurrence rate was 7%, the electric field strength was 20 kV / mm, and the defect occurrence rate was 38%. This was a slight improvement over Sample No. 1, but it was found that sufficient reliability could not yet be obtained.
  • Sample Nos. 5 to 7 have a molar ratio Ni / Dy of 0.40 to 0.50, exceeding 0.35, and a molar ratio Ni / (Ni + Mg) of 0.7.
  • Ni / Dy 0.40 to 0.50
  • Ni + Mg a molar ratio
  • the molar ratio Ni / R increases, the molar ratio Ni / (Ni + Mg) also increases. This is because Mg is substituted for a part of Ni. This is because, as the molar ratio Ni / R increases and the Ni ratio in the crystalline composite oxide increases, the molar content of Mg relatively decreases. From the viewpoint of reliability, it is confirmed that the molar amount of Mg in the crystalline composite oxide is preferably low. It was.
  • Samples Nos. 11 to 15 were prepared by the following method.
  • a main component powder made of Ba TiO was prepared by the same method and procedure as in [Example 1].
  • Nd 2 O as a rare earth compound containing rare earth element R is prepared, and NiO
  • NiO, MgO, MnO, SiO, and CuO were prepared as additive powders, respectively.
  • the oxide powder After pulverizing the oxide powder, the oxide powder is 4 mol parts in terms of Nd, 1 mol part of NiO, 3 mono parts of MgO, and 0 MnO with respect to 100 mol parts of the main component powder. These main component powders, crystals, so that 5 mol parts, SiO force S2 mol parts, and CuO are 0.2 mol parts.
  • each of the conductive oxide powder and the additive powder was weighed. Next, these weighed materials were put into a ball mill together with PSZ balls and pure water, mixed and pulverized sufficiently by wet, and dried to obtain ceramic raw materials. [0090] Thereafter, the same method and procedure as in [Example 1] were used to prepare two types of samples with dielectric ceramic layer thicknesses of 2. ⁇ ⁇ m and 1.6 / m. The external dimensions, the counter electrode area per dielectric ceramic layer, and the effective number of layers were the same as in [Example 1].
  • a main component powder made of Ba TiO was prepared by the same method and procedure as in [Example 1].
  • a predetermined amount was weighed and mixed, and heat-treated at a temperature of 1000 ° C. for 2 hours to prepare Nd—Ni—Ti_O-based oxide powder.
  • MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So
  • the oxide powder S4 mol part, MgO 3 mol part, MnO 0.5 monole part, SiO force Mole part, CuO is 0.
  • a main component powder made of Ba TiO was prepared by the same method and procedure as in [Example 1].
  • Nd 2 O, Ni 0, MgO, Mn 0, and CuO were prepared, and Nd: Ni: Mg: M
  • the main component powder and the oxide powder are added so that the oxide powder is 4 mol parts in terms of Nd with respect to 100 mol parts of the main component powder.
  • Each was weighed.
  • these weighed materials were put into a ball mill together with PSZ balls and pure water, mixed and powdered sufficiently wet, and dried to obtain a ceramic raw material.
  • Example 1 Thereafter in a similar manner and procedure as Example 1, the thickness of the dielectric ceramic layers were prepared two kinds of samples of 2. 0 beta m and 1. 6 zm. The external dimensions, the counter electrode area per dielectric ceramic layer, and the effective number of layers were the same as in [Example 1].
  • a main component powder made of Ba TiO was prepared by the same method and procedure as in [Example 1].
  • a predetermined amount was weighed and mixed at 25: 0.25: 0.5, and heat-treated at a temperature of 1000 ° C. for 2 hours to prepare an Nd_Ni_Mg_Ti_0-based oxide powder.
  • MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So, MgO, MnO, SiO, CuO, and BaCO were prepared as additive powders. So
  • the oxide powder After crushing the oxide powder, the oxide powder is 4 mol parts in terms of Nd, 2 mol parts MgO, 0.5 mol parts MnO, 3 ⁇ 4 mole part,
  • the powder and additive powder were weighed respectively. Next, these weighed materials were put into a ball mill together with PSZ balls and pure water, sufficiently mixed and pulverized by wet, and dried to obtain ceramic raw materials.
  • a main component powder made of Ba TiO was prepared by the same method and procedure as in [Example 1].
  • a predetermined amount was weighed and mixed, and heat-treated at a temperature of 1000 ° C for 2 hours to prepare Nd-Ni-Si_O-based oxide powder.
  • MgO, MnO, and CuO were prepared as additive powders.
  • the oxide powder is 4 mol parts in terms of Nd, 3 mol parts of MgO, 0.5 mol parts of MnO, and 0.2 mol of CuO with respect to 100 mol parts of the main component powder.
  • These main component powders, oxide powders and additive powders were weighed so as to be parts. Next, these weighed materials were put into a ball mill together with PSZ balls and pure water, mixed and pulverized sufficiently with wetness, and dried to obtain ceramic raw materials.
  • Table 2 shows the main component composition of Sample Nos. 11 to 15: presence / absence of crystalline composite oxide, molar ratio Ni / (Ni + Mg), and measurement results of the high temperature load test.
  • Sample No. 15 shows no presence of Nd-Ni-TiO-based crystalline complex oxide, The failure rate was 10% at an electric field strength of 16 kV / mm, and the failure rate was 25% at an electric field strength of 20 kV / mm.
  • the oxide powder containing both R and Si is added to the main component powder, Ti in the main component powder is prevented from being taken into the crystalline composite oxide, and as a result Even when the molar ratio NiZNd is 0.5, it seems that no crystalline complex oxide composed mainly of Nd, Ni, and Ti was formed in the dielectric ceramic.
  • Sample No. 11 is an Nd-Ni-O-based oxide powder prepared in advance so that the molar ratio Ni / Nd is 0.25, and NiO is further added thereto.
  • the presence of Nd_N i_Ti_0 series crystalline composite oxide was observed.
  • a slight defect occurred at an electric field strength of 20 kVZmm because the molar ratio Ni / (Ni + Mg) was 0.3, and the molar content of Mg in the crystalline composite oxide was Ni. This is probably due to the relatively large amount.
  • Nd-Ni-TiO-based oxide powder is added to the main component powder, so that it is possible to easily produce a crystalline composite oxide having Nd NiTiO power.
  • Sample No. 13 is obtained by adding Nd-Ni-Mg-Mn-Cu-O-based oxide powder to the main component powder, and is an Nd-Ni-Ti-O-based crystalline composite oxide. Existence was recognized. As a result, it was found that there was no failure rate when the electric field strength was 16 kV / mm, and that the failure rate was 5% even when the electric field strength was 20 kV / mm. Note that a slight defect occurred at an electric field strength of 20 kV / mm, as in sample number 11, with a mole ratio of Ni / (Ni + Mg) of 0.3, and Mg in the crystalline composite oxide. This is probably because the molar content of is relatively large compared to Ni.
  • Sample No. 14 showed the presence of Nd_Ni-Ti-O-based crystalline complex oxide. As a result, it was found that there was no failure rate when the electric field strength was 16 kV / mm, and that the failure rate was 2% even when the electric field strength was 20 kV / mm. It should be noted that a slight defect occurred at an electric field strength of 20 kV / mm because the molar ratio Ni / (Ni + Mg) This is probably because the molar content of Mg in the crystalline composite oxide is about the same as that of Ni, and the proportion of Ni in the crystalline composite oxide has decreased.
  • the main component powder, oxide powder and additive powder were weighed. Next, these weighed materials were put into a ball mill together with PSZ balls and pure water, mixed and pulverized sufficiently by wet, and dried to obtain ceramic raw materials.
  • the thickness of the dielectric ceramic layer is 2. ⁇ ⁇ m and 1.6 ⁇ m. A sample was prepared.
  • a main component powder of 0.985 0.012 0.003 1.002 3 was prepared.
  • the main component powder, oxide powder and additive powder were weighed. Then
  • samples of sample numbers 38 to 52 were prepared, with the thickness of the dielectric ceramic layer consisting of 1. and 2. Ozm. .
  • the crystalline composite oxide was identified by the same procedure as in [Example 1], and the molar ratio of Ni to the total of Ni and Mg Ni / (Ni + Mg) was calculated.
  • Table 3 shows the main component composition, molar ratio Ni / R, presence / absence of crystalline composite oxide, molar ratio Ni / (Ni + Mg), and high-temperature load test results for sample numbers 21 to 52. ing.
  • the main component composition ( B a 0986 Ca c ol Z S r 0 003), 002 Ti 0 3 high-temperature load test: percent defective (%) Sample molar ratio molar ratio
  • Electric field strength Electric field strength: With or without 16kV / mm 20kV / mm (1) (1)
  • Sample Nos. 38 to 52 have an electric field strength of 16 kV / mm, a defect occurrence rate of 31 to 100%, and an electric field strength of 20 kVZmm, all become defective products, which is far from ensuring reliability. Natsuta. This is because the rare earth elements R and Ni are in the form of R 2 O and Ni 0 and other additions such as Mg 0
  • Additive substances such as NiO and MgO exist in an amorphous state together with SiO at the grain boundaries
  • the crystal structure was analyzed using a diffractometer.
  • FIG. 2 shows the X-ray diffraction chart, where the horizontal axis represents the diffraction angle 2 ⁇ (°) and the vertical axis represents the X-ray intensity (a.u.).
  • Dy NiT is contained in the dielectric ceramic (sintered body) of sample number 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Description

明 細 書
誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ 技術分野
[0001] 本発明は誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサに 関し、より詳しくは小型 '大容量の積層セラミックコンデンサの誘電体材料に適した誘 電体セラミック及びその製造方法、並びに該誘電体セラミックを使用して製造された 積層セラミックコンデンサに関する。 背景技術
[0002] 近年におけるエレクトロニクス技術の発展に伴レ、、積層セラミックコンデンサの小型 ィ匕、大容量化が急速に進行している。
[0003] この種の積層セラミックコンデンサでは、誘電体セラミック層と内部電極層とを交互 に積層し、焼成処理して得られたセラミック焼結体の両端部に外部電極が形成され ている。そして、上記誘電体セラミック層を薄層化して多数積層することにより積層セ ラミックコンデンサの小型化 *大容量ィ匕を図ることができる力 S、誘電体セラミック層を薄 層化すると、誘電体セラミック層に印加される電界が大きくなることから、高温負荷時 における信頼性を確保することが重要となり、従来より、信頼性の向上を意図した積 層セラミックコンデンサの開発力、盛んに行われている。
[0004] 例えば、特許文献 1では、 ABO (但し、 Aサイトは、 Baまたは Baと少なくとも Ca、 Sr
3
のいずれか一種を含み、 Bサイトは、 Tほたは Tiと少なくとも Zr、 Hfのいずれか一種 を含むぺロブスカイト型結晶を表す。)を主成分とする主相粒子、希土類元素 R (但し 、 Rは、 Y、 La, Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、: Luの少な くとも一種を表す。)、 Mg及び Siを含む誘電体セラミック組成物において、上記希土 類元素 Rと Mgを主成分とする結晶性複合酸化物からなる二次相粒子が存在し、更 に、上記 Bサイトの Tiの一部を Zrによって置換した時、モル換算で 0. 06≤Zr/ (Zr +Ti + Hf)≤0. 40の関係が成立し、且つ、上記希土類元素 R、 Mg、 Siの ABOに
3 対する含有量が、モル換算で、それぞれ上記希土類元素 R: 4〜40%、 Mg : 2〜20 %、 Si : 2〜: 15%である誘電体セラミック組成物が提案されている。 [0005] 特許文献 1によれば、希土類元素 Rと Mgを主成分とする結晶性複合酸化物からな る二次相粒子を誘電体セラミック組成物中に存在させることにより、 125°Cの高温で 1 6. 6kV/mmの電界を 1000時間印加しても絶縁抵抗を 100k Ω以上に維持するこ とができ、これにより高温負荷時の信頼性を確保している。
[0006] 特許文献 1:国際公開第 06/025205号パンフレット
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、特許文献 1では、上述したように 16. 6kV/mmの電界を印加しても 一応満足できる高温負荷寿命を得ることができるが、より一層の薄層化 ·多層化が求 められる今日では、高温雰囲気下、より大きな電界が長時間連続して印加されても異 常が生じないような高信頼性を有する積層セラミックコンデンサの出現が求められて いる。
[0008] 本発明はこのような事情に鑑みなされたものであって、高温雰囲気下、より大きな電 界が長時間連続して印加されても、高信頼性を確保することが可能な誘電体セラミツ ク及びその製造方法、並びにこの誘電体セラミックを使用して製造された積層セラミツ クコンデンサを提供することを目的とする。 課題を解決するための手段
[0009] 本発明者らは上記目的を達成すべく鋭意研究を行ったところ、ぺロブスカイト型構 造を有するチタン酸バリウム系複合酸化物を主成分とする誘電体セラミックにおいて 、希土類元素 R、 Ni、及び Tiを主成分とする R— Ni— Ti O系の結晶性複合酸化物 を二次相粒子として誘電体セラミック中に存在させることにより、高温雰囲気下、 20k VZmmの高電界を長時間連続して印加しても絶縁抵抗の低下を極力抑制すること ができ、これにより従来にも増して高信頼性を有する誘電体セラミックを得ることがで きるという知見を得た。
[0010] 本発明はこのような知見に基づきなされたものであって、本発明に係る誘電体セラミ ックは、チタン酸バリウム系複合酸化物を主成分とし、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu 、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、及び Luの群力 選択された少なくとも 1種の希 土類元素 R、及び Mg、 Niを含有した誘電体セラミックにおいて、前記希土類元素 R、 Ni及び Tiを主成分とした結晶性複合酸化物が存在してレ、ることを特徴としてレ、る。
[0011] 尚、本発明では、上記結晶性複合酸化物は、金属元素の総量において、希土類元 素 Rの含有モル量が 8モル%以上、 Niの含有モル量が 8モル%以上、 Tiの含有モル 量が 8モル%以上、及び希土類元素 Rと Niと Tiの総含有モル量が 50モル%以上の 全てを満足する粒子相をレ、うものとする。
[0012] また、本発明者らの更なる鋭意研究の結果、所望の結晶性複合酸化物を得るため には、 Niと希土類元素 Rの含有モル比 NiZRが少なくとも 0. 15超、好ましくは 0. 35 超である必要があり、さらには結晶性複合酸化物は組成式 R NiTiOで表されるのが
2 6
より好ましいことが分かった。
[0013] すなわち、本発明の誘電体セラミックは、前記結晶性複合酸化物中における Niの 含有モル量と希土類元素 Rの含有モル量との比 Ni/Rは、 Ni/R> 0. 15であること を特徴としている。
[0014] また、本発明の誘電体セラミックは、前記比 Ni/Rは、 Ni/R>0. 35であることを 特徴としている。
[0015] さらに、本発明の誘電体セラミックは、前記結晶性複合酸化物が、組成式 R NiTiO
2 で表わされることを特徴としている。
6
[0016] また、本発明では、電気特性の発現上、誘電体セラミック中には Mgが必須の構成 成分として含有されるが、焼成工程において、 Niの一部が Mgと置換されて該 Mgが 結晶性複合酸化物中に含有される場合がある。
[0017] しかしながら、本発明者らの研究結果により、結晶性複合酸化物中に Mgが含有さ れても、その含有モル量が所定量以下であれば、信頼性に殆ど影響を及ぼさないこ とが分かった。具体的には、 Mgの含有量を、 Niの含有モル量と、 Ni及び Mgの含有 モル量の総計との比 NlZ (Ni + Mg)で評価した場合、前記比 NI/ (Ni + Mg)が少 なくとも 0. 3以上、好ましくは 0. 7以上であれば、実用上十分な信頼性を有すること が分かった。
[0018] すなわち、本発明の誘電体セラミックは、 Mgが前記結晶性複合酸化物に含有され ると共に、 Niの含有モル量と、 Ni及び Mgの含有モル量の総計との比 NiZ (Ni + Mg )は、 Ni/ (Ni + Mg)≥0. 3であることを特徴としている。 [0019] また、本発明の誘電体セラミックは、前記比 Ni/ (Ni + Mg)は、 Ni/ (Ni + Mg)≥
0. 7であることを特徴としている。
[0020] さらに、本発明の誘電体セラミックは、前記結晶性複合酸化物が、組成式 R (Ni,
2
Mg) TiOで表わされることを特徴としている。
6
[0021] また、上記誘電体セラミックは、少なくとも希土類化合物とニッケノレ化合物、必要に 応じてチタンィ匕合物を混合し、熱処理を施すことによって予め熱処理粉末を作製して おき、この熱処理粉末と、主成分粉末、及びマグネシウム化合物等の添加物質を混 合し、成形加工を経て焼成処理を行うことにより製造することができる。
[0022] すなわち、本発明に係る誘電体セラミックの製造方法は、少なくともバリウム化合物 及びチタンィ匕合物を含むセラミック素原料を出発原料としてチタン酸バリウム系複合 酸化物からなる主成分粉末を作製する主成分粉末作製工程と、 Y、 La、 Ce、 Pr、 Nd 、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho, Er、 Tm、 Yb、及び: Luの群力、ら選択された少なくとも 1種の希土類元素 Rを含有した希土類化合物とニッケル化合物を所定量秤量して熱 処理を施し、熱処理粉末を作製する熱処理粉末作製工程と、少なくとも前記主成分 粉末、前記熱処理粉末、及びマグネシウム化合物を混合して成形加工を施し、その 後、焼成処理を行う焼成工程とを含むことを特徴としている。
[0023] さらに、本発明の誘電体セラミックの製造方法は、前記熱処理粉末作製工程は、前 記希土類化合物及び前記ニッケル化合物に加え、チタン化合物を所定量秤量して 熱処理することを特徴としてレヽる。
[0024] また、本発明に係る積層セラミックコンデンサは、誘電体セラミック層と内部電極層と が交互に積層されて焼成されたセラミック焼結体を備え、該セラミック焼結体の両端 部に外部電極が形成された積層セラミックコンデンサにおいて、前記誘電体セラミツ ク層力 上述した誘電体セラミックで形成されていることを特徴としている。
発明の効果
[0025] 上記誘電体セラミックによれば、チタン酸バリウム系複合酸化物を主成分とし、 Y、 L a、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、及び Luの群力 選択 された少なくとも 1種の希土類元素 R、及び Mg、 Niを含有した誘電体セラミックにお いて、前記希土類元素 R、 Ni及び Tiを主成分とした結晶性複合酸化物が存在してい るので、高温雰囲気下、従来にも増して大きな電界が長時間印加されても、異常が 生じるのを極力回避することができ、高信頼性を有する誘電体セラミックを得ることが できる。
[0026] 具体的には、前記結晶性複合酸化物中における Niの含有モル量と希土類元素 R の含有モル量との比 NiZR力 NiZR>0. 15 (好ましくは Ni/R> 0. 35)、より好ま しくは R NiTiOで表わされる結晶性複合酸化物を誘電体セラミック中に存在させる
2 6
ことにより、上記作用効果を容易に得ることができる。
[0027] また、 Niの含有モル量と、 Niと Mgの含有モル量の総計との比 Ni/ (Ni + Mg)は、 Ni/ (Ni + Mg)≥0. 3 (好ましくは NiZ (Ni + Mg)≥0. 7)であるので、結晶性複合 酸化物中の Niの一部が Mgと置換されても、高温負荷時の信頼性に殆ど影響を与え ることはなぐ高信頼性を有する誘電体セラミックを得ることができる。
[0028] また、本発明に係る誘電体セラミックの製造方法によれば、少なくともバリウム化合 物及びチタンィ匕合物を含むセラミック素原料を出発原料としてチタン酸バリウム系複 合酸化物からなる主成分粉末を作製する主成分粉末作製工程と、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、及び Luの群力ら選択された少なく とも 1種の希土類元素 Rを含有した希土類化合物とニッケノレ化合物とを所定量秤量し て熱処理を施し、熱処理粉末を作製する熱処理粉末作製工程と、少なくとも前記主 成分粉末、前記熱処理粉末、及びマグネシウム化合物を混合して成形加工を施し、 その後、焼成処理を行う焼成工程とを含むので、熱処理粉末と主成分粉末とが混合 されて主成分中の Tiの一部が熱処理粉末と反応して結晶性複合酸化物を形成する ことができ、これにより上記誘電体セラミックを容易に製造することができる。
[0029] また、前記熱処理粉末作製工程において、前記希土類化合物及び前記ニッケル 化合物に加え、チタン化合物を所定量秤量して熱処理することによつても、容易に誘 電体セラミック中に所望の結晶性複合酸化物を形成することができる。
[0030] また、本発明に係る積層セラミックコンデンサによれば、誘電体セラミック層と内部電 極層とが交互に積層されて焼成された積層焼結体を備え、該積層焼結体の両端部 に外部電極が形成された積層セラミックコンデンサにおいて、前記誘電体セラミック 層が、上述した誘電体セラミックで形成されているので、高信頼性を有する積層セラミ ックコンデンサを得ることができる。具体的には 20kV/mmの高電界を 1000時間連 続して印加しても、不良発生率を 5%以下に抑制することができ、薄層、大容量の信 頼性に優れた小型積層セラミックコンデンサを得ることができる。
図面の簡単な説明
[0031] [図 1]本発明の誘電体セラミックを使用して製造された積層セラミックコンデンサの一 実施の形態を示す断面図である。
[図 2]〔実施例 3〕の試料番号 30の結晶構造の分析結果を Dy NiTiOの分析結果と
2 6
共に示した X線回折チャートである。
符号の説明
[0032] la〜: lg 誘電体セラミック層
2a〜2f 内部電極層
3 外部電極
10 セラミック焼結体
発明を実施するための最良の形態
[0033] 次に、本発明の実施の形態を詳説する。
[0034] 本発明の一実施の形態としての誘電体セラミックは、チタン酸バリウム系複合酸化 物を主成分とし、希土類元素 Mg、及び Niを含有すると共に、希土類元素 Ni 及び Tiを主成分とした結晶性複合酸化物が二次相粒子として形成されている。
[0035] ここで、希土類元素 Rとしては、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho 、 Er、 Tm、 Yb、及び Luの群から選択された少なくとも 1種を使用することができる。
[0036] また、チタン酸バリウム系複合酸化物は、一般式 ABOで表わされるぺロブスカイト
3
型構造を有しており、具体的な形態としては、 Aサイトが Ba、 Bサイトが Tiで形成され た BaTiO、 Baの一部が Ca及び Srのうちの少なくとも 1種の元素で置換された(Ba,
3
Ca) TiO、 (Ba, Sr) TiO、又は(Ba, Ca, Sr) TiO、 Tiの一部力 r、 Hfのうちの少
3 3 3
なくとも 1種の元素で置換された Ba (Ti, Zr) 0、 Ba (Ti, Hf )〇、又は Ba (Ti, Zr,
3 3
Hf) 0、或いはこれらの組み合わせが挙げられる。また、 Aサイトと Bサイトとの配合モ
3
ル比 A/Bについても、化学量論的には 1. 000であるが、各種特性や焼結性等に 影響を与えない程度に必要に応じて Aサイト過剰、又は Bサイト過剰となるように配合 される。
[0037] そして、本実施の形態では、希土類元素お Ni及び Tiを主成分とした結晶性複合 酸化物が二次相粒子として誘電体セラミック中に存在しており、これにより高電界 (例 えば、 20kV/mm)が、高温雰囲気下で長時間(例えば、 1000時間)連続して印加 されても絶縁性が低下するのを極力抑制することができる。したがって、誘電体セラミ ック層をより薄層化しても所望の信頼性を確保することが可能となる。
[0038] ここで、本実施の形態では、金属元素の総量にぉレ、て、希土類元素の含有モル量 力 8モル%以上、 Niの含有モル量が 8モル%以上、 Tiの含有モル量が 8モル%以上 、及び Dyと Niと Tiの総含有モル量が 50モル0 /0以上である粒子相力 R-Ni-Ti- O系の結晶性複合酸化物が存在するものと見做している。
[0039] そして、上記結晶性複合酸化物中の Niの含有量と希土類元素 Rの含有量とのモル 比 Ni/Rは、 NiZR>0. 15となるように配合されている。モル比 NiZRが 0. 15以下 では、上述した粒子相を有する所望の R—Ni— Ti—〇系結晶性複合酸化物を得るこ とが困難である。また、より高い信頼性を確保するためには、モル比 Ni/Rは、 Ni/ R>0. 35であるのが好ましぐさらにはモル比 Ni/Rは 0· 5、すなわち結晶性複合 酸化物が組成式 R NiTiOで表わされるのがより好ましい。
2 6
[0040] また、上記誘電体セラミックでは、電気特性の発現上、 Mgが必須の構成成分として 含有されるが、焼成工程中でこの Mgが Niの一部と置換されて上記結晶性複合酸化 物中に含有される場合がある。そして、このような場合であっても、 Mgの結晶性複合 酸化物中における含有モル量が所定量以下であれば、信頼性に殆ど影響を及ぼす ことはない。具体的には、 Mgの含有量を、 Niの含有量と、 Ni及び Mgの総含有量と のモル比 NiZ (Ni + Mg)で評価した場合、 NiZ (Ni + Mg)≥0. 3となる程度の少 量の Mgが含有されていても、信頼性に殆ど影響を及ぼすことはない。そして、モル 比 Ni/ (Ni + Mg)力 Ni/ (Ni + Mg)≥0. 7であれば、結晶性複合酸化物中に M gが含有されていない場合と略同様の信頼性を確保することができ、より高い信頼性 を確保すること力 Sできる。
[0041] また、この場合、 Niの一部が Mgに置換されることから、結晶性複合酸化物は、組成 式 R (Ni, Mg) TiOで表わされるのが好ましい。 [0042] 尚、上述したように、本誘電体セラミック中には、希土類元素お Mg、 Niが含有され るがその存在形態は、結晶性複合酸化物の構成成分として存在する他、主成分中 に固溶する場合や結晶粒界、或いは結晶三重点に偏析する場合等、種々の形態が 考えられる。
[0043] また、上述したように本誘電体セラミック中には、結晶性複合酸化物が二次相粒子 として存在する。そしてその存在比率は特に限定されるものではなレ、が、任意の断面 観察において面積比率で 0. 3%以上が好ましい。
[0044] 図 1は本発明に係る誘電体セラミックを使用して製造された積層セラミックコンデン サの一実施の形態を模式的に示した断面図である。
[0045] 該積層セラミックコンデンサは、セラミック焼結体 10に内部電極 2a〜2fが埋設され ると共に、該セラミック焼結体 10の両端部には外部電極 3a、 3bが形成され、さらに該 外部電極 3a、 3bの表面には第 1のめつき皮膜 4a、 4b及び第 2のめつき皮膜 5a、 5b が形成されている。
[0046] すなわち、セラミック焼結体 10は、本発明の誘電体セラミックで形成された誘電体 セラミック層 la〜: lgと内部電極層 2a〜2fとが交互に積層されて焼成されてなり、内 部電極層 2a、 2c、 2eは外部電極 3aと電気的に接続され、内部電極層 2b、 2d、 2fは 外部電極 3bと電気的に接続されている。そして、内部電極層 2a、 2c、 2eと内部電極 層 2b、 2d、 2fとの対向面間で静電容量を形成している。
[0047] 次に、上記積層セラミックコンデンサの製造方法を詳述する。
[0048] まず、セラミック素原料として、バリウム化合物、チタン化合物を用意し、必要に応じ てカルシウム化合物、ストロンチウム化合物、ジルコニウム化合物、ハフニウム化合物 等を用意する。そしてこれらセラミック素原料を所定量秤量し、これら秤量物を PSZ (P artially Stabilized Zirconia :部分安定化ジルコユア)ボール等の粉砕媒体及び純水と 共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させた後、 950〜: 1150°C の温度で所定時間、仮焼処理を施し、これにより平均粒径 0.:!〜 0. のチタン 酸バリウム系複合酸化物からなる主成分粉末を作製する。
[0049] 次に、希土類元素 R (ただし、 Rは Y、 La、 Ce、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、及び Luの中から選択された 1種以上)を含有した希土類化合物、及び ニッケノレ化合物を用意する。そして、これら希土類化合物及びニッケル化合物を、モ ル比 Ni/R力 Ni/R>0. 15、好ましくは 0. 35く Ni/R≤0. 50となるように秤量 して混合し、 500〜1200°Cの温度で熱処理を施し、 R、 Niを含む結晶性酸化物粉 末 (熱処理粉末)を作製する。
[0050] 次いで、この結晶性酸化物粉末を解砕した後、主成分粉末 100モル部に対し、前 記結晶性酸化物粉末が R換算で 0. 5〜20モル部となるように、これら主成分粉末と 結晶性酸化物粉末とを秤量する。そして、これらの秤量物を粉砕媒体及び純水と共 にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させてセラミック原料を得る。
[0051] 尚、このセラミック原料が、後述するように積層セラミックコンデンサの製造過程で焼 成処理に付され、本発明の誘電体セラミックを形成することになる。
[0052] 次いで、上記セラミック原料を有機バインダゃ有機溶剤、粉砕媒体と共にボールミ ルに投入して湿式混合し、セラミックスラリーを作製し、ドクターブレード法等によりセ ラミックスラリーに成形力卩ェを施し、厚みが 3 / m程度又はそれ以下となるようにセラミ ックグリーンシートを作製する。
[0053] 次いで、内部電極用導電性ペーストを使用してセラミックグリーンシート上にスクリー ン印刷を施し、前記セラミックグリーンシートの表面に所定パターンの導電膜を形成 する。
[0054] 尚、内部電極用導電性ペーストに含有される導電性材料としては、特に限定される ものではないが、低コスト化の観点からは、 Ni、 Cuやこれら合金を主成分とした卑金 属材料を使用するのが好ましい。
[0055] 次いで、導電膜が形成されたセラミックグリーンシートを所定方向に複数枚積層し、 導電膜の形成されていないセラミックグリーンシートで挟持し、圧着し、所定寸法に切 断してセラミック積層体を作製する。そしてこの後、温度 300〜500°Cで脱バインダ処 理を行ない、さらに、酸素分圧が 10— 9〜: 10— 12MPaに制御された H — N — H〇ガス
2 2 2 力 なる還元性雰囲気下、温度 1100〜: 1300°Cで約 2時間焼成処理を行なう。これ により導電膜とセラミック材とが共焼結され、内部電極 2a〜2fが坦設されたセラミック 焼結体 10が得られる。
[0056] 次に、セラミック焼結体 10の両端面に外部電極用導電性ペーストを塗布し、 600〜 800°Cの温度で焼付処理を行い、外部電極 3a、 3bを形成する。
[0057] 尚、外部電極用導電性ペーストに含有される導電性材料についても、特に限定さ れるものではないが、低コスト化の観点から、 Agや Cu、或いはこれらの合金を主成 分とした材料を使用するのが好ましい。
[0058] また、外部電極 3a、 3bの形成方法としては、セラミック積層体の両端面に外部電極 用導電性ペーストを塗布した後、セラミック積層体と同時に焼成処理を施すようにして あよい。
[0059] そして、最後に、電解めつきを施して外部電極 3a、 3bの表面に Ni、 Cu、 Ni_Cu合 金等からなる第 1のめつき皮膜 4a、 4bを形成し、さらに該第 1のめつき皮膜 4a、 4bの 表面にはんだゃスズ等からなる第 2のめつき皮膜 5a、 5bを形成し、これにより積層セ ラミックコンデンサが製造される。
[0060] このように本積層セラミックコンデンサは、上述した誘電体セラミックを使用して製造 されているので、誘電体セラミック層 la〜: lgがより薄層化された積層セラミックコンデ ンサであっても、高温雰囲気下、高電界を長時間印加しても絶縁性が低下するのを 抑制することができ、異常が発生するのを極力回避することができ、高信頼性を有す る積層セラミックコンデンサを容易に得ることができる。
[0061] 尚、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形 態では、希土類元素 R及び Niを含有した結晶性酸化物粉末 (熱処理粉末)を予め作 製しておき、該結晶性酸化物粉末と主成分粉末とを混合させ、焼成工程で主成分中 の Tiを結晶性酸化物粉末に固溶させて R— Ni— Ti O系結晶性複合酸化物を得て いる力 S、希土類元素 R及び Niに加え、 Tiを含有した複合酸化物粉末を予め作製し、 これを主成分に添加してセラミック原料を作製するようにしてもよい。
[0062] また、上記実施の形態では、希土類元素 R、 Mg、及び Ni以外の添加物成分につ いては言及していないが、電気特性等の各種特性や信頼性向上の観点から、 Mg〇 、 Mn〇、 Si〇、 CuO等を添加物として必要に応じて含有させるのも好ましい。
2
[0063] また、バリウム化合物、チタン化合物等のセラミック素原料についても、炭酸塩や酸 化物、硝酸塩、水酸化物、有機酸塩、アルコキシド、キレート化合物等、合成反応の 形態に応じて適宜選択することができる。 [0064] また、上述した積層セラミックコンデンサの製造過程で、 Al、 Sr、 Zr、 Fe、 Hf、 Na、
Co等が不純物として混入し、結晶粒子内や結晶粒界に存在するおそれがあるが、コ ンデンサの電気特性に影響を及ぼすものではない。
[0065] また、積層セラミックコンデンサの焼成処理で内部電極成分が結晶粒子内や結晶 粒界に拡散するおそれがあるが、この場合もコンデンサの電気特性に影響を及ぼす ことはない。
[0066] 次に、本発明の実施例を具体的に説明する。
実施例 1
[0067] まず、セラミック素原料として、 BaCO 、 TiOを所定量秤量し、これら秤量物を PSZ
3 2
ボール及び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させた 後、 1100°Cの温度で約 2時間、仮焼処理を施し、これにより平均粒径 0. 15 μ ΐηの B a TiO力 なる主成分粉末を作製した。
1.01 3
[0068] 次に、希土類元素 Rを含有した希土類化合物として Dy Oを用意し、さらに NiOを
2 3
用意する。そして、 Niと Dyとのモル比 Ni/Dyが表 1となるように、 Dy〇及び NiOを
2 3 秤量して混合し、 1000°Cの温度で 2時間、熱処理を施し、 Dy—Ni—O系酸化物粉 末を作製した。
[0069] 次いで、添加物粉末として MgO、 Mn〇、及び SiOを用意した。そして前記主成分
2
粉末 100モル部に対し、前記酸化物粉末が Dy換算で 1モル部、 MgOが 1. 5モル部 、 Mn〇が 0. 2モル部、及び Si〇が 1. 5モル部となるように、これら主成分粉末、酸
2
化物粉末及び添加物粉末をそれぞれ秤量した。そして、これらの秤量物を PSZボー ル及び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させてセラミ ック原料を得た。
[0070] 次いで、上記セラミック原料をエタノールやポリビュルブチラール系バインダ、及び PSZボールと共にボールミルに投入して湿式混合し、これによりセラミックスラリーを 作製し、さらにドクターブレード法によりセラミックスラリーに成形力卩ェを施し、厚みが 3 • 0 /i m、及び 2· 4 μ mの 2種類のセラミックグリーンシートを作製した。
[0071] 次いで、 Ni粉末を含有した内部電極用導電性ペーストを使用してセラミックダリー ンシート上にスクリーン印刷を施し、前記セラミックグリーンシートの表面に所定パター ンの導電膜を形成した。
[0072] 次いで、導電膜が形成されたセラミックグリーンシートを所定枚数積層し、導電膜の 形成されていないセラミックグリーンシートで挟持し、圧着し、所定寸法に切断してセ ラミック積層体を作製した。そしてこの後、窒素雰囲気下、 350°Cの温度で脱バイン ダ処理を行ない、さらに、酸素分圧が 10— 1QMPaに制御された H -N _H Oガスか
2 2 2 らなる還元性雰囲気下、温度 1200°Cで約 3時間焼成処理を行なった。そしてこれに より導電膜とセラミック材とが共焼結されて内部電極が埋設されたセラミック焼結体を 作製した。
[0073] 次に、 Cu粉末及びガラスフリットを含有した外部電極用導電性ペーストをセラミック 焼結体の両端面に塗布し、窒素雰囲気下、 700°Cの温度で焼付処理を行い、外部 電極を形成し、試料番号 1〜7の試料を作製した。
[0074] 得られた試料の誘電体セラミック層の厚みは 2. 0 μ mと 1. 6 μ mの 2種類であり、外 形寸法は、共に長さ: 3. 2mm、幅: 1. 6mm、厚み: 0. 9mm、誘電体セラミック層一 層あたりの対向電極面積は 2. lmm2,有効積層数は 200層であった。
[0075] 次に、試料番号:!〜 7の各試料について、破断面を研磨し、 FE— SEM (電界放射 型走査電子顕微鏡)で観察し、 WDX (波長分散型 X線マイクロアナライザ)で組成を マッピング分析して結晶性複合酸化物を同定し、さらに Ni及び Mgの総計に対する N iのモル比 Ni/ (Ni + Mg)を算出した。
[0076] ここで、結晶性複合酸化物の同定に関しては、 Dyの含有モル量が 8モル%以上、 Niの含有モル量が 8モル%以上、 Tiの含有モル量が 8モル%以上、及び Dyと Niと T iの総含有モル量が 50モル%以上の全てを満足する粒子相を結晶性複合酸化物が 形成されていると判断した。
[0077] また、モル比 Ni/ (Ni + Mg)は、結晶性複合酸化物中の任意の 3点を分析し、そ の平均値を算出して得た。
[0078] 次に、誘電体セラミック層の厚みが 2. O z m及び 1. 6 μ mの 2種類の各試料 100個 について、温度 125°Cで 32Vの電圧を 1000時間印加し(厚み 2. 0 μ mの場合で電 界強度 16kV/mm、厚み 1. 6 μ mの場合で電界強度 20kV/mm)、高温負荷試 験を行レ、、絶縁抵抗が 100k Ω以下になった試料を異常と判定して不良発生率を計 測した。
[0079] 表 1は試料番号:!〜 7の主成分組成、モル比 Ni/Dy、結晶性複合酸化物の存在 の有無、モル比 Ni/ (Ni + Mg)及び高温負荷試験の測定結果を示している。
[0080] [表 1]
Figure imgf000014_0001
*は本発明範囲外
[0081] 試料番号 1はモル比 Ni/Dyが 0. 05であり、 Dyに対する Niの含有モル量が少な すぎるため、 Dy— Ni— Ti O系の結晶性複合酸化物の存在が認められず、電界強 度が 16kVZmmで不良発生率は 14%、電界強度が 20kV/mmで不良発生率は 6 2%となり、信頼性に劣ることが分かった。
[0082] 試料番号 2はモル比 Ni/Dyが 0. 15であり、 Dyに対する Niの含有モル量が少な いため、 Dy_Ni_Ti_0系の結晶性複合酸化物の存在が認められず、電界強度 力 Sl6kVZmmで不良発生率は 7%、電界強度が 20kV/mmで不良発生率は 38% となり、試料番号 1よりは若干改善されたが、未だ十分な信頼性を得ることができない ことが分かった。
[0083] 試料番号 3〜7は、モル比 Ni/Dyが 0. 25〜0. 50であって 0. 15を超えており、ま たモル比 Ni/ (Ni + Mg)は 0. 3以上であるので、 Dy— Ni— Ti 〇系の結晶性複 合酸化物の存在が認められた。そしてその結果、電界強度が 16kV/mmで不良発 生率は皆無となり、また、電界強度が 20kV/mmでも不良発生率を 4%以下となつ て実用性に影響を及ぼさない程度に抑制することができ、信頼性が大幅に向上する ことが分かった。
[0084] 特に、試料番号 5〜7は、モル比 Ni/Dyが 0. 40〜0. 50であって 0. 35を超えて おり、またモル比 Ni/ (Ni + Mg)は 0. 7以上であるので、 20kVZmmの高電界を印 カロした場合でも不良発生率は皆無となり、誘電体セラミック層が薄層化されても高信 頼性を有する積層セラミックコンデンサの得られることが分かった。
[0085] 尚、モル比 Ni/Rが増加するに伴レ、、モル比 Ni/ (Ni + Mg)も増加している力 こ れは Mgは Niの一部と置換して存在することから、モル比 Ni/Rが増加して結晶性複 合酸化物中の Niの比率が増加するに伴レ、、 Mgの含有モル量が相対的に減少する ためである。そして、試料番号:!〜 7から明ら力、なように、信頼性の観点からは、結晶 性複合酸化物中の Mgの含有モル量は少なレ、のが好ましレ、ことが確認された。
実施例 2
[0086] 以下の方法で試料番号 11〜 15の試料を作製した。
[0087] 〔試料番号 11〕
まず、〔実施例 1〕と同様の方法 ·手順で Ba TiOからなる主成分粉末を作製した
1.01 3
[0088] 次に、希土類元素 Rを含有した希土類化合物としての Nd Oを用意し、さらに NiO
2 3
を用意した、そして、これら Nd O及び NiOを Nd: Ni= l : 0. 25となるように所定量
2 3
秤量して混合し、 1000°Cの温度で 2時間、熱処理を施し、 Nd_Ni_〇系酸化物粉 末を作製した。
[0089] 次いで、添加物粉末として Ni〇、 MgO、 Mn〇、 Si〇、及び CuOをそれぞれ用意し
2
た。そして前記酸化物粉末を解砕した後、主成分粉末 100モル部に対し、前記酸化 物粉末が Nd換算で 4モル部、 Ni〇が 1モル部、 Mg〇が 3モノレ部、 Mn〇が 0. 5モル 部、 SiO力 S2モル部、及び CuOが 0. 2モル部となるように、これら主成分粉末、結晶
2
性酸化物粉末及び添加物粉末をそれぞれ秤量した。次いで、これらの秤量物を PSZ ボール及び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させて セラミック原料を得た。 [0090] その後は〔実施例 1〕と同様の方法 ·手順で、誘電体セラミック層の厚みが、 2. Ομ m及び 1. 6 / mの 2種類の試料を作製した。尚、外形寸法、誘電体セラミック層一層 あたりの対向電極面積、及び有効積層数は〔実施例 1〕と同様であった。
[0091] 〔試料番号 12〕
まず、〔実施例 1〕と同様の方法 ·手順で Ba TiOからなる主成分粉末を作製した
1.01 3
[0092] 次に、 Nd〇、 Ni〇、及び Ti〇をそれぞれ用意し、 Nd:Ni:Ti=l:0. 5:0. 5とな
2 3 2
るように所定量秤量して混合し、 1000°Cの温度で 2時間、熱処理を施し、 Nd-Ni- Ti_〇系酸化物粉末を作製した。
[0093] 次いで、添加物粉末として MgO、 Mn〇、 SiO、 Cu〇、及び BaCOを用意した。そ
2 3
して前記酸化物粉末を解砕した後、主成分粉末 100モル部に対し、前記酸化物粉 末力 S4モル部、 Mg〇が 3モル部、 Mn〇が 0. 5モノレ部、 SiO力 ¾モル部、 CuOが 0.
2
2モル部、及び BaCO力 ¾モル部となるように、これら主成分粉末、酸化物粉末及び
3
添加物粉末をそれぞれ秤量した。次レ、でこれらの秤量物を PSZボール及び純水と共 にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させてセラミック原料を得た
[0094] その後は〔実施例 1〕と同様の方法 ·手順で、誘電体セラミック層の厚みが、 2. 0β m及び 1. 6 / mの 2種類の試料を作製した。尚、外形寸法、誘電体セラミック層一層 あたりの対向電極面積、及び有効積層数は〔実施例 1〕と同様であった。
[0095] 〔試料番号 13〕
まず、〔実施例 1〕と同様の方法 ·手順で Ba TiOからなる主成分粉末を作製した
1.01 3
[0096] 次に、 Nd O、 Ni〇、 MgO、 Mn〇、及び CuOをそれぞれ用意し、 Nd:Ni:Mg:M
2 3
n:Cu=l:0. 5:0. 75:0. 125:0. 05となるように所定量禾平量して混合し、 1000°C の温度で 2時間、熱処理を施し、 Nd_Ni_Mg_Mn_Cu_〇系酸化物粉末を作 製した。
[0097] そして前記酸化物粉末を解砕した後、主成分粉末 100モル部に対し、前記酸化物 粉末が Nd換算で 4モル部となるように、これら主成分粉末、及び酸化物粉末をそれ ぞれ秤量した。次いで、これらの秤量物を PSZボール及び純水と共にボールミルに 投入し、十分に湿式で混合粉碎し、乾燥させてセラミック原料を得た。
[0098] その後は〔実施例 1〕と同様の方法 ·手順で、誘電体セラミック層の厚みが、 2. 0β m及び 1. 6 zmの 2種類の試料を作製した。尚、外形寸法、誘電体セラミック層一層 あたりの対向電極面積、及び有効積層数は〔実施例 1〕と同様であった。
[0099] 〔試料番号 14〕
まず、〔実施例 1〕と同様の方法 ·手順で Ba TiOからなる主成分粉末を作製した
1.01 3
[0100] 次に、 Nd O、 Ni〇、 Mg〇、及び Ti〇をそれぞれ用意し、 Nd:Ni:Mg:Ti=l:0.
2 3 2
25:0. 25:0. 5となるように所定量秤量して混合し、 1000°Cの温度で 2時間熱処理 を施し、 Nd_Ni_Mg_Ti_0系酸化物粉末を作製した。
[0101] 次いで、添加物粉末として MgO、 Mn〇、 SiO、 Cu〇、及び BaCOを用意した。そ
2 3
して前記酸化物粉末を解砕した後、主成分粉末 100モル部に対し、前記酸化物粉 末が Nd換算で 4モル部、 MgOが 2モル部、 MnOが 0. 5モル部、 SiO力 ¾モル部、
2
Cu〇が 0. 2モル部、及び BaCO力 ¾モル部となるように、これら主成分粉末、酸化物
3
粉末及び添加物粉末をそれぞれ秤量した。次いで、これらの秤量物を PSZボール及 び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、乾燥させてセラミック 原料を得た。
[0102] その後は〔実施例 1〕と同様の方法 ·手順で、誘電体セラミック層の厚みが、 2. 0β m及び 1. 6 / mの 2種類の試料を作製した。尚、外形寸法、誘電体セラミック層一層 あたりの対向電極面積、及び有効積層数は〔実施例 1〕と同様であった。
[0103] 〔試料番号 15〕
まず、〔実施例 1〕と同様の方法 ·手順で Ba TiOからなる主成分粉末を作製した
1.01 3
[0104] 次に、 Nd〇、 Ni〇、及び Si〇をそれぞれ用意し、 Nd:Ni:Si=l:0. 5:0. 5とな
2 3 2
るように所定量秤量して混合し、 1000°Cの温度で 2時間熱処理を施し、 Nd-Ni-S i_〇系酸化物粉末を作製した。
[0105] 次いで、添加物粉末として MgO、 Mn〇、及び CuOを用意した。そして前記酸化物 粉末を解砕した後、主成分粉末 100モル部に対し、前記酸化物粉末が Nd換算で 4 モル部、 MgOが 3モル部、 MnOが 0. 5モル部、及び Cu〇が 0. 2モル部となるように 、これら主成分粉末、酸化物粉末及び添加物粉末をそれぞれ秤量した。次いでこれ らの秤量物を PSZボール及び純水と共にボールミルに投入し、十分に湿式で混合粉 砕し、乾燥させてセラミック原料を得た。
[0106] そして、その後は〔実施例 1〕と同様の方法 ·手順で、誘電体セラミック層の厚みが、 2. 0 111及び1. 6 z mの 2種類の試料を作製した。尚、外形寸法、誘電体セラミック 層一層あたりの対向電極面積、及び有効積層数は〔実施例 1〕と同様であった。
[0107] 次に、試料番号 11〜: 15の各試料について、〔実施例 1〕と同様の方法'手順で結晶 性複合酸化物を同定し、さらに Ni及び Mgの総計に対する Niのモル比 Ni/ (Ni + M g)を算出した。
[0108] そしてその後、誘電体セラミック層の厚みが 2. Ο μ τηΆΧβΙ . 6 z mの 2種類の各試 料 100個について、温度 125°Cで 32Vの電圧を 1000時間印加し、高温負荷試験を 行レ、、不良発生率を求めた。
[0109] 表 2は試料番号 11〜: 15の主成分組成、結晶性複合酸化物の存在の有無、モル比 Ni/ (Ni + Mg)及び高温負荷試験の測定結果を示してレ、る。
[0110] [表 2]
Figure imgf000018_0001
*は本発明範囲外
[0111] 試料番号 15は、 Nd— Ni— Ti O系の結晶性複合酸化物の存在が認められず、 電界強度が 16kV/mmで不良発生率は 10%、電界強度が 20kV/mmで不良発 生率は 25%となり、信頼性に劣ることが分かった。これは試料番号 15では、 Rと Siを 同時に含有した酸化物粉末を主成分粉末に添加しているため、主成分粉末中の Ti が結晶性複合酸化物に取り込まれるのが阻害され、その結果、モル比 NiZNdが 0. 5であっても誘電体セラミック中には Nd、 Ni、 Tiを主成分とする結晶性複合酸化物が 形成されなかったものと思われる。
[0112] 試料番号 11は、モル比 Ni/Ndが 0. 25となるように予め Nd— Ni— O系酸化物粉 末を作製し、これにさらに Ni〇を添加したものである。この試料番号 11では、 Nd_N i_Ti_0系の結晶性複合酸化物の存在が認められた。そしてその結果、電界強度 が 16kVZmmで不良発生率は皆無となり、電界強度が 20kV/mmでも不良発生 率を 3%となり、良好な信頼性が得られることが分かった。尚、 20kVZmmの電界強 度で若干の不良品が発生したのは、モル比 Ni/ (Ni + Mg)が 0. 3であり、結晶性複 合酸化物中の Mgの含有モル量が Niに比べて相対的に多くなつたためと思われる。
[0113] 試料番号 12は、 Nd— Ni— Ti O系酸化物粉末を主成分粉末に添加しているの で、 Nd NiTiO力もなる結晶性複合酸化物を容易に生成することができ、これにより
2 6
電界強度が 20kV/mmの場合であっても不良発生率を皆無にすることができ、高い 信頼性を得ることのできることが分かった。
[0114] 試料番号 13は、 Nd— Ni— Mg— Mn— Cu— O系酸化物粉末を主成分粉末に添 加したものであり、 Nd— Ni— Ti— O系の結晶性複合酸化物の存在が認められた。そ してその結果、電界強度が 16kV/mmで不良発生率は皆無となり、電界強度が 20 kV/mmでも不良発生率は 5%となり、良好な信頼性が得られることが分かった。尚 、 20kV/mmの電界強度で若干の不良品が発生したのは、試料番号 11と同様、モ ル比 Ni/ (Ni + Mg)が 0. 3であり、結晶性複合酸化物中の Mgの含有モル量が Ni に比べて相対的に多いためと思われる。
[0115] 試料番号 14は、 Nd_Ni— Ti— O系の結晶性複合酸化物の存在が認められた。そ してその結果、電界強度が 16kV/mmで不良発生率は皆無となり、電界強度が 20 kV/mmでも不良発生率を 2%となり、良好な信頼性が得られることが分かった。尚 、 20kV/mmの電界強度で若干の不良品が発生したのは、モル比 Ni/ (Ni + Mg) が 0. 5であり、したがって結晶性複合酸化物中の Mgの含有モル量が Niと同程度で あり、結晶性複合酸化物中での Niの比率が少なくなつたためと思われる。
実施例 3
[0116] 〔試料番号 21〜37〕
まず、セラミック素原料として、 BaCO、 CaCO、 SrCO、及び TiOを所定量秤量
3 3 3 2
し、これら秤量物を PSZボール及び純水と共にボールミルに投入し、十分に湿式で 混合粉砕し、乾燥させた後、 1 100°Cの温度で約 2時間、仮焼処理を施し、これにより 平均粒径 0. 15 /i mの(Ba Ca Sr ) TiOからなる主成分粉末を作製した
0.985 0.012 0.003 1.002 3
[0117] 次に、希土類元素 Rを含有した各種希土類酸化物 R O (Rは Y、 La、 Ce、 Pr、 Nd
2 3
、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、及び Lu)を用意した。
[0118] 次に、 Niと Rとのモル比 Ni/Rが 0· 5となるように、 R Ο及び Ni〇を秤量して混合
2 3
し、 1000°Cの温度で 2時間、熱処理を施し、 R—Ni— Oで表わされる結晶性酸化物 粉末を作製した。
[0119] 次いで、添加物粉末として MgO、 Mn〇、 SiO、及び Cu〇を用意した。そして主成
2
分粉末 100モル部に対し、前記酸化物粉末力 ¾換算で 4モル部、 Mg〇が 3モル部、 Mn〇が 0. 5モル部、 SiO力 ¾モル部、及び CuOが 0. 2モノレ部となるように、これら
2
主成分粉末、酸化物粉末及び添加物粉末をそれぞれ秤量した。次いで、これらの秤 量物を PSZボール及び純水と共にボールミルに投入し、十分に湿式で混合粉砕し、 乾燥させてセラミック原料を得た。
[0120] その後は〔実施例 1〕と同様の方法 *手順で、誘電体セラミック層の厚みが、 2. Ο μ m及び 1. 6 μ mの 2種類からなる試料番号 2:!〜 37の試料を作製した。
[0121] 尚、試料番号 2:!〜 37の外形寸法、誘電体セラミック層一層あたりの対向電極面積 、及び有効積層数は〔実施例 1〕と同様であった。
[0122] 〔試料番号 38〜52〕
まず、試料番号 21〜37と同様の方法'手順で(Ba Ca Sr ) TiO力 な
0.985 0.012 0.003 1.002 3 る主成分粉末を作製した。
[0123] 次に、上記主成分粉末 100モル部に対し R O力 モル部、 Ni〇が 2モル部、 Mg〇 力 ¾モル部、 Mn〇が 0· 5モル部、 SiO力 2モル部、及び CuOが 0. 2モル部となるよ
2
うに、これら主成分粉末、酸化物粉末及び添加物粉末をそれぞれ秤量した。次いで
、これらの秤量物を PSZボール及び純水と共にボールミルに投入し、十分に湿式で 混合粉砕し、乾燥させてセラミック原料を得た。
[0124] そして、その後は〔実施例 1〕と同様の方法 ·手順で、誘電体セラミック層の厚みが、 1. 及び 2. O z mの 2種類からなる試料番号 38〜52の試料を作製した。
[0125] 尚、試料番号 38〜52の外形寸法、誘電体セラミック層一層あたりの対向電極面積 、及び有効積層数は〔実施例 1〕と同様であった。
[0126] 〔特性評価〕
次に、試料番号 21〜52の各試料について、〔実施例 1〕と同様の方法'手順で結晶 性複合酸化物を同定し、さらに Ni及び Mgの総計に対する Niのモル比 Ni/ (Ni + M g)を算出した。
[0127] そしてその後、誘電体セラミック層の厚みが 2· Ο μ ΐ ΑΧ Ι . 6 /i mの 2種類の各試 料 100個ずつについて、温度 125°Cで 32Vの電圧を 1000時間印加し、高温負荷試 験を行い、不良発生率を求めた。
[0128] 表 3は試料番号 21〜52の主成分組成、モル比 Ni/R、結晶性複合酸化物の存在 の有無、モル比 Ni/ (Ni + Mg)及び高温負荷試験の測定結果を示している。
[0129] [表 3]
主成分組成:( B a0986Cac ol ZS r0.003) , .002Ti 03 高温負荷試験:不良発生率 (%) 試料 モル比 モル比
No. 結晶性複合酸化物
Ni/R R Ni/(Ni+Mg) 電界強度: 電界強度: の有無 16kV/mm 20kV/mm (一) (一)
21 0. 5 Y 有 0. 7 0 0
22 0. 5 し a 有 0. 7 0 0
23 0. 5 Ce 有 0. 7 0 0
24 0. 5 Pr 有 0. 7 0 0
25 0. 5 Nd 有 0. 7 0 0
26 0. 5 Sm 有 0. 7 0 0
27 0. 5 Eu 有 0. 7 0 0
28 0. 5 Gd 有 0. 7 0 0
29 0. 5 Tb 有 0. 7 0 0
30 0. 5 Dy 有 0. 7 0 0
31 0. 5 Ho 有 0. 7 0 0
32 0. 5 Er 有 0. 7 0 0
33 0. 5 Tm 有 0. 7 0 0
34 0. 5 Yb 有 0. 7 0 0
35 0. 5 し u 有 0. 7 0 0
Dy/Tm
36 0. 5
=0.5/0.5 有 0. 7 0 0
Nd/Yb
37 0. 5 0. 7
=0.75/0.25 有 0 0
38* ― Y 無 ― 45 100
39* ― し a 無 ― 100 100
40* ― Ce 無 ― 91 100
41 * ― Pr 無 ― 93 100
42* ― Nd 無 ― 80 1 00
43* ― Sm 無 ― 61 100
44* ― Eu 無 ― 55 1 00
45* ― Gd 無 ― 52 100
46* ― Tb 無 ― 40 100
47* ― Dy 無 ― 33 1 00
48* ― Ho 無 ― 38 100
49* ― Er 無 ― 43 100
50* ― Tm 無 ― 34 100
51 * ― Yb 無 ― 43 100
52* ― し u 無 ― 31 100
*は本発明範囲外 試料番号 38〜52は、電界強度が 16kV/mmで不良発生率は 31〜: 100%、電界 強度が 20kVZmmでは全てが不良品となり、信頼性の確保からは程遠い結果とな つた。これは、希土類元素 R及び Niを R O及び Ni〇の形態で、 Mg〇等の他の添加
2 3
物質と共に主成分粉末に添加したため、誘電体セラミック中には R_Ni_Ti_〇系 の結晶性複合酸化物を形成することができなかったものと思われる。因みに、試料番 号 38〜52の各試料の断面を走査型電子顕微鏡(SEM)で観察したところ、 R〇、
2 3
Ni〇、 MgO等の添加物質は、 SiOと共に結晶粒界において非晶質状態で存在する
2
ことが確認された。
[0131] これに対し試料番号 2:!〜 37は、 20kV/mmの高電界を 125°Cの高温雰囲気下、
1000時間印加しても不良品の発生は皆無であった。これは希土類元素 Rと Niとを含 有した酸化物粉末 (熱処理粉末)を予め作製し、この酸化物粉末を他の添加物質と 共に主成分粉末に添カ卩しているため、誘電体セラミック中に R—Ni—Ti—O系の結 晶性複合酸化物の存在し、し力、も、モル比 Ni/Rが 0. 5であって 0. 35を超えており 、またモル比 Ni/ (Ni + Mg)が 0. 7であり、 Mgの結晶性複合酸化物中の含有モル 量も少ないためと思われる。
[0132] 因みに、試料番号 30の試料について、別途作製した Dy NiTiO粉末と共に X線
2 6
回折装置を使用して結晶構造を分析した。
[0133] 図 2はその X線回折チャートを示した図であって、横軸は回折角 2 Θ (° )、縦軸は X 線強度 (a. u. )である。
[0134] この図 2から明らかなように、試料番号 30の誘電体セラミック(焼結体)内に Dy NiT
2 iOと同等の結晶構造を有する結晶性複合酸化物が二次相として存在することが分
6
かった。

Claims

請求の範囲
[1] チタン酸バリウム系複合酸化物を主成分とし、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、
Tb、 Dy、 Ho、 Er、 Tm、 Yb、及び Luの群から選択された少なくとも 1種の希土類元 素 R、及び Mg、 Niを含有した誘電体セラミックにおいて、
前記希土類元素 R、 Ni及び Tiを主成分とした結晶性複合酸化物が存在してレ、るこ とを特徴とする誘電体セラミック。
[2] 前記結晶性複合酸化物中における Niの含有モル量と希土類元素 Rの含有モル量 との比 Ni/Rは、 Ni/R> 0. 15であることを特徴とする請求項 1記載の誘電体セラミ ック。
[3] 前記比 Ni/Rは、 Ni/R>0. 35であることを特徴とする請求項 2記載の誘電体セ ラミック。
[4] 前記結晶性複合酸化物は、組成式 R NiTiOで表わされることを特徴とする請求項
2 6
1乃至請求項 3のいずれかに記載の誘電体セラミック。
[5] Mgが前記結晶性複合酸化物に含有されると共に、 Niの含有モル量と、 Ni及び M gの含有モル量の総計との比 Ni/ (Ni + Mg)は、 Ni/ (Ni + Mg)≥0. 3であること を特徴とする請求項 1乃至請求項 3のいずれかに記載の誘電体セラミック。
[6] 前記比 NiZ (Ni + Mg)は、 NiZ (Ni + Mg)≥0. 7であることを特徴とする請求項 5 記載の誘電体セラミック。
[7] 前記結晶性複合酸化物は、組成式 R (Ni, Mg) TiOで表わされることを特徴とす
2 6
る請求項 5又は請求項 6記載の誘電体セラミック。
[8] 少なくともバリウム化合物及びチタン化合物を含むセラミック素原料を出発原料とし てチタン酸バリウム系複合酸化物からなる主成分粉末を作製する主成分粉末作製ェ 程と、
Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、及び Luの群力、 ら選択された少なくとも 1種の希土類元素 Rを含有した希土類化合物とニッケル化合 物を所定量秤量して熱処理を施し、熱処理粉末を作製する熱処理粉末作製工程と、 少なくとも前記主成分粉末、前記熱処理粉末、及びマグネシウム化合物を混合して 成形加工を施し、その後、焼成処理を行う焼成工程とを含むことを特徴とする誘電体 セラミックの製造方法。
[9] 前記熱処理粉末作製工程は、前記希土類化合物及び前記ニッケル化合物に加え
、チタン化合物を所定量秤量して熱処理することを特徴とする請求項 8記載の誘電 体セラミックの製造方法。
[10] 誘電体セラミック層と内部電極層とが交互に積層されて焼成されたセラミック焼結体 を備え、該セラミック焼結体の両端部に外部電極が形成された積層セラミックコンデ ンサにおいて、
前記誘電体セラミック層が、請求項 1乃至請求項 6のいずれかに記載の誘電体セラ ミックで形成されていることを特徴とする積層セラミックコンデンサ。
PCT/JP2007/063294 2006-07-20 2007-07-03 Céramique diélectrique, procédé pour la produire et condensateur multicouche en céramique WO2008010412A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800269995A CN101489953B (zh) 2006-07-20 2007-07-03 电介质陶瓷及其制造方法以及叠层陶瓷电容器
JP2008525825A JP5120255B2 (ja) 2006-07-20 2007-07-03 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
US12/355,706 US7638451B2 (en) 2006-07-20 2009-01-16 Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006198501 2006-07-20
JP2006-198501 2006-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/355,706 Continuation US7638451B2 (en) 2006-07-20 2009-01-16 Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor

Publications (1)

Publication Number Publication Date
WO2008010412A1 true WO2008010412A1 (fr) 2008-01-24

Family

ID=38956746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063294 WO2008010412A1 (fr) 2006-07-20 2007-07-03 Céramique diélectrique, procédé pour la produire et condensateur multicouche en céramique

Country Status (4)

Country Link
US (1) US7638451B2 (ja)
JP (1) JP5120255B2 (ja)
CN (2) CN101489953B (ja)
WO (1) WO2008010412A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024086A (ja) * 2008-07-18 2010-02-04 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
CN101838141A (zh) * 2009-03-13 2010-09-22 株式会社村田制作所 钛酸钡系电介体原料粉末及其制造方法、陶瓷胚片的制造方法及层叠陶瓷电容器的制造方法
JP2010241636A (ja) * 2009-04-06 2010-10-28 Murata Mfg Co Ltd 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
US8526164B2 (en) 2010-03-05 2013-09-03 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor
JP2020136663A (ja) * 2019-02-13 2020-08-31 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミックキャパシタ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498081B (zh) * 2009-09-07 2015-09-23 株式会社村田制作所 介电陶瓷组成物和积层陶瓷电容器
JP2012129508A (ja) * 2010-11-22 2012-07-05 Tdk Corp 積層型セラミック電子部品
JP5838927B2 (ja) * 2011-10-14 2016-01-06 Tdk株式会社 積層セラミック電子部品
KR102048093B1 (ko) * 2014-02-26 2019-11-22 삼성전기주식회사 디스프로슘 산화물 복합체, 복합 유전체 분말 및 적층 세라믹 전자부품
KR102523255B1 (ko) * 2019-06-28 2023-04-19 가부시키가이샤 무라타 세이사쿠쇼 적층형 전자부품
KR20210055987A (ko) * 2019-11-08 2021-05-18 삼성전기주식회사 적층 세라믹 커패시터
KR20220121024A (ko) 2021-02-24 2022-08-31 삼성전기주식회사 적층 세라믹 전자부품

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006333A1 (ja) * 2004-07-08 2006-01-19 Murata Manufacturing Co., Ltd. 誘電体セラミック組成物および積層セラミックコンデンサ
WO2006025205A1 (ja) * 2004-09-02 2006-03-09 Murata Manufacturing Co., Ltd. 誘電体セラミック組成物、その製造方法及び積層セラミックコンデンサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259406B2 (ja) * 1993-02-03 2002-02-25 株式会社村田製作所 誘電体磁器組成物
JP2000159573A (ja) * 1998-11-26 2000-06-13 Matsushita Electric Ind Co Ltd 誘電体磁器組成物およびその製造方法
JP4110978B2 (ja) * 2003-01-24 2008-07-02 株式会社村田製作所 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP2004225653A (ja) * 2003-01-24 2004-08-12 Toyota Industries Corp ピストン式ポンプ
JP2009159573A (ja) * 2007-12-28 2009-07-16 Nec Corp 通信端末装置及び通信事業者サーバ、並びに、方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006333A1 (ja) * 2004-07-08 2006-01-19 Murata Manufacturing Co., Ltd. 誘電体セラミック組成物および積層セラミックコンデンサ
WO2006025205A1 (ja) * 2004-09-02 2006-03-09 Murata Manufacturing Co., Ltd. 誘電体セラミック組成物、その製造方法及び積層セラミックコンデンサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024086A (ja) * 2008-07-18 2010-02-04 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
US8116065B2 (en) 2008-07-18 2012-02-14 Murata Manufacturing Co., Ltd. Dielectric ceramic material and monolithic ceramic capacitor
CN101838141A (zh) * 2009-03-13 2010-09-22 株式会社村田制作所 钛酸钡系电介体原料粉末及其制造方法、陶瓷胚片的制造方法及层叠陶瓷电容器的制造方法
JP2010241636A (ja) * 2009-04-06 2010-10-28 Murata Mfg Co Ltd 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
US8526164B2 (en) 2010-03-05 2013-09-03 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor
JP2020136663A (ja) * 2019-02-13 2020-08-31 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミックキャパシタ
US11201012B2 (en) 2019-02-13 2021-12-14 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic capacitor

Also Published As

Publication number Publication date
JPWO2008010412A1 (ja) 2009-12-17
CN101489953B (zh) 2013-04-10
CN101489953A (zh) 2009-07-22
JP5120255B2 (ja) 2013-01-16
US20090128990A1 (en) 2009-05-21
US7638451B2 (en) 2009-12-29
CN102875144A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP4626892B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
JP5761627B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
WO2008010412A1 (fr) Céramique diélectrique, procédé pour la produire et condensateur multicouche en céramique
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
US8526165B2 (en) Dielectric ceramic and laminated ceramic capacitor
JP5146852B2 (ja) 積層セラミックコンデンサ
US8830651B2 (en) Laminated ceramic capacitor and producing method for laminated ceramic capacitor
JP5224147B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
JP4831142B2 (ja) 誘電体セラミックおよび積層セラミックコンデンサ
EP3326184B1 (en) Dielectric composition, dielectric element, electronic component and multi-layer electronic component
TWI422551B (zh) 介電質瓷器組合物及溫度補償用積層電容器
EP3326185B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
US10618846B2 (en) Dielectric porcelain composition, multilayer ceramic capacitor, and method for producing multilayer ceramic capacitor
TWI441791B (zh) 介電質陶瓷及積層陶瓷電容器
CN100592442C (zh) 电子部件
WO2017012798A1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP5240199B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
WO2012035935A1 (ja) 誘電体セラミック、積層セラミックコンデンサ、及びこれらの製造方法
US10079106B2 (en) Multilayer ceramic capacitor
JP5354185B2 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026999.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768068

Country of ref document: EP

Kind code of ref document: A1