WO2008009598A1 - Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung - Google Patents

Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung Download PDF

Info

Publication number
WO2008009598A1
WO2008009598A1 PCT/EP2007/057081 EP2007057081W WO2008009598A1 WO 2008009598 A1 WO2008009598 A1 WO 2008009598A1 EP 2007057081 W EP2007057081 W EP 2007057081W WO 2008009598 A1 WO2008009598 A1 WO 2008009598A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
water
monomer
fibers
monomer solution
Prior art date
Application number
PCT/EP2007/057081
Other languages
English (en)
French (fr)
Inventor
Uwe Stueven
Matthias Weismantel
Wilfried Heide
Marco KRÜGER
Volker Seidl
Stefan Blei
Dennis LÖSCH
Rüdiger Funk
Annemarie Hillebrecht
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38567039&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008009598(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Se filed Critical Basf Se
Priority to US12/373,621 priority Critical patent/US8124229B2/en
Priority to EP07787355A priority patent/EP2046401B1/de
Priority to AT07787355T priority patent/ATE496638T1/de
Priority to JP2009519936A priority patent/JP5656403B2/ja
Priority to BRPI0714445A priority patent/BRPI0714445B8/pt
Priority to DE502007006381T priority patent/DE502007006381D1/de
Publication of WO2008009598A1 publication Critical patent/WO2008009598A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a process for preparing water-absorbent polymer particles having high permeability by polymerization of droplets of a monomer solution in a gas phase surrounding the droplets, wherein the monomer solution based on the monomer contains at least 0.5 wt .-% of a crosslinker, the polymerization in the Drop takes place in a homogeneous phase and the polymer particles have an average diameter of at least 150 microns.
  • Water-absorbing polymers are used as aqueous solution-absorbing products for making diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the properties of the water-absorbing polymers can be adjusted via the degree of crosslinking. As the degree of crosslinking increases, the gel strength increases and the absorption capacity decreases. This means that with increasing absorption under pressure (AUL), the centrifuge retention capacity (CRC) decreases (to very high degrees of crosslinking, the absorption under pressure also decreases again).
  • AUL absorption under pressure
  • CRC centrifuge retention capacity
  • the object of the present invention was to provide a process for producing water-absorbent polymer particles of high permeability, i. a high fluid transfer through the swollen gel bed.
  • the object was achieved by a method for producing water-absorbing polymer particles by polymerization of drops of a monomer solution containing
  • the polymerization takes place in drops in a homogeneous phase, characterized in that the monomer solution contains at least 0.5 wt .-% of the crosslinker b) based on the monomer a) and the polymer particles have a mean diameter of at least 150 ⁇ m.
  • water-absorbing polymer particles have a permeability (SFC) of typically at least 5 x 10 "7 cm 3 sec / g, preferably at least 15 x 10" 7 cm 3 sec / g, preferably at least 35 x 10 "7 cm 3 s / g, more preferably at least 12O x 10 "7 cm 3 sec / g, most preferably at least 200 x 10" 7 cm 3 sec / g.
  • SFC permeability of the water-absorbing polymer particles is typically less than 500 x 10 "7 cm 3 s / g.
  • the water-absorbing polymer particles obtainable by the process according to the invention have a centrifuge retention capacity (CRC) of typically at least 10 g / g, preferably at least 15 g / g, preferably at least 20 g / g, more preferably at least 25 g / g, most preferably at least 30 g / g, up.
  • the centrifuge retention capacity (CRC) of the water-absorbent polymer particles is usually less than 50 g / g.
  • the monomer solution preferably contains at least 0.6% by weight, preferably at least 0.8% by weight, particularly preferably at least 1.5% by weight, very particularly preferably at least 3.0% by weight, crosslinker b), in each case based on monomer a).
  • the average diameter of the polymer particles is preferably at least 200 .mu.m, more preferably from 250 to 600 .mu.m, very particularly from 300 to 500 .mu.m, wherein the particle diameter can be determined by light scattering and means the volume-averaged mean diameter.
  • 90% of the polymer particles have a diameter of preferably 100 to 800 .mu.m, more preferably from 150 to 700 .mu.m, most preferably from 200 to 600 .mu.m.
  • the oxygen content of the gas phase is preferably 0.001 to 0.15% by volume, more preferably 0.002 to 0.1% by volume, most preferably 0.005 to 0.05% by volume.
  • the gas phase preferably contains only inert gases besides oxygen, i. Gases which do not interfere with the polymerization under reaction conditions, for example nitrogen and / or water vapor.
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 50 g / 100 g of water preferably at least one acid group each.
  • the concentration of the monomers a) in the monomer solution is usually from 2 to 80% by weight, preferably from 5 to 70% by weight, particularly preferably from 10 to 60% by weight.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • the preferred monomers a) have at least one acid group, wherein the acid groups are preferably at least partially neutralized.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the acid groups of the monomers a) are usually partially neutralized, preferably from 25 to 85 mol%, preferably from 50 to 80 mol%, particularly preferably from 60 to 75 mol%, where the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof. Instead of alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as the alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the neutralization is achieved by mixing the neutralizing agent as an aqueous solution, as a melt, or preferably as a solid.
  • sodium hydroxide with a water content well below 50 wt .-% may be present as a waxy mass with a melting point above 23 ° C. In this case, a dosage as general cargo or melt at elevated temperature is possible.
  • hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids can be mono-, di- or tricarboxylic acids.
  • R 1 is more preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on Acrylic acid, wherein acrylic acid salts are taken into account as acrylic acid become.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used.
  • the crosslinkers b) are compounds having at least two free-radically polymerizable groups which can be copolymerized into the polymer network in a free-radical manner.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-A 0 530 438, di- and triacrylates, as in EP-A 0 547 847, EP-A 0 559 476 , EP-A 0 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 and described in DE-A 103 31 450, mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, such as in DE-A 103 314 56 and DE-A 103 55 401, or cross
  • Suitable crosslinkers b) are especially N, N'-methylenebisacrylamide and N 1 N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A 0 343 427.
  • esters of unsaturated mono- or polycarboxylic acids of polyols such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate
  • crosslinkers b) are pentaerythritol di-pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol di- and glycerol triallyl ether, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight between 300 and 1,000.
  • crosslinkers b) are di- and triacrylates of 3 to 15 times ethoxylated glycerol, 3 to 15 times ethoxylated trimethylolpropane, 3 to 15 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-fold ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, and the 3-fold mixed ethoxylated or propoxylated glycerol or trimethylolpropane, the 15-fold ethoxylated glycerol or
  • Trimethylolpropans as well as the 40-fold ethoxylated glycerol, trimethylolethane or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 03/104301. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol. All Particular preference is given to diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol. Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • initiators c) it is possible to use all compounds which decompose into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and the so-called redox initiators. Preference is given to the use of water-soluble initiators. In some cases, it is advantageous to use mixtures of different initiators, for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion.
  • Particularly preferred initiators c) are azo initiators, such as 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (5-methyl-2-imidazoline-2 - yl) propane] dihydrochloride, and photoinitiators, such as 2-hydroxy-2-methylpropiophenone and 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, redox initiato such as sodium persulfate / hydroxymethylsulfinic acid, ammonium peroxodisulfate / hydroxymethylsulfinic acid, hydrogen peroxide / hydroxymethylsulfinic acid, sodium persulfate / ascorbic acid, ammonium peroxodisulfate / ascorbic acid and hydrogen peroxide / ascorbic acid, photoinitiators, such as 1- [4- (2-hydroxyethoxy) -phen
  • the initiators are used in customary amounts, for example in amounts of 0.001 to 5 wt .-%, preferably 0.01 to 1 wt .-%, based on the monomers a).
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance.
  • the monomer solution may be polymerized prior to polymerization by inerting, i. H. Flow through with an inert gas, preferably nitrogen, to be freed of dissolved oxygen.
  • an inert gas preferably nitrogen
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight.
  • the polymerization inhibitors can also be removed by absorption, for example on activated carbon.
  • the monomer solution is dripped off for the polymerization in the gas phase.
  • the polymerization in the monomer solution drops takes place in a homogeneous phase. This means that the monomer solution is homogeneous and that the monomer solution remains homogeneous during the polymerization.
  • the polymer may swell during the polymerization but not precipitate and form a second phase in the drop. Otherwise, several polymer nuclei would form in each drop, forming agglomerates of very small primary particles during drying.
  • the aim of the method according to the invention is the production of one primary particle per drop. Therefore, the monomers a) and the crosslinkers b) are to be selected so that the resulting polymer is swellable in the aqueous phase of the drop.
  • the process according to the invention is preferably carried out in the absence of hydrophobic inert solvents.
  • Hydrophobic inert solvents are virtually all water immiscible liquids which do not interfere with the polymerization, i. contain no polymerizable groups. Immiscible with water means that the solubility of the hydrophobic solvents in water is less than 5 g / 100 g, preferably less than 1 g / 100 g, more preferably less than 0.5 g / 100 g.
  • a monomer solution is metered to form droplets in the gas phase.
  • the dripping of the monomer solution can be carried out, for example, by means of a dropletizer plate.
  • a dropletizer plate is a plate having at least one bore, the liquid passing from above through the bore.
  • the dropletizer plate or the liquid can be set in vibration, whereby an ideally monodisperse droplet chain is produced on the underside of the dropletizer per bore.
  • the number and size of the holes are selected according to the desired capacity and drop size.
  • the drop diameter is usually 1, 9 times the diameter of the bore. It is important here that the liquid to be dripped does not pass through the bore too quickly or the pressure loss through the bore is not too great. Otherwise, the liquid is not dripped, but the liquid jet is torn due to the high kinetic energy (sprayed).
  • the dropletizer is operated in the laminar jet flow regime, i. H. the Reynolds number based on the throughput per bore and the bore diameter is preferably less than 2,000, preferably less than 1,000, more preferably less than 500, most preferably less than 100.
  • the pressure drop across the bore is preferably less than 2.5 bar, more preferably less than 1, 5 bar, most preferably less than 1 bar.
  • the dropletizer usually has at least one, preferably at least 10, more preferably at least 50, and usually up to 10,000, preferably up to 5,000, more preferably up to 1,000 holes, the bores are usually evenly distributed over the Vertropferplatte, preferably in the so-called triangular division, ie in each case three holes form the corners of an equilateral triangle.
  • the diameter of the holes is adjusted to the desired drop size.
  • the support plate may be advantageous to place the Vertropferplatte on a support plate, wherein the support plate also has holes.
  • the bores of the support plate have a larger diameter than the bores of the dropletizer plate and are arranged so that there is a concentric bore of the support plate under each bore of the dropletizer. This arrangement allows a quick change of the dropletizer plate, for example to produce droplets of a different size.
  • the dripping can also be carried out by means of pneumatic drawing nozzles, rotation, cutting of a jet or quickly actuable micro-valve nozzles.
  • a liquid jet is combined with a
  • Gas flow accelerated through a shutter About the amount of gas, the diameter of the liquid jet and thus the droplet diameter can be influenced.
  • the exiting liquid jet can also be cut into defined segments by means of a rotating knife. Each segment then forms a drop.
  • micro-valve nozzles When using micro-valve nozzles directly drops are generated with a defined volume of liquid.
  • the gas phase flows as a carrier gas through the reaction space.
  • the carrier gas can be passed through the reaction space in cocurrent or in countercurrent to the freely falling drops of the monomer solution, preferably in cocurrent.
  • the carrier gas is preferably recirculated at least partially, preferably at least 50%, particularly preferably at least 75%, as recycle gas into the reaction space.
  • a subset of the carrier gas is It is discharged after each pass, preferably up to 10%, more preferably up to 3%, most preferably up to 1%.
  • the polymerization is preferably carried out in a laminar gas flow.
  • a laminar gas flow is a gas flow in which the individual layers of the flow do not mix but move in parallel.
  • a measure of the flow conditions is the Reynolds number (Re). Below a critical Reynolds number (Fteknt) of 2300, the gas flow is laminar.
  • the Reynolds number of the laminar gas flow is preferably less than 2000, more preferably less than 1500, most preferably less than 1000.
  • the gas velocity is preferably adjusted so that the flow in the reactor is directed, for example, there are no convection vortices opposite the general flow direction, and is for example 0.1 to 2 m / s, preferably 0.5 to 1.8 m / s , preferably 1 to 1.5 m / s.
  • the carrier gas is expediently preheated to the reaction temperature in front of the reactor.
  • the reaction temperature in the thermally induced polymerization is preferably 70 to 250 ° C, more preferably 100 to 220 ° C, most preferably 120 to 200 0 C.
  • the reaction can be carried out in overpressure or under reduced pressure, a negative pressure of up to 100 mbar relative to the ambient pressure is preferred.
  • the reaction offgas i. the carrier gas leaving the reaction space can, for example, be cooled in a heat exchanger. This condense water and unreacted monomer a). Thereafter, the reaction gas can be at least partially reheated and recycled as recycle gas in the reactor. Part of the reaction offgas can be discharged and replaced by fresh carrier gas, water contained in the reaction offgas and unreacted monomers a) being able to be separated off and recycled.
  • a heat network that is, a portion of the waste heat during cooling of the exhaust gas is used to heat the circulating gas.
  • the reactors can be accompanied by heating.
  • the heat tracing is adjusted so that the wall temperature is at least 5 ° C above the internal reactor temperature and the condensation on the reactor walls is reliably avoided.
  • the reaction product can be removed from the reactor in the usual way, for example, dried on the ground via a screw conveyor, and optionally to the desired residual moisture content and to the desired residual monomer content.
  • the polymer particles can then be postcrosslinked for further improvement of the properties.
  • Suitable post-crosslinkers are compounds containing at least two groups capable of forming covalent bonds with the carboxylate groups of the hydrogel.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as described in EP-A 0 083 022, EP-A 0 543 303 and EP-A 0 937 736, di- or polyfunctional alcohols, such as in DE-C 33 14 019, DE-C 35 23 617 and EP-A 0 450 922 described, or ß-hydroxyalkylamides, as described in DE-A 102 04 938 and US 6,239,230.
  • the process according to the invention makes it possible to produce water-absorbent polymer particles having a high permeability (SFC) and a high centrifuge retention capacity (CRC). So far, an additional post-crosslinking step has been required for this property combination.
  • SFC high permeability
  • CRC centrifuge retention capacity
  • Another object of the present invention are water-absorbing polymer particles which are obtainable by the process according to the invention.
  • the water-absorbing polymer particles of the invention have a content of hydrophobic solvent of typically less than 0.005 wt .-%, preferably less than 0.002 wt .-%, more preferably less than 0.001 wt .-%, most preferably less than 0.0005 wt. %, on.
  • the content of hydrophobic solvent can be determined by gas chromatography, for example by means of the head-space technique.
  • Polymer particles obtained by reverse suspension polymerization usually still contain about 0.01% by weight of the hydrophobic solvent used as the reaction medium.
  • the water-absorbing polymer particles according to the invention have a surfactant content of typically less than 1% by weight, preferably less than 0.5% by weight, more preferably less than 0.1% by weight, most preferably less than 0.05 Wt .-%, on.
  • Polymer particles obtained by reverse suspension polymerization usually still contain at least 1% by weight of the surfactant used to stabilize the suspension.
  • the water-absorbing polymer particles of the invention are approximately circular, i. the polymer particles have an average sphericity of typically at least 0.84, preferably at least 0.86, more preferably at least 0.88, most preferably at least 0.9.
  • Sphericity SPHT is defined as
  • A is the cross-sectional area and U is the cross-sectional perimeter of the polymer particles.
  • the mean sphericity is the volume-averaged sphericity.
  • the mean sphericity can be determined, for example, using the image analysis system Camsizer® (Retsch Technolgy GmbH, DE):
  • the product is fed via a funnel and conveyed to the chute with a dosing chute. While the particles fall past a luminous wall, they are optionally captured by a camera. The recorded images are evaluated by the software according to the selected parameters.
  • the measured variable marked in the program with sphericity is used. Indicated are the mean, volume-weighted sphericities, where the volume of the particles is determined by the equivalent diameter xcmm. To determine the equivalent diameter xcmm, the longest longest diameter for a total of 32 different spatial directions is measured. The equivalent diameter xcmm is the shortest of these 32 long diameters. The equivalent diameter xcmm corresponds to the mesh size of a sieve, which can barely pass the particle. To capture the particles, the so-called CCD zoom camera (CAM-Z) is used. To control the dosing channel, a surface occupation percentage of 0.5% is specified. Polymer particles of relatively low sphericity are obtained by reverse suspension polymerization when the polymer particles are agglomerated during or after the polymerization.
  • the water-absorbing polymer particles prepared by conventional solution polymerization are ground and classified after drying, whereby irregular polymer particles are obtained.
  • the mean sphericity of these polymer particles is between about 0.72 and about 0.78.
  • the present invention further relates to the use of the above-mentioned crosslinked water-absorbing polymer particles in sanitary articles.
  • the hygiene article may be constructed as follows:
  • hydrophilic fiber material preferably 30 to 100% by weight of the water-absorbing polymer particles according to the invention, 0 to 70% by weight of hydrophilic fiber material particularly preferably 50 to 100% by weight of the water-absorbing polymer particles according to the invention 0 to 50% by weight % hydrophilic fiber material, particularly preferably 70 to 100% by weight of the water-absorbing polymer particles according to the invention, 0 to 30% by weight hydrophilic fiber material, most preferably 90 to 100% by weight of the water-absorbing polymer particles according to the invention, 0 to 10% by weight hydrophilic fiber mat - rial
  • (E) optionally, a recording layer located between (A) and (C).
  • hygienic articles are meant, for example, incontinence pads and incontinence pants for adults or diapers for babies.
  • the liquid permeable cover (A) is the layer that has direct skin contact.
  • the material for this consists of conventional synthetic or semisynthetic fibers or films of polyester, polyolefins, rayon or natural fibers such as cotton.
  • the fibers are usually to be bonded by binders such as polyacrylates.
  • Preferred materials are polyester, rayon and their blends, polyethylene and polypropylene. Examples of liquid-permeable layers are described in WO 99/57355, EP-A 1 023 883.
  • the liquid-impermeable layer (B) is usually made of a film of polyethylene or polypropylene.
  • the core (C) contains hydrophilic fiber material in addition to the water-absorbing polymer particles according to the invention.
  • Hydrophilic is understood to mean that aqueous liquids spread quickly over the fiber.
  • the fibrous material is cellulose, modified cellulose, rayon, polyesters such as polyethylene terephthalate. Particularly preferred are cellulose fibers such as pulp.
  • the fibers generally have a diameter of 1 to 200 .mu.m, preferably 10 to 100 .mu.m. In addition, the fibers have a minimum length of 1 mm.
  • diapers The construction and the form of diapers is well known and, for example, in WO 95/26209 page 66, line 34 to page 69, line 11, DE-A 196 04 601, EP-A 0 316 518 and EP-A 0 202 127 described.
  • diapers and other hygiene articles are also described in WO 00/65084, in particular on pages 6 to 15, WO 00/65348, in particular pages 4 to 17, WO 00/35502, in particular pages 3 to 9, DE-A 197 37 434 and WO 98/08439.
  • Hygiene articles for feminine hygiene are described in the following references.
  • the water-absorbing polymer particles according to the invention can be used there.
  • Tampons are described in the following documents: WO 98/48753, WO 98 / 41179, WO 97/09022, WO 98/46182, WO 98/46181, WO 01/43679, WO 01/43680,
  • WO 00/61052 EP-A 1 108 408, WO 01/33962, DE-A 100 20 662, WO 01/01910, WO 01/01908, WO 01/01909, WO 01/01906, WO 01/01905, WO 01/24729.
  • Disposable Absorbent Article for Incontinent Individuals EP-A 0 311 344 Description Pages 3 to 9, Disposable Absorbent Article: EP-A 0 850 623, Absorbent Article: WO 95/26207, Absorbent Article: A 0 894 502, Dry Laid Fibrous Structure: EP-A 0 850 616, WO 98/22063, WO 97/49365, EP-A 0 903 134, EP-A 0 887 060, EP-A 0 887 059, EP-A A 0 887 058, EP-A 0 887 057, EP-A 0 887 056, EP-A 0 931 530, WO 99/25284, WO 98/48753.
  • the absorbent composition according to the present invention has compositions containing or fixed to the water-absorbent polymer particles of the present invention.
  • Any composition is suitable which can take up the water-absorbing polymer particles according to the invention and which, moreover, can be integrated into the absorption layer.
  • a variety of such compositions are already known.
  • a composition for incorporating the water-absorbing polymer particles according to the invention may, for example, be a fiber matrix composed of a cellulose fiber mixture (airlaid web, wet laid web) or of synthetic polymer fibers (meltblown web, spunbonded web) or of a mixed fiber structure of cellulose fibers and synthetic fibers consists. Possible fiber materials are described in detail in the following chapter. The process of an airlaid web is described, for example, in the patent application WO 98/28478.
  • open-cell foams or the like can serve to incorporate water-absorbing polymer particles.
  • such a composition may be formed by fusing two individual layers to form one or more of a plurality of chambers containing the water-absorbing polymer particles of the invention.
  • a chamber system is detailed in the patent application EP-A 0 615 736 page 7, lines 26 et seq.
  • At least one of the two layers should be water permeable.
  • the second layer can either be water-permeable or impermeable to water.
  • Tissues or other fabric, closed or open-cell foams, perforated films, elastomers or fabrics of fibrous material can be used as the layer material.
  • the layer material should have a pore structure whose pore dimensions are small enough to retain the water-absorbing polymer particles of the present invention.
  • the above examples of composition of the absorbent composition also include laminates of at least two layers, between which the water-absorbing polymer particles of the invention are incorporated and fixed.
  • hydrogel particles within the Absorbent Core it is possible to fix hydrogel particles within the Absorbent Core to improve the so-called Dry and Wet Integrity.
  • dry and wet integrity is meant the ability to incorporate water-absorbing polymer particles into the absorbent composition in such a way that they exert external forces both in the wet and in the dry state withstand and it does not come to shifts or leakage of Chequellonnem polymer.
  • the effects of force are, above all, mechanical loads, such as occur in the course of movement when the hygiene article is worn, or the weight load under which the hygiene article stands, above all in the case of incontinence.
  • mechanical loads such as occur in the course of movement when the hygiene article is worn, or the weight load under which the hygiene article stands, above all in the case of incontinence.
  • For fixing there are a variety of ways that are known in the art.
  • the absorbent composition of a carrier material such as Example, consist of a polymer film on which the water-absorbing polymer particles are fixed. The fixation can be made both on one side and on both sides.
  • the carrier material may be water-permeable or impermeable to water.
  • compositions of the absorbent composition are the water-absorbing polymer particles according to the invention in a weight fraction of 10 to 100 wt .-%, preferably 30 to 100 wt .-%, particularly preferably 50 to
  • the structure of the present absorbent composition according to the invention is based on a variety of fiber materials which are used as a fiber network or matrices. Included in the present invention are both fibers of natural origin (modified or unmodified) and synthetic fibers.
  • cellulosic fibers include those commonly used in absorbent products, such as fluff pulp and cotton type pulp.
  • the materials (coniferous or hardwoods), production methods such as chemical pulp, semi-chemical pulp, chemothermic mechanical pulp (CTMP) and bleaching method are not particularly limited.
  • CMP chemothermic mechanical pulp
  • natural cellulose fibers such as cotton, flax, silk, wool, jute, ethyl cellulose and cellulose acetate are used.
  • Suitable synthetic fibers are made from polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyvinylidene chloride, polyacrylics such as ORLON ®, polyvinyl acetate, polyethylvinyl acetate, polyvinyl alcohol soluble or insoluble.
  • synthetic fibers include thermoplastic polyolefin, such as poly- ethylene fibers (PULPEX ®), polypropylene fibers and polyethylene-polypropylene
  • Bicomponent fibers polyester fibers, such as polyethylene terephthalate (DAC RON or KODEL ®), copolyesters, polyvinyl acetate, polyethylvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylics, polyamides, copolyamides, polystyrene and co-polymers of the aforementioned polymers, as well as bicomponent fibers of polyethylene terephthalate-polyethylene isophthalate Copolymer, polyethylvinyl acetate / polypropylene, polyethylene / polyester, polypropylene / polyester, copolyester / polyester, polyamide fibers (nylon), polyurethane fibers, polystyrene fibers and polyacrylonitrile fibers.
  • polyester fibers such as polyethylene terephthalate (DAC RON or KODEL ®), copolyesters, polyvinyl acetate, polyethylviny
  • polyolefin fibers Preference is given to polyolefin fibers, polyester fibers and their bicomponent fibers. Further preferred are the heat-adhesive bicomponent polyolefin of the sheath-core type and side-by-side type because of their excellent dimensional stability after liquid absorption.
  • thermoplastic fibers are preferably used in combination with thermoplastic fibers.
  • thermoplastic fibers During the heat treatment, the latter partly migrate into the matrix of the existing fiber material and thus form connecting points and renewed stiffening elements on cooling.
  • thermoplastic fibers means an extension of the pore dimensions present after heat treatment. In this way it is possible, by continuously adding thermoplastic fibers during the formation of the absorption layer, to continuously increase the proportion of thermoplastic fibers to the cover sheet, resulting in a likewise continuous increase in pore sizes.
  • Thermoplastic fibers can be formed from a variety of thermoplastic polymers having a melting point of less than 190 0 C, preferably from 75 to 175 0 C. At these temperatures, no damage to the cellulose fibers is to be expected.
  • Lengths and diameters of the above-described synthetic fibers are not particularly limited, and in general, any fiber having a length of 1 to 200 mm and a diameter of 0.1 to 100 denier (gram per 9,000 meters) may be preferably used.
  • Preferred thermoplastic fibers have a length of 3 to 50 mm, more preferably a length of 6 to 12 mm.
  • the preferred diameter of the thermoplastic fiber is between 1, 4 and 10 decitex, more preferably between 1, 7 and 3.3 decitex (grams per 10,000 meters).
  • the shape is not particularly limited, and examples include tissue-like, narrow cylinder-like, cut / split-yarn-like, staple-fiber-like and endless-fibrous.
  • the fibers in the absorbent composition of the invention may be hydrophilic, hydrophobic or a combination of both.
  • a fiber is said to be hydrophilic if the contact angle between the liquid and the fiber (or its surface) is less than 90 °, or if the liquid tends to spontaneously spread on the same surface. Both processes are usually coexistent.
  • a fiber is said to be hydrophobic if a contact angle of greater than 90 ° is formed and no spreading is observed.
  • Fiber material is particularly preferably used which is weakly hydrophilic towards the body side and most hydrophilic in the region around the water-absorbing polymer particles.
  • Hydrophi- Ne generates a gradient which channels the incident fluid to the hydrogel, where ultimately absorption takes place.
  • Suitable hydrophilic fibers for use in the inventive absorbent composition are for example cellulose fibers, modified cellulose fibers, rayon, polyester fibers such as polyethylene terephthalate (DACRON ®), and hydrophilic nylon (HYDROFIL ®).
  • Suitable hydrophilic fibers can also be obtained by hydrophilizing hydrophobic fibers, such as, for example, treating thermoplastic fibers obtained from polyolefins (for example, polyethylenes or polypropylene, polyamides, polystyrenes, polyurethanes, etc.) with surfactants or silica.
  • polyolefins for example, polyethylenes or polypropylene, polyamides, polystyrenes, polyurethanes, etc.
  • surfactants or silica for reasons of cost and availability, however, cellulose fibers are preferred.
  • the water-absorbing polymer particles according to the invention are embedded in the fiber material described. This can be done in many ways, for example by building together with the hydrogel material and the fibers together an absorption layer in the form of a matrix, or by incorporation of water-absorbing polymer particles in layers of fiber mixture, where they are finally fixed, either by adhesive or lamination of Layers.
  • the liquid-receiving and -istrating fiber matrix may consist of synthetic fiber or cellulose fiber or a mixture of synthetic fiber and cellulose fiber, wherein the mixing ratio of (100 to 0) synthetic fiber: (0 to 100) cellulose fiber may vary.
  • the cellulose fibers used can additionally be chemically stiffened to increase the dimensional stability of the hygiene article.
  • the chemical stiffening of cellulose fibers can be achieved in different ways.
  • a fiber stiffening can be achieved by adding suitable coatings to the fiber material.
  • Such additives include for example polyamide-epichlorohydrin coatings (Kymene ® 557H, Hercules, Inc.
  • the chemical stiffening of cellulose fibers can also be done by chemical reaction.
  • suitable crosslinker substances can cause crosslinking that occurs within the fiber.
  • Suitable crosslinker substances are typical substances which are used for crosslinking monomers. Included, but not limited to, C2-C8 are dialdehydes, C2-C8 monoaldehydes with acidic functionality, and especially C2-C9 polycarboxylic acids. Specific substances from this series are, for example, glutaraldehyde, glyoxal, glyoxylic acid, formaldehyde and citric acid. These substances react with at least two hydroxyl groups within a single cellulose chain or between two adjacent cellulose chains within a single cellulosic fiber.
  • crosslinking causes a stiffening of the fibers, which gives this treatment a greater dimensional stability.
  • these fibers have uniform combinations of stiffening and elasticity. This physical property makes it possible to maintain the capillary structure even with simultaneous contact with liquid and compressive forces and to prevent premature collapse.
  • Chemically crosslinked cellulosic fibers are known and described in WO 91/11162, US 3,224,926, US 3,440,135, US 3,932,209, US 4,035,147, US 4,822,453, US 4,888,093, US 4,898,642 and US 5,137,537.
  • the chemical crosslinking causes a stiffening of the fiber material, which is ultimately reflected in an improved dimensional stability of the entire hygiene article.
  • the individual layers are joined together by methods known to those skilled in the art, such as, for example, fusion by heat treatment, addition of hotmelt adhesives, latex binders, etc.
  • an absorbent composition consisting of, for example, a support material to which one or both sides water-absorbent polymer particles are fixed are known and included in, but not limited to, the invention.
  • Examples of methods of obtaining an absorbent composition consisting of, for example, water-absorbent polymer particles (c) embedded in a fiber material mixture of synthetic fibers (a) and cellulose fibers (b), wherein the mixing ratio of (100 to 0) synthetic fiber: (0 to 100) celulose fiber may vary, (1) a method in which (a), (b) and (c) are mixed simultaneously, (2) a method in which a mixture of (a) and (b) is mixed in (c), (3) a method in which a mixture of (b) and (c) is mixed with (a), (4) a method in which a mixture of (a) and (c) is blended in (b), (5) a method in which (b) and (c) are mixed and (a) continuously metered in, (6) a method in which (a) and (c) are mixed and (b) continuously metered in, and (7) a method in which (b) and (c) are separately mixed in (a).
  • methods (1) and (5) are preferred.
  • the suitably produced absorbent composition may optionally be subjected to a heat treatment so as to result in an absorbent layer excellent in wet-state dimensional stability.
  • the method of heat treatment is not particularly limited. Examples include heat treatment by supplying hot air or infrared radiation.
  • the temperature in the heat treatment is in the range 6O 0 C to 23O 0 C, preferably between 100 0 C and 200 0 C, more preferably between 100 0 C and 18O 0 C.
  • the duration of the heat treatment depends on the type of synthetic fiber, its quantity and the speed of production of the hygiene article. Generally, the duration of the heat treatment is between 0.5 seconds to 3 minutes, preferably 1 second to 1 minute.
  • the absorbent composition is generally provided with, for example, a liquid permeable cover layer and a liquid impermeable backsheet. Furthermore leg cuffs and adhesive tapes are attached, thus completing the hygiene article.
  • the materials and types of permeable topsheet and impermeable backsheet, as well as the leg cuffs and tapes are well known to those skilled in the art and not particularly limited. Examples of this can be found in WO 95/26209.
  • the water-absorbing polymer particles are tested by means of the test methods described below.
  • Fluid transfer is calculated as follows:
  • LO is the thickness of the gel layer in cm
  • d the density of the NaCl solution in g / cm 3
  • A is the area of the gel layer in cm 2
  • WP is the hydrostatic pressure over the gel layer in dynes / cm 2 .
  • centrifuge retention capacity of the water-absorbing polymer particles is determined according to the test method No. 441.2-02 "Centrifuge retention capacity" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the reported values for centrifuge retention capacity refer to the anhydrous water-absorbing polymer particles, i. the measured values were corrected according to the water content of the water-absorbing polymer particles before the measurement.
  • the water content of the water-absorbing polymer particles is determined according to the test method No. 430.2-02 "Moisture content" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the EDANA test methods are available, for example, from the European Disposables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium. Examples:
  • the initiator used was a 15% strength by weight solution of 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride in water.
  • the metering rate of the initiator solution was 0.224 kg / h.
  • the gas outlet temperature from the dropletizing tower was 130 ° C.
  • the average particle diameter of the obtained polymer particles was 270 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Stored Programmes (AREA)

Abstract

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel mit hoher Permeabilität durch Polymerisation von Tropfen einer Monomerlösung in einer die Tropfen umgebenden Gasphase, wobei die Monomerlösung bezogen auf das Monomer mindestens 0,5 Gew.-% eines Vernetzers enthält, die Polymerisation im Tropfen in homogener Phase stattfindet und die Polymerpartikel einem mittleren Durchmesser von mindestens 150 µm aufweisen.

Description

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel mit hoher Permeabilität durch Polymerisation von Tropfen einer Monomerlösung
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel mit hoher Permeabilität durch Polymerisation von Tropfen einer Monomerlösung in einer die Tropfen umgebenden Gasphase, wobei die Monomerlösung bezogen auf das Monomer mindestens 0,5 Gew.-% eines Vernetzers enthält, die Po- lymerisation im Tropfen in homogener Phase stattfindet und die Polymerpartikel einem mittleren Durchmesser von mindestens 150 μm aufweisen.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley- VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Die Eigenschaften der wasserabsorbierenden Polymere können über den Vernetzungsgrad eingestellt werden. Mit steigendem Vernetzungsgrad steigt die Gelfestigkeit und sinkt die Absorptionskapazität. Dies bedeutet, dass mit steigender Absorption un- ter Druck (AUL) die Zentrifugenretentionskapazität (CRC) abnimmt (zu sehr hohen Vernetzungsgraden nimmt auch die Absorption unter Druck wieder ab).
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Flüssigkeitsweiterleitung im gequollenen Gelbett (SFC) in der Windel und Absorption unter Druck (AUL), werden wasserabsorbierende Polymerpartikel im allgemeinen nachvernetzt. Dadurch steigt nur der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter Druck (AUL) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Nachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber gemahlene und abgesiebte Polymer- partikel (Grundpolymer) an der Oberfläche mit einem Nachvernetzer beschichtet, thermisch nachvernetzt und getrocknet. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des hydrophilen Polymeren kovalente Bindungen bilden können.
Durch Sprühpolymerisation konnten die Verfahrensschritte Polymerisation und Trocknung zusammengefasst werden. Zusätzlich konnte die Partikelgröße durch geeignete Verfahrensführung in gewissen Grenzen eingestellt werden. Die Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung wird beispielsweise in EP-A 0 348 180, WO 96/40427, US 5,269,980, DE-A 103 14 466, DE-A 103 40 253 und DE-A 10 2004 024 437 sowie den älteren deutschen Anmeldungen mit den Aktenzeichen 10 2005 002 412.2 und 10 2006 001 596.7 beschrieben.
DE-A 10 2004 042 946, DE-A 10 2004 042 948 und DE-A 10 2004 042 955 sowie die ältere deutsche Anmeldung mit dem Aktenzeichen 10 2005 019 398.6 beschreiben die Herstellung von Verdickern durch Sprühpolymerisation.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines Verfahrens zur Herstellung wasserabsorbierender Polymerpartikel mit hoher Permeabilität, d.h. einer hohen Flüssigkeitsweiterleitung durch das gequollene Gelbett.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung, enthaltend
a) mindestens ein wasserlösliches ethylenisch ungesättigtes Monomer, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) Wasser,
in einer die Tropfen umgebenden Gasphase, wobei die Polymerisation im Tropfen in homogener Phase stattfindet, dadurch gekennzeichnet, dass die Monomerlösung min- destens 0,5 Gew.-% des Vernetzers b) bezogen auf das Monomer a) enthält und die Polymerpartikel einem mittleren Durchmesser von mindestens 150 μm aufweisen.
Die gemäß dem erfindungsgemäßen Verfahren erhältlichen wasserabsorbierenden Polymerpartikel weisen eine Permeabilität (SFC) von typischerweise mindestens 5 x 10"7 cm3s/g, vorzugsweise mindestens 15 x 10"7 cm3s/g, bevorzugt mindestens 35 x 10" 7 cm3s/g, besonders bevorzugt mindestens 12O x 10"7 cm3s/g, ganz besonders bevorzugt mindestens 200 x 10"7 cm3s/g, auf. Die Permeabilität (SFC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 500 x 10"7 cm3s/g.
Die gemäß dem erfindungsgemäßen Verfahren erhältlichen wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 10 g/g, vorzugsweise mindestens 15 g/g, bevorzugt mindestens 20 g/g, besonders bevorzugt mindestens 25 g/g, ganz besonders bevorzugt mindestens 30 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden PoIy- merpartikel beträgt üblicherweise weniger als 50 g/g. Die Monomerlösung enthält vorzugsweise mindestens 0,6 Gew.-%, bevorzugt mindestens 0,8 Gew.-%, besonders bevorzugt mindestens 1 ,5 Gew.-%, ganz besonders bevorzugt mindestens 3,0 Gew.-%, Vernetzer b), jeweils bezogen auf Monomer a).
Der mittlere Durchmesser der Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm, wobei der Partikeldurchmesser durch Lichtstreuung bestimmt werden kann und den volumengemittelten mittleren Durchmesser bedeutet. 90% der Polymerpartikel weisen einen Durchmesser von vorzugsweise 100 bis 800 μm, besonders bevorzugt von 150 bis 700 μm, ganz besonders bevorzugt von 200 bis 600 μm, auf.
Der Sauerstoffgehalt der Gasphase beträgt vorzugsweise 0,001 bis 0,15 Vol.-%, besonders bevorzugt 0,002 bis 0,1 Vol.-%, ganz besonders bevorzugt 0,005 bis 0,05 Vol.-%.
Die Gasphase enthält neben Sauerstoff vorzugsweise nur inerte Gase, d.h. Gase, die unter Reaktionsbedingungen nicht in die Polymerisation eingreifen, beispielsweise Stickstoff und/oder Wasserdampf.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 50 g/100 g Wasser, und haben vorzugsweise mindestens je eine Säuregruppe.
Die Konzentration der Monomeren a) in der Monomerlösung beträgt üblicherweise 2 bis 80 Gew.-%, vorzugsweise 5 bis 70 Gew.-%, besonders bevorzugt 10 bis 60 Gew.- %.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Die bevorzugten Monomere a) haben mindestens eine Säuregruppe, wobei die Säuregruppen vorzugsweise zumindest teilweise neutralisiert sind.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%. Die Säuregruppen der Monomere a) sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 85 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkali- metallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natri- umcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wässrige Lö- sung, als Schmelze, oder bevorzugt auch als Feststoff erreicht. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23°C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu
0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
Figure imgf000005_0001
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeu- tet.
Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Die Vernetzer b) sind Verbindungen mit mindestens zwei radikalisch polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A 0 530 438 beschrieben, Di- und Triacrylate, wie in EP-A 0 547 847, EP-A 0 559 476, EP-A 0 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 und in DE-A 103 31 450 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE-A 103 314 56 und DE-A 103 55 401 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 und WO 02/32962 beschrieben.
Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N1N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP-A 0 343 427 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi- Pentaerythritoltri- und Pentae- rythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerin- di- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Po- lyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 300 und 1.000 aufweist.
Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 15-fach ethoxylierten Glyzerins, des 3- bis 15-fach ethoxylierten Trimethylolpropans, des 3- bis 15-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6- fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxy- lierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder
Trimethylolpropans, sowie des 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine wie sie beispielsweise in WO 03/104301 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischerweise unter 10 Gew.-ppm) im wasserabsorbierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränderte Oberflächenspannung (typischerweise mindestens 0,068 N/m) im Vergleich zu Wasser gleicher Temperatur auf.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen in Radikale zerfallende Verbindungen eingesetzt werden, beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die sogenannten Redoxinitiato- ren. Bevorzugt ist der Einsatz von wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Initiatoren zu verwenden, beispielsweise Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischun- gen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden.
Besonders bevorzugte Initiatoren c) sind Azoinitiatoren, wie 2,2'-Azobis[2-(2- imidazolin-2-yl)propan]dihydrochlorid und 2,2'-Azobis[2-(5-methyl-2-imidazolin-2- yl)propan]dihydrochlorid, und Photoinitiatoren, wie 2-Hydroxy-2-methylpropiophenon und 1 -[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1 -propan-1 -on, Redoxinitiato- ren, wie Natriumpersulfat/ Hydroxymethylsulfinsäure, Ammoniumperoxodisul- fat/Hydroxymethylsulfinsäure, Wasserstoffperoxid/Hydroxymethylsulfinsäure, Natrium- persulfat/Ascorbinsäure, Ammoniumperoxodisulfat/Ascorbinsäure und Wasserstoffpe- roxid/Ascorbinsäure, Photoinitiatoren, wie 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2- methyl-1-propan-1-on, sowie deren Mischungen.
Die Initiatoren werden in üblichen Mengen eingesetzt, beispielsweise in Mengen von 0,001 bis 5 Gew.-%, vorzugsweise 0,01 bis 1 Gew.-%, bezogen auf die Monomeren a).
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisie- rung, d. h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
Die Polymerisationsinhibitoren können auch durch Absorption, beispielsweise an Aktivkohle, entfernt werden.
Die Monomerlösung wird zur Polymerisation in der Gasphase vertropft. Die Polymerisation in den Monomerlösungstropfen findet in homogener Phase statt. Dies bedeutet, dass die Monomerlösung homogen ist und dass die Monomerlösung auch während der Polymerisation homogen bleibt. Das Polymer darf während der Polymerisation quellen, aber nicht ausfallen und eine zweite Phase im Tropfen bilden. Ansonsten würden in jedem Tropfen mehrere Polymerkeime entstehen, die während der Trocknung Agglomerate sehr kleiner Primärpartikel bilden. Ziel des erfindungsgemäßen Verfahrens ist die Herstellung jeweils eines Primärpartikels pro Tropfen. Daher sind die Monomeren a) und die Vernetzer b) so auszuwählen, dass das entstehende Polymer in der wässrigen Phase des Tropfens quellbar ist.
Daher wird das erfindungsgemäße Verfahren vorzugsweise in Abwesenheit hydrophober inerter Lösungsmittel durchgeführt. Hydrophobe, inerte Lösungsmittel sind praktisch alle mit Wasser nicht mischbaren Flüssigkeiten, die nicht in die Polymerisation eingreifen, d.h. keine polymerisierbaren Gruppen enthalten. Mit Wasser nicht mischbar bedeutet, dass die Löslichkeit der hydrophoben Lösungsmittel in Wasser weniger als 5 g/100 g, vorzugsweise weniger als 1 g/100 g, besonders bevorzugt weniger als 0,5 g/100 g, beträgt.
Bei der Vertropfung wird eine Monomerlösung unter Ausbildung von Tropfen in die Gasphase dosiert. Die Vertropfung der Monomerlösung kann beispielsweise mittels einer Vertropferplatte durchgeführt werden.
Eine Vertropferplatte ist eine Platte mit mindestens einer Bohrung, wobei die Flüssigkeit von oben durch die Bohrung tritt. Die Vertropferplatte bzw. die Flüssigkeit kann in Schwingungen versetzt werden, wodurch an der Unterseite der Vertropferplatte je Bohrung eine idealerweise monodisperse Tropfenkette erzeugt wird.
Die Anzahl und die Größe der Bohrungen werden gemäß der gewünschten Kapazität und Tropfengröße ausgewählt. Der Tropfendurchmesser beträgt dabei üblicherweise das 1 ,9fache des Durchmessers der Bohrung. Wichtig ist hierbei, dass die zu vertropfende Flüssigkeit nicht zu schnell durch die Bohrung tritt bzw. der Druckverlust über die Bohrung nicht zu groß ist. Ansonsten wird die Flüssigkeit nicht vertropft, sondern der Flüssigkeitsstrahl wird infolge der hohen kinetischen Energie zerrissen (versprüht). Der Vertropfer wird im Strömungsbereich des laminaren Strahlzerfalls betrieben, d. h. die Reynoldszahl bezogen auf den Durchsatz pro Bohrung und den Bohrungsdurchmesser ist vorzugsweise kleiner als 2.000, bevorzugt kleiner 1.000, besonders bevorzugt kleiner 500, ganz besonders bevorzugt kleiner 100. Der Druckverlust über die Bohrung beträgt vorzugsweise weniger als 2,5 bar, besonders bevorzugt weniger als 1 ,5 bar, ganz besonders bevorzugt weniger als 1 bar.
Die Vertropferplatte weist üblicherweise mindestens eine, vorzugsweise mindestens 10, besonders bevorzugt mindestens 50, und üblicherweise bis zu 10.000, vorzugswei- se bis zu 5.000, besonders bevorzugt bis zu 1.000, Bohrungen auf, wobei die Bohrungen üblicherweise gleichmäßig über die Vertropferplatte verteilt sind, vorzugsweise in der sogenannten Dreiecksteilung, d.h. jeweils drei Bohrungen bilden die Ecken eines gleichseitigen Dreiecks.
Der Durchmesser der Bohrungen wird an die gewünschte Tropfengröße angepasst.
Es kann vorteilhaft sein die Vertropferplatte auf eine Trägerplatte aufzulegen, wobei die Trägerplatte ebenfalls Bohrungen aufweist. Dabei weisen die Bohrungen der Träger- platte einen größeren Durchmesser auf als die Bohrungen der Vertropferplatte auf und sind so angeordnet, dass sich unter jeder Bohrung der Vertropferplatte eine mit ihr konzentrische Bohrung der Trägerplatte befindet. Diese Anordnung ermöglicht einen schnellen Wechsel der Vertropferplatte, beispielsweise um Tropfen einer anderen Größe zu erzeugen.
Die Vertropfung kann aber auch mittels pneumatischer Ziehdüsen, Rotation, Zerschneiden eines Strahls oder schnell ansteuerbarer Mikroventildüsen durchgeführt werden.
In einer pneumatischen Ziehdüse wird ein Flüssigkeitsstrahl zusammen mit einem
Gasstrom durch eine Blende beschleunigt. Über die Gasmenge kann der Durchmesser des Flüssigkeitsstrahls und damit der Tropfendurchmesser beeinflusst werden.
Bei der Vertropfung durch Rotation tritt die Flüssigkeit durch die Öffnungen einer rotie- renden Scheibe. Durch die auf die Flüssigkeit wirkende Fliehkraft werden Tropfen definierter Größe abgerissen. Die Rotationsvertropfung wird beispielsweise in DE- A 4308842 und US 6338438 beschrieben.
Der austretende Flüssigkeitsstrahl kann aber auch mittels eines rotierenden Messers in definierte Segmente zerschnitten werden. Jedes Segment bildet anschließend einen Tropfen.
Bei Verwendung von Mikroventildüsen werden direkt Tropfen mit definiertem Flüssigkeitsvolumen erzeugt.
Bevorzugt strömt die Gasphase als Trägergas durch den Reaktionsraum. Dabei kann das Trägergas im Gleichstrom oder im Gegenstrom zu den frei fallenden Tropfen der Monomerlösung durch den Reaktionsraum geführt werden, bevorzugt im Gleichstrom. Vorzugsweise wird das Trägergas nach einem Durchgang zumindest teilweise, bevor- zugt zu mindestens 50%, besonders bevorzugt zu mindestens 75%, als Kreisgas in den Reaktionsraum zurückgeführt. Üblicherweise wird eine Teilmenge des Trägerga- ses nach jedem Durchgang ausgeschleust, vorzugsweise bis zu 10%, besonders bevorzugt bis zu 3%, ganz besonders bevorzugt bis zu 1 %.
Die Polymerisation wird vorzugsweise in einer laminaren Gasströmung durchgeführt. Eine laminare Gasströmung ist eine Gasströmung, bei der sich die einzelnen Schichten der Strömung nicht vermischen, sondern parallel bewegen. Ein Maß für die Strömungsverhältnisse ist die Reynolds-Zahl (Re). Unterhalb einer kritischen Reynolds- Zahl (Fteknt) von 2300 ist die Gasströmung laminar. Die Reynolds-Zahl der laminaren Gasströmung beträgt vorzugsweise weniger als 2000, besonders bevorzugt weniger als 1500, ganz besonders bevorzugt weniger als 1000. Der untere Grenzfall der laminaren Inertgasströmung ist eine ruhende Inertgasatmosphäre (Re = 0), d. h., es wird nicht kontinuierlich Inertgas eingespeist.
Die Gasgeschwindigkeit wird vorzugsweise so eingestellt, dass die Strömung im Reak- tor gerichtet ist, beispielsweise liegen keine der allgemeinen Strömungsrichtung entgegengesetzte Konvektionswirbel vor, und beträgt beispielsweise 0,1 bis 2 m/s, vorzugsweise 0,5 bis 1 ,8 m/s, bevorzugt 1 bis 1 ,5 m/s.
Das Trägergas wird zweckmäßigerweise vor dem Reaktor auf die Reaktionstemperatur vorgewärmt.
Die Reaktionstemperatur beträgt bei der thermisch induzierten Polymerisation vorzugsweise 70 bis 250°C, besonders bevorzugt 100 bis 220°C, ganz besonders bevorzugt 120 bis 2000C.
Die Reaktion kann im Überdruck oder im Unterdruck durchgeführt werden, ein Unterdruck von bis zu 100 mbar gegenüber dem Umgebungsdruck ist bevorzugt.
Das Reaktionsabgas, d.h. das der Reaktionsraum verlassende Trägergas, kann bei- spielsweise in einem Wärmeaustauscher abgekühlt werden. Dabei kondensieren Wasser und nicht umgesetztes Monomer a). Danach kann das Reaktionsabgas zumindest teilweise wieder aufgewärmt und als Kreisgas in den Reaktor zurückgeführt werden. Ein Teil des Reaktionsabgases kann ausgeschleust und durch frisches Trägergas ersetzt werden, wobei im Reaktionsabgas enthaltenes Wasser und nicht umgesetzte Monomere a) abgetrennt und rückgeführt werden können.
Besonders bevorzugt ist ein Wärmeverbund, dass heißt, ein Teil der Abwärme beim Abkühlen des Abgases wird zum Aufwärmen des Kreisgases verwendet.
Die Reaktoren können begleitbeheizt werden. Die Begleitheizung wird dabei so eingestellt, dass die Wandtemperatur mindestens 5°C oberhalb der Reaktorinnentemperatur liegt und die Kondensation an den Reaktorwänden zuverlässig vermieden wird. Das Reaktionsprodukt kann dem Reaktor in üblicher Weise entnommen werden, beispielsweise am Boden über eine Förderschnecke, und gegebenenfalls bis zur gewünschten Restfeuchte und zum gewünschten Restmonomerengehalt getrocknet wer- den.
Selbstverständlich können die Polymerpartikel anschließend zur weiteren Verbesserung der Eigenschaften nachvernetzt werden.
Geeignete Nachvemetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polyaziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in EP-A 0 083 022, EP-A 0 543 303 und EP-A 0 937 736 beschrieben, di- oder polyfunk- tionelle Alkohole, wie in DE-C 33 14 019, DE-C 35 23 617 und EP-A 0 450 922 beschrieben, oder ß-Hydroxyalkylamide, wie in DE-A 102 04 938 und US 6,239,230 beschrieben.
Des weiteren sind in DE-A 40 20 780 zyklische Karbonate, in DE-A 198 07 502 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in
DE-A 198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A 198 54 573 2-Oxotetrahydro- 1 ,3-oxazin und dessen Derivate, in DE-A 198 54 574 N-Acyl-2-Oxazolidone, in DE-A 102 04 937 zyklische Harnstoffe, in DE-A 103 34 584 bizyklische Amidacetale, in EP-A 1 199 327 Oxetane und zyklische Harnstoffe und in WO 03/031482 Morpholin- 2,3-dion und dessen Derivate als geeignete Nachvemetzer beschrieben.
Das erfindungsgemäße Verfahren ermöglicht die Herstellung wasserabsorbierender Polymerpartikel mit einer hohen Permeabilität (SFC) und einer hohen Zentrifugenreten- tionskapazität (CRC). Für diese Eigenschaftskombination war bislang ein zusätzlicher Nachvemetzungsschritt zwingend erforderlich.
Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserabsorbierende Polymerpartikel, die nach dem erfindungsgemäßen Verfahren erhältlich sind.
Die erfindungsgemäßen wasserabsorbierenden Polymerpartikel weisen einen Gehalt an hydrophobem Lösungsmittel von typischerweise weniger als 0,005 Gew.-%, vorzugsweise weniger als 0,002 Gew.-%, besonders bevorzugt weniger als 0,001 Gew.-%, ganz besonders bevorzugt weniger als 0,0005 Gew.-%, auf. Der Gehalt an hydrophoben Lösungsmittel kann gaschromatographisch bestimmt werden, bei- spielsweise mittels der Head-Space-Technik. Polymerpartikel, die durch umgekehrte Suspensionspolymerisation erhalten wurden, enthalten üblicherweise noch ca. 0,01 Gew.-% des als Reaktionsmediums verwendeten hydrophoben Lösungsmittels.
Die erfindungsgemäßen wasserabsorbierenden Polymerpartikel weisen einen Tensid- gehalt von typischerweise weniger als 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-%, besonders bevorzugt weniger als 0,1 Gew.-%, ganz besonders bevorzugt weniger als 0,05 Gew.-%, auf.
Polymerpartikel, die durch umgekehrte Suspensionspolymerisation erhalten wurden, enthalten üblicherweise noch mindestens 1 Gew.-% des zur Stabilisierung der Suspension verwendeten Tensids.
Die erfindungsgemäßen wasserabsorbierenden Polymerpartikel sind annähernd rund, d.h. die Polymerpartikel weisen eine mittlere Sphärizität von typischerweise mindestens 0,84, vorzugsweise mindestens 0,86, besonders bevorzugt mindestens 0,88, ganz besonders bevorzugt mindestens 0,9, auf. Die Sphärizität (SPHT) ist definiert als
SPHT = ψ,
wobei A die Querschnittsfläche und U der Querschnittsumfang der Polymerpartikel ist. Die mittlere Sphärizität ist die volumengemittelte Sphärizität.
Die mittlere Sphärizität kann beispielsweise mit dem Bildanalysesystem Camsizer® (Retsch Technolgy GmbH; DE) bestimmt werden:
Zur Messung wird das Produkt über einen Trichter aufgegeben und mit einer Dosierrinne zum Fallschacht gefördert. Während die Partikel an einer Leuchtwand vorbeifallen werden sie wahlweise von einer Kamera erfasst. Die aufgenommenen Bilder wer- den von der Software entsprechend der ausgewählten Parameter ausgewertet.
Zur Charakterisierung der Rundheit wird die im Programm mit Sphärizität gekennzeichnete Messgröße herangezogen. Angegeben sind die mittleren, mit dem Volumen gewichteten Sphärizitäten, wobei das Volumen der Partikel über den Äquivalentdurch- messer xcmm ermittelt werden. Zur Bestimmung des Äquivalentdurchmessers xcmm wird der jeweils längste Sehnendurchmesser für insgesamt 32 unterschiedliche Raumrichtungen gemessen. Der Äquivalentdurchmesser xcmm ist der kürzeste dieser 32 Sehnendurchmesser. Der Äquivalentdurchmesser xcmm entspricht der Maschenweite eines Siebes, das das Partikel gerade noch passieren kann. Zur Erfassung der Partikel wird die sogenannte CCD-Zoom Kamera (CAM-Z) eingesetzt. Zur Steuerung der Dosierrinne wird ein Flächenbelegungsanteil von 0,5% vorgegeben. Polymerpartikel mit relativ niedriger Sphärizität werden durch umgekehrte Suspensionspolymerisation erhalten, wenn die Polymerpartikel während oder nach der Polymerisation agglomeriert werden.
Die durch übliche Lösungspolymerisation (Gelpolymerisation) hergestellten wasserabsorbierende Polymerpartikel werden nach der Trocknung gemahlen und klassiert wobei unregelmäßige Polymerpartikel erhalten werden. Die mittlere Sphärizität dieser Polymerpartikel beträgt zwischen ca. 0,72 und ca. 0,78.
Die vorliegende Erfindung betrifft ferner die Verwendung der oben genannten vernetzten wasserabsorbierenden Polymerpartikeln in Hygieneartikeln. Beispielsweise kann der Hygieneartikel wie folgt aufgebaut sein:
(A) eine obere flüssigkeitsdurchlässige Abdeckung (B) eine untere flüssigkeitsundurchlässige Schicht
(C) einen zwischen (A) und (B) befindlichen Kern, enthaltend
10 bis 100 Gew.-% der erfindungsgemäßen wasserabsorbierenden Polymerpartikel
0 bis 90 Gew.-% hydrophiles Fasermaterial bevorzugt 30 bis 100 Gew.-% der erfindungsgemäßen wasserabsorbierenden Polymerpartikel, 0 bis 70 Gew.-% hydrophiles Fasermaterial besonders bevorzugt 50 bis 100 Gew.-% der erfindungsgemäßen wasserabsorbierenden Polymerpartikel 0 bis 50 Gew.-% hydrophiles Fasermaterial insbesondere bevorzugt 70 bis 100 Gew.-% der erfindungsgemäßen wasserabsorbierenden Polymerpartikel, 0 bis 30 Gew.-% hydrophiles Fasermaterial am meisten bevorzugt 90 bis 100 Gew.-% der erfindungsgemäßen wasserabsorbierenden Polymerpartikel, 0 bis 10 Gew.-% hydrophiles Fasermate- rial
(D) gegebenenfalls eine sich unmittelbar oberhalb und unterhalb des Kerns (C) sich befindende Tissueschicht und
(E) gegebenenfalls eine zwischen (A) und (C) sich befindende Aufnahmeschicht.
Unter Hygieneartikel sind dabei beispielsweise Inkontinenzeinlagen und Inkontinenzhosen für Erwachsene oder Windeln für Babys zu verstehen.
Bei der flüssigkeitsdurchlässigen Abdeckung (A) handelt es sich um die Schicht, die direkten Hautkontakt hat. Das Material hierfür besteht hierbei aus üblichen syntheti- sehen oder halbsynthetischen Fasern oder Filme von Polyester, Polyolefine, Rayon oder natürlichen Fasern wie Baumwolle. Bei nichtgewebten Materialien sind die Fasern in der Regel durch Bindemittel wie Polyacrylate zu verbinden. Bevorzugte Materialien sind Polyester, Rayon und deren Blends, Polyethylen und Polypropylen. Beispiele für flüssigkeitsdurchlässige Schichten sind beschrieben in WO 99/57355, EP-A 1 023 883.
Die flüssigkeitsundurchlässige Schicht (B) besteht in der Regel aus einer Folie aus Polyethylen oder Polypropylen.
Der Kern (C) enthält neben den erfindungsgemäßen wasserabsorbierenden Polymerpartikeln hydrophiles Fasermaterial. Unter hydrophil ist zu verstehen, dass sich wässri- ge Flüssigkeiten schnell über die Faser verteilen. Für gewöhnlich ist das Fasermaterial Cellulose, modifizierte Cellulose, Rayon, Polyester wie Polyethylenterephthalat. Besonders bevorzugt werden Cellulosefasern wie Zellstoff. Die Fasern haben in der Regel einen Durchmesser von 1 bis 200 μm, bevorzugt 10 bis 100 μm. Darüberhinaus haben die Fasern eine Mindestlänge von 1 mm.
Der Aufbau und die Form von Windeln ist allgemein bekannt und beispielsweise in der WO 95/26209 Seite 66, Zeile 34 bis Seite 69, Zeile 1 1 , DE-A 196 04 601 , EP-A 0 316 518 und EP-A 0 202 127 beschrieben. Allgemein werden Windeln und andere Hygieneartikel auch in WO 00/65084, insbesondere auf Seiten 6 bis 15, WO 00/65348, insbesondere auf Seiten 4 bis 17, WO 00/35502, insbesondere Seiten 3 bis 9, DE-A 197 37 434 und WO 98/08439 beschrieben. Hygieneartikel für die Damenhygiene werden in folgenden Literaturstellen beschrieben. Die erfindungsgemäßen wasserabsorbierenden Polymerpartikel können dort eingesetzt werden. Literaturstellen Damenhygiene: WO 95/24173: Absorption Article for Controlling Odour, WO 91/11977: Body Fluid Odour Control, EP-A 0 389 023: Absorbent Sanitary Articles, WO 94/25077: Odour Control Material, WO 97/01317: Absorbent Hygienic Article, WO 99/18905, EP-A O 834 297, US 5,762,644, US 5,895,381 , WO 98/57609, WO 00/65083, WO 00/69485, WO 00/69484, WO 00/69481 , US 6,123,693, EP-A 1 104 666, WO 01/24755, WO 01/00115, EP-A O 105 373, WO 01/41692, EP-A 1 074 233. Tampons werden in folgenden Schriften beschrieben: WO 98/48753, WO 98/41179, WO 97/09022, WO 98/46182, WO 98/46181 , WO 01/43679, WO 01/43680,
WO 00/61052, EP-A 1 108 408, WO 01/33962, DE-A 100 20 662, WO 01/01910, WO 01/01908, WO 01/01909, WO 01/01906, WO 01/01905, WO 01/24729. Inkontinenzartikel werden in folgenden Schriften beschrieben: Disposable Absorbent Article for Incontinent Individuais: EP-A 0 311 344 Beschreibung Seiten 3 bis 9, Disposable Absorbent Article: EP-A 0 850 623, Absorbent Article: WO 95/26207, Absorbent Article: EP-A 0 894 502, Dry Laid Fibrous Structure: EP-A 0 850 616, WO 98/22063, WO 97/49365, EP-A 0 903 134, EP-A 0 887 060, EP-A 0 887 059, EP-A 0 887 058, EP-A 0 887 057, EP-A 0 887 056, EP-A 0 931 530, WO 99/25284, WO 98/48753. Damenhygiene- und Inkontinenzartikel wird in folgenden Schriften beschrieben: Catame- nial Device: WO 93/22998 Beschreibung Seiten 26 bis 33, Absorbent Members for Body Fluids: WO 95/26209 Beschreibung Seiten 36 bis 69, Disposable Absorbent Article: WO 98/20916 Beschreibung Seiten 13 bis 24, Improved Composite Absorbent Structures: EP-A 0 306 262 Beschreibung Seiten 3 bis 14, Body Waste Absorbent Ar- ticle: WO 99/45973. Diese Referenzen werden hiermit ausdrücklich in die Offenbarung der Erfindung einbezogen.
Zusätzlich zu den oben beschriebenen erfindungsgemäßen wasserabsorbierenden Polymerpartikeln liegen in der absorbierenden Zusammensetzung gemäß der vorliegenden Erfindung Kompositionen vor, welche die erfindungsgemäßen wasserabsorbierenden Polymerpartikel enthalten oder an denen sie fixiert sind. Jede Komposition ist geeignet, die die erfindungsgemäßen wasserabsorbierenden Polymerpartikel aufneh- men kann und die darüber hinaus in die Absorptionsschicht integriert werden kann. Eine Vielzahl derartiger Zusammensetzungen ist bereits bekannt. Eine Komposition zum Einbau der erfindungsgemäßen wasserabsorbierenden Polymerpartikel kann beispielsweise eine Fasermatrix sein, die aus einem Cellulosefasergemisch (airlaid web, wet laid web) oder aus synthetischen Polymerfasern (meltblown web, spunbonded web), oder aber aus einem Misch-Faserwerk aus Cellulosefasern und synthetischen Fasern besteht. Mögliche Fasermaterialien werden im sich anschließenden Kapitel detailliert beschrieben. Der Prozeß eines airlaid web ist beispielsweise geschildert in der Patentanmeldung WO 98/28478. Des weiteren können offenporige Schäume oder ähnliches zum Einbau wasserabsorbierender Polymerpartikel dienen.
Alternativ kann eine derartige Komposition durch Fusion zweier Einzelschichten entstehen, wobei eine oder besser eine Vielzahl an Kammern gebildet werden, die die erfindungsgemäßen wasserabsorbierenden Polymerpartikel enthalten. Ein derartiges Kammersystem ist detailliert geschildert in der Patentanmeldung EP-A 0 615 736 Seite 7, Zeilen 26 ff.
In diesem Fall sollte mindestens eine der beiden Schichten wasserdurchlässig sein. Die zweite Schicht kann entweder wasserdurchlässig oder wasserundurchlässig sein. Als Schichtenmaterial können Tissues oder sonstiges Gewebe, geschlossene oder offenporige Schäume, perforierte Filme, Elastomere oder Gewebe aus Fasermaterial zum Einsatz gelangen. Wenn die absorbierende Zusammensetzung aus einer Komposition von Schichten besteht, sollte das Schichtenmaterial eine Porenstruktur aufweisen, deren Porenabmessungen klein genug sind, um die erfindungsgemäßen wasserabsorbierenden Polymerpartikel zurückzuhalten. Obige Beispiele zur Komposition der absorbierenden Zusammensetzung schließen auch Laminate aus mindestens zwei Schichten mit ein, zwischen die die erfindungsgemäßen wasserabsorbierenden Polymerpartikel eingebaut und fixiert werden.
Generell besteht die Möglichkeit, Hydrogelpartikel innerhalb des Absorbent Cores zur Verbesserung der sogenannten Dry- und Wet-Integrity zu fixieren. Unter Dry- und Wet- Integrity versteht man die Fähigkeit, wasserabsorbierende Polymerpartikel derart in die absorbierende Zusammensetzung einzubauen, dass sie äußeren Krafteinwirkungen sowohl im nassen als auch im trockenen Zustand standhalten und es nicht zu Verschiebungen oder Austritt von hochquellfähigem Polymer kommt. Unter Krafteinwirkungen sind vor allem mechanische Belastungen zu verstehen, wie sie im Bewegungsablauf beim Tragen des Hygieneartikels auftreten, oder aber die Gewichtsbelas- tung, unter der der Hygieneartikel vor allem im Inkontinenzfall steht. Zur Fixierung gibt es eine Vielzahl an Möglichkeiten, die dem Fachmann bekannt sind. Beispiele wie die Fixierung durch Wärmebehandlung, Zusatz von Adhäsiven, Thermoplasten, Bindermaterialien sind verzeichnet in der Patentanmeldung WO 95/26209, Seite 37, Zeile 36 bis Seite 41 , Zeile 14. Besagte Passage ist somit Bestandteil dieser Erfindung. Methoden zur Erhöhung der Wet Strength finden sich auch in der Patentanmeldung WO 00/36216.
Des weiteren kann die absorbierende Zusammensetzung aus einem Trägermaterial, wie z. B. einem Polymerfilm bestehen, auf dem die wasserabsorbierenden Polymerpar- tikel fixiert werden. Die Fixierung kann sowohl ein- als auch beidseitig vorgenommen werden. Das Trägermaterial kann wasserdurchlässig oder wasserundurchlässig sein.
In obige Kompositionen der absorbierenden Zusammensetzung werden die erfindungsgemäßen wasserabsorbierenden Polymerpartikel mit einem Gewichtsanteil von 10 bis 100 Gew.-%, bevorzugt 30 bis 100 Gew.-%, besonders bevorzugt 50 bis
100 Gew.-%, insbesondere bevorzugt 70 bis 100 Gew.-%, und am meisten bevorzugt 90 bis 100 Gew.-%, basierend auf dem Gesamtgewicht der Komposition und der wasserabsorbierenden Polymerpartikel eingebaut.
Dem Aufbau der vorliegenden erfindungsgemäßen absorbierenden Zusammensetzung liegen vielfältige Fasermaterialien zugrunde, die als Fasernetzwerk oder Matrices zum Einsatz gelangen. Mit eingeschlossen von der vorliegenden Erfindung sind sowohl Fasern natürlichen Ursprungs (modifiziert oder unmodifiziert), als auch Synthesefasern.
Einen detaillierten Überblick über Beispiele von Fasern, die in der vorliegenden Erfindung eingesetzt werden können, gibt die Patentanmeldung WO 95/26209, Seite 28, Zeile 9 bis Seite 36, Zeile 8. Besagte Passage ist somit Bestandteil dieser Erfindung.
Beispiele für Cellulosefasern schließen jene ein, die üblicherweise bei Absorptionspro- dukten verwendet werden, wie Flauschzellstoff und Zellstoff vom Baumwolltyp. Die Materialien (Nadel- oder Laubhölzer), Herstellungsverfahren, wie chemischer Zellstoff, halbchemischer Zellstoff, chemothermischer mechanischer Zellstoff (CTMP) und Bleichverfahren sind nicht besonders eingeschränkt. So finden beispielsweise natürliche Cellulosefasern wie Baumwolle, Flachs, Seide, Wolle, Jute, Ethylcellulose und Celluloseacetat Anwendung. Geeignete synthetische Fasern werden hergestellt aus Polyvinylchlorid, Polyvinylflou- rid, Polytetrafluorethylen, Polyvinylidenchlorid, Polyacrylverbindungen wie ORLON®, Polyvinylacetat, Polyethylvinylacetat, löslicher oder unlöslicher Polyvinylalkohol. Beispiele für synthetische Fasern schließen thermoplastische Polyolefinfasern, wie PoIy- ethylenfasern (PULPEX®), Polypropylenfasern und Polyethylen-Polypropylen-
Zweikomponentenfasern, Polyesterfasern, wie Polyethylenterephthalatfasern (DAC- RON oder KODEL®), Copolyester, Polyvinylacetat, Polyethylvinylacetat, Polyvinylchlorid, Polyvinylidenchlorid, Polyacryle, Polyamide, Copolyamide, Polystyrol und Co- polymere der vorstehend genannten Polymere, sowie Zweikomponentenfasern aus Polyethylenterephthalat-Polyethylen-Isophthalat-Copolymer, Polyethylvinylace- tat/Polypropylen, Polyethylen/Polyester, Polypropylen/Polyester, Copoly- ester/Polyester, Polyamidfasern (Nylon), Polyurethanfasern, Polystyrolfasern und Po- lyacrylnitrilfasern ein. Bevorzugt sind Polyolefinfasern, Polyesterfasern und deren Zweikomponentenfasern. Weiterhin bevorzugt sind in der Wärme haftende Zweikom- ponentenfasern aus Polyolefin vom Hülle-Kern-Typ und Seite-an-Seite-Typ wegen ihrer ausgezeichneten Formbeständigkeit nach der Flüssigkeitsabsorption.
Die genannten synthetischen Fasern werden bevorzugt in Kombination mit thermoplastischen Fasern eingesetzt. Bei der Hitzebehandlung migrieren letztere teilweise in die Matrix des vorhandenen Fasermaterials und stellen so beim Abkühlen Verbindungsstellen und erneute Versteifungselemente dar. Zusätzlich bedeutet der Zusatz thermoplastischer Fasern eine Erweiterung der vorliegenden Porenabmessungen nach erfolgter Hitzebehandlung. Auf diese Weise ist es möglich, durch kontinuierliches Zudosieren von thermoplastischen Fasern während der Bildung der Absorptionsschicht den Anteil thermoplastischer Fasern zum Deckblatt hin kontinuierlich zu steigern, wodurch ein ebenso kontinuierlicher Anstieg der Porengrößen resultiert. Thermoplastische Fasern können aus einer Vielzahl thermoplastischer Polymere gebildet werden, die einen Schmelzpunkt von weniger als 1900C, bevorzugt von 75 bis 1750C aufweisen. Bei diesen Temperaturen ist noch keine Schädigung der Cellulosefasern zu erwarten.
Längen und Durchmesser der vorstehend beschriebenen Synthesefasern sind nicht besonders eingeschränkt und im allgemeinen kann jede beliebige Faser mit einer Länge von 1 bis 200 mm und einem Durchmesser von 0,1 bis 100 Denier (Gramm pro 9.000 Meter) bevorzugt verwendet werden. Bevorzugte thermoplastische Fasern wei- sen eine Länge von 3 bis 50 mm, besonders bevorzugte eine Länge von 6 bis 12 mm auf. Der bevorzugte Durchmesser der thermoplastischen Faser liegt zwischen 1 ,4 und 10 Decitex, besonders bevorzugt zwischen 1 ,7 und 3,3 Decitex (Gramm pro 10.000 Meter). Die Form ist nicht besonders eingeschränkt und Beispiele schließen gewebeartige, schmale zylinderartige, geschnitten-/spaltgarnartige, stapelfaserartige und endlos- faserartige ein. Die Fasern in der erfindungsgemäßen absorbierenden Zusammensetzung können hydrophil, hydrophob oder eine Kombination aus beiden sein. Gemäß der Definition von Robert F. Gould in der Publikation "Kontaktwinkel, Benetzbarkeit und Adhäsion", American Chemical Society (1964) wird eine Faser als hydrophil bezeichnet, wenn der Kontaktwinkel zwischen der Flüssigkeit und der Faser (bzw. ihrer Oberfläche) kleiner als 90° ist, oder wenn die Flüssigkeit zum spontanen Spreiten auf derselben Oberfläche tendiert. Beide Vorgänge sind in aller Regel coexistent. Umgekehrt wird eine Faser als hydrophob bezeichnet, wenn ein Kontaktwinkel von größer als 90° ausgebildet wird und kein Spreiten beobachtet wird.
Bevorzugt wird hydrophiles Fasermaterial eingesetzt. Besonders bevorzugt gelangt Fasermaterial zum Einsatz, das zur Körperseite hin schwach hydrophil und in der Region um die wasserabsorbierenden Polymerpartikel am stärksten hydrophil ist. Im Herstellungsprozeß wird durch den Einsatz von Schichten unterschiedlicher Hydrophi- Ne ein Gradient erzeugt, der die auftreffende Flüssigkeit zum Hydrogel kanalisiert, wo letztendlich die Absorption erfolgt.
Geeignete hydrophile Fasern für den Einsatz in der erfindungsgemäßen absorbierenden Zusammensetzung sind beispielsweise Cellulosefasern, modifizierte Cellulosefa- sern, Rayon, Polyesterfasern wie beispielsweise Polyethylenterephthalat (DACRON®), und hydrophiles Nylon (HYDROFIL®). Geeignete hydrophile Fasern können auch erhalten werden durch Hydrophilierung hydrophober Fasern, wie beispielsweise die Behandlung thermoplastischer Fasern, erhalten aus Polyolefinen (beispielsweise PoIy- ethylen oder Polypropylen, Polyamide, Polystyrole, Polyurethane usw.) mit Tensiden oder Silica. Aus Kostengründen und aus Gründen der Verfügbarkeit werden jedoch Cellulosefasern bevorzugt.
Die erfindungsgemäßen wasserabsorbierenden Polymerpartikel werden in das beschriebene Fasermaterial eingebettet. Dies kann auf vielfältige Weise geschehen, in- dem man beispielsweise mit dem Hydrogelmaterial und den Fasern zusammen eine Absorptionsschicht in Form einer Matrix aufbaut, oder durch Einlagerung wasserabsorbierender Polymerpartikel in Schichten aus Fasergemisch, wo sie letztendlich fixiert werden, sei es durch Haftmittel oder Laminierung der Schichten.
Die flüssigkeitsaufnehmende und -verteilende Fasermatrix kann dabei aus synthetischer Faser oder Cellulosefaser oder einem Gemisch aus synthetischer Faser und Cellulosefaser bestehen, wobei das Mischungsverhältnis von (100 bis 0) synthetische Faser : (0 bis 100) Cellulosefaser variieren kann. Die eingesetzten Cellulosefasern können zur Erhöhung der Formbeständigkeit des Hygieneartikels zusätzlich chemisch versteift sein. Die chemische Versteifung von Cellulosefasern kann auf unterschiedlichen Wegen erreicht werden. Zum einen kann eine Faserversteifung erreicht werden durch Zusatz geeigneter Überzüge / Coatings zum Fasermaterial. Derartige Zusätze schließen beispielsweise Polyamid-Epichlorhydrin-Überzüge (Kymene®557 H, Hercules, Inc. WiI- mington Delaware, USA), Polyacrylamid- Überzüge (beschrieben in US-3,556,932 oder als Handelsprodukt der Marke Parez® 631 NC, American Cyanamid Co., Stamford, CT, USA), Melamin-Formaldehyd-Überzüge und Polyethylenimin-Überzüge mit ein.
Die chemische Versteifung von Cellulosefasern kann auch durch chemische Reaktion erfolgen. So kann beispielsweise die Zugabe von geeigneten Vernetzersubstanzen eine Vernetzung bewirken, die innerhalb der Faser stattfindet. Geeignete Vernetzersubstanzen sind typische Substanzen, die zur Vernetzung von Monomeren eingesetzt werden. Mit eingeschlossen, jedoch nicht limitiert darauf, sind C2-C8 Dialdehyde, C2-C8 Monoaldehyde mit saurer Funktionalität, und insbesondere C2-C9 Polycarbonsäuren. Spezifische Substanzen aus dieser Reihe sind beispielsweise Glutaraldehyd, Glyoxal, Glyoxylsäure, Formaldehyd und Citronensäure. Diese Substanzen reagieren mit mindestens zwei Hydroxyl-Gruppen innerhalb einer einzelnen Cellulosekette oder zwischen zwei benachbarten Celluloseketten innerhalb einer einzelnen Cellulosefaser. Durch die Vernetzung erfolgt eine Versteifung der Fasern, die durch diese Behandlung eine größere Formbeständigkeit verliehen bekommen. Zusätzlich zu ihrem hydrophilen Charakter weisen diese Fasern einheitliche Kombinationen aus Versteifung und Elastizität auf. Diese physikalische Eigenschaft ermöglicht es, die kapillare Struktur auch bei gleichzeitigem Kontakt mit Flüssigkeit und Kompressionskräften beizubehalten und ein vorzeitiges Kollabieren zu verhindern.
Chemisch vernetzte Cellulosefaseren sind bekannt und in WO 91/11 162, US 3,224,926, US 3,440,135, US 3,932,209, US 4,035,147, US 4,822,453, US 4,888,093, US 4,898,642 und US 5,137,537 beschrieben. Die chemische Vernetzung bewirkt eine Versteifung des Fasermaterials, was sich letztendlich in einer ver- besserten Formbeständigkeit des gesamten Hygieneartikels widerspiegelt. Die einzelnen Schichten werden durch dem Fachmann bekannte Methoden, wie beispielsweise Verschmelzen durch Wärmebehandlung, Zugabe von Schmelzklebern, Latexbindern usw. miteinander verbunden.
Beispiele für Verfahren, mit denen man eine absorbierende Zusammensetzung erhält, die beispielsweise aus einem Trägermaterial bestehen, an den ein- oder beidseitig wasserabsorbierende Polymerpartikel fixiert sind, sind bekannt und von der Erfindung mit eingeschlossen, jedoch nicht limitiert darauf.
Beispiele für Verfahren, mit denen man eine absorbierende Zusammensetzung erhält, die beispielsweise aus in ein Fasermaterial-Gemisch aus synthetischen Fasern (a) und Cellulosefasern (b) eingebetteten wasserabsorbierende Polymerpartikel (c) besteht, wobei das Mischungsverhältnis von (100 bis 0) synthetische Faser : (0 bis 100) CeIIu- losefaser variieren kann, schließen (1 ) ein Verfahren, bei dem (a), (b) und (c) gleichzeitig gemischt werden, (2) ein Verfahren, bei dem ein Gemisch aus (a) und (b) in (c) eingemischt wird, (3) ein Verfahren, bei dem ein Gemisch aus (b) und (c) mit (a) gemischt wird, (4) ein Verfahren, bei dem ein Gemisch aus (a) und (c) in (b) eingemischt wird, (5) ein Verfahren, bei dem (b) und (c) gemischt werden und (a) kontinuierlich zudosiert wird, (6) ein Verfahren, bei dem (a) und (c) gemischt werden und (b) kontinuierlich zudosiert wird, und (7) ein Verfahren, bei dem (b) und (c) getrennt in (a) eingemischt werden, ein. Von diesen Beispielen sind die Verfahren (1 ) und (5) bevorzugt. Die Vor- richtung, die in diesem Verfahren verwendet wird, ist nicht besonders eingeschränkt und es kann eine übliche, dem Fachmann bekannte Vorrichtung verwendet werden.
Die entsprechend erzeugte absorbierende Zusammensetzung kann optional einer Hitzebehandlung unterworfen werden, so dass eine Absorptionsschicht mit hervorragen- der Formbeständigkeit im feuchten Zustand resultiert. Das Verfahren zur Hitzebehandlung ist nicht besonders eingeschränkt. Beispiele schließen Hitzebehandlung durch Zufuhr heißer Luft oder Infrarotbestrahlung mit ein. Die Temperatur bei der Hitzebehandlung liegt im Bereich 6O0C bis 23O0C, bevorzugt zwischen 1000C und 2000C, besonders bevorzugt zwischen 1000C und 18O0C.
Die Dauer der Hitzebehandlung hängt ab von der Art der synthetischen Faser, deren Menge und der Herstellungsgeschwindigkeit des Hygieneartikels. Generell beträgt die Dauer der Hitzebehandlung zwischen 0,5 Sekunden bis 3 Minuten, bevorzugt 1 Sekunde bis 1 Minute.
Die absorbierende Zusammensetzung wird im allgemeinen beispielsweise mit einer für Flüssigkeit durchlässigen Deckschicht und einer für Flüssigkeit undurchlässigen Unterschicht versehen. Weiterhin werden Beinabschlüsse und Klebebänder angebracht und so der Hygieneartikel fertiggestellt. Die Materialien und Arten der durchlässigen Deck- schicht und undurchlässigen Unterschicht, sowie der Beinabschlüsse und Klebebänder sind dem Fachmann bekannt und nicht besonders eingeschränkt. Beispiele hierfür finden sich in der WO 95/26209.
Die wasserabsorbierenden Polymerpartikel werden mittels der nachfolgend beschrie- benen Testmethoden geprüft.
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstempera- tur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymere werden vor der Messung gut durchmischt. Flüssigkeitsweiterleitung (SFC Saline Flow Conductivity)
Die Flüssigkeitsweiterleitung einer gequollenen Gelschicht unter Druckbelastung von 0,3 psi (2070 Pa) wird, wie in EP-A 0 640 330 beschrieben, als Gel-Layer-Permeability einer gequollenen Gelschicht aus superabsorbierendem Polymer bestimmt, wobei die in zuvor genannter Patentanmeldung auf Seite 19 und in Figur 8 beschriebene Apparatur dahingehend modifiziert wurde, dass die Glasfritte (40) nicht mehr verwendet wird, der Stempel (39) aus gleichem Kunststoffmaterial besteht wie der Zylinder (37) und jetzt über die gesamte Auflagefläche gleichmäßig verteilt 21 gleichgroße Bohrungen enthält. Die Vorgehensweise sowie Auswertung der Messung bleibt unverändert gegenüber EP-A 0 640 330. Der Durchfluss wird automatisch erfasst.
Die Flüssigkeitsweiterleitung (SFC) wird wie folgt berechnet:
SFC [cm3s/g] = (Fg(t=0)xL0)/(dxAxWP),
wobei Fg(t=O) der Durchfluss an NaCI-Lösung in g/s ist, der anhand einer linearen Regressionsanalyse der Daten Fg(t) der Durchflussbestimmungen durch Extrapolation gegen t=0 erhalten wird, LO die Dicke der Gelschicht in cm, d die Dichte der NaCI- Lösung in g/cm3, A die Fläche der Gelschicht in cm2 und WP der hydrostatische Druck über der Gelschicht in dyn/cm2 darstellt.
Zentrifugenretentionskapazität (CRC Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
Die angegebenen Werte für die Zentrifugenretentionskapazität beziehen sich auf die wasserfreien wasserabsorbierenden Polymerpartikel, d.h. die gemessenen Werte wurden entsprechend dem Wassergehalt der wasserabsorbierenden Polymerpartikel vor der Messung korrigiert. Der Wassergehalt der wasserabsorbierende Polymerpartikel wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der European Disposables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brüssel, Belgien. Beispiele:
14,6 kg Natriumacrylat (37,5 gew.-%ige Lösung in Wasser) und 1 ,4 kg Acrylsäure wurden mit 1 1 ,2 bis 336 g 15-fach ethoxiliertem Trimethylolpropantriacrylat als Vernetzer gemischt. Die Lösung wurde in einen erwärmten, mit Stickstoffatmosphäre gefüllten Vertropfungsturm vertropft (180°C, 12m Höhe, 2m Breite, Gasgeschwindigkeit 0,1 m/s im Gleichstrom). Die Dosiergeschwindigkeit betrug 16 kg/h. Die Vertropferplatte wies 37 Bohrungen ä 170 μm auf. Der Durchmesser der Vertropferplatte betrug 65 mm. Der Initiator wurde kurz vor dem Vertropfer über einen statischen Mischer mit der Monomerlösung gemischt. Als Initiator wurde eine 15 gew.-%ige Lösung von 2,2'-Azobis[2- (2-imidazolin-2-yl)propan]dihydrochlorid in Wasser verwendet. Die Dosiergeschwindigkeit der Initiatorlösung betrug 0,224 kg/h. Die Gasaustrittstemperatur aus dem Vertropfungsturm betrug 130°C. Der mittlere Teilchendurchmesser der erhaltenen Polymerpartikel betrug 270 μm.
Anschließend wurden die erhaltenen wasserabsorbierenden Polymerpartikel analysiert. Die Ergebnisse sind in Tabelle 1 zusammengefasst:
Tab. 1 : Einfluss der Vernetzerkonzentration
Figure imgf000022_0001
bezogen auf Acrylsäure

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation von Tropfen einer Monomerlösung, enthaltend
a) mindestens ein ethylenisch ungesättigtes Monomer, b) mindestens eines Vernetzers, c) mindestens einen Initiator, d) Wasser,
in einer die Tropfen umgebenden Gasphase, wobei die Polymerisation im Tropfen in homogener Phase stattfindet, dadurch gekennzeichnet, dass die Monomerlösung mindestens 0,5 Gew.-% des Vernetzers b) bezogen auf das Monomer a) enthält und die Polymerpartikel einem mittleren Durchmesser von min- destens 150 μm aufweisen.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Monomer a) mindestens eine Säuregruppe aufweist.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Säuregruppen des Monomeren a) zumindest teilweise neutralisiert sind.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Monomer a) zu mindestens 50 mol-% Acrylsäure ist.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Polymerpartikel einen mittleren Durchmesser von mindestens 200 μm aufweisen.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens 90 Gew.-% der Polymerpartikel einen Durchmesser von 100 bis 800 μm aufweisen.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Trägergas durch den Reaktionsraum strömt.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass das den Reaktionsraum verlassende Trägergas nach einem Durchgang zumindest teilweise rückgeführt wird.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, der Sauerstoffgehalt des Trägergases von 0,001 bis 0,15 Vol.-% beträgt.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die erhaltenen Polymerpartikel in mindestens einem weiteren Verfahrensschritt getrocknet und/oder nachvernetzt werden.
1 1. Wasserabsorbierende Polymerpartikel, herstellbar gemäß einem der Ansprüche 1 bis 10.
12. Wasserabsorbierende Polymerpartikel, wobei die Polymerpartikel eine mittlere Sphärizität von mindestens 0,84, einen Gehalt an hydrophoben Lösungsmittel von weniger als 0,005 Gew.-% und eine Permeabilität von mindestens 5 x 10"7 cm3s/g aufweisen.
13. Polymerpartikel gemäß Anspruch 12, dadurch gekennzeichnet, dass die Polymerpartikel eine Zentrifugenretentionskapazität von mindesten 10 g/g aufweisen.
14. Polymerpartikel gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Polymerpartikel einen mittleren Durchmesser von mindestens 200 μm aufweisen.
15. Polymerpartikel gemäß einem der Ansprüche 12 bis 14, dadurch gekennzeich- net, dass mindestens 90 Gew.-% der Polymerpartikel einen Durchmesser von
100 bis 800 μm aufweisen.
16. Polymerpartikel gemäß einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Polymerpartikel zumindest teilweise aus polymerisierten Säure- gruppen tragender Monomere a) bestehen.
17. Polymerpartikel gemäß Anspruch 16, dadurch gekennzeichnet, dass die Säuregruppen der polymerisierten Monomeren a) zumindest teilweise neutralisiert sind.
18. Polymerpartikel gemäß Anspruch 16 oder 17, dadurch gekennzeichnet, dass das Monomer a) zu mindestens 50 ιmol-% Acrylsäure ist.
19. Polymerpartikel gemäß einem der Ansprüche 1 1 bis 18, dadurch gekennzeichnet, dass die Polymerpartikel zu mindestens 0,5 Gew.-% aus einpolymerisiertem Vernetzter b) bestehen.
20. Verwendung der Polymerpartikel gemäß einem der Ansprüche 1 1 bis 19 zur Herstellung von Hygieneartikeln.
21. Hygieneartikel, enthaltend Polymerpartikel gemäß einem der Ansprüche 11 bis 19.
PCT/EP2007/057081 2006-07-19 2007-07-11 Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung WO2008009598A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/373,621 US8124229B2 (en) 2006-07-19 2007-07-11 Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
EP07787355A EP2046401B1 (de) 2006-07-19 2007-07-11 Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
AT07787355T ATE496638T1 (de) 2006-07-19 2007-07-11 Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
JP2009519936A JP5656403B2 (ja) 2006-07-19 2007-07-11 モノマー溶液の液滴の重合による、高い透過性を有する吸水性ポリマー粒子の製造方法
BRPI0714445A BRPI0714445B8 (pt) 2006-07-19 2007-07-11 processo para preparar partículas poliméricas absorvedoras de água, partículas poliméricas absorvedoras de água, uso das partículas poliméricas, e, artigo de higiene
DE502007006381T DE502007006381D1 (de) 2006-07-19 2007-07-11 Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06117491 2006-07-19
EP06117491.8 2006-07-19

Publications (1)

Publication Number Publication Date
WO2008009598A1 true WO2008009598A1 (de) 2008-01-24

Family

ID=38567039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057081 WO2008009598A1 (de) 2006-07-19 2007-07-11 Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung

Country Status (12)

Country Link
US (1) US8124229B2 (de)
EP (1) EP2046401B1 (de)
JP (2) JP5656403B2 (de)
CN (2) CN101489595A (de)
AT (1) ATE496638T1 (de)
BR (1) BRPI0714445B8 (de)
DE (1) DE502007006381D1 (de)
MY (1) MY148533A (de)
RU (1) RU2463310C2 (de)
TW (1) TWI414542B (de)
WO (1) WO2008009598A1 (de)
ZA (1) ZA200901114B (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040715A2 (de) * 2006-10-05 2008-04-10 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
US20080188586A1 (en) * 2005-01-28 2008-08-07 Basf Aktiengesellschaft Production of Water-Absorbing Polymeric Particles by Dropletization Polymerization in the Gas Phase
WO2010015591A1 (en) 2008-08-06 2010-02-11 Basf Se Fluid-absorbent articles
WO2010015560A1 (en) 2008-08-06 2010-02-11 Basf Se Fluid-absorbent articles
WO2010015561A1 (en) 2008-08-06 2010-02-11 Basf Se Fluid-absorbent articles
WO2011023572A1 (de) * 2009-08-25 2011-03-03 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter blutabsorption durch polymerisation von tropfen einer monomerlösung
WO2011026876A1 (en) 2009-09-04 2011-03-10 Basf Se Water-absorbent polymer particles
WO2011113728A1 (en) 2010-03-15 2011-09-22 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2011117187A1 (en) 2010-03-24 2011-09-29 Basf Se Ultrathin fluid-absorbent cores
WO2011117263A1 (en) 2010-03-24 2011-09-29 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2011155540A1 (ja) 2010-06-08 2011-12-15 株式会社日本触媒 粒子状吸水性樹脂の製造方法
US8114320B2 (en) 2007-01-16 2012-02-14 Basf Se Method for producing polymer particles by the polymerization of fluid drops in a gas phase
WO2012156346A1 (de) * 2011-05-18 2012-11-22 Basf Se Verwendung wasserabsorbierender polymerpartikel zur absorption von blut und/oder menstruationsflüssigkeit
WO2013045163A1 (en) 2011-08-12 2013-04-04 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US8852742B2 (en) 2010-03-15 2014-10-07 Basf Se Water absorbent polymer particles formed by polymerizing droplets of a monomer solution and coated with sulfinic acid, sulfonic acid, and/or salts thereof
US8865828B2 (en) 2008-11-21 2014-10-21 Basf Se Method for producing permeable water-absorbing polymer particles through polymerization of drops of a monomer solution
EP3088539A1 (de) 2015-04-29 2016-11-02 Evonik Degussa GmbH Behandlung von wasserhaltigen erz-aufbereitungsrückständen

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE409447T1 (de) 2003-02-12 2008-10-15 Procter & Gamble Bequem windel
ES2452317T3 (es) 2003-02-12 2014-03-31 The Procter & Gamble Company Núcleo absorbente para un artículo absorbente
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
MY157687A (en) * 2006-07-19 2016-07-15 Basf Se Process for preparing water-absorbing polymer particle having high permeability by polymerization
US8610097B2 (en) * 2006-09-25 2013-12-17 Basf Se Method for the continuous production of water-absorbent polymer particles
US8419971B2 (en) * 2006-12-22 2013-04-16 Basf Se Method for producing mechanically stable water-absorbent polymer particles
JP5259705B2 (ja) 2007-06-18 2013-08-07 ザ プロクター アンド ギャンブル カンパニー ほぼ連続的に分布した吸収性粒子状ポリマー材料を含む封止された吸収性コアを備える使い捨て吸収性物品
ES2580953T3 (es) 2007-06-18 2016-08-30 The Procter & Gamble Company Artículo absorbente desechable con material polimérico absorbente en forma de partículas distribuido de forma sustancialmente continua y método
WO2009080611A2 (en) * 2007-12-19 2009-07-02 Basf Se Process for producing surface-crosslinked superabsorbents
CN104740671A (zh) * 2008-03-05 2015-07-01 巴斯夫欧洲公司 制备超吸收剂的方法
WO2009134780A1 (en) 2008-04-29 2009-11-05 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
EP2329803B1 (de) 2009-12-02 2019-06-19 The Procter & Gamble Company Vorrichtungen und verfahren zum transportieren von teilchenförmigem material
EP2447286A1 (de) 2010-11-01 2012-05-02 The Procter & Gamble Company Verfahren mit einem superkritischen Medium zur Herstellung von Polymeren
US8987545B2 (en) * 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
JP2014515413A (ja) * 2011-05-26 2014-06-30 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の連続的な製造法
BR112013030599A2 (pt) 2011-06-10 2016-09-27 Procter & Gamble núcleo absorvente para artigos absorventes descartáveis
PL2532328T3 (pl) 2011-06-10 2014-07-31 Procter & Gamble Sposób i urządzenie do wytworzenia struktur chłonnych z materiałem chłonnym
JP2014515983A (ja) 2011-06-10 2014-07-07 ザ プロクター アンド ギャンブル カンパニー 使い捨ておむつ
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
EP3287109B1 (de) 2011-06-10 2023-11-29 The Procter & Gamble Company Saugfähige struktur für saugfähige artikel
EP2532329B1 (de) 2011-06-10 2018-09-19 The Procter and Gamble Company Verfahren und vorrichtung zum herstellen von absorptionsstrukturen mit absorptionsmaterial
PL2532332T5 (pl) 2011-06-10 2018-07-31 The Procter And Gamble Company Pieluszka jednorazowego użytku o zredukowanym połączeniu pomiędzy wkładem chłonnym a warstwą spodnią
EP2535697A1 (de) 2011-06-17 2012-12-19 The Procter & Gamble Company Verfahren zum Bestimmen von Eigenschaften von superabsorbierenden Polymerteilchen und von absorbierenden Strukturen, die derartige Teilchen enthalten
EP2535027B1 (de) 2011-06-17 2022-08-17 The Procter & Gamble Company Absorbierender Artikel mit verbesserten Absorptionseigenschaften
EP2535698B1 (de) 2011-06-17 2023-12-06 The Procter & Gamble Company Absorbierender Artikel mit verbesserten Absorptionseigenschaften
EP4285882A3 (de) 2011-06-17 2024-03-06 The Procter & Gamble Company Absorbierender artikel mit verbesserten absorptionseigenschaften
DE112012004845T5 (de) 2011-11-21 2014-09-04 The Procter & Gamble Co. Absorptionsartikel mit verbesserten Absorptionseigenschaften
EP2749260A1 (de) 2012-03-29 2014-07-02 The Procter and Gamble Company Verfahren und Vorrichtung zum Herstellen von saugfähigen Artikeln für die persönliche Hygiene
EP2671554B1 (de) 2012-06-08 2016-04-27 The Procter & Gamble Company Absorbierender Kern zur Verwendung in saugfähigen Artikeln
EP2679209B1 (de) 2012-06-28 2015-03-04 The Procter & Gamble Company Absorbierende Artikel mit verbessertem Kern
EP2679208B1 (de) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbierender Kern zur Verwendung in saugfähigen Artikeln
EP2679210B1 (de) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbierende Artikel mit verbessertem Kern
FR2997842B1 (fr) 2012-11-13 2021-06-11 Procter & Gamble Articles absorbants avec canaux et signaux
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
EP2740450A1 (de) 2012-12-10 2014-06-11 The Procter & Gamble Company Saugfähiger Artikel mit hohem Anteil an Superabsorptionsmaterial
HUE044699T2 (hu) 2012-12-10 2019-11-28 Procter & Gamble Folyadékgyûjtõ-eloszlató rendszerrel kiegészített nedvszívó termék
PL2740452T3 (pl) 2012-12-10 2022-01-31 The Procter & Gamble Company Wyrób chłonny o wysokiej zawartości materiału chłonnego
EP2740449B1 (de) 2012-12-10 2019-01-23 The Procter & Gamble Company Saugfähiger artikel mit hohem anteil an absorptionsmaterial
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9820894B2 (en) 2013-03-22 2017-11-21 The Procter & Gamble Company Disposable absorbent articles
PL3254656T3 (pl) 2013-06-14 2022-01-10 The Procter & Gamble Company Wyrób chłonny i wkład chłonny tworzący kanały w stanie mokrym
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
JP6334705B2 (ja) 2013-08-27 2018-05-30 ザ プロクター アンド ギャンブル カンパニー チャネルを有する吸収性物品
MX2016003391A (es) 2013-09-16 2016-06-24 Procter & Gamble Articulos absorbentes con canales y señales.
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP3351225B1 (de) 2013-09-19 2021-12-29 The Procter & Gamble Company Absorbierende kerne mit materialfreien bereichen
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
EP2905001B1 (de) 2014-02-11 2017-01-04 The Procter and Gamble Company Verfahren und Vorrichtung zum Herstellen von absorbierenden Strukturen mit Kanälen
EP2944376B1 (de) 2014-05-13 2019-11-13 The Procter and Gamble Company Agglomerierte superabsorbierende Polymerpartikel
EP2949300B1 (de) 2014-05-27 2017-08-02 The Procter and Gamble Company Saugfähiger Kern mit saugfähiger Materialstruktur
EP2949299B1 (de) 2014-05-27 2017-08-02 The Procter and Gamble Company Saugfähiger Kern mit saugfähiger Materialstruktur
ES2860763T3 (es) * 2014-07-09 2021-10-05 Lubrizol Advanced Mat Inc Composiciones de hidrogel
GB2555016B (en) 2015-03-16 2021-05-12 Procter & Gamble Absorbent articles with improved cores
CN107405223B (zh) 2015-03-16 2021-03-02 宝洁公司 具有改善的强度的吸收制品
MX2017014428A (es) 2015-05-12 2018-04-10 Procter & Gamble Articulo absorbente con adhesivo mejorado del nucleo al lienzo inferior.
CN107683126A (zh) 2015-05-29 2018-02-09 宝洁公司 具有槽和润湿指示标记的吸收制品
GB201512725D0 (en) * 2015-07-20 2015-08-26 Life Technologies As Polymeric particles
EP3167859B1 (de) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbierende kerne mit materialfreien bereichen
ES2838027T3 (es) 2015-12-02 2021-07-01 Hartmann Paul Ag Artículo absorbente con núcleo mejorado
EP3205318A1 (de) 2016-02-11 2017-08-16 The Procter and Gamble Company Absorbierender artikel mit hoher absorptionsfähigkeit
EP3238676B1 (de) 2016-04-29 2019-01-02 The Procter and Gamble Company Saugkern mit profilierter verteilung von absorbierendem material
EP3238678B1 (de) 2016-04-29 2019-02-27 The Procter and Gamble Company Saugfähiger kern mit transversalen faltlinien
EP3251648A1 (de) 2016-05-31 2017-12-06 The Procter and Gamble Company Absorbierender artikel mit verbesserter flüssigkeitsverteilung
EP3278782A1 (de) 2016-08-02 2018-02-07 The Procter and Gamble Company Absorbierender artikel mit verbesserter flüssigkeitsspeicherung
JP7076177B2 (ja) * 2016-09-27 2022-05-27 ユニ・チャーム株式会社 吸収性物品
US10828208B2 (en) 2016-11-21 2020-11-10 The Procte & Gamble Company Low-bulk, close-fitting, high-capacity disposable absorbent pant
US10898393B2 (en) 2016-12-19 2021-01-26 The Procter & Gamble Company Absorbent article with absorbent core
WO2018151453A1 (ko) * 2017-02-16 2018-08-23 주식회사 엘지화학 고흡수정 수지의 제조 방법
KR102075735B1 (ko) 2017-02-16 2020-02-10 주식회사 엘지화학 고흡수성 수지의 제조 방법
US11053370B2 (en) 2017-04-19 2021-07-06 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
EP3391961A1 (de) 2017-04-19 2018-10-24 The Procter & Gamble Company Agglomerierte supersaugfähige polymerteilchen mit spezifischem grössenverhältnis
EP3391963B1 (de) 2017-04-19 2021-04-14 The Procter & Gamble Company Verfahren zur herstellung von agglomerierten superabsorbierenden polymerpartikeln mit tonplättchen mit kantenmodifikation und/oder oberflächenmodifikation
US10875985B2 (en) 2017-04-19 2020-12-29 The Procter & Gamble Company Superabsorbent polymer particles comprising one or more than one area(s) with clay platelets and at least two distinct areas substantially free of clay platelets
US10767029B2 (en) 2017-04-19 2020-09-08 The Procter & Gamble Company Agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification
EP3391960B1 (de) 2017-04-19 2023-11-22 The Procter & Gamble Company Superabsorbierende polymerpartikel mit einem oder mehr als einem bereich(en) mit tonplättchen und mindestens zwei getrennte, nicht benachbarte bereiche ohne tonplättchen aufweisen
US20180333310A1 (en) 2017-05-18 2018-11-22 The Procter & Gamble Company Incontinence pant with low-profile unelasticized zones
EP3881814A1 (de) 2020-03-17 2021-09-22 The Procter & Gamble Company Absorbierender kern mit einer zentralen schicht mit hohem volumen und superabsorbierenden teilchen
WO2023168616A1 (en) 2022-03-09 2023-09-14 The Procter & Gamble Company Absorbent article with high permeability sap
US20240091073A1 (en) 2022-09-08 2024-03-21 The Procter & Gamble Company Disposable absorbent pants with elasticized waist panel structure and obscuring print patterns

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3523617C2 (de) 1984-07-02 1990-08-23 Nippon Shokubai Kagaku Kogyo Co., Ltd., Osaka, Jp
DE3314019C2 (de) 1982-04-19 1990-10-25 Nippon Shokubai Kagaku Kogyo Co., Ltd., Osaka, Jp
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6291605B1 (en) * 1990-06-06 2001-09-18 Clarence S. Freeman Polymerization process with spraying step
EP1199327A2 (de) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
WO2003031482A1 (de) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
EP1424346A1 (de) * 2001-07-31 2004-06-02 Mitsubishi Chemical Corporation Polymerisationsverfahren und düse zur verwendung bei dem polymerisationsverfahren
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
WO2005080479A1 (de) * 2004-02-24 2005-09-01 Basf Aktiengesellschaft Verfahren zur nachvernetzung wasserabsorbierender polymere
DE102004057868A1 (de) * 2004-11-30 2006-06-01 Basf Ag Unlösliche Metallsulfate in wasserabsorbierenden Polymerpartikeln

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147809A (en) * 1980-04-18 1981-11-17 Sumitomo Chem Co Ltd Highly water absorbing hydrogel and its preparation
JPS57158209A (en) * 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS5871907A (ja) * 1981-10-26 1983-04-28 Arakawa Chem Ind Co Ltd 吸水性樹脂乾燥固体の製造方法
US5073612A (en) 1987-12-28 1991-12-17 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Hydrophilic polymer and method for production thereof
JPH0819163B2 (ja) * 1988-04-20 1996-02-28 旭化成工業株式会社 高吸水性材料の製法
JP2781208B2 (ja) * 1988-06-22 1998-07-30 三菱化学株式会社 吸水性樹脂の製造法
EP0348180A3 (de) * 1988-06-22 1991-01-30 Mitsubishi Petrochemical Company Limited Verfahren zur Herstellung eines wasserabsorbierenden Harzes
TW201758B (de) 1988-06-28 1993-03-11 Catalyst co ltd
KR930007272B1 (ko) 1988-06-28 1993-08-04 닙본 쇼쿠바이 가브시기 가이샤 흡수성 수지 및 그 제법
US5164459A (en) * 1990-04-02 1992-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treating the surface of an absorbent resin
US5269980A (en) 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
IN1996KO01040A (de) * 1995-06-07 2005-03-04 Clarence S Freeman
JP3546609B2 (ja) * 1996-10-09 2004-07-28 三菱化学株式会社 吸水性複合体及びその製造方法
JPH1171425A (ja) 1997-08-28 1999-03-16 Nippon Shokubai Co Ltd 吸水剤の製造方法
JP3810899B2 (ja) 1997-08-29 2006-08-16 株式会社日本触媒 吸水剤の製造方法
JP2000198805A (ja) * 1998-11-06 2000-07-18 Mitsubishi Chemicals Corp 吸水性複合体およびその製造方法
US6562879B1 (en) 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
JP4380873B2 (ja) * 1999-02-15 2009-12-09 株式会社日本触媒 吸水性樹脂粉末およびその用途
DE19909838A1 (de) * 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19909653A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2002119853A (ja) * 2000-10-13 2002-04-23 Sumitomo Seika Chem Co Ltd 医療廃液処理剤
JP2002361079A (ja) * 2001-03-28 2002-12-17 Mitsubishi Chemicals Corp 吸水性複合体およびその製造方法
JP2003002905A (ja) * 2001-06-19 2003-01-08 Mitsubishi Chemicals Corp ポリマーおよび吸水性複合体の製造方法
WO2003002623A1 (de) * 2001-06-28 2003-01-09 Basf Aktiengesellschaft Saure hochquellfähige hydrogele
JP2004026856A (ja) * 2002-06-21 2004-01-29 Mitsubishi Chemicals Corp 重合方法
EP1433526A3 (de) 2002-12-26 2007-03-14 Nippon Shokubai Co., Ltd. Wasser absorbierende Harzzusammensetzung
WO2004069936A1 (en) * 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
DE10314466A1 (de) 2003-03-28 2004-10-14 Basf Ag Verfahren zur Herstellung von kondensierten Harzen in Pulverform
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
DE10340253A1 (de) 2003-08-29 2005-03-24 Basf Ag Sprühpolymerisationsverfahren
WO2005027875A1 (en) 2003-09-18 2005-03-31 Ivax Corporation Particles
WO2005037875A1 (ja) 2003-10-16 2005-04-28 Mitsubishi Chemical Corporation レドックス重合法、吸水性樹脂複合体および吸収性物品
DE102004024437A1 (de) 2004-05-14 2005-12-08 Basf Ag Verfahren zur Herstellung wasserquellbarer, polymerer Partikel
WO2006011625A1 (ja) * 2004-07-30 2006-02-02 Mitsubishi Chemical Corporation 吸液性複合体及びその製造方法、吸液性物品並びにノズル
WO2006014031A1 (en) 2004-08-06 2006-02-09 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
JP2006063219A (ja) * 2004-08-27 2006-03-09 Mitsubishi Chemicals Corp 吸水性樹脂複合体集合物及びその製造法並びに吸水性樹脂シート及び吸水性物品
DE102004042955A1 (de) 2004-09-02 2006-03-09 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
DE102004042946A1 (de) * 2004-09-02 2006-03-09 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
DE102004042948A1 (de) 2004-09-02 2006-03-09 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
DE102005002412A1 (de) 2005-01-18 2006-07-27 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
DE102005019398A1 (de) 2005-04-25 2006-10-26 Basf Ag Verfahren zur Herstellung von Fällungspolymeren durch Sprühpolymerisation

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019C2 (de) 1982-04-19 1990-10-25 Nippon Shokubai Kagaku Kogyo Co., Ltd., Osaka, Jp
DE3523617C2 (de) 1984-07-02 1990-08-23 Nippon Shokubai Kagaku Kogyo Co., Ltd., Osaka, Jp
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
US6291605B1 (en) * 1990-06-06 2001-09-18 Clarence S. Freeman Polymerization process with spraying step
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
EP1199327A2 (de) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
EP1424346A1 (de) * 2001-07-31 2004-06-02 Mitsubishi Chemical Corporation Polymerisationsverfahren und düse zur verwendung bei dem polymerisationsverfahren
WO2003031482A1 (de) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
WO2005080479A1 (de) * 2004-02-24 2005-09-01 Basf Aktiengesellschaft Verfahren zur nachvernetzung wasserabsorbierender polymere
DE102004057868A1 (de) * 2004-11-30 2006-06-01 Basf Ag Unlösliche Metallsulfate in wasserabsorbierenden Polymerpartikeln

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727586B2 (en) * 2005-01-28 2010-06-01 Basf Aktiengesellschaft Production of water-absorbing polymeric particles by dropletization polymerization in the gas phase
US20080188586A1 (en) * 2005-01-28 2008-08-07 Basf Aktiengesellschaft Production of Water-Absorbing Polymeric Particles by Dropletization Polymerization in the Gas Phase
WO2008040715A3 (de) * 2006-10-05 2008-05-22 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
US8013087B2 (en) 2006-10-05 2011-09-06 Basf Se Method for the production of water absorbent polymer particles by polymerizing drops of a monomer solution
WO2008040715A2 (de) * 2006-10-05 2008-04-10 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
US8114320B2 (en) 2007-01-16 2012-02-14 Basf Se Method for producing polymer particles by the polymerization of fluid drops in a gas phase
US9480968B2 (en) 2008-08-06 2016-11-01 Basf Se Fluid-absorbent articles
JP2011529753A (ja) * 2008-08-06 2011-12-15 ビーエーエスエフ ソシエタス・ヨーロピア 流体吸収性物品
WO2010015561A1 (en) 2008-08-06 2010-02-11 Basf Se Fluid-absorbent articles
WO2010015560A1 (en) 2008-08-06 2010-02-11 Basf Se Fluid-absorbent articles
US8669410B2 (en) 2008-08-06 2014-03-11 Basf Se Fluid-absorbent articles
US8895800B2 (en) 2008-08-06 2014-11-25 Basf Se Fluid absorbent articles
US8796174B2 (en) 2008-08-06 2014-08-05 Basf Se Fluid-absorbent articles
WO2010015591A1 (en) 2008-08-06 2010-02-11 Basf Se Fluid-absorbent articles
JP2011529755A (ja) * 2008-08-06 2011-12-15 ビーエーエスエフ ソシエタス・ヨーロピア 流体吸収性物品
JP2011529754A (ja) * 2008-08-06 2011-12-15 ビーエーエスエフ ソシエタス・ヨーロピア 流体吸収性物品
US8865828B2 (en) 2008-11-21 2014-10-21 Basf Se Method for producing permeable water-absorbing polymer particles through polymerization of drops of a monomer solution
WO2011023572A1 (de) * 2009-08-25 2011-03-03 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter blutabsorption durch polymerisation von tropfen einer monomerlösung
CN102481387B (zh) * 2009-08-25 2014-10-01 巴斯夫欧洲公司 通过聚合单体溶液液滴而制备具有提高的血液吸收量的吸水聚合物颗粒的方法
CN102481387A (zh) * 2009-08-25 2012-05-30 巴斯夫欧洲公司 通过聚合单体溶液液滴而制备具有提高的血液吸收量的吸水聚合物颗粒的方法
WO2011026876A1 (en) 2009-09-04 2011-03-10 Basf Se Water-absorbent polymer particles
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
US9073040B2 (en) 2009-09-04 2015-07-07 Basf Se Water-absorbent polymer particles
JP2013503927A (ja) * 2009-09-04 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子
US8852742B2 (en) 2010-03-15 2014-10-07 Basf Se Water absorbent polymer particles formed by polymerizing droplets of a monomer solution and coated with sulfinic acid, sulfonic acid, and/or salts thereof
WO2011113728A1 (en) 2010-03-15 2011-09-22 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2011117187A1 (en) 2010-03-24 2011-09-29 Basf Se Ultrathin fluid-absorbent cores
WO2011117263A1 (en) 2010-03-24 2011-09-29 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US8569569B2 (en) 2010-03-24 2013-10-29 Basf Se Ultrathin fluid-absorbent cores
US8450428B2 (en) 2010-03-24 2013-05-28 Basf Se Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2011155540A1 (ja) 2010-06-08 2011-12-15 株式会社日本触媒 粒子状吸水性樹脂の製造方法
WO2012156346A1 (de) * 2011-05-18 2012-11-22 Basf Se Verwendung wasserabsorbierender polymerpartikel zur absorption von blut und/oder menstruationsflüssigkeit
WO2013045163A1 (en) 2011-08-12 2013-04-04 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
EP3088539A1 (de) 2015-04-29 2016-11-02 Evonik Degussa GmbH Behandlung von wasserhaltigen erz-aufbereitungsrückständen

Also Published As

Publication number Publication date
EP2046401B1 (de) 2011-01-26
JP5656403B2 (ja) 2015-01-21
CN105001364A (zh) 2015-10-28
US20100068520A1 (en) 2010-03-18
BRPI0714445B1 (pt) 2018-05-29
JP2014240501A (ja) 2014-12-25
TW200813131A (en) 2008-03-16
ZA200901114B (en) 2010-04-28
CN101489595A (zh) 2009-07-22
ATE496638T1 (de) 2011-02-15
RU2009105487A (ru) 2010-08-27
RU2463310C2 (ru) 2012-10-10
TWI414542B (zh) 2013-11-11
BRPI0714445B8 (pt) 2021-06-22
JP5955367B2 (ja) 2016-07-20
EP2046401A1 (de) 2009-04-15
MY148533A (en) 2013-04-30
DE502007006381D1 (de) 2011-03-10
BRPI0714445A2 (pt) 2013-03-12
JP2009543918A (ja) 2009-12-10
CN105001364B (zh) 2017-09-26
US8124229B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
EP2046401B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
EP2046403B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
EP2046839B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
EP2046400B1 (de) Verfahren zur herstellung nachvernetzter wasserabsorbierender polymerpartikel mit hoher absorption durch polymerisation von tropfen einer monomerlösung
EP2432511B1 (de) Wasserabsorbierende speicherschichten
EP1436335B1 (de) Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE102017205367A1 (de) Flüssigkeitabsorbierender Artikel
US8569569B2 (en) Ultrathin fluid-absorbent cores
DE102017205368A1 (de) Ultradünner flüssigkeitabsorbierender Artikel
EP2411422B1 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
DE102017205365A1 (de) Flüssigkeitsabsorbierender Artikel
EP2115013B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
DE102005018922A1 (de) Mit Polykationen oberflächenbehandeltes wasserabsorbierendes Polymergebilde
EP2076547B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
DE102005002412A1 (de) Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
DE102005044035A1 (de) Verfahren zum Vertropfen von Flüssigkeiten
WO2007093531A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2046402A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2300063B1 (de) Verfahren zur oberflächennachvernetzung wasserabsorbierender polymerpartikel
WO2008003654A2 (de) Verfahren zum herstellen wasserabsorbierender verbundstoffe
EP2528630B1 (de) Geruchsinhibierende wasserabsorbierende verbundstoffe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026977.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007787355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12373621

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009519936

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009105487

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0714445

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090115