WO2008003517A1 - Wasserlöslicher salzkern mit funktionsbauteil - Google Patents

Wasserlöslicher salzkern mit funktionsbauteil Download PDF

Info

Publication number
WO2008003517A1
WO2008003517A1 PCT/EP2007/006055 EP2007006055W WO2008003517A1 WO 2008003517 A1 WO2008003517 A1 WO 2008003517A1 EP 2007006055 W EP2007006055 W EP 2007006055W WO 2008003517 A1 WO2008003517 A1 WO 2008003517A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt core
water
casting
salt
core
Prior art date
Application number
PCT/EP2007/006055
Other languages
English (en)
French (fr)
Inventor
Hans Dieter GRÖZINGER
Original Assignee
Emil Müller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emil Müller GmbH filed Critical Emil Müller GmbH
Priority to DE502007002754T priority Critical patent/DE502007002754D1/de
Priority to EP07765133A priority patent/EP2040865B1/de
Priority to AT07765133T priority patent/ATE456409T1/de
Publication of WO2008003517A1 publication Critical patent/WO2008003517A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0036Casting in, on, or around objects which form part of the product gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/105Salt cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/12Casting in, on, or around objects which form part of the product for making objects, e.g. hinges, with parts which are movable relatively to one another

Definitions

  • the invention relates to water-soluble salt cores for the production of hollow moldings by casting, the at least one mechanical and / or electrical / electronic component in, for. B. positive connection or in a cavity containing, process for their preparation and their use.
  • Foundry cores which are washed out after casting parts, have long been known. They are increasingly used instead of sand cores, as they can be removed after the casting by simply washing and eliminates a costly treatment of the castings.
  • Such salt cores are often blended with various additives to improve their manufacturing or processing properties.
  • organic or inorganic binders are added to improve the mechanical properties.
  • inorganic phosphates as a binder is described for example in DE-B-103 59 547. But also pure salts can be used as salt cores.
  • WO 85/04605 describes the simultaneous use of a salt core together with an alumina / silica fiber pad. Both elements are used as individual parts in the production of castings, see Figures 1 and 2.
  • a salt core can be provided with tubes through which reaction gases can be removed during the casting process.
  • EP-AI 293 276 a device for producing a die-cast component with a core and an insert is known.
  • a yoke for an electromagnet can be connected to the salt core, so that there is a housing for an electromagnet in the casting process.
  • the yoke for the electromagnet is only partially connected to the salt core. It is essential that the insert exerts a support function for the salt core and bending moments acting on the core can be transferred to the insert.
  • the EP application relates to the use of inserts that are partially exposed on the surface of the salt core.
  • a core, z. B. salt core placed in a mold and washed out after the metal casting, after which functional components are installed in the resulting cavity.
  • a two-shell construction can be realized. This is the case, for example, in pumps, valves, fans, etc., for example in the automotive sector. This is associated with a considerable installation effort, since often a large number of parts must be mounted after the casting of the housing.
  • Two- or multi-shell housings must then be matched prior to assembly, and ensure adequate sealing of the assembled part.
  • Object of the present invention is to provide the possibility of inexpensive production of hollow moldings such as housings, can be introduced into the functional components in a costly manner, positioned and fixed and a
  • Functional cavity is created in which the functional components can perform their function, eg. B. gears can move.
  • the multi-stage process of manufacturing housing parts, inserting functional parts and final assembly with sealing is to be simplified. This is desirable, among other things, because in the
  • the object is achieved by a water-soluble salt core for the production of hollow moldings by casting, wherein the salt core at least one mechanical and / or electrical / electronic component in positive Contains connection or in a functional cavity, which is connected by the casting process, for example wholly or partially, movable or flexible with the Hohlforrnanalysis.
  • axle box For an axle with axle bearings, e.g. the axle be movable while the axle box is fixedly connected to the cavity body.
  • the object is further achieved by a water-soluble salt core for the production of hollow moldings by casting, wherein the salt core contains at least one mechanical and / or electrical / electronic component in positive connection or in a functional cavity that does not support the core.
  • the component thus does not increase the strength, hardness or other mechanical properties of the salt core compared to a solid salt core that contains no component.
  • the object is further achieved by a water-soluble salt core for the production of hollow moldings by casting, wherein the salt core contains at least one mechanical and / or electrical / electronic component in positive connection or in a functional cavity, which is largely or completely enclosed by the salt core.
  • the salt core itself can thus have a cavity in which the component is located, so that it is not spatially fixed in the later cavity body.
  • a functional cavity may be a cavity in the salt core in which the functional component is present or arranged. He may also designate the cavity, which is formed in the later casting by the salt core and in which the functional parts can exercise their subsequent function.
  • the invention further relates to a process for the preparation of such salt cores, wherein the salt, optionally mixed with binders and other additives, filled into a mold, compacted under pressure and / or heat treated, wherein the at least one component before or after filling, compacting and / or heat treatment is introduced into the salt core.
  • the salt cores of the invention are used for the production of hollow moldings or functional parts in metal or plastic casting.
  • the hollow moldings can be used for example in the automotive sector or engine construction.
  • the mechanical and / or electrical / electronic components can have very different functions and shapes, their material must be selected so that it, embedded in the salt core, the casting conditions (temperature and pressure) can withstand at least for the time of a casting process. Since the functional parts are embedded in the salt core and salt is a good thermal insulator, the components themselves need not be able to withstand the casting conditions. This makes it possible to use heat-sensitive materials for the components.
  • the components can be constructed of any suitable material, for example, metals or plastics and composites thereof. Other organic or inorganic materials, such as ceramics, oxide materials, etc. may also be used as the starting material for the components.
  • Salt cores are used for the production of hollow moldings, as they define just the later cavity in a mold body. These are also called
  • Hollow moldings may be, for example, housing for moving parts, for example
  • Engine housing gear housing or parts thereof or pump housing act. It may also be piping systems designed to carry fluids. Such channels or pipe systems may include, for example, flaps, valves or electrical or electronic components.
  • the housing can be used for later use z. B. filled with oil or other liquids.
  • the hollow bodies according to the invention can also be housings for electrical or electronic components.
  • the hollow moldings are housings of gearboxes, axle elements, pump wheels, etc.
  • These hollow shaped bodies contain one or more mechanical and / or electrical / electronic components in the finished form. It may, for example, be one or more, preferably two or more, in particular three or more components. For example, 1 to 30, preferably 2 to 20, in particular 3 to 10 such components may be present in the salt core. Often, the components are movable or flexibly connected to the mold body by the casting process. This applies, for example, to axes.
  • the salt core can be designed, for example, so that the axis is present in the salt core, while the axle bearings are provided adjacent to or in the outer sides of the salt core or from the outside of the salt core, so that the axle bearings are firmly connected to the cast housing after casting later while the axles themselves are movable.
  • two or more components mechanically and / or electrically / electronically interact with each other.
  • This is the case, for example, with gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • gears for the construction of a transmission.
  • a plurality of gears are assembled into a later gear, the individual gears mesh and interact with each other.
  • the components can also be designed so that they interact with the housing itself. This is the case, for example, with impellers or pump wheels, which are adapted to the housing wall so that a pumping capacity for a fluid medium is achieved.
  • the axles and / or axle bearings, which carry the impellers or pump wheels, are so enclosed in the salt core that they determine the position of the impellers or impellers in the later part, so that they can be moved in the component and fulfill their functions.
  • the components may also be combined mechanical and electrical / electronic components, such as electric motors. These electrical or electronic components can be completely introduced into the salt core, in which case they result in an entire functional unit with the later housing. These may be components that are movably or flexibly connected to the hollow molded body after the casting process.
  • flaps or valves are connected to a channel-shaped, for example, hollow shaped body in such a way that they block the channel in one position, but in another position allow the passage of a fluid through the channel.
  • movable valve flaps may be arranged on a rigid axle, which is rigidly and firmly connected to the walls of the hollow shaped body after the casting process. In this case, only the axle ends are exposed on the surface of the salt core.
  • the components are largely or completely enclosed by the salt core. Often they rest at one or more points on the surface of the salt core or protrude from this, in order to be able to form a connection with the later hollow molded body.
  • the expression "largely enclosed” means that preferably at least 50%, more preferably at least 70%, in particular at least 90% of the surface of the component within the salt core and not present on the surface thereof or corresponding surface portions of the salt core are not formed by components.
  • the components can have axes and / or axle bearings in the salt core, with only (one or more) axes and / or axle bearings projecting out of the salt core or bearing against the surface thereof.
  • these axes are rigidly connected to the casting or movably mounted in the casting.
  • gear wheels, flaps, valves, gear parts, axle elements or drive elements usually project just the axes or axle bearings from the salt core or lie on the surface.
  • the components exert no support function for the core.
  • the yoke shown in EP-A-1 293 276 also exerts a support function for the salt core by absorbing bending moments.
  • the water-soluble salt cores according to the invention contain the components in positive connection. This means that there is usually no back-casting of the components with a molten metal or plastic melt and associated tinseling occurs. Such a form-fitting connection to a composite also does not have the embodiments described in WO 85/04605 and US 4,446,906.
  • the components are contained in a form-locking connection in the water-soluble salt core, that no casting with a molten metal or plastic melt and no tinsel formation occur.
  • the components are sealed during casting with respect to a cast metal or casting plastic. As a result, no metal film or plastic film can form on the core-covered surface of the components.
  • the component may be connected for this purpose in any suitable manner with the water-soluble salt core. It may for example be pressed into the salt core, glued and / or sintered.
  • the water-soluble salt core holds the Components in a specific position in space, so that they are in the desired orientation in the subsequent casting process. They are thus positioned in the metal casting mold. For example, they can be positioned in a depression of a die casting tool in a position-defined manner.
  • the salt core can be considered as a so-called "black box" which is cast irrespective of the components contained therein.
  • movably connected or “interlocking” refers to an arrangement, as it is for example in the case of several gears, which together form a gear. Also flaps and slides or other controls can interact in this form.
  • the components are selected from gears and parts thereof, vanes, pump wheels, flaps, valves, ducts, piping systems, drive elements or electrical or electronic components.
  • the components come from the automotive sector. These may be parts of the drive, monitoring, control systems.
  • the water-soluble Salzkeme can contain all usual ingredients.
  • the main part is a water-soluble salt or a mixture of water-soluble salts such as sodium chloride or potassium chloride.
  • Common other ingredients are binders.
  • binders can be used for water-soluble salt cores.
  • the binders can be selected according to the practical requirements and adapted to the respective salt cores.
  • the cores may be compacted or not compacted, sintered or sintered. They can also be tied or unbound.
  • the salt cores can be composed of all commonly used salts.
  • potassium chloride and potassium nitrate, potassium nitrite, sodium nitrate, sodium nitrite, copper chloride, lithium chloride, lead chloride, magnesium chloride, barium chloride, calcium chloride and mixtures thereof can be used. Suitable mixtures are described, for example, in WO 01/02112.
  • the salt cores can be modified by fibers or whiskers or additives.
  • graphite, silicon, alumina or silicon carbide may be used as aggregates.
  • drying agents such as magnesium carbonate or magnesium phosphate, as also described in WO 85/04605.
  • expansion modifiers can be used to control thermal expansion and avoid stress fractures. Examples of suitable Expansion modifiers are alumina, glass powders, copper alloys, graphite, talc, or fine alumina / silica fibers. Such modifiers are also described in WO 85/04605.
  • core materials it is also possible to use alkali metal metasilicates and mixtures thereof with alkali metal disilicates.
  • Metasilikat be combined with 30 to 80 wt .-% disilicate.
  • An example is potassium and / or lithium metasilicate in combination with potassium and / or lithium disilicate, to which may be added sodium disilicate and / or sodium metasilicate, see for example GB-A-949 066.
  • the addition of alumina to salt cores to smooth the surfaces is also possible and described for example in JP-A-60118350.
  • ingredients or adjuvants may be used in place of or in addition to binders as described below.
  • Binders suitable for salt cores may be organic and / or inorganic agents. It may be low molecular weight, oligomeric or polymeric compounds. It is also possible to use mixtures of organic and inorganic binders. In this case, all customary suitable organic and / or inorganic
  • Binders are used.
  • Suitable inorganic binders are phosphates, as described, for example, in DE-B-103 59 547. According to this embodiment, inorganic phosphates or mixtures of inorganic phosphates can be used.
  • Suitable phosphates are, for example, alkali metal phosphates and metal phosphates, for example sodium phosphate, sodium polyphosphate, sodium tripolyphosphate, aluminum phosphates such as monoaluminum phosphate, boron phosphate and also potassium phosphates, for example tetrapotassium pyrophosphate.
  • Monosodium phosphate can also be used.
  • the phosphates can be derived from (poly) phosphate chains of different lengths.
  • phosphate units there may be individual phosphate units, such as in monosodium phosphate. It is also possible for longer phosphate chains of different chain numbers to be present, as in tripolyphosphate or tetrapyrophosphate. They are derived from the monomeric phosphate by dehydration, which leads to di-phosphates, tri-phosphates and ultimately polyphosphates. These chains can also be combined into rings to form so-called metaphosphates, which are tri-metaphosphates, tetra-metaphosphates, etc. according to the number of phosphoric acid units.
  • phosphates one, several or all hydrogen atoms may be replaced by metals, for example alkali metals or aluminum. The same applies to a replacement by boron.
  • Suitable phosphates are sometimes referred to as refractory binders. Suitable amounts of the phosphate binders are in the range of 0.5 to 10 wt .-%, based on the finished salt mixture. Particularly preferred is worked with 1 to 5 wt .-%.
  • release agents can be used.
  • Suitable phosphates are in particular sodium polyphosphate and sodium hexametaphosphate as well as phosphoric acid per se, as described, for example, in DE-A-195 25 307. According to the invention, in addition to the phosphates and the free phosphoric acid and oligomeric or polymeric phosphoric acids can be used. Suitable phosphate binders are described inter alia in SU-A-16 39 872.
  • Polyphosphate chains or borate ions for use as binders are also described in US 5,573,055.
  • the polyphosphate chains and / or borate ions are preferably derived from at least one water-soluble phosphate and / or borate glass.
  • bentonites can also be used as binders.
  • the water-soluble phosphate glass may preferably contain 30 to 80 mol% of P 2 O 5 , 20 to 70 mol% of X 2 O, 0 to 30 mol% of MO and 0 to 15 mol% of L 2 O 3 , where X is Na , K or Li, M means Ca, Mg or Zn and L means Al, Fe or B.
  • the water-soluble phosphate glass particularly preferably contains from 58 to 72% by weight of P 2 O 5 , from 28 to 42% by weight of Na 2 O and from 0 to 16% by weight of CaO.
  • Preferred glass systems are derived from Na 2 O and P 2 O 5 , for example 5 Na 2 O and 3 P 2 O 5 . It is also possible to additionally have K 2 O in the glasses. It is also possible to use as binder, a molecular sieve, for example, the structure Na 86 [(A10 2) 6 g (Si0 2) io 6] x H 2 O. Such systems are also described in US 5,711,792.
  • borax, magnesium oxide, talc and / or alkaline earth metal salts can be used as inorganic binders. These binders can also be used in amounts of 0.5 to 10 wt .-%. They are described for example in US 3,356,129.
  • binders are prepared by dissolving the corresponding water-soluble glasses in aqueous solution and applied in this form.
  • the amounts to be used are again preferably from 0.5 to 10% by weight, based on the finished salt mixture.
  • Further molecular sieves and waterglasses which can be used according to the invention and also other silicic acids are known to the person skilled in the art.
  • binders for cores described in DE-A-19 24 991 can also be used according to the invention. There is described to add up to 10 wt .-% borax, magnesium oxide or talc individually or in a mixture. In addition, these ingredients can be used together with water glass, or water glass can be used alone as a binder to achieve a high compressive and flexural strength. It can also be used on GB
  • A-1 274 966 be referenced.
  • silicate systems In addition to the described phosphate systems, silicate systems and mixtures thereof, it is also possible to use other inorganic systems which are derived, for example, from sulfates or carbonates and other metal salts. Suitable systems are known to the person skilled in the art.
  • Gypsum or cement may also be considered as inorganic binders, which may be the form which has not yet set with water or which has hardened with water. Gypsum can thus be present as a semihydrate as well as a dihydrate.
  • Cement is usually a mixture of calcium silicates, calcium aluminates and calcium ferrites, that is composed of CaO with SiO 2 , Al 2 O 3 and Fe 2 O 3 in different proportions.
  • the inorganic binders can be used in combination with organic binders.
  • water glass and a synthetic resin can be used as a binder as described in US 3,764,575.
  • water glass and a synthetic resin as binder in a ratio of 1: 10 to 10: 1, preferably 1: 5 to 5: 1, in particular 2: 1 to 1: 2 combined.
  • the synthetic resin may be a condensation product based on furan or phenol.
  • any suitable organic binders which can be used as binders for salt cores.
  • These are in particular oligomeric or polymeric systems, but also low molecular weight organic compounds such as sugar can be used.
  • Suitable organic binder systems are partially known in the art for
  • Salt cores are known.
  • paraffin waxes synthetic organic resins such as polystyrene or silicone resins can be used.
  • polyethylene glycols can be used which have, for example, a molecular weight in the range of 4000 to 8000, preferably 5000 to 7000.
  • binder systems are described, for example, in GB-A-2 105 312 and EP-A-0 127 367. Such systems are also referred to for example in US 5,573,055.
  • Alkaline earth metal chlorides, sulfates or borates, water glass and synthetic resins as binders are described, for example, in US Pat. No. 3,764,575.
  • Suitable organic binders are, in particular, natural and synthetic polymers.
  • Natural polymers include, for example, cellulose and cellulose derivatives such as carboxymethyl cellulose, cellulose acetate, cellulose acetobutyrates as well as other cellulose esters and cellulose ethers. Other cellulose derivatives can be formed by oxidation reactions or by dehydration.
  • polysaccharides and also low molecular weight sugars can be used.
  • suitable synthetic binders are polyvinylpyrrolidone and polymers derived therefrom, such as vinylpyrrolidone-styrene copolymers, vinylpyrrolidone-vinyl acetate copolymers and similar polymers.
  • Polyalkylene glycols and their ethers may also be used, in particular polyethylene glycol.
  • the polymers can be used in powdery, granular or latex form.
  • polystyrenes for example polyethylenes and polypropylenes, polystyrenes, polyvinyl chlorides, polyamides, polyurethanes, polyesters, polyethers, polysulfones, polyether ketones, polycarbonates, etc.
  • Polymeric resins can also be used according to the invention, for example polyester resins or epoxy resins. These can be one-component or two-component systems.
  • Organic binders are usually used in amounts of 0.5-10% by weight, based on the total salt mixture.
  • Useful polymer dispersions can be based, for example, on acrylic esters or styrene / butadiene.
  • suitable polymers are polystyrene, polyethylene, polyvinyl chloride, polybutadiene, polyacrylonitrile, polymethyl methacrylates, polyethylene terephthalates, polyamide 6, polyamide 66.
  • Specific polymer classes include acetals, polyamides, polyamideimides, polyarylates, polycarbonates, polyesters, polyethers, polyetherketones, polyetherimides, polyimides, polyphenylene oxides , Polyphenylene sulfides and polysulfones.
  • resins especially phenol-formaldehyde resins, urea-formaldehyde resins, unsaturated polyester resins, epoxy resins and melamine-formaldehyde resins may be mentioned.
  • rubbers there may be mentioned, in particular, styrene-butadiene rubbers, polybutadiene rubbers, ethylene-propylene rubbers, polychloroprene rubbers, polyisoprene rubbers, nitrile rubbers, butyl rubbers, silicone rubbers and urethane rubbers.
  • the polymers can be free-radically, anionically, cationically or polymerized by radiation.
  • Organic polymers used according to the invention are in particular vinylic polymers. These copolymers can be applied to the salts to form the solidified salt cores by any suitable method. They can be applied, for example, in molten or dissolved form. The necessary and suitable quantities in individual cases can be determined by the skilled person by simple hand tests.
  • polyacetals especially polyoxymethylenes and their copolymers. These are often used instead of paraffin or polyolefin dispersants. It is also possible to use mixtures of polyoxymethylene homopolymers or copolymers and a polymer which is immiscible therewith as binder.
  • Polyoxymethylene homo- or - copolymers preferably have a melting point of at least 150 0 C and molecular weights (weight average) in the range from 5000 to 150000. It can for example mixtures of polyoxymethylene homopolymers and copolymers, and polymers based on olefins, vinyl aromatic monomers, Vinylestern , Vinyl alkyl ethers or alkyl methacrylates.
  • Suitable polymers are described for example in EP-BO 5951 460 and EP-BI 276 811.
  • To remove the binder it can be treated with a gaseous, acidic atmosphere.
  • Organic binders suitable as binders according to the invention are, for example, in particular the polymers used for injection molding applications.
  • Suitable organic binders are, for example, bitumen and tar.
  • binder reference may be made to the keyword "binder” in Römpp Chemielexikon, 9th ed.,.
  • binders are described in DE-B-103 59 547. It is also possible to use with pure salts, d. H. without binder to make the core.
  • the preparation of the water-soluble salt cores is carried out by filling the salt, optionally mixed with binders and other additives in a mold. Then it is compressed and heat-treated in the usual way under pressure, wherein the heat treatment is preferably followed by the compression. Suitable methods are described for example in DE-B-103 59 547, EP-AO 019 015, US 4,446,906, WO 85/04605 and WO 2004/082866.
  • the pressing of the mixture in the mold can be carried out at a pressure of 1500 to 2500 KN / cm 2 or 600 to 2000 bar, preferably 700 to 1000 bar. Di of US 3,963,818, for example, a pressure of 1.5 to 4 tons / cm 2 called.
  • the heat treatment can be carried out, for example, at temperatures in the range of 730 ° C or less, for example at temperatures between 200 0 C and 650 ° C. According to WO 2004/082866 is carried out at temperatures of 500-740 0 C, while operating according to US 3,963,818 at temperatures ranging from 100 to 300 ° C.
  • the selection of suitable parameters can be made by a person skilled in the art.
  • the at least one component is inventively introduced before or after the filling, compression and / or heat treatment in the salt core.
  • the components can be arranged in the mold before it is filled with the salt.
  • the components can be pressed into the salt core, glued and / or sintered.
  • the salt core halves can be glued together with the components to form a unit.
  • the components are introduced into the salt cores in such a way that they are already present in the position intended for the future hollow molded body.
  • the salt cores of the invention are used for the production of hollow moldings or functional parts in metal or plastic casting.
  • the metal casting can be carried out, for example, as described in the above-mentioned literature.
  • For different casting methods can Castings, John
  • Thixo Casting Squeeze Cast, called Thixo Casting and Thixo Molding.
  • casting metal are the usual metals in die casting aluminum, magnesium, zinc or
  • plastic casting in particular plastic injection molding, all suitable plastic materials can be used.
  • plastic materials Preferably, polystyrene, polyamides,
  • Polyurethanes cellulose ethers, cellulose esters, polyethylene, polypropylene,
  • Polymethacrylklander and other thermoplastics hardening in the tool thermosets or vulcanizing elastomers of rubber or silicone rubber or foamed plastics, for example.
  • reinforced materials such as ABS or ASA plastics can also be used. In this
  • the method according to the invention it is possible to produce a one-part or single-shell functional unit which avoids the problems of adaptation and sealing of a multi-part design.
  • the one-piece housing shape is much more stable than a two- or multi-part construction.
  • the invention is further illustrated by the following example.
  • the two-piece salt core corresponded to a tub with a lid. In the recesses for the bearings were the two gears introduced, and the lid of the salt core was applied and glued. Normal salt (NaCl) was used for the preparation of the salt core.
  • the salt core thus obtained was fixed in a mold and surrounded with aluminum.
  • the bushings of the axle bearings entered into a connection with the die-cast aluminum body.
  • the gearbox was in a one-piece die-cast housing, with a separate placement of the transmission was not necessary.
  • FIG. 1 shows in the upper region both the toothed wheels and the not yet equipped with toothed wheels but provided with recesses in two parts
  • the salt core is composed of a tub B with a lid A.
  • the gears E and F are introduced during assembly and fixed in space, as they should be present in the later gear arrangement.
  • the axle bearings came out through corresponding openings of the salt core, whereby a connection of the aluminum die-cast with the bearings was possible.
  • Bear bushes in the subsequent metal casting with the housing form a unit in which the gears are movably mounted.
  • the functional cavity, in which the gears are already present in the salt core, but also in the later hollow shaped body, is clearly visible in the figure.
  • the lower part of the figure shows a cross-sectional view and top view of the hollow molded body, from which the salt has already been washed out.
  • the gears are now movably mounted in the hollow body and interlock.
  • the example shows how through a two-piece salt core, the components can be provided so that they can interact with each other as in the later finished casting. It would also be possible to first press the gears in the salt core, so that they are positively connected with him. This salt core could then be fixed in the casting tool and poured around, followed by the removal of the salt core.
  • FIG. 1 shows how through a two-piece salt core, the components can be provided so that they can interact with each other as in the later finished casting. It would also be possible to first press the gears in the salt core, so that they are positively connected with him. This salt core could then be fixed in the casting tool and poured around, followed by the removal of the salt core.
  • FIG. 1 shows how through a two-piece salt core, the components can be provided so that they can interact with each other as in the later finished casting. It would also be possible to first press the gears in the salt core, so that they are positively connected with him. This salt core could then be fixed in the casting tool and poured around, followed by the removal of the salt core

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Detergent Compositions (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Beschrieben wird ein wasserlöslicher Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, in dem der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das nach dem Gießverfahren ganz oder teilweise beweglich oder flexibel mit dem Hohlforrnkörper verbunden ist oder in dem der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das oder der vom Salzkern weitgehend oder vollständig umschlossen ist oder in dem der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das keine Stützfunktion für den Kern ausübt.

Description

Wasserlöslicher Salzkern mit Funktionsbauteil
Die Erfindung betrifft wasserlösliche Salzkerne zur Herstellung von Hohlformkörpern durch Gießverfahren, die mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in, z. B. formschlüssiger Verbindung oder in einem Hohlraum, enthalten, Verfahren zu ihrer Herstellung und ihre Verwendung.
Salzkerne für Gießereizwecke, die nach dem Guss von Teilen ausgewaschen werden, sind seit Langem bekannt. Sie werden zunehmend anstelle von Sandkernen eingesetzt, da sie nach dem Guss durch einfaches Auswaschen entfernt werden können und eine aufwendige Nachbehandlung der Gussteile entfallt.
Derartige Salzkerne werden häufig mit unterschiedlichen Additiven vermengt, um ihre Herstellungs- oder Verarbeitungseigenschaften zu verbessern. Beispielsweise werden organische oder anorganische Bindemittel zugefügt, um die mechanischen Eigenschaften zu verbessern. Der Einsatz von anorganischen Phosphaten als Bindemittel ist beispielsweise in der DE-B- 103 59 547 beschrieben. Aber auch Reinsalze können als Salzkerne eingesetzt werden.
Es ist ferner bekannt, Salzkerne gemeinsam mit weiteren Bauelementen im Metallguss einzusetzen. In der US 4,446,906 ist ein Verfahren zur Herstellung von Gussteilen beschrieben, bei denen eine zylindrische Metallauskleidung zusammen mit einem Salzkern eingesetzt wird. Dabei liegt keine formschlüssige Verbindung zwischen Salzkern und zylindrischem Metallliner vor, sondern beide Teile werden getrennt in der Gussform platziert.
Die WO 85/04605 beschreibt den gleichzeitigen Einsatz eines Salzkerns zusammen mit einem Aluminiumoxid/Siliciumdioxid-Faserpad. Beide Elemente werden als einzelne Teile bei der Herstellung der Gusskörper eingesetzt, siehe die Figuren 1 und 2. In der EP-A-O 019 015 wiederum ist erwähnt, dass ein Salzkern mit Röhrchen versehen werden kann, durch den Reaktionsgase während des Gießvorgangs abgeführt werden können. Aus der EP-A-I 293 276 ist eine Vorrichtung zur Herstellung eines Druckgussbauteils mit einem Kern und einem Einlegeteil bekannt. Dabei kann ein Joch für einen Elektromagneten mit dem Salzkern verbunden werden, so dass sich im Gießverfahren ein Gehäuse für einen Elektromagneten ergibt. Das Joch für den Elektromagneten ist jedoch nur teilweise mit dem Salzkern verbunden. Wesentlich ist, dass das Einlegeteil eine Stützfunktion für den Salzkern ausübt und Biegemomente, die auf den Kern wirken, auf das Einlegeteil übertragbar sind. Insgesamt betrifft die EP-Anmeldung den Einsatz von Einlegeteilen, die teilweise an der Oberfläche des Salzkerns offen liegen.
Bei der Herstellung einer Vielzahl von Gehäusen durch Gusstechniken wird zunächst ein Kern, z. B. Salzkern in eine Gussform gelegt und nach dem Metallguss ausgewaschen, wonach funktionelle Bauteile in den so entstandenen Hohlraum eingebaut werden. Alternativ kann eine zweischalige Bauweise verwirklicht werden. Dies ist beispielsweise bei Pumpen, Ventilen, Lüftern usw., beispielsweise im Automobilsektor, der Fall. Hiermit ist ein erheblicher Montageaufwand verbunden, da häufig eine Vielzahl von Teilen nach dem Guss des Gehäuses montiert werden muss. Zudem ist es häufig erforderlich, das Gehäuse zweiteilig auszulegen, um einen Einbau der Funktionsteile erst zu ermöglichen. Zwei- oder mehrschalige Gehäuse müssen sodann vor der Montage aufeinander abgeglichen werden, und für ausreichende Abdichtung des montierten Teils ist zu sorgen.
Insgesamt ist eine Vielzahl von Arbeitsschritten notwendig, um in aufwendiger Weise zum fertigen Produkt zu gelangen.
Aufgabe der vorliegenden Erfindung ist die Schaffung der Möglichkeit der unaufwendigen Herstellung von Hohlformkörpern wie Gehäusen, in die Funktionsbauteile in unaufwendiger Weise eingebracht, positioniert und fixiert werden können und ein
Funktionshohlraum geschaffen wird, in dem die Funktionsbauteile ihre Funktion ausüben können, z. B. Zahnräder sich bewegen können. Das vielstufige Verfahren der Herstellung von Gehäuseteilen, Einbringen von Funktionsteilen und Endmontage mit Abdichtung soll vereinfacht werden. Dies ist unter anderem auch deshalb wünschenswert, da gerade im
Automobilsektor wie auch in anderen technischen Bereichen im Reparaturfall keine
Einzelteile von Funktionseinheiten ausgetauscht werden, sondern in der Regel die gesamte
Einheit ausgetauscht wird. Daher ist es nicht erforderlich, Gehäuse öffnen oder demontieren zu können, um darin befindliche einzelne Funktionsteile austauschen zu können.
Die Aufgabe wird erfindungsgemäß gelöst durch einen wasserlöslichen Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, wobei der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das nach dem Gießverfahren, z.B. ganz oder teilweise, beweglich oder flexibel mit dem Hohlforrnkörper verbunden ist.
Bei einer Achse mit Achslager kann z.B. die Achse beweglich sein, während das Achslager fest mit dem Hohlraumkörper verbunden ist.
Die Aufgabe wird ferner gelöst durch einen wasserlöslichen Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, wobei der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das keine Stützfunktion für den Kern ausübt. Das Bauteil erhöht damit nicht die Festigkeit, Härte oder andere mechanische Eigenschaften des Salzkerns im Vergleich zu einem massiven Salzkern, der kein Bauteil enthält.
Die Aufgabe wird ferner gelöst durch einen wasserlöslichen Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, wobei der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das oder der vom Salzkern weitgehend oder vollständig umschlossen ist. Der Salzkern selbst kann also einen Hohlraum aufweisen, in dem das Bauteil sich befindet, so dass es im späteren Hohlraumkörper nicht räumlich fixiert ist.
Ein Funktionshohlraum kann ein Hohlraum im Salzkern sein, in dem das Funktionsbauteil vorliegt bzw. angeordnet ist. Er kann auch den Hohlraum bezeichnen, der im späteren Gussteil durch den Salzkern gebildet wird und in dem die Funktionsteile ihre spätere Funktion ausüben können.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung derartiger Salzkerne, bei dem Salz, gegebenenfalls vermischt mit Bindemitteln und weiteren Additiven, in ein Formwerkzeug eingefüllt, unter Druck verdichtet und/oder wärmebehandelt wird, wobei das mindestens eine Bauteil vor oder nach dem Einfüllen, Verdichten und/oder Wärmebehandeln in den Salzkern eingebracht wird.
Die erfindungsgemäßen Salzkerne werden zur Herstellung von Hohlformkörpern oder Funktionsteilen im Metall- oder Kunststoffguss verwendet. Die Hohlformkörper können beispielsweise im Automobilsektor bzw. Motorenbau eingesetzt werden.
Es wurde erfindungsgemäß gefunden, dass es möglich ist, eine Vielzahl von Funktionsteilen, die zur Herstellung von beispielsweise Getrieben, Antriebselementen, Pumpen, Kanälen und Rohrsystemen oder zur Herstellung von elektrischen oder elektronischen Bauteilen dienen, nicht erst nach Herstellung eines Hohlformkörpers in diesen einzubringen und zu montieren, sondern sie in einen wasserlöslichen Salzkern einzubringen, der sodann in einem Gießverfahren mit einem Metall oder Kunststoff umgössen wird. Nachfolgend wird der wasserlösliche Salzkern ausgespült, und die Funktionsteile liegen bereits in der gewünschten Position und Funktion im Hohlformkörper vor.
Die mechanischen und/oder elektrischen/elektronischen Bauteile können unterschiedlichste Funktion und Form haben, ihr Material muss so ausgewählt sein, dass es, eingebettet im Salzkern, den Gießbedingungen (Temperatur und Druck) zumindest für die Zeit eines Gießvorgangs standhalten kann. Da die Funktionsteile in den Salzkern eingebettet sind und es sich bei Salz um einen guten Wärmeisolator handelt, müssen die Bauteile selbst nicht den Gießbedingungen widerstehen können. Hierdurch ist es möglich, auch wärmeempfindliche Materialien für die Bauteile einzusetzen. Die Bauteile können dabei aus jedem beliebigen geeigneten Material aufgebaut sein, beispielsweise aus Metallen oder Kunststoffen sowie Verbunden daraus. Auch andere organische oder anorganische Materialien, beispielsweise Keramiken, oxidische Werkstoffe usw. können als Ausgangsmaterial für die Bauteile verwendet werden.
Salzkerne werden zur Herstellung von Hohlformkörpern eingesetzt, da sie gerade den späteren Hohlraum in einem Gussformkörper definieren. Diese werden auch als
Formhohlräume, Gussstücke, Gießformen usw. bezeichnet. Bei den erfindungsgemäßen
Hohlformkörpern kann es beispielsweise um Gehäuse für bewegte Teile, beispielsweise
Motorengehäuse, Getriebegehäuse oder Teile davon oder Pumpengehäuse handeln. Es kann sich auch um Rohrsysteme handeln, die zur Leitung von Fluiden ausgelegt sind. Derartige Kanäle oder Rohrsysteme können beispielsweise Klappen, Ventile oder elektrische oder elektronische Bauelemente enthalten. Die Gehäuse können für den späteren Gebrauch z. B. mit Öl oder anderen Flüssigkeiten gefüllt werden.
Die erfindungsgemäßen Hohlraumkörper können auch Gehäuse für elektrische oder elektronische Bauelemente sein.
Insbesondere sind die Hohlformkörper Gehäuse von Getrieben, Achselementen, Pumpenrädern usw.
Diese Hohlformkörper enthalten in der fertigen Form ein oder mehrere mechanische und/oder elektrische/elektronische Bauteile. Es kann sich beispielsweise um ein oder mehr, bevorzugt zwei oder mehr, insbesondere drei oder mehr Bauteile handeln. Beispielsweise können 1 bis 30, bevorzugt 2 bis 20, insbesondere 3 bis 10 derartige Bauteile im Salzkern vorliegen. Häufig sind die Bauteile nach dem Gießverfahren beweglich oder flexibel mit dem Hohlformkörper verbunden. Dies gilt beispielsweise für Achsen. Der Salzkern kann dabei beispielsweise so ausgelegt sein, dass die Achse im Salzkern vorliegt, während die Achslager an oder in den Außenseiten des Salzkerns oder von außen am Salzkern anliegend vorgesehen sind, so dass die Achslager nach dem späteren Gießen fest mit dem gegossenen Gehäuse verbunden sind, wahrend die Achsen selber beweglich sind. Dabei können zwei oder mehrere Bauteile mechanisch und/oder elektrische/elektronisch miteinander Wechsel wirken. Dies ist beispielsweise bei Zahnrädern zum Aufbau eines Getriebes der Fall. Häufig wird eine Vielzahl von Zahnrädern zu einem späteren Getriebe zusammengefügt, wobei die einzelnen Zahnräder ineinander greifen und so miteinander wechselwirken.
Die Bauteile können auch so ausgelegt sein, dass sie mit dem Gehäuse selbst wechselwirken. Dies ist beispielsweise bei Flügelrädern oder Pumpenrädern der Fall, die so an die Gehäusewandung angepasst sind, dass eine Pumpleistung für ein fluides Medium erreicht wird. Die Achsen und/oder Achslager, die die Flügelräder oder Pumpenräder tragen, sind dabei so im Salzkern eingeschlossen, dass sie im späteren Bauteil die Position der Flügelräder oder Pumpenräder festlegen, so dass diese im Bauteil bewegt werden können und ihre Funktionen erfüllen. Die Bauteile können auch kombinierte mechanische und elektrische/elektronische Bauteile sein, beispielsweise Elektromotoren. Diese elektrischen oder elektronischen Bauteile können komplett in den Salzkern eingebracht werden, wobei sie dann mit dem späteren Gehäuse eine gesamte Funktionseinheit ergeben. Damit kann es sich um Bauteile handeln, die nach dem Gießverfahren beweglich oder flexibel mit dem Hohlformkörper verbunden sind. Beispielsweise Klappen oder Ventile sind so mit einem beispielsweise kanalförmigen Hohlformkörper verbunden, dass sie in einer Stellung den Kanal dicht versperren, jedoch in einer anderen Position den Durchlass eines Fluids durch den Kanal erlauben. Beispielsweise können bewegliche Ventilklappen auf einer starren Achse angeordnet sein, die nach dem Gießverfahren mit den Wänden des Hohlformkörpers starr und fest verbunden ist. In diesem Fall liegen nur die Achsenden an der Oberfläche des Salzkerns frei.
Gerade aus dem Automobilbereich ist eine Vielzahl derartiger Anwendungen bekannt, beispielsweise aus Antriebs-, Steuer-, Pump- oder Messsystemen.
In der Regel sind die Bauteile weitgehend oder vollständig vom Salzkern umschlossen. Häufig liegen sie an einer oder mehreren Stellen an der Oberfläche des Salzkerns an oder ragen aus diesem heraus, um mit dem späteren Hohlformkörper eine Verbindung eingehen zu können. Der Ausdruck „weitgehend umschlossen" bedeutet, dass vorzugsweise mindestens 50 %, besonders bevorzugt mindestens 70 %, insbesondere mindestens 90 % der Oberfläche des Bauteils innerhalb des Salzkerns und nicht an dessen Oberfläche vorliegen bzw. entsprechende Oberflächenanteile des Salzkerns nicht durch Bauteile gebildet werden. Erfindungsgemäß können im Salzkern die Bauteile Achsen und/oder Achslager aufweisen, wobei nur (eine oder mehrere) Achsen und/oder Achslager aus dem Salzkern hervorragen oder an dessen Oberfläche anliegen. Im fertigen Gussteil sind dann diese Achsen starr mit dem Gussteil verbunden oder beweglich im Gussteil gelagert. Bei Zahnrädern, Klappen, Ventilen, Getriebeteilen, Achselementen oder Antriebselementen ragen in der Regel gerade nur die Achsen oder Achslager aus dem Salzkern hervor oder liegen an dessen Oberfläche an.
Im Unterschied hierzu liegt bei dem in EP-A-I 293 276 gezeigten Joch für einen Elektromagneten nur ein geringer Teil des Jochs innerhalb des Salzkerns vor, während ein Großteil des Jochs aus der Oberfläche des Salzkerns heraustritt.
Auch die in WO 85/06405, US 4,446,906 und EP-A-O 019 015 gezeigten Salzkerne zeigen Bauteile, die zu einem Großteil aus dem Salzkern herausragen bzw. nicht von ihm umschlossen sind.
Gemäß einer Ausführungsform der Erfindung üben die Bauteile keine Stützfunktion für den Kern aus. Im Unterschied hierzu übt das in EP-A-I 293 276 gezeigte Joch auch eine Stützfunktion für den Salzkern aus, indem es Biegemomente aufnimmt.
Die erfindungsgemäßen wasserlöslichen Salzkerne enthalten die Bauteile in formschlüssiger Verbindung. Dies bedeutet, dass in der Regel kein Hintergießen der Bauteile mit einer Metallschmelze oder Kunststoffschmelze und eine damit verbundene Flitterbildung auftritt. Eine derartige formschlüssige Verbindung zu einem Verbund weisen auch die in WO 85/04605 und US 4,446,906 beschriebenen Ausführungsformen nicht auf.
Erfindungsgemäß sind die Bauteile so in formschlüssiger Verbindung im wasserlöslichen Salzkern enthalten, dass kein Hintergießen mit einer Metallschmelze oder Kunststoffschmelze und keine Flitterbildung auftreten.
Durch die formschlüssige Verbindung sind die Bauteile während des Gießens bezüglich eines Gießmetalls oder Gießkunststoffes dicht. Hierdurch kann sich auf der vom Kern bedeckten Oberfläche der Bauteile kein Metallfilm oder Kunststofffilm bilden.
Das Bauteil kann zu diesem Zweck in beliebiger geeigneter Weise mit dem wasserlöslichen Salzkern verbunden sein. Es kann beispielsweise in den Salzkern eingepresst, eingeklebt und/oder eingesintert sein. Der wasserlösliche Salzkern hält die Bauteile in einer spezifischen Position im Raum, so dass sie im nachfolgenden Gießverfahren in der gewünschten Ausrichtung vorliegen. Sie werden damit in der Metallgussform lagedefiniert positioniert. Sie können beispielsweise in einer Vertiefung eines Druckgießwerkzeuges derart lagedefiniert positioniert sein. Bezogen auf das Gießverfahren kann der Salzkern, als so genannte „Black Box" betrachtet werden, die eingegossen wird, unabhängig von den darin enthaltenen Bauteilen.
Der Ausdruck „beweglich miteinander verbunden" bzw. „ineinander greifen" bezeichnet eine Anordnung, wie sie beispielsweise bei mehreren Zahnrädern vorliegt, die zusammen ein Getriebe ergeben. Auch Klappen und Schieber oder andere Steuerelemente können in dieser Form zusammenwirken.
Vorzugweise sind die Bauteile ausgewählt aus Getrieben und Teilen davon, Flügelrädern, Pumpenrädern, Klappen, Ventilen, Kanälen, Rohrsystemen, Antriebselementen oder elektrischen oder elektronischen Bauteilen. Gemäß einer Ausführungsform der Erfindung stammen die Bauteile aus dem Automobilsektor. Dabei kann es sich um Teile der Antriebs-, Überwachungs- der Steuersysteme handeln.
Die wasserlöslichen Salzkeme können alle üblichen Inhaltsstoffe enthalten. In der Regel liegt als Hauptteil ein wasserlösliches Salz oder ein Gemisch wasserlöslicher Salze wie Natriumchlorid oder Kaliumchlorid vor. Übliche weitere Inhaltsstoffe sind Bindemittel.
In der erfindungsgemäßen Anwendung können für wasserlösliche Salzkerne unterschiedlichste Bindemittel eingesetzt werden. Die Bindemittel können dabei nach den praktischen Anforderungen ausgewählt werden und an die jeweiligen Salzkerne angepasst werden. So können die Kerne verdichtet oder nicht verdichtet, gesintert oder nicht gesintert sein. Sie können zudem gebunden oder nicht gebunden sein. Die Salzkerne können dabei aus allen üblicherweise eingesetzten Salzen aufgebaut sein. Neben dem bevorzugten Natriumchlorid und Kaliumchlorid können auch Kaliumnitrat, Kaliumnitrit, Natriumnitrat, Natriumnitrit, Kupferchlorid, Lithiumchlorid, Bleichlorid, Magnesiumchlorid, Bariumchlorid, Calciumchlorid und deren Gemische eingesetzt werden. Geeignete Gemische sind beispielsweise in der WO 01/02112 beschrieben. Die Salzkerne können dabei durch Fasern oder Whisker oder Zuschlagstoffe modifiziert werden. Beispielsweise können Graphit, Silicium, Aluminiumoxid oder Siliciumcarbid als Zuschlagstoffe verwendet werden. Diese Zuschlagstoffe sind ebenfalls in der WO 01/02112 beschrieben. Ferner können Trockenmittel wie Magnesiumcarbonat oder Magnesiumphosphat eingesetzt werden, wie sie auch in der WO 85/04605 beschrieben sind. Zudem können Ausdehnungsmodifiziermittel eingesetzt werden, um die thermische Ausdehnung zu steuern und Belastungsbrüche zu vermeiden. Beispiele geeigneter Expansionsmodifiziermittel sind Aluminiumoxid, Glaspulver, Kupferlegierungen, Graphit, Talk oder feine Aluminiumoxid/Silikat-Fasern. Derartige Modifiziermittel sind ebenfalls in WO 85/04605 beschrieben. Als Kernmaterialien können ferner Alkalimetallmetasilikate und deren Gemische mit Alkalimetalldisilikaten eingesetzt werden. Beispielsweise können 20 bis 70 Gew.-% Metasilikat mit 30 bis 80 Gew.-% Disilikat kombiniert werden. Ein Beispiel sind Kalium und/oder Lithiummetasilikat in Kombination mit Kalium und/oder Lithiumdisilikat, wobei zu dem Natriumdisilikat und/oder Natriummetasilikat zugesetzt werden können, siehe beispielsweise GB-A-949 066. Der Zusatz von Aluminiumoxid zu Salzkernen zur Glättung der Oberflächen ist ebenfalls möglich und beispielsweise in JP-A- 60118350 beschrieben.
Die vorstehend genannten Inhaltsstoffe oder Zuschlagstoffe können an Stelle oder zusätzlich zu Bindemitteln, wie sie nachstehend beschrieben sind, eingesetzt werden.
Für Salzkerne geeignete Bindemittel können organische und/oder anorganische Mittel sein. Es kann sich um niedermolekulare, oligomere oder polymere Verbindungen handeln. Es können auch Mischungen von organischen und anorganischen Bindemitteln eingesetzt werden. Dabei können alle üblichen geeigneten organischen und/oder anorganischen
Bindemittel eingesetzt werden.
Beispiele für geeignete anorganische Bindemittel sind Phosphate, wie sie beispielsweise in DE-B- 103 59 547 beschrieben sind. Gemäß dieser Ausführungsform können anorganische Phosphate oder Mischungen anorganischer Phosphate eingesetzt werden. Geeignete Phosphate sind beispielsweise Alkalimetallphosphate und Metallphosphate, beispielsweise Natriumphosphat, Natriumpolyphosphat, Natriumtripolyphosphat, Aluminiumphosphate wie Monoaluminiumphosphat, Borphosphat wie auch Kaliumphosphate, beispielsweise Tetrakaliumpyrophosphat. Auch Mononatriumphosphat ist einsetzbar. Generell können die Phosphate sich von (Poly)Phosphat-Ketten unterschiedlicher Länge ableiten. Es können einzelne Phosphateinheiten vorliegen, wie beispielsweise im Mononatriumphosphat. Es können auch längere Phosphatketten unterschiedlicher Kettenzahl vorliegen wie im Tripolyphosphat oder Tetrapyrophosphat. Sie leiten sich von dem monomeren Phosphat durch Wasserabspaltung ab, die zu Di-Phosphaten, Tri-Phosphaten und letztendlich PolyPhosphaten führt. Diese Ketten können auch zu Ringen zusammengeschlossen werden, sodass so genannte Metaphosphate gebildet werden, die entsprechend der Anzahl der Phosphorsäure-Einheiten Tri-Metaphosphate, Tetra-Metaphosphate usw. sind.
In den Phosphaten können ein, mehrere oder alle Wasserstoffatome durch Metalle, beispielsweise Alkalimetalle oder Aluminium ersetzt sein. Gleiches gilt bei einem Ersatz durch Bor. Geeignete Phosphate werden teilweise als Feuerfest-Binder bezeichnet. Geeignete Mengen der Phosphatbinder liegen im Bereich von 0,5 bis 10 Gew.-%, bezogen auf die fertige Salzmischung. Besonders bevorzugt wird mit 1 bis 5 Gew.-% gearbeitet.
Ferner können noch Trennmittel eingesetzt werden.
Geeignete Phosphate sind insbesondere Natriumpolyphosphat und Natriumhexametaphosphat wie auch Phosphorsäure an sich, wie beispielsweise auch in der DE-A- 195 25 307 beschrieben. Erfindungs gemäß können neben den Phosphaten auch die freie Phosphorsäure und oligomere oder polymere Phosphorsäuren eingesetzt werden. Geeignete Phospatbindemittel sind unter Anderem auch in SU-A- 16 39 872 beschrieben.
Polyphosphatketten oder Borationen zur Anwendung als Bindemittel sind zudem in der US 5,573,055 beschrieben. Die Polyphosphatketten und/oder Borationen leiten sich dabei vorzugsweise von mindestens einem wasserlöslichen Phosphat und/oder Boratglas ab. Ferner können auch Bentonite als Bindemittel eingesetzt werden.
Weitere geeignete Bindemittel sind in der US 5,711,792 beschrieben. Es werden ebenfalls Polyphosphatketten und Borationen angegeben. Dabei kann das wasserlösliche Phosphatglas vorzugsweise 30 bis 80 mol-% P2O5 , 20 bis 70 mol-% X2O, 0 bis 30 mol-% MO und 0 bis 15 mol-% L2O3 enthalten, wobei X Na, K oder Li bedeutet, M Ca, Mg oder Zn bedeutet und L Al, Fe oder B bedeutet. Besonders bevorzugt enthält das wasserlösliche Phosphatglas dabei 58 bis 72 Gew.-% P2O5, 28 bis 42 Gew.-% Na2O und 0 bis 16 Gew.-% CaO. Bevorzugte Glassysteme leiten sich von Na2O und P2O5 ab, beispielsweise 5 Na2O und 3 P2O5. Es ist ebenfalls möglich, zusätzlich K2O in den Gläsern vorliegen zu haben. Ebenfalls ist es möglich, als Bindemittel ein Molekularsiebmaterial einzusetzen, beispielsweise der Struktur Na86[(A102)g6(Si02)io6] x H2O. Derartige Systeme sind ebenfalls in US 5,711,792 beschrieben.
Ferner können als anorganische Bindemittel Borax, Magnesiumoxid, Talkum und /oder Erdalkalimetallsalze eingesetzt werden. Diese Bindemittel können ebenfalls in Mengen von 0,5 bis 10 Gew.-% eingesetzt werden. Sie sind beispielsweise in US 3,356,129 beschrieben.
Diese Bindemittel werden durch Auflösen der entsprechenden wasserlöslichen Gläser in wässriger Lösung hergestellt und in dieser Form angewendet. Die einzusetzenden Mengen sind wiederum vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf die fertige Salzmischung. Weitere erfindungsgemäß einsetzbare Molekularsiebe und Wasserglas sowie weitere Kieselsäuren sind dem Fachmann bekannt.
Auch die in DE-A- 19 24 991 beschriebenen Bindemittel für Kerne sind erfindungsgemäß einsetzbar. Dort ist beschrieben, bis zu 10 Gew.-% Borax, Magnesiumoxid oder Talkum einzeln oder im Gemisch zuzusetzen. Zudem können diese Inhaltsstoffe zusammen mit Wasserglas eingesetzt werden, oder Wasserglas kann allein als Bindemittel eingesetzt werden, um eine hohe Druck- und Biegefestigkeit zu erreichen. Es kann zusätzlich auf GB-
A- 1 274 966 verwiesen werden.
Es ist beispielsweise erfindungsgemäß auch möglich, die Salzkristalle mit Borax oder Wasserglas zu umhüllen oder zu beschichten, um eine bessere Verarbeitbarkeit zu gewährleisten.
Neben den beschriebenen Phosphatsystemen, silikatischen Systemen und deren Gemischen können auch weitere anorganische Systeme eingesetzt werden, die sich beispielsweise von Sulfaten oder Carbonaten sowie weiteren Metallsalzen ableiten. Geeignete Systeme sind dem Fachmann bekannt.
Als anorganische Bindemittel kommen so auch Gips oder Zement in Betracht, wobei es sich um die noch nicht mit Wasser abgebundene oder um die mit Wasser abgebundene Form handeln kann. Gips kann somit als Semihydrat wie auch als Dihydrat vorliegen. Zement ist in der Regel ein Gemisch aus Calciumsilikaten, Calciumaluminaten und Calciumferriten, das heißt aus CaO mit SiO2, Al2O3 und Fe2O3 in unterschiedlichen Mengenverhältnissen aufgebaut.
Ferner können die anorganischen Bindemittel in Kombination mit organischen Bindemitteln eingesetzt werden. Beispielsweise können Wasserglas und ein synthetisches Harz als Bindemittel eingesetzt werden, wie es in der US 3,764,575 beschrieben ist. Dabei werden Wasserglas und ein synthetisches Harz als Bindemittel in einem Mengenverhältnis von 1 : 10 bis 10 : 1, vorzugsweise 1 : 5 bis 5 : 1, insbesondere 2 : 1 bis 1 : 2 kombiniert. Das synthetische Harz kann ein Kondensationsprodukt auf Basis von Furan oder Phenol sein.
Es können erfindungsgemäß auch beliebige geeignete organische Bindemittel eingesetzt werden, die als Bindemittel für Salzkerne einsetzbar sind. Dabei handelt es sich insbesondere um oligomere oder polymere Systeme, jedoch können auch niedermolekulare organische Verbindungen wie beispielsweise Zucker eingesetzt werden. Geeignete organische Bindemittelsysteme sind teilweise aus dem Stand der Technik für
Salzkerne bekannt. Beispielsweise können Paraffinwachse, synthetische organische Harze wie Polystyrol oder Silikonharze eingesetzt werden. Zudem können Polyethylenglykole eingesetzt werden, die beispielsweise ein Molekulargewicht im Bereich von 4000 bis 8000, vorzugsweise 5000 bis 7000, aufweisen. Derartige Bindemittelsysteme sind beispielsweise in GB-A-2 105 312 und EP-A-O 127 367 beschrieben. Auf derartige Systeme wird beispielsweise auch in US 5,573,055 hingewiesen. Ein System aus Alkali- oder
Erdalkalimetallchloriden, -sulfaten oder -boraten, Wasserglas und synthetischen Harzen als Bindemittel ist beispielsweise in US 3,764,575 beschrieben.
Als organische Bindemittel kommen insbesondere natürliche und synthetische Polymere in Betracht. Natürliche Polymere sind beispielsweise Cellulose und Cellulose-Derivate wie Carboxymethylcellulose, Celluloseacetat, Celluloseacetobutyrate wie auch andere Cellulose-Ester und Cellulose-Ether. Weitere Cellulose-Derivate können durch Oxidationsreaktionen oder durch Wasserabspaltung gebildet werden. In diesem Zusammenhang kann auf die Stichwörter „Cellulose", „Cellulose-Derivate", „Cellulose- Ester" und „Cellulose-Ether" in Römpp, Chemielexikon, 9. Aufl., verwiesen werden.
Weitere natürliche Polymere sind Casein oder Stärke.
Ferner können Polysacharide und auch niedermolekulare Zucker eingesetzt werden. Geeignete synthetische Bindemittel sind beispielsweise Polyvinylpyrrolidon und davon abgeleitete Polymere wie Vinylpyrrolidon-Styrol-Copolymere, Vinylpyrrolidon- Vinylacetat-Copolymere und ähnliche Polymere. Auch Polyalkylenglycole und deren Ether können eingesetzt werden, insbesondere Polyethylenglycol. Die Polymere können pulverförmig, körnig oder latexförmig eingesetzt werden.
Ferner kommen die technischen Kunststoffe wie Polyolefine, beispielsweise Polyethylene und Polypropylene, Polystyrole, Polyvinylchloride, Polyamide, Polyurethane, Polyester, Polyether, Polysulfone, Polyetherketone, Polycarbonate, usw. in Betracht. Auch polymere Harze können erfindungsgemäß eingesetzt werden, beispielsweise Polyester-Harze oder Epoxid-Harze. Es kann sich dabei um Ein-Komponenten- oder Zwei-Komponenten- Systeme handeln. Organische Bindemittel werden üblicherweise in Mengen von 0,5 - 10 Gew.-%, bezogen auf die gesamte Salzmischung, eingesetzt.
Einsetzbare Polymer-Dispersionen können beispielsweise auf Acrylestern oder S tyrol/B utadien basieren. Beispiele geeigneter Polymere sind Polystyrol, Polyethylen, Polyvinylchlorid, Polybutadiein, Polyacrylnitril, Polymethylmethacrylate, Polyethylenterephthalate, Polyamid 6, Polyamid 66. Spezielle Polymer-Klassen sind Acetale, Polyamide, Polyamidimide, Polyarylate, Polycarbonate, Polyester, Polyether, Polyetherketone, Polyetherimide, Polyimide, Polyphenylenoxide, Polyphenylensulfide und Polysulfone. Unter Harzen können insbesondere Phenol-Formaldehyd-Harze, Harnstoff-Formaldehyd- Harze, ungesättigte Polyesterharze, Epoxyharze und Melamin-Formaldhehyd-Harze genannt werden. Unter Kautschuken können insbesondere Styrol-Butadien-Kautschuke, Polybutadienkautschuke, Ethylen-Propylen-Kautschuke, Polychloropren-Kautschuke, Polyisopren-Kautschuke, Nitril-Kautschuke, Butyl-Kautschuke, Silikon-Kautschuke und Urethan-Kautschuke genannt werden.
Die Polymere können dabei radikalisch, anionisch, kationisch oder durch Strahlung polymerisiert sein. Erfindungsgemäß eingesetzte organische Polymere sind insbesondere vinylische Polymere. Diese Copolymere können durch beliebige geeignete Verfahren auf die Salze zur Bildung der verfestigten Salzkerne aufgebracht werden. Sie können beispielsweise in geschmolzener oder gelöster Form aufgebracht werden. Die im Einzelfall notwendigen und geeigneten Mengen können durch den Fachmann durch einfache Handversuche ermittelt werden.
Eine spezielle Klasse geeigneter Polymere sind Polyacetale, insbesondere Polyoxymethylene und deren Copolymere. Diese werden häufig anstelle von Paraffin- oder Polyolefin-Dispergiermitteln eingesetzt. Es können auch Mischungen aus Polyoxymethylenhomo- oder - Copolymerisaten und einem damit nicht mischbaren Polymerisat als Bindemittel eingesetzt werden. Polyoxymethylenhomo- oder - Copolymerisate haben vorzugsweise einen Schmelzpunkt von mindestens 150 0C und Molekulargewichte (Gewichtsmittelwert) im Bereich von 5000 bis 150000. Es können beispielsweise Mischungen aus Polyoxymethylen, Homo- und Copolymerisaten und Polymeren auf Basis von Olefinen, vinyl-aromatischen Monomeren, Vinylestern, Vinylalkylethern oder Alkylmethacrylaten eingesetzt werden. Geeignete Polymere sind beispielsweise in EP-B-O 5951 460 und EP-B-I 276 811 beschrieben. Auch für Polyoxymethylene kann zudem auf EP-A-O 413 231, EP-A-O 444 475, EP-A-O 465 940 und EP-A-O 446 708 verwiesen werden. Zur Entfernung des Bindemittels kann dieses mit einer gasförmigen, säurehaltigen Atmosphäre behandelt werden. Entsprechende Verfahren sind beispielsweise in DE-A-39 29 869 und DE-A-40 00 278 sowie EP-B-I 276 811 und EP-B-O 951 460 beschrieben. Als Bindemittel erfindungsgemäß geeignete organische Polymere sind beispielsweise insbesondere die für Spritzgussanwendungen eingesetzten Polymere.
Weitere geeignete organische Bindemittel sind beispielsweise Bitumen und Teer. Für weitere geeignete Bindemittel kann auf das Stichwort „Bindemittel" in Römpp Chemielexikon, 9. Aufl., verwiesen werden.
Besonders bevorzugte Bindemittel sind in der DE-B- 103 59 547 beschrieben. Es ist auch möglich, mit Reinsalzen, d. h. ohne Bindemittel, den Kern herzustellen.
Die Herstellung der wasserlöslichen Salzkerne erfolgt durch Einfüllen des Salzes, gegebenenfalls vermischt mit Bindemitteln und weiteren Additiven in ein Formwerkzeug. Sodann wird in üblicher Weise unter Druck verdichtet und wärmebehandelt, wobei sich die Wärmebehandlung vorzugsweise an die Verdichtung anschließt. Geeignete Verfahren sind beispielsweise in der DE-B-103 59 547, EP-A-O 019 015, US 4,446,906, WO 85/04605 und WO 2004/082866 beschrieben. Das Pressen der Mischung in der Form kann bei einem Pressdruck von 1500 bis 2500 KN/cm2 bzw. 600 bis 2000 bar, bevorzugt 700 bis 1000 bar erfolgen. Di der US 3,963,818 ist beispielsweise ein Druck von 1,5 bis 4 tons/cm2 genannt. Die Wärmebehandlung kann beispielsweise bei Temperaturen im Bereich von 730 °C oder weniger erfolgen, beispielsweise bei Temperaturen zwischen 200 0C und 650 °C. Gemäß der WO 2004/082866 wird bei Temperaturen von 500 bis 740 0C gearbeitet, während gemäß US 3,963,818 bei Temperaturen im Bereich von 100 bis 300 °C gearbeitet wird. Die Auswahl der geeigneten Parameter kann durch den Fachmann erfolgen.
Das mindestens eine Bauteil wird erfindungsgemäß vor oder nach dem Einfüllen, Verdichten und/oder Wärmebehandeln in den Salzkern eingebracht. Beispielsweise können die Bauteile im Formwerkzeug angeordnet werden, bevor dieses mit dem Salz befüllt wird. Es ist andererseits möglich, das Formwerkzeug so auszulegen, dass der Salzkern Aussparungen aufweist, in die die Bauteile eingefügt werden. Hierbei können die Bauteile in den Salzkern eingepresst, eingeklebt und/oder eingesintert werden. Es ist auch möglich, den Salzkern mehrteilig, beispielsweise zweiteilig auszuführen, die Einzelteile des Salzkerns zunächst vollständig herzustellen und diese dann mit dem mindestens einen Bauteil zu einer Einheit zu montieren. Hierbei können beispielsweise die Salzkernhälften mit den Bauteilen zu einer Einheit verklebt werden. Das Einbringen der Bauteile in die Salzkerne erfolgt so, dass sie bereits in der für den zukünftigen Hohlformkörper vorgesehenen Position vorliegen. Die erfindungsgemäßen Salzkerne werden zur Herstellung von Hohlformkörpern oder Funktionsteilen im Metall- oder Kunststoffguss verwendet.
Der Metallguss kann beispielsweise wie in der vorstehend angegebenen Literatur beschrieben erfolgen. Für unterschiedliche Gießverfahren kann auf Castings, John
Campbell, Elsevier, Butterworth, Heinemann, 1991 (Reprinted 2004) verwiesen werden.
Dabei können alle üblichen Metallgießverfahren und metallischen Werkstoffe eingesetzt werden. Beispielsweise seien der Druckguss, der Niederdruckguss, der Kokillenguss, der
Squeeze Cast, das Thixo Casting und das Thixo Moulding genannt. Als Gießmetall werden bevorzugt die im Druckguss üblichen Metalle Aluminium, Magnesium, Zink oder
Legierungen hieraus verwendet. Aber auch andere Gießmetalle wie Messing können eingesetzt werden.
Beim Kunststoffguss, insbesondere Kunststoffspritzguss, können alle geeigneten Kunststoffmaterialien eingesetzt werden. Vorzugsweise werden Polystyrol, Polyamide,
Polyurethane, Celluloseether, Celluloseester, Polyethylen, Polypropylen,
Polymethacrylsäureester und andere Thermoplaste, im Werkzeug aushärtende Duroplaste bzw. vulkanisierende Elastomere aus Kautschuk oder Silikonkautschuk oder auch beispielsweise Schaumkunststoffe eingesetzt. Für den Spritzguss können beispielsweise auch verstärkte Massen wie ABS- oder ASA-Kunststoffe eingesetzt werden. In diesem
Zusammenhang kann auf das Stichwort „Spritzgießen" in Römpp, Chemielexikon,
9. Auflage, verwiesen werden.
Durch das erfindungsgemäße Verfahren ist es möglich, eine einteilige bzw. einschalige Funktionseinheit herzustellen, die die Anpassungs- und Abdichtungsprobleme einer mehrteiligen Ausführung vermeidet. Zudem ist die einteilige Gehäuseform deutlich stabiler als ein zwei- oder mehrteiliger Aufbau.
Die Erfindung wird durch das nachstehende Beispiel näher erläutert.
Beispiel
Gekapseltes Getriebe
Es wurde ein zweiteiliger Salzkern hergestellt, in dem Bohrungen zur Aufnahme von Achslagern vorgesehen waren. Der zweiteilige Salzkern entsprach dabei einer Wanne mit einem Deckel. In die Aussparungen für die Lager wurden die beiden Zahnräder eingebracht, und der Deckel des Salzkerns wurde aufgebracht und verklebt. Dabei wurde Normalsalz (NaCl) für die Herstellung des Salzkerns eingesetzt.
Der so erhaltene Salzkern wurde in einer Gussform fixiert und mit Aluminium umgössen. Dabei gingen die Buchsen der Achslager eine Verbindung mit dem Aluminiumdruckgusskörper ein.
Nach Ausspülen des Salzkerns lag das Getriebe im einteiligen Druckgussgehäuse vor, wobei eine separate Platzierung des Getriebes nicht notwendig war.
Diese erfindungsgemäße Ausführungsform kann anhand der nachstehenden Figur 1 näher erläutert werden:
Figur 1 zeigt im oberen Bereich sowohl den mit Zahnrädern bestückten wie auch den noch nicht mit Zahnrädern bestückten, jedoch mit Aussparungen versehenen zweiteiligen
Salzkern. Der Salzkern ist dabei aus einer Wanne B mit einem Deckel A zusammengestellt. In den Salzkern werden beim Zusammenbau die Zahnräder E und F eingebracht und so räumlich fixiert, wie sie in der späteren Getriebeanordnung vorliegen sollen. Die Achslager traten dabei durch entsprechende Öffnungen des Salzkerns hinaus, wodurch eine Verbindung des Aluminiumdruckgussteils mit den Lagern möglich war. Die
Achsen H und Lager G weisen dabei jedoch über den Salzkern hinaus, so dass die
Lagerbuchsen beim nachfolgenden Metallguss mit dem Gehäuse eine Einheit bilden, in der die Zahnräder beweglich gelagert sind. Der Funktionshohlraum, in dem die Zahnräder bereits im Salzkern, aber auch im späteren Hohlformkörper vorliegen, ist in der Figur gut zu sehen.
Der untere Teil der Figur zeigt eine Querschnittsansicht und Draufsicht des Hohlformkörpers, aus dem das Salz bereits ausgewaschen wurde. Die Zahnräder sind nunmehr im Hohlkörper beweglich gelagert und greifen ineinander.
Damit zeigt das Beispiel, wie durch einen zweiteiligen Salzkern die Bauteile so vorgesehen werden können, dass sie miteinander wechselwirken können wie im späteren fertigen Gussteil. Es wäre auch möglich, die Zahnräder zunächst in den Salzkern einzupressen, so dass sie formschlüssig mit ihm verbunden sind. Dieser Salzkern könnte sodann im Gieß Werkzeug fixiert und umgössen werden, worauf die Entfernung des Salzkerns folgt. Figur 1

Claims

Patentansprüche
1. Wasserlöslicher Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, dadurch gekennzeichnet, dass der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger
Verbindung oder in einem Funktionshohlraum enthält, das nach dem Gießverfahren ganz oder teilweise beweglich oder flexibel mit dem Hohlformkörper verbunden ist.
2. Wasserlöslicher Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, dadurch gekennzeichnet, dass der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das oder der vom Salzkern weitgehend oder vollständig umschlossen ist.
3. Wasserlöslicher Salzkern zur Herstellung von Hohlformkörpern durch Gießverfahren, dadurch gekennzeichnet, dass der Salzkern mindestens ein mechanisches und/oder elektrisches/elektronisches Bauteil in formschlüssiger Verbindung oder in einem Funktionshohlraum enthält, das keine Stützfunktion für den Kern ausübt.
4. Wasserlöslicher Salzkern nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Salzkern mindestens 2 Bauteile enthält, die nach dem Gießverfahren beweglich miteinander verbunden sind bzw. ineinander greifen.
5. Wasserlöslicher Salzkern nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Bauteile ausgewählt sind aus Getrieben und Teilen davon, Flügelrädern, Pumpenrädern, Klappen, Ventilen, Kanälen, Rohrsystemen, Antriebselementen oder elektrischen oder elektronischen Bauteilen.
6. Wasserlöslicher Salzkern nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er neben wasserlöslichem Salz Bindemittel und gegebenenfalls weitere Additive enthält.
7. Verfahren zur Herstellung von wasserlöslichen Salzkernen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Salz, gegebenenfalls vermischt mit Bindemitteln und weiteren Additiven, in ein Formwerkzeug eingefüllt, unter Druck verdichtet und/oder wärmebehandelt wird, wobei das mindestens eine Bauteil vor oder nach dem Einfüllen, Verdichten und/oder Wärmebehandeln in den Salzkern eingebracht wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das mindestens eine Bauteil in den Salzkern eingepresst, eingeklebt und/oder eingesintert wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das mindestens eine Bauteil im Formwerkzeug räumlich fixiert wird und sodann das Einfüllen,
Verdichten und Wärmebehandeln des Salzkerns erfolgen.
10. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Salzkern mehrteilig ist und mit dem mindestens einen Bauteil zu einer Einheit montiert wird.
11. Verwendung von Salzkernen nach einem der Ansprüche 1 bis 6 zur Herstellung von Hohlformkörpern und Funktionsteilen im Metall- oder Kunststoffguss.
12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, dass die Hohlformkörper im Automobilsektor bzw. Motorenbau eingesetzt werden.
PCT/EP2007/006055 2006-07-07 2007-07-09 Wasserlöslicher salzkern mit funktionsbauteil WO2008003517A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502007002754T DE502007002754D1 (de) 2006-07-07 2007-07-09 Wasserlöslicher salzkern mit funktionsbauteil
EP07765133A EP2040865B1 (de) 2006-07-07 2007-07-09 Wasserlöslicher salzkern mit funktionsbauteil
AT07765133T ATE456409T1 (de) 2006-07-07 2007-07-09 Wasserlöslicher salzkern mit funktionsbauteil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006031532.4 2006-07-07
DE102006031532A DE102006031532B3 (de) 2006-07-07 2006-07-07 Wasserlöslicher Salzkern mit Funktionsbauteil

Publications (1)

Publication Number Publication Date
WO2008003517A1 true WO2008003517A1 (de) 2008-01-10

Family

ID=38610891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/006055 WO2008003517A1 (de) 2006-07-07 2007-07-09 Wasserlöslicher salzkern mit funktionsbauteil

Country Status (4)

Country Link
EP (1) EP2040865B1 (de)
AT (1) ATE456409T1 (de)
DE (2) DE102006031532B3 (de)
WO (1) WO2008003517A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004929A1 (de) * 2008-01-18 2009-07-23 Ks Aluminium-Technologie Gmbh Druckfester Kern mit verbessertem Binder
WO2011054920A3 (de) * 2009-11-06 2011-10-13 Emil Müller GmbH Kerne auf der basis von salz, verfahren zu ihrer herstellung und deren verwendung
EP3790719A4 (de) * 2018-06-14 2021-07-07 Magna Exteriors Inc. Hohlstruktur für formpressen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038455A1 (de) 2010-07-27 2012-02-02 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung von wasserlöslichen Salzkernen zur Ausbildung von Hohlformen in Gießverfahren
EP3024610B1 (de) 2013-07-24 2018-11-21 Emil Müller GmbH Salzkerne und generative fertigungsverfahren zur herstellung von salzkernen
DE102019211441A1 (de) * 2019-07-31 2021-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gussverfahren mit einer formgebenden Kontur zur Herstellung eines Kernes, Bauteil und System zur Herstellung eines Bauteils
DE102020000387A1 (de) 2020-01-23 2021-07-29 Automoteam Gmbh Vorrichtung zur Funktionsintegration in ein durch das Urformen von Werkstoffen hergestelltes Urformteil

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1261904A (en) * 1968-06-20 1972-01-26 Aeroplane Motor Alu Cast Improvements in cast metal pistons
EP0019015A1 (de) 1979-04-27 1980-11-26 Alcan Aluminiumwerk Nürnberg GmbH Giesskern zur Erzeugung schwer zugänglicher Hohlräume in Gussstücken, sowie Verfahren zu dessen Herstellung
US4446906A (en) 1980-11-13 1984-05-08 Ford Motor Company Method of making a cast aluminum based engine block
US4539246A (en) * 1984-03-23 1985-09-03 Deere & Company Socket casting with a cast-in ball and method of casting
WO1985004605A1 (en) 1984-04-07 1985-10-24 Gkn Technology Limited Method of squeeze forming metal articles
DE19803867A1 (de) * 1998-01-31 1999-08-05 Volkswagen Ag Verfahren zum Herstellen eines Zylinderkopfes einer Brennkraftmaschine
WO2001002112A1 (en) 1999-07-06 2001-01-11 Technology Union Co., Ltd. Disintegrative core for high pressure casting, method for manufacturing the same, and method for extracting the same
EP1293276A2 (de) 2001-09-18 2003-03-19 DaimlerChrysler AG Vorrichtung zur Herstellung eines Druckgussbauteils mit einem Kern und einem Einlegeteil
DE10227529A1 (de) * 2002-06-20 2004-01-15 Daimlerchrysler Ag Verfahren zur Herstellung einer Bremsscheibe und Bremsscheibe
US20050011628A1 (en) * 2003-07-18 2005-01-20 John Frait Method and apparatus for forming a part with dampener
DE10359547B3 (de) 2003-12-17 2005-03-03 Emil Müller GmbH Wasserlösliche Salzkerne

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1252716A (fr) * 1959-12-21 1961-02-03 Fonderie De Prec Perfectionnement au moulage de matières fusibles
US3356129A (en) * 1964-06-30 1967-12-05 Schmidt Gmbh Karl Process of casting metals by use of water-soluble salt cores
DE1924991C3 (de) * 1969-05-16 1978-06-22 Karl Schmidt Gmbh, 7107 Neckarsulm Wasserlösliche Salzkerne
DE1934787A1 (de) * 1969-07-09 1971-01-14 Schmidt Gmbh Karl Salzkern fuer Giessereizwecke
US3963818A (en) * 1971-10-29 1976-06-15 Toyo Kogyo Co., Ltd. Water soluble core for pressure die casting and process for making the same
GB2105312B (en) * 1981-08-07 1985-03-13 Doulton Ind Products Ltd Moulding
GB8314089D0 (en) * 1983-05-20 1983-06-29 Doulton Ind Products Ltd Moulding
JPS60118350A (ja) * 1983-11-30 1985-06-25 Izumi Jidosha Kogyo Kk 高圧鋳造品の内部に空洞を形成する方法
DE4000278A1 (de) * 1990-01-08 1991-07-11 Basf Ag Verfahren zur herstellung eines anorganischen sinterformteils
JP3128130B2 (ja) * 1989-08-16 2001-01-29 ビーエーエスエフ アクチェンゲゼルシャフト 無機焼結成形体の製造方法
DE3929869A1 (de) * 1989-09-08 1991-03-21 Martin Dipl Ing Bretschneider Fahrrad-felgenbremse mit symmetrischer rueckbewegung
EP0444475B1 (de) * 1990-02-21 1994-04-27 BASF Aktiengesellschaft Thermoplastische Massen für die Herstellung keramischer Formkörper
DE4021739A1 (de) * 1990-07-07 1992-01-09 Basf Ag Thermoplastische massen fuer die herstellung metallischer formkoerper
GB9022754D0 (en) * 1990-10-19 1990-12-05 Pilkington Controlled Release Improvements in or relating to water dispersible moulds
GB9324509D0 (en) * 1993-11-30 1994-01-19 Borden Uk Ltd Foundry binder
DE19525307C2 (de) * 1995-07-12 2003-04-03 Eichenauer Gmbh & Co Kg F Formmasse zur Herstellung von Gießkernen und Verfahren zur Herstellung eines Gießkerns
DE19735012C1 (de) * 1997-08-13 1998-09-03 Daimler Benz Ag Verfahren zur Herstellung eines gegossenen Zylinderkopfes
DE10019447A1 (de) * 2000-04-19 2001-10-25 Basf Ag Bindemittel für anorganische Materialpulver zur Herstellung metallischer und keramischer Formkörper
DE10312782B4 (de) * 2003-03-21 2005-05-04 Emil Müller GmbH Wasserlösliche Salzkerne und Verfahren zur Herstellung wasserlöslicher Salzkerne

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1261904A (en) * 1968-06-20 1972-01-26 Aeroplane Motor Alu Cast Improvements in cast metal pistons
EP0019015A1 (de) 1979-04-27 1980-11-26 Alcan Aluminiumwerk Nürnberg GmbH Giesskern zur Erzeugung schwer zugänglicher Hohlräume in Gussstücken, sowie Verfahren zu dessen Herstellung
US4446906A (en) 1980-11-13 1984-05-08 Ford Motor Company Method of making a cast aluminum based engine block
US4539246A (en) * 1984-03-23 1985-09-03 Deere & Company Socket casting with a cast-in ball and method of casting
WO1985004605A1 (en) 1984-04-07 1985-10-24 Gkn Technology Limited Method of squeeze forming metal articles
DE19803867A1 (de) * 1998-01-31 1999-08-05 Volkswagen Ag Verfahren zum Herstellen eines Zylinderkopfes einer Brennkraftmaschine
WO2001002112A1 (en) 1999-07-06 2001-01-11 Technology Union Co., Ltd. Disintegrative core for high pressure casting, method for manufacturing the same, and method for extracting the same
EP1293276A2 (de) 2001-09-18 2003-03-19 DaimlerChrysler AG Vorrichtung zur Herstellung eines Druckgussbauteils mit einem Kern und einem Einlegeteil
DE10227529A1 (de) * 2002-06-20 2004-01-15 Daimlerchrysler Ag Verfahren zur Herstellung einer Bremsscheibe und Bremsscheibe
US20050011628A1 (en) * 2003-07-18 2005-01-20 John Frait Method and apparatus for forming a part with dampener
DE10359547B3 (de) 2003-12-17 2005-03-03 Emil Müller GmbH Wasserlösliche Salzkerne

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004929A1 (de) * 2008-01-18 2009-07-23 Ks Aluminium-Technologie Gmbh Druckfester Kern mit verbessertem Binder
WO2011054920A3 (de) * 2009-11-06 2011-10-13 Emil Müller GmbH Kerne auf der basis von salz, verfahren zu ihrer herstellung und deren verwendung
CN102695572A (zh) * 2009-11-06 2012-09-26 埃米尔·米勒有限责任公司 盐基型芯、其制造方法和用途
EP3790719A4 (de) * 2018-06-14 2021-07-07 Magna Exteriors Inc. Hohlstruktur für formpressen

Also Published As

Publication number Publication date
EP2040865B1 (de) 2010-01-27
EP2040865A1 (de) 2009-04-01
DE502007002754D1 (de) 2010-03-18
ATE456409T1 (de) 2010-02-15
DE102006031532B3 (de) 2008-04-17

Similar Documents

Publication Publication Date Title
EP2040865B1 (de) Wasserlöslicher salzkern mit funktionsbauteil
EP2040897B1 (de) Verwendung von salzkernen für kunststoffguss und verfahren zur herstellung von kunststoff-hohlformkörpern
EP2097192B2 (de) Phosphorhaltige formstoffmischung zur herstellung von giessformen für die metallverarbeitung
EP1808241B1 (de) Verfahren zur Herstellung von offenporigen Bauteilen aus Metall, Kunststoff oder Keramik
DE102004042535B4 (de) Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
EP3060362B1 (de) Mehrkomponenten-system zur herstellung von formen und kernen und verfahren zur herstellung von formen und kernen
EP2104580B2 (de) Kohlenhydrathaltige formstoffmischung mit ein anteil eines teilchenförmigen metalloxids zum auf wasserglas basierendem bindemittel zugesetz
EP3024610B1 (de) Salzkerne und generative fertigungsverfahren zur herstellung von salzkernen
DE102007051850A1 (de) Formstoffmischung mit verbesserter Fliessfähigkeit
DE102009015984A1 (de) Verfahren zur Herstellung eines Salzkerns für Metallgussverfahren
DE102015223008A1 (de) Form, Verfahren zu ihrer Herstellung und Verwendung
WO2015011233A1 (de) Salzkerne und generative fertigungsverfahren zur herstellung von salzkernen
DE60121180T2 (de) Bikontinuierlicher verbundwerkstoff
EP1852197B1 (de) Kernwerkstoff aus tonhaltigem Sand mit einem Gehalt an quellfähigen Schichtsilikaten enthaltendem Aerogelsand
DE102014214527A1 (de) Salzkerne und generative Fertigungsverfahren zur Herstellung von Salzkernen
DE102004006600B4 (de) Entfernbarer Kern zum Metallgießen und Verfahren zur Herstellung eines Kerns
EP1425121A1 (de) Verfahren zum herstellen von gussstücken, formsand und seine verwendung für die durchführung des verfahrens
DE4012044C2 (de)
DE102014007889A1 (de) Verfahren zur Herstellung eines Salzkörpers, insbesondere für den Druckguss
EP1781433A2 (de) Entfernbarer kern zum metallgiessen und verfahren zur herstellung eines kerns
WO2006010449A2 (de) Keramische gusskerne
DE10321106A1 (de) Formstoff, Formteil und Verfahren zur Herstellung von Formteilen für eine Gießform
DE102004021209B4 (de) Verfahren zur Herstellung einer Gießform aus einem Verbundformstoff für Gießereizwecke
WO2020058402A1 (de) Giesskern für giessformen sowie verfahren zu dessen herstellung
WO2004080145A2 (de) Magnesium- und/oder aluminiumfathaltige formen und kerne mit phosphat/boratzusatz und ihre herstellung und verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07765133

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007765133

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU