EP3060362B1 - Mehrkomponenten-system zur herstellung von formen und kernen und verfahren zur herstellung von formen und kernen - Google Patents

Mehrkomponenten-system zur herstellung von formen und kernen und verfahren zur herstellung von formen und kernen Download PDF

Info

Publication number
EP3060362B1
EP3060362B1 EP14796675.8A EP14796675A EP3060362B1 EP 3060362 B1 EP3060362 B1 EP 3060362B1 EP 14796675 A EP14796675 A EP 14796675A EP 3060362 B1 EP3060362 B1 EP 3060362B1
Authority
EP
European Patent Office
Prior art keywords
component
molding material
component system
molding
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14796675.8A
Other languages
English (en)
French (fr)
Other versions
EP3060362A2 (de
Inventor
Heinz DETERS
Martin Oberleiter
Henning ZUPAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
ASK Chemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASK Chemicals GmbH filed Critical ASK Chemicals GmbH
Priority to PL14796675T priority Critical patent/PL3060362T3/pl
Priority to SI201431522T priority patent/SI3060362T1/sl
Publication of EP3060362A2 publication Critical patent/EP3060362A2/de
Application granted granted Critical
Publication of EP3060362B1 publication Critical patent/EP3060362B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • the invention relates to a multi-component system for obtaining molding material mixtures for the foundry industry, comprising one or more powdery oxidic boron compounds in combination with refractory molding raw materials, a water glass-based binder system and amorphous particulate silicon dioxide, in particular for the production of castings from aluminum, and a process for the production thereof of molds and cores from the molding material mixtures, which easily disintegrate after metal casting.
  • Casting molds essentially consist of cores and molds, which represent the negative molds of the casting to be produced. These cores and molds consist of a refractory material, for example quartz sand, and a suitable binder, which gives the casting mold sufficient mechanical strength after removal from the mold.
  • a refractory base material is used, which is coated with a suitable binder.
  • the refractory mold raw material is preferably in a free-flowing form, so that it can be filled into a suitable hollow mold and compacted there.
  • the binder creates a firm bond between the particles of the base material, so that the casting mold is given the required mechanical stability.
  • Casting molds have to meet various requirements. During the casting process itself, they must first have sufficient strength and temperature resistance in order to be able to absorb the liquid metal into the cavity formed from one or more casting (partial) molds. After the solidification process begins, the mechanical stability of the casting is ensured by a solidified metal layer that forms along the walls of the casting mold. The material of the casting mold must now decompose under the influence of the heat given off by the metal in such a way that it loses its mechanical strength, that is to say the cohesion between individual particles of the refractory material is broken. Ideally, the mold disintegrates into fine sand that can be easily removed from the casting.
  • inorganic binders Compared to organic binders, inorganic binders have the disadvantage that the casting molds produced therefrom have relatively low strengths. This is particularly evident immediately after the mold is removed from the tool. Good strengths at this point are particularly important for the production of complicated and / or thin-walled molded parts and their safe handling. The resistance to air humidity is also significantly reduced compared to organic binders.
  • EP 1802409 B1 discloses that higher instant strengths and greater resistance to atmospheric moisture can be achieved by using a refractory molding base, a water glass-based binder and addition of particulate amorphous silicon dioxide. This addition ensures safe handling of even complicated molds.
  • Inorganic binder systems have the disadvantage over organic binder systems that the coring behavior, i.e. the ability of the casting mold to disintegrate quickly (under mechanical stress) into a free-flowing form after casting, in purely inorganic casting molds (e.g. those that use water glass as a binder ) is often worse than in molds made with an organic binder.
  • the invention was therefore based on the object of providing a multicomponent system for obtaining a molding material mixture for producing casting molds for metal processing, which particularly effectively improves the disintegration properties of the casting mold after metal casting and at the same time achieves a level of strength which is necessary in the automated production process is.
  • casting molds with a complex geometry should be made possible, which can also include thin-walled sections, for example.
  • the casting mold should also have a high storage stability and remain stable even at higher temperatures and air humidity.
  • a key advantage is that the addition of powdered borates leads to significantly improved disintegration properties of the casting mold after metal casting. This advantage is associated with significantly lower costs for the production of a casting, in particular for castings which have a complex geometry with very small cavities from which the casting mold has to be removed.
  • the multi-component system contains organic components with a proportion of up to a maximum of 0.49% by weight, in particular up to a maximum of 0.19% by weight, so that only very small amounts of emissions of CO 2 and other pyrolysis products are produced ,
  • the use of the molding material mixture also contributes to the reduction of climate-damaging emissions from CO 2 and other organic pyrolysis products.
  • Common and known materials can be used as the refractory mold base material for the production of casting molds. Suitable are, for example, quartz, zircon or chrome ore sand, olivine, vermiculite, bauxite, chamotte as well as artificial mold raw materials, in particular more than 50% by weight quartz sand based on the refractory mold raw material. It is not necessary to use only new sands. In terms of conserving resources and avoiding landfill costs, it is even advantageous to use the highest possible proportion of regenerated old sand, as can be obtained from used forms by recycling.
  • a refractory molded raw material is understood to mean substances that have a high melting point (melting temperature).
  • the melting point of the refractory mold base material is preferably greater than 600 ° C., preferably greater than 900 ° C., particularly preferably greater than 1200 ° C. and particularly preferably greater than 1500 ° C.
  • the refractory molding base material preferably makes up greater than 80% by weight, in particular greater than 90% by weight, particularly preferably greater than 95% by weight, of the molding material mixture obtained from the multicomponent system according to the invention.
  • regenerates can also be used, which can be obtained by washing and then drying shredded used molds. As a rule, the regenerates can make up at least about 70% by weight of the refractory base material, preferably at least about 80% by weight and particularly preferably greater than 90% by weight.
  • the average diameter of the refractory mold raw materials is generally between 100 ⁇ m and 600 ⁇ m, preferably between 120 ⁇ m and 550 ⁇ m and particularly preferably between 150 ⁇ m and 500 ⁇ m.
  • the particle size can e.g. determine by sieving according to DIN ISO 3310. Particle shapes with the greatest linear expansion to the smallest linear expansion (perpendicular to one another and in each case for all spatial directions) from 1: 1 to 1: 5 or 1: 1 to 1: 3, i.e. those that e.g. are not fibrous.
  • the refractory molding base material preferably has a free-flowing state, in particular in order to be able to process the molding material mixture obtained from the multi-component system according to the invention in conventional core shooters.
  • the water glasses contain dissolved alkali silicates and can be prepared by dissolving glass-like lithium, sodium and potassium silicates in water.
  • the water glass preferably has a molar module SiO 2 / M 2 O (cumulative for different M's, ie in total) in the range from 1.6 to 4.0, in particular 2.0 to less than 3.5, where M is Lithium, sodium and / or potassium is available.
  • a proportion of lithium ions in particular amorphous lithium silicates, lithium oxides and lithium hydroxide, or a ratio [Li 2 O] / [M 2 O] or [Li 2 O active ] / [M 2 O] as in FIG DE 102013106276 A1 described used.
  • the water glasses have a solids content in the range from 25 to 65% by weight, preferably from 30 to 55% by weight, in particular from 30 to 50% by weight and very particularly preferably from 30 to 45% by weight.
  • the solids content relates to the amount of SiO 2 and M 2 O contained in the water glass.
  • the above values are based on a solids content of 35% by weight (see examples), regardless of which solids content is actually used.
  • Powdery or particulate in each case means solid powder (including dusts) or also granules which can be poured and thus can also be sieved.
  • the molding material mixture contains one or more powdery, oxidic boron compounds.
  • the average particle size of the oxidic boron compounds is preferably less than 1 mm, preferably less than 0.5 mm, particularly preferably less than 0.25 mm.
  • the particle size of the oxidic boron compounds is preferably greater than 0.1 ⁇ m, preferably greater than 1 ⁇ m and particularly preferably greater than 5 ⁇ m.
  • the average particle size can be determined using a sieve analysis.
  • the screen residue on a screen with a mesh size of 1.00 mm is preferably less than 5% by weight, particularly preferably less than 2.0% by weight and particularly preferably less than 1.0% by weight.
  • the screen residue is less than 20% by weight, preferably less than 15% by weight, particularly preferably less than 10% by weight and particularly preferably less, regardless of the information given above on a screen with a mesh size of 0.5 mm than 5% by weight.
  • the sieve residue is preferably less than 50% by weight, preferably less than 25% by weight and particularly preferably less than 15% by weight, independently of the preceding information on a sieve with a mesh size of 0.25 mm.
  • the screening residue is determined using the machine screening method described in DIN 66165 (Part 2), with a chain ring also being used as a screening aid.
  • Oxidic boron compounds are understood to mean compounds in which the boron is in the oxidation state +3. Furthermore, the boron is coordinated with oxygen atoms (in the first coordination sphere, i.e. as the closest neighbor) - either 3 or 4 oxygen atoms.
  • the oxidic boron compound is preferably selected from the group of borates, boric acids, boric anhydrides, borosilicates, borophosphates, borophosphosilicates and mixtures thereof, the oxidic boron compound preferably not containing any organic groups.
  • Boric acids are understood to mean orthoboric acid (empirical formula H 3 BO 3 ) and meta or polyboric acids (empirical formula (HBO 2 ) n ).
  • Orthoboric acid occurs, for example, in water vapor sources and as a mineral sassolin. It can also be produced from borates (eg borax) by acid hydrolysis.
  • meta or polyboric acids can be produced from orthoboric acid by intermolocular condensation by heating.
  • Boric anhydride (empirical formula B 2 O 3 ) can be produced by annealing boric acids. Boric anhydride is obtained as a mostly glassy, hygroscopic mass that can then be crushed.
  • borates are derived from boric acids. They can be of both natural and synthetic origin. Borates are made up, among other things, of borate structural units in which the boron atom is surrounded by either 3 or 4 oxygen atoms as the closest neighbors. The individual structural units are mostly anionic and can either be isolated within a substance, for example in the case of orthoborate [BO 3 ] 3- , or linked together, such as Metaborate [BO 2 ] n- n , whose units are linked to form rings or chains can be - if you look at such a linked structure with corresponding BOB bonds, it is anionic in the overall view.
  • orthoborate [BO 3 ] 3- or linked together, such as Metaborate [BO 2 ] n- n , whose units are linked to form rings or chains can be - if you look at such a linked structure with corresponding BOB bonds, it is anionic in the overall view.
  • Borates which contain linked BOB units are preferably used. Orthoborates are suitable, but not preferred. Counterions to the anionic borate units are, for example, alkali and / or alkaline earth cations, but also, for example, zinc cations.
  • M x O B 2 O 3
  • M stands for the cation and x for divalent cations 1 and for monovalent cations 2 is.
  • the lower limit is preferably greater than 1:20, preferably greater than 1:10 and particularly preferably greater than 1: 5.
  • Borates in which trivalent cations serve as counterions to the anionic borate units are also suitable, for example aluminum cations in the case of aluminum borates.
  • Natural borates are mostly hydrated, ie water is contained as structural water (as OH groups) and / or as water of crystallization (H 2 O molecules).
  • Borax or borax decahydrate (di-sodium tetraborate decahydrate) can be regarded as an example, the empirical formula in the literature either as [Na (H 2 O) 4 ] 2 [B 4 O 5 (OH) 4 ] or for the sake of simplicity is given as Na 2 B 4 O 7 ⁇ 10H 2 O. Both hydrated and non-hydrated borates can be used, but the hydrated borates are preferred.
  • Amorphous borates are understood to mean, for example, alkali or alkaline earth borate glasses.
  • Perborates are not preferred due to their oxidative properties.
  • fluoroborates is also conceivable, but due to the fluorine content not particularly preferred in aluminum casting. Since the use of ammonium borate with an alkaline water glass solution produces significant amounts of ammonia, which endangers the health of the people working in the foundry, such a substance is not preferred.
  • Borosilicates, borophosphates and borophosphosilicates are understood to mean compounds which are usually amorphous / glass-like.
  • the structure of these compounds contains not only neutral and / or anionic boron-oxygen coordinates (eg neutral BO 3 units or anionic BO 4 - units), but also neutral and / or anionic silicon-oxygen and / or phosphorus - Oxygen coordinations - the silicon is in the oxidation level +4 and the phosphorus is in the oxidation level +5.
  • the coordinations can be linked to one another via bridging oxygen atoms, such as for Si-OB or POB.
  • Metal oxides, in particular alkali and alkaline earth metal oxides, which serve as so-called network modifiers, can be built into the structure of the borosilicates, borophosphates and borophosphosilicates.
  • the proportion of boron (calculated as B 2 O 3 ) in the borosilicates, borophosphates and borophosphosilicates is preferably greater than 15% by weight, preferably greater than 30% by weight, particularly preferably greater than 40% by weight, based on the total mass of the corresponding borosilicate, borophosphate or borophosphosilicate.
  • boric acids from the group of borates, boric acids, boric anhydride, borosilicates, borophosphates and / or borophosphosilicates, however, the borates, borophosphates and borophosphosilicates, and in particular the alkali and alkaline earth borates, are clearly preferred.
  • One reason for this selection is the strong hygroscopicity of the boric anhydride, which impairs its possible use as a powder additive when it is stored for a long time. In casting experiments with an aluminum melt, it was also shown that borates lead to significantly better casting surfaces than boric acids, which is why the latter are less preferred. Borates are particularly preferably used. Alkali and / or alkaline earth borates are particularly preferred, of which sodium borates and / or calcium borates are preferred.
  • the proportion of the oxidic boron compound, based on the refractory mold raw material is preferably less than 1.0% by weight, preferably less than 0.4% by weight, particularly preferably less than 0.2% by weight, particularly preferably less than 0.1% by weight and particularly preferably less than 0.075% by weight.
  • the lower limit is preferably greater than 0.002% by weight, preferably greater than 0.005% by weight, particularly preferably greater than 0.01% by weight and particularly preferably greater than 0.02% by weight.
  • alkaline earth borates in particular calcium metaborate, increase the strength of molds and / or cores which have been cured with acidic gases such as CO 2 . It has also surprisingly been found that the moisture resistance of the molds and / or cores is improved by the addition of oxidic boron compounds according to the invention.
  • the molding material mixture contains a portion of a particulate amorphous silicon dioxide in order to increase the strength level of the casting molds produced with such molding material mixtures.
  • An increase in the strengths of the casting molds, in particular the increase in the hot strengths, can be advantageous in the automated production process. Synthetically produced amorphous silicon dioxide is particularly preferred.
  • the particle size of the amorphous silicon dioxide is preferably less than 300 ⁇ m, preferably less than 200 ⁇ m, particularly preferably less than 100 ⁇ m and has, for example, an average primary particle size between 0.05 ⁇ m and 10 ⁇ m.
  • the sieve residue of the particulate amorphous SiO 2 when passing through a sieve with a mesh size of 125 ⁇ m (120 mesh) is preferably not more than 10% by weight, particularly preferably not more than 5% by weight and very particularly preferably not more than 2% by weight. %. Independently of this, the sieve residue on a sieve with a mesh size of 63 ⁇ m is less than 10% by weight, preferably less than 8% by weight.
  • the screening residue is determined using the machine screening method described in DIN 66165 (Part 2), with a chain ring also being used as a screening aid.
  • the particulate amorphous silicon dioxide which is preferably used according to the present invention has a water content of less than 15% by weight, in particular less than 5% by weight and particularly preferably less than 1% by weight.
  • the particulate amorphous SiO 2 is used as a powder (including dusts).
  • Both synthetically produced and naturally occurring silicas can be used as amorphous SiO 2 .
  • the latter are out, for example DE 102007045649 are known, but are not preferred since they generally contain not insignificant crystalline components and are therefore classified as carcinogenic.
  • Synthetic is not understood to mean naturally occurring amorphous SiO 2 , that is to say the production thereof comprises a deliberately carried out chemical reaction, as is caused by a human, For example, the production of silica sols by ion exchange processes from alkali silicate solutions, the precipitation from alkali silicate solutions, the flame hydrolysis of silicon tetrachloride, the reduction of quartz sand with coke in an electric arc furnace in the production of ferrosilicon and silicon.
  • the amorphous SiO 2 produced by the latter two processes is also referred to as pyrogenic SiO 2 .
  • amorphous silicon dioxide means only precipitated silica (CAS No. 112926-00-8) and flame-hydrolytically produced SiO 2 (pyrogenic silica, fumed silica, CAS No. 112945-52-5), while that in the case of ferrosilicon or Silicon production product is only referred to as amorphous silicon dioxide (Silica Fume, Microsilica, CAS No. 69012-64-12).
  • the product formed in the manufacture of ferrosilicon or silicon is also understood to be amorphous SiO 2 .
  • Precipitated silicas and pyrogenic, ie flame hydrolytic or arc-produced silicon dioxide are preferably used.
  • Amorphous silicon dioxide produced by thermal decomposition of ZrSiO 4 (described in US Pat DE 102012020509 ) and SiO 2 produced by oxidation of metallic Si using an oxygen-containing gas (described in US Pat DE 102012020510 ).
  • quartz glass powder mainly amorphous silicon dioxide, which was produced from crystalline quartz by melting and rapid cooling again, so that the particles are spherical and not splintered (described in US Pat DE 102012020511 ).
  • the average primary particle size of the particulate amorphous silicon dioxide can be between 0.05 ⁇ m and 10 ⁇ m, in particular between 0.1 ⁇ m and 5 ⁇ m, particularly preferably between 0.1 ⁇ m and 2 ⁇ m.
  • the primary particle size can be determined, for example, with the aid of dynamic light scattering (for example Horiba LA 950) and checked by scanning electron microscope images (SEM images with, for example, Nova Nano-SEM 230 from FEI). Furthermore, with the help of the SEM images, details of the primary particle shape down to the order of 0.01 ⁇ m could be made visible.
  • the silicon dioxide samples were dispersed in distilled water and then applied to an aluminum holder stuck with copper tape before the water was evaporated.
  • the specific surface area of the particulate amorphous silicon dioxide was determined using gas adsorption measurements (BET method) in accordance with DIN 66131.
  • the specific surface area of the particulate amorphous SiO 2 is between 1 and 200 m 2 / g, in particular between 1 and 50 m 2 / g, particularly preferably between 1 and 30 m 2 / g. If necessary. the products can also be mixed, for example to obtain specific mixtures with specific particle size distributions.
  • the purity of the amorphous SiO 2 can vary widely. Types with a content of at least 85% by weight of silicon dioxide have proven suitable, preferably of at least 90% by weight and particularly preferably of at least 95% by weight. Depending on the application and the desired level of strength, between 0.1% and 2% by weight of the particulate amorphous SiO 2 are used, preferably between 0.1% and 1.8%, particularly preferably between 0.1%. % and 1.5% by weight, based in each case on the basic molding material.
  • the ratio of water glass binder to particulate amorphous silicon dioxide can be varied within wide limits. This offers the advantage that the initial strengths of the cores, i.e. improve the strength immediately after removal from the tool without significantly affecting the final strength. This is of particular interest in light metal casting. On the one hand, high initial strengths are desired so that the cores can be easily transported after assembly or assembled into whole core packages; on the other hand, the final strengths should not be too high to avoid difficulties in the core disintegration after casting, i.e. the base material of the mold should be able to be easily removed from the cavities of the mold after casting.
  • the amorphous SiO 2 is preferably present in a proportion of 1 to 80% by weight, preferably 2 to 60% by weight, particularly preferably 3 to 55% by weight. % and particularly preferably between 4 to 50% by weight. Or independently of this, based on the ratio of solids content of the water glass (based on the oxides, ie total mass of alkali metal oxide and silicon dioxide) to amorphous SiO 2, from 10: 1 to 1: 1.2 (parts by weight) is preferred.
  • the amorphous SiO 2 is preferably added to the refractory before the binder is added.
  • barium sulfate can be added to the molding material mixture in order to further improve the surface of the casting, in particular made of aluminum.
  • the barium sulfate can be synthetically produced as well as natural barium sulfate, ie added in the form of minerals that contain barium sulfate, such as heavy spar or barite. This, as well as other features of the suitable barium sulfate and the molding mixture produced with it, are described in the DE 102012104934 described in more detail and their disclosure content is thus made by reference to the disclosure of the present property right.
  • the barium sulfate is preferably used in an amount of 0.02 to 5.0% by weight, particularly preferably 0.05 to 3.0% by weight, particularly preferably 0.1 to 2.0% by weight or 0.3 to 0 , 99% by weight, based in each case on the entire molding mixture, added.
  • the additive component (A) as in the DE 102012113073 or the DE 102012113074 described in more detail.
  • Such additives can be used to obtain castings, in particular made of iron or steel, with a very high surface quality after the metal casting, so that after the removal of the casting mold, little or no post-processing of the surface of the casting is required.
  • the molding material mixture can comprise a phosphorus-containing compound .
  • a phosphorus-containing compound preferably inorganic phosphorus compounds in which the phosphorus is preferably in the +5 oxidation state.
  • the phosphorus-containing compound is preferably in the form of a phosphate or phosphorus oxide.
  • the phosphate can be present as an alkali metal or as an alkaline earth metal phosphate, alkali metal phosphates and in particular the sodium salts being particularly preferred.
  • Both orthophosphates and polyphosphates, pyrophophates or metaphosphates can be used as phosphates.
  • the phosphates can be prepared, for example, by neutralizing the corresponding acids with an appropriate base, for example an alkali metal base, such as NaOH, or optionally also an alkaline earth metal base, it not necessarily being necessary for all the negative charges of the phosphate to be saturated by metal ions.
  • Both the metal phosphates and the metal hydrogen phosphates and the metal dihydrogen phosphates can be used, such as Na 3 PO 4 , Na 2 HPO 4 , and NaH 2 PO 4 .
  • the anhydrous phosphates and hydrates of the phosphates can also be used.
  • the phosphates can be introduced into the molding material mixture both in crystalline and in amorphous form.
  • Polyphosphates are understood to mean, in particular, linear phosphates which comprise more than one phosphorus atom, the phosphorus atoms in each case being connected to one another via oxygen bridges.
  • Polyphosphates are obtained by the condensation of orthophosphate ions with elimination of water, so that a linear chain of PO 4 tetrahedra is obtained, which are each connected via corners.
  • Polyphosphates have the general formula (O (PO 3 ) n) (n + 2) - , where n corresponds to the chain length.
  • a polyphosphate can comprise up to several hundred PO 4 tetrahedra. However, polyphosphates with shorter chain lengths are preferably used.
  • N preferably has values from 2 to 100, particularly preferably 5 to 50.
  • Highly condensed polyphosphates can also be used, ie polyphosphates in which the PO 4 tetrahedra are connected to one another via more than two corners and therefore show polymerization in two or three dimensions.
  • Metaphosphates are understood to be cyclic structures which are made up of PO 4 tetrahedra which are connected to one another via corners. Metaphosphates have the general formula ((PO 3 ) n) n- , where n is at least 3. N preferably has values from 3 to 10.
  • Both individual phosphates and mixtures of different phosphates and / or phosphorus oxides can be used.
  • the preferred proportion of the phosphorus-containing compound, based on the refractory base material, is between 0.05 and 1.0% by weight.
  • the proportion of the phosphorus-containing compound is preferably chosen to be between 0.1 and 0.5% by weight.
  • the phosphorus-containing, inorganic compound preferably contains between 40 and 90% by weight, particularly preferably between 50 and 80% by weight, phosphorus, calculated as P 2 O 5 .
  • the phosphorus-containing compound can in itself be added to the molding material mixture in solid or dissolved form.
  • the phosphorus-containing compound is preferably added to the molding material mixture as a solid.
  • the molding material mixture according to the invention contains a proportion of platelet-shaped lubricants, in particular graphite or MoS 2 .
  • the amount of the platelet-shaped lubricant, in particular graphite, added is preferably 0.05 to 1% by weight, particularly preferably 0.05 to 0.5% by weight, based on the basic molding material.
  • surface-active substances in particular surfactants
  • surfactants can also be used which improve the flowability of the molding material mixture .
  • Anionic surfactants are preferably used for the molding material mixture.
  • Surfactants with sulfuric acid or sulfonic acid groups should be mentioned here in particular.
  • the pure surface-active substance, in particular the surfactant, based on the weight of the refractory base material is preferably present in the molding material mixture in a proportion of 0.001 to 1% by weight, particularly preferably 0.01 to 0.2% by weight.
  • the molding material mixture is an intensive mixture of at least the above-mentioned components of the multi-component system.
  • the particles of the refractory molding material are preferably coated with a layer of the binder. By evaporating the water present in the binder (approx. 40-70% by weight, based on the weight of the binder), a firm cohesion can then be achieved between the particles of the refractory base material.
  • the casting molds produced with the molding material mixture surprisingly show very good disintegration after casting, in particular when casting aluminum.
  • the molding material mixture can be used to produce casting molds which also show very good disintegration when cast iron, so that the molding material mixture can be poured out again from narrow and angled sections of the casting mold after the casting.
  • the use of the moldings produced from the molding material mixture is therefore not only restricted to light metal casting and / or non-ferrous metal casting.
  • the casting molds are generally suitable for casting metals, such as non-ferrous metals or ferrous metals.
  • the molding material mixture is particularly preferably suitable for the casting of aluminum.
  • the procedure is generally such that the refractory molding raw material (component (F)) is initially introduced and then the binder or component (B) and the additive or component (A) are stirred is added.
  • component (F) refractory molding raw material
  • component (B) binder or component
  • additive or component (A) are stirred is added.
  • the additives described above can be added in any form to the molding material mixture. They can be added individually or as a mixture.
  • the binder is provided as a two-component system, a first liquid component containing the water glass and possibly a surfactant (see above) (components (B)) and a second but solid component containing one or more oxidic boron Compounds and the particulate silicon dioxide (components (A)) and all other solid additives mentioned above, with the exception of the basic molding materials, in particular the particulate amorphous silicon dioxide and possibly a phosphate and possibly a preferably platelet-shaped lubricant and possibly barium sulfate or possibly other components such as described include.
  • the refractory molding raw material is placed in a mixer and then preferably the solid component (s) of the binder is first added and mixed with the refractory molding material.
  • the mixing time is chosen so that the refractory base material and solid binder component are thoroughly mixed.
  • the mixing time depends on the amount of the molding material mixture to be produced and on the mixing unit used.
  • the mixing time is preferably chosen between 1 and 5 minutes.
  • the liquid component of the binder is then added, preferably with further movement of the mixture, and the mixture is then mixed further until a uniform layer of the binder has formed on the grains of the refractory base molding material.
  • the mixing time depends on the amount of molding material mixture to be produced and on the mixing unit used.
  • the duration for the mixing process is preferably chosen between 1 and 5 minutes.
  • a liquid component is understood to mean both a mixture of different liquid components and the entirety of all liquid individual components, the latter also being able to be added individually.
  • a solid component is understood to mean both the mixture of individual or all of the solid components described above and the entirety of all solid individual components, the latter being able to be added to the molding material mixture together or in succession.
  • the liquid component of the binder can first be added to the refractory base material and only then can the solid component be added to the mixture.
  • 0.05 to 0.3% by weight of water, based on the weight of the mold base is first added to the refractory mold base and only then are the solid and liquid components of the binder added.
  • a surprising positive effect on the processing time of the molding material mixture can be achieved.
  • the inventors believe that the dehydrating effect of the solid components of the binder is reduced in this way and the curing process is thereby delayed.
  • the molding material mixture is then brought into the desired shape.
  • the usual methods for shaping are used.
  • the molding material mixture can be shot into the molding tool by means of a core shooting machine with the aid of compressed air.
  • the molding material mixture is then cured, it being possible to use all processes which are known for binders based on water glass, for example hot curing, gassing with CO 2 or air or a combination of both, and curing by means of liquid or solid catalysts. Hot curing is preferred.
  • the heating can take place, for example, in a mold which preferably has a temperature of 100 to 300 ° C., particularly preferably a temperature of 120 to 250 ° C. It is possible to fully harden the casting mold in the mold. However, it is also possible to harden the casting mold only in its edge region, so that it has sufficient strength to be able to be removed from the molding tool.
  • the mold can then be fully cured by removing more water from it. This can be done in an oven, for example. The water can also be removed, for example, by evaporating the water under reduced pressure.
  • the hardening of the casting molds can be accelerated by blowing heated air into the mold.
  • the water contained in the binder is rapidly removed, as a result of which the casting mold is solidified in periods of time suitable for industrial use.
  • the temperature of the air blown in is preferably 100 ° C. to 180 ° C., particularly preferably 120 ° C. to 150 ° C.
  • the flow rate of the heated air is preferably set so that the casting mold is cured in time periods suitable for industrial use.
  • the time periods depend on the size of the molds produced. The aim is to cure in a period of less than 5 minutes, preferably less than 2 minutes. For very large molds, however, longer periods of time may be required.
  • the water can also be removed from the molding material mixture in such a way that the heating of the molding material mixture is effected or assisted by irradiation with microwaves. It would be conceivable, for example, to mix the basic molding material with the solid, powdery component (s), to apply this mixture in layers on a surface and to print the individual layers with the aid of a liquid binder component, in particular with the aid of water glass, the layer-by-layer application of the Solid mixture, one printing process with the help of the liquid binder follows.
  • the entire mixture can be heated in a microwave oven.
  • the methods according to the invention are suitable per se for the production of all casting molds customary for metal casting, that is to say for example of cores and molds. Casting molds which comprise very thin-walled sections can also be produced particularly advantageously.
  • the casting molds produced from the molding material mixture or with the method according to the invention have a high strength immediately after production, without the strength of the casting molds being so high after curing that difficulties arise after the production of the casting when removing the casting mold. Furthermore, these molds have a high stability with increased air humidity, i.e. the casting molds can surprisingly be stored without problems for a long time. As an advantage, the casting mold has a very high stability under mechanical stress, so that thin-walled sections of the casting mold can also be realized without being deformed by the metallostatic pressure during the casting process. Another object of the invention is therefore a casting mold, which was obtained by the inventive method described above.
  • Examples 1.01 and 1.02 illustrate that the addition of amorphous SiO 2 can achieve a significantly improved strength level (according to EP 1802409 B1 and DE 102012020509 A1 ).
  • a comparison of Examples 1.02 to 1.14 shows that the strength level is not noticeably influenced by the addition of powdery oxidic boron compounds.
  • Examples 1.06 and 1.11 to 1.14 show a slight deterioration in the strength levels with an increasing proportion of the additive according to the invention. However, the effect is very weak.
  • Examples 1.01 and 1.02 show that adding a particulate, amorphous silicon dioxide to the molding material mixture significantly deteriorates the disintegration behavior of the molds produced with it.
  • a comparison of Examples 1.02 to 1.09 clearly shows that the use of powdery oxidic boron compounds leads to significantly improved disintegration properties of the forms bonded with water glass.
  • a comparison of Examples 1.07 and 1.10 shows that it makes a difference whether the borate (in this case) was pre-dissolved in the binder before use in the molding mixture or whether the borate was added to the molding mixture as a solid powder. Such an effect is surprising.
  • Examples 1.06 and 1.11 to 1.14 illustrate that the disintegration behavior can be increased significantly with an increasing proportion of the additive according to the invention. It also becomes clear that even small additions are sufficient to significantly increase the disintegration ability of the hardened molding material mixture after thermal stress.

Description

  • Die Erfindung betrifft ein Mehrkomponenten-System zum Erhalt von Formstoffmischungen für die Gießereiindustrie enthaltend eine oder mehrere pulverförmige oxidische Bor-Verbindungen in Kombination mit feuerfesten Formgrundstoffen, einem wasserglasbasierten Bindemittelsystem und amorphem partikulären Siliziumdioxid, insbesondere zur Herstellung von Gussstücken aus Aluminium, und ein Verfahren zur Herstellung von Gießformen und Kernen aus den Formstoffmischungen, die nach dem Metallguss leicht zerfallen.
  • Stand der Technik
  • Gießformen setzen sich im Wesentlichen aus Kernen und Formen zusammen, welche die Negativformen des herzustellenden Gussstücks darstellen. Diese Kerne und Formen bestehen dabei aus einem feuerfesten Material, beispielsweise Quarzsand, und einem geeigneten Bindemittel, das der Gießform nach der Entnahme aus dem Formwerkzeug eine ausreichende mechanische Festigkeit verleiht. Für die Herstellung von Gießformen verwendet man also einen feuerfesten Formgrundstoff, welcher mit einem geeigneten Bindemittel umhüllt ist. Der feuerfeste Formgrundstoff liegt bevorzugt in einer rieselfähigen Form vor, so dass er in eine geeignete Hohlform eingefüllt und dort verdichtet werden kann. Durch das Bindemittel wird ein fester Zusammenhalt zwischen den Partikeln des Formgrundstoffs erzeugt, so dass die Gießform die erforderliche mechanische Stabilität erhält.
  • Gießformen müssen verschiedene Anforderungen erfüllen. Beim Gießvorgang selbst müssen sie zunächst eine ausreichende Festigkeit und Temperaturbeständigkeit aufweisen, um das flüssige Metall in den aus einem oder mehreren Gieß(teil)formen gebildeten Hohlraum aufnehmen zu können. Nach Beginn des Erstarrungsvorgangs wird die mechanische Stabilität des Gussstücks durch eine erstarrte Metallschicht gewährleistet, die sich entlang der Wände der Gießform ausbildet. Das Material der Gießform muss sich nun unter dem Einfluss der vom Metall abgegebenen Hitze in der Weise zersetzen, dass es seine mechanische Festigkeit verliert, also der Zusammenhalt zwischen einzelnen Partikeln des feuerfesten Materials aufgehoben wird. Im Idealfall zerfällt die Gießform wieder zu einem feinen Sand, der sich mühelos vom Gussstück entfernen lässt.
  • In neuerer Zeit wird darüber hinaus immer häufiger gefordert, dass während der Herstellung der Gießformen sowie während der Herstellung des Gießens und Abkühlens möglichst keine Emissionen in Form von CO2 oder Kohlenwasserstoffen entstehen, um die Umwelt zu schonen und die Geruchsbelästigung der Umgebung durch Kohlenwasserstoffe, hauptsächlich durch aromatische Kohlenwasserstoffe, einzuschränken. Um diesen Anforderungen zu genügen, wurden in den vergangenen Jahren anorganische Bindesysteme entwickelt bzw. weiterentwickelt, deren Verwendung dazu führt, dass Emissionen von CO2 und Kohlenwasserstoffen bei der Herstellung von Metallformen vermieden oder zumindest deutlich minimiert werden können. Allerdings ist die Verwendung von anorganischen Bindesystemen häufig mit anderen Nachteilen verbunden, die im Einzelnen in den nachfolgenden Ausführungen beschrieben werden.
  • Anorganische Bindemittel haben im Vergleich zu organischen Bindemitteln den Nachteil, dass die daraus hergestellten Gießformen relativ geringe Festigkeiten aufweisen. Dies tritt besonders deutlich unmittelbar nach der Entnahme der Gießform aus dem Werkzeug zutage. Gute Festigkeiten zu diesem Zeitpunkt sind aber besonders wichtig für die Produktion komplizierter und/oder dünnwandiger Formteile und deren sichere Handhabung. Auch die Beständigkeit gegen Luftfeuchte ist gegenüber organischen Bindemitteln deutlich reduziert.
  • EP 1802409 B1 offenbart, dass sich höhere Sofortfestigkeiten und höhere Beständigkeit gegen Luftfeuchte durch die Verwendung eines feuerfesten Formgrundstoffs, eines auf Wasserglas basierten Bindemittels sowie Zusätzen von partikulärem amorphem Siliziumdioxid realisieren lassen. Durch diesen Zusatz lässt sich eine sichere Handhabung auch komplizierter Gießformen gewährleisten.
  • Anorganische Bindemittelsysteme haben gegenüber organischen Bindemittelsystemen weiterhin den Nachteil, dass das Entkernverhalten, d.h. der Fähigkeit der Gießform, nach dem Metallguss schnell (unter mechanischer Belastung) in eine leicht schüttfähige Form zu zerfallen, bei rein anorganisch hergestellten Gießformen (z.B. solche die Wasserglas als Bindemittel verwenden) häufig schlechter ist als bei Gießformen, die mit einem organischen Bindemittel hergestellt wurden.
  • Diese letztgenannte Eigenschaft, ein schlechteres Entkernverhalten, ist besonders dann nachteilig, wenn dünnwandige bzw. filigrane oder komplexe Gießformen verwendet werden, welche sich nach dem Abguss prinzipiell schwer entfernen lassen. Als Beispiel können hier sogenannte Wassermantelkerne angebracht werden, die bei der Herstellung von gewissen Bereichen eines Verbrennungsmotors nötig sind.
  • Man hat bereits versucht, der Formstoffmischung organische Komponenten zuzugeben, die unter dem Einfluss des heißen Metalls pyrolysieren/reagieren und dadurch, den Zerfall der Gießform nach dem Guss durch Porenbildung erleichtern. Ein Beispiel hierfür ist die DE 2059538 (= GB 1299779 A ). Die Mengen des hier zugesetzten Glucosesirups sind allerdings sehr groß und sind damit auch mit einer erheblichen Emission von CO2 und anderen Pyrolyseprodukten verbunden.
  • Probleme des Standes der Technik und Aufgabenstellung
  • Die bisher bekannten anorganischen Bindemittelsysteme für Gießereizwecke weisen noch Raum für Verbesserungen auf. Vor allem ist es wünschenswert, ein anorganisches Bindemittelsystem zu entwickeln, welches:
    1. (a) keine oder zumindest eine deutlich reduzierte Menge an Emissionen von CO2 und organischen Pyrolyseprodukten (gasförmig und/oder aerosolförmig, z.B. aromatische Kohlenwasserstoffe, Qualm) während des Metallgießens entstehen lässt,
    2. (b) ein entsprechendes Festigkeitsniveau erreicht, welches im automatisierten Fertigungsprozess nötig ist (insbesondere Heißfestigkeiten und Festigkeiten nach Lagerung),
    3. (c) eine sehr gute Oberflächengüte des betreffenden Gussstücks ermöglicht, so dass keine oder zumindest nur eine geringe Nachbearbeitung nötig ist, und
    4. (d) zu einer sehr guten Zerfallseigenschaft der Gießform nach dem Metallguss führt, so dass das betreffende Gussstück leicht und rückstandsfrei von der Gießform getrennt werden kann.
  • Der Erfindung lag daher die Aufgabe zugrunde, ein Mehrkomponenten-System zum Erhalt einer Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung zur Verfügung zu stellen, die besonders effektiv die Zerfallseigenschaften der Gießform nach dem Metallguss verbessert und gleichzeitig ein Festigkeitsniveau erreicht, welches im automatisierten Fertigungsprozess notwendig ist.
  • Ferner soll die Herstellung von Gießformen mit komplexer Geometrie ermöglicht werden, die beispielsweise auch dünnwandige Abschnitte umfassen können. Auch soll die Gießform eine hohe Lagerstabilität aufweisen und auch bei höherer Temperatur und Luftfeuchte stabil bleiben.
  • Zusammenfassung der Erfindung
  • Obige Aufgaben werden durch das Mehrkomponenten-System bzw. das Verfahren mit den Merkmalen der unabhängigen Patentansprüche gelöst. Vorteilhafte Weiterbildungen des erfindungsgemäßen Mehrkomponenten-Systems sind Gegenstand der abhängigen Patentansprüche oder nachfolgend beschrieben.
  • Überraschend wurde gefunden, dass durch den Zusatz von zumindest einer pulverförmigen, oxidischen Bor-Verbindung zur Formstoffmischung, welche aus dem erfindungsgemäßen Mehrkomponenten-System erhalten wird, Gießformen auf der Basis anorganischer Bindemittel hergestellt werden können, die eine hohe Festigkeit sowohl unmittelbar nach der Herstellung als auch bei längerer Lagerung aufweisen.
  • Ein entscheidender Vorteil liegt darin, dass der Zusatz von pulverförmigen Boraten zu deutlich verbesserten Zerfallseigenschaften der Gießform nach dem Metallguss führt. Dieser Vorteil ist mit deutlichen geringeren Kosten für die Herstellung eines Gussstücks verbunden, insbesondere bei Gussstücken, die eine komplexe Geometrie mit sehr kleinen Hohlräumen aufweisen, aus denen die Gießform entfernt werden muss.
  • Nach einer Ausführungsform der Erfindung enthält das Mehrkomponenten-System organische Komponenten mit einem Anteil bis zu maximal 0,49 Gew.%, insbesondere bis zu maximal 0,19 Gew.%, sodass nur sehr geringe Mengen an Emissionen von CO2 und anderen Pyrolyseprodukten entstehen.
  • Aus diesem Grund kann die Belastung am Arbeitsplatz für die dort beschäftigten Mitarbeiter sowie der in der Umgebung lebenden Menschen durch gesundheitsschädliche Emissionen eingeschränkt werden. Auch stellt die Verwendung der Formstoffmischung einen Beitrag zur Reduzierung von klimaschädlichen Emissionen durch CO2 und andere, organische Pyrolyseprodukte dar.
  • Die Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung umfasst mindestens:
    • einen feuerfesten Formgrundstoff; sowie
    • ein auf Wasserglas basierendes Bindemittel und
    • partikuläres amorphes Siliziumdioxid; und
    • eine oder mehrere pulverförmige, oxidische Bor-Verbindung(en).
    Detaillierte Beschreibung der Erfindung
  • Als feuerfester Formgrundstoff können für die Herstellung von Gießformen übliche und bekannte Materialien verwendet werden. Geeignet sind beispielsweise Quarz-, Zirkon- oder Chromerzsand, Olivin, Vermiculit, Bauxit, Schamotte sowie künstliche Formgrundstoffe, insbesondere mehr als 50 Gew.% Quarzsand bezogen auf den feuerfesten Formgrundstoff. Dabei ist es nicht notwendig, ausschließlich Neusande einzusetzen. Im Sinne einer Ressourcenschonung und zur Vermeidung von Deponiekosten ist es sogar vorteilhaft, einen möglichst hohen Anteil an regeneriertem Altsand zu verwenden, wie er aus gebrauchten Formen durch Recyceln erhältlich ist.
  • Unter einem feuerfesten Formgrundstoff werden Stoffe verstanden, die einen hohen Schmelzpunkt (Schmelztemperatur) aufweisen. Vorzugsweise ist der Schmelzpunkt des feuerfesten Formgrundstoffs größer als 600°C, bevorzugt größer als 900°C, besonders bevorzugt größer als 1200°C und insbesondere bevorzugt größer als 1500°C.
  • Der feuerfeste Formgrundstoff macht vorzugsweise größer 80 Gew.%, insbesondere größer 90 Gew.%, besonders bevorzugt größer 95 Gew.%, der aus dem erfindungsgemäßen Mehrkomponenten-System erhaltenen Formstoffmischung aus.
  • Ein geeigneter Sand wird z.B. in der WO 2008/101668 A1 (= US 2010/173767 A1 ) beschrieben. Gleichfalls geeignet sind Regenerate einsetzbar, die durch Waschen und anschließende Trocknung zerkleinerter gebrauchter Formen erhältlich sind. In der Regel können die Regenerate mindestens ca. 70 Gew.% des feuerfesten Formgrundstoffs ausmachen, bevorzugt mindestens ca. 80 Gew.% und besonders bevorzugt größer 90 Gew.%.
  • Der mittlere Durchmesser der feuerfesten Formgrundstoffe liegt in der Regel zwischen 100 µm und 600 µm, bevorzugt zwischen 120 µm und 550 µm und besonders bevorzugt zwischen 150 µm und 500 µm. Die Partikelgröße lässt sich z.B. durch Siebung nach DIN ISO 3310 bestimmen. Besonders bevorzugt sind Teilchenformen mit größter Längenausdehnung zu kleinster Längenausdehnung (rechtwinkelig zueinander und jeweils für alle Raumrichtungen) von 1:1 bis 1:5 oder 1:1 bis 1 : 3, d.h. solche die z.B. nicht faserförmig sind.
  • Der feuerfeste Formgrundstoff weist vorzugsweise einen rieselfähigen Zustand auf, insbesondere um die aus dem erfindungsgemäßen Mehrkomponenten-System erhaltene Formstoffmischung in üblichen Kernschießmaschinen verarbeiten zu können.
  • Die Wassergläser enthalten gelöste Alkalisilikate und können durch Lösen von glasartigen Lithium-, Natrium- und Kaliumsilikaten in Wasser hergestellt werden. Das Wasserglas weist vorzugsweise ein molares Modul SiO2/M2O (kumulativ bei unterschiedlichen M's, d.h. in der Summe) im Bereich von 1,6 bis 4,0, insbesondere 2,0 bis kleiner 3,5, auf, wobei M für Lithium, Natrium und/oder Kalium steht. Die Bindemittel können auch auf Wassergläsern basieren, die mehr als eins der genannten Alkaliionen enthalten, wie z.B. die aus DE 2652421 A1 (= GB1532847 A ) bekannten lithiummodifizierten Wassergläser. Weiterhin können die Wassergläser auch mehrwertige Ionen enthalten wie z.B. die in EP 2305603 A1 (= WO 2011/042132 A1 ) beschriebenen Aluminium-modifizierten Wassergläser. Nach einer besonderen Ausführungsform wird ein Anteil an Lithiumionen, insbesondere amorphe Lithiumsilikate, Lithiumoxide und Lithiumhydroxid, bzw. ein Verhältnis [Li2O] / [M2O] bzw. [Li2Oaktiv] / [M2O] wie in der DE 102013106276 A1 beschrieben eingesetzt.
  • Die Wassergläser weisen einen Feststoffanteil im Bereich von 25 bis 65 Gew.% auf, vorzugsweise von 30 bis 55 Gew.%, insbesondere von 30 bis 50 Gew.% und ganz besonders bevorzugt von 30 bis 45 Gew.%.
  • Der Feststoffanteil bezieht sich auf die im Wasserglas enthaltene Menge an SiO2 und M2O. Je nach Anwendung und gewünschtem Festigkeitsniveau werden zwischen 0,5 Gew.% und 5 Gew.% des auf Wasserglas basierenden Bindemittels eingesetzt, vorzugsweise zwischen 0,75 Gew.% und 4 Gew.%, besonders bevorzugt zwischen 1 Gew.% und 3,5 Gew.% und insbesondere bevorzugt 1 bis 3 Gew.%,jeweils bezogen auf den Formgrundstoff. Die Angaben beziehen sich auf die Gesamtmenge des Wasserglasbinders, einschließlich des (insbesondere wässrigen) Lösungs- bzw. Verdünnungsmittels und des (etwaigen) Feststoffanteils (zusammen = 100 Gew.%). Für die Zwecke der Berechnung der bevorzugten Gesamtmenge an Wasserglas ist für obige Werte von einem Feststoffgehalt von 35 Gew.% (vergleiche Beispiele) auszugehen, unabhängig davon welcher Feststoffgehalt tatsächlich eingesetzt wird.
  • Unter pulverförmig bzw. partikulär wird jeweils festes Pulver (einschließend Stäube) oder auch Granulat verstanden, das schüttfähig und somit auch siebfähig ist.
  • Die Formstoffmischung enthält eine oder mehrere pulverförmige, oxidische Bor-Verbindunaen. Die mittlere Teilchengröße der oxidischen Bor-Verbindungen beträgt vorzugsweise weniger als 1 mm, bevorzugt weniger als 0,5 mm, insbesondere bevorzugt weniger als 0,25 mm. Die Teilchengröße der oxidischen Bor-Verbindungen beträgt vorzugsweise größer als 0,1 µm, bevorzugt größer als 1 µm und insbesondere bevorzugt größer als 5 µm.
  • Die mittlere Partikelgröße kann mithilfe einer Siebanalyse bestimmt werden. Bevorzugt beträgt der Siebrückstand auf einem Sieb mit einer Maschenweite von 1,00 mm weniger als 5 Gew.%, besonders bevorzugt weniger als 2,0 Gew.% und insbesondere bevorzugt weniger als 1,0 Gew.%. Besonders bevorzugt beträgt der Siebrückstand unabhängig von den vorangegangen Angaben auf einem Sieb mit einer Maschenweite von 0,5 mm vorzugsweise weniger als 20 Gew.%, bevorzugt kleiner als 15 Gew.%, -besonders bevorzugt kleiner als 10 Gew.% und insbesondere bevorzugt kleiner als 5 Gew.%. Insbesondere bevorzugt beträgt der Siebrückstand unabhängig von den vorangegangenen Angaben auf einem Sieb mit einer Maschenweite von 0,25 mm vorzugsweise weniger als 50 Gew.%, bevorzugt weniger als 25 Gew.% und insbesondere bevorzugt weniger als 15 Gew.%. Die Bestimmung des Siebrückstands erfolgt dabei nach dem in der DIN 66165 (Teil 2) beschriebenen Maschinensiebverfahren, wobei zusätzlich ein Kettenring als Siebhilfe verwendet wird.
  • Unter oxidischen Bor-Verbindungen werden Verbindungen verstanden, in denen das Bor in der Oxidationsstufe +3 vorliegt. Des Weiteren ist das Bor mit Sauerstoffatomen koordiniert (in der ersten Koordinationssphäre, d.h. als nächste Nachbarn) - entweder von 3 oder von 4 Sauerstoffatomen.
  • Vorzugsweise ist die oxidische Bor-Verbindung ausgewählt aus der Gruppe der Borate, Borsäuren, Borsäureanhydride, Borosilikate, Borophosphate, Borophosphosilikate und deren Mischungen, wobei die oxidische Bor-Verbindung bevorzugt keine organischen Gruppen enthält.
  • Unter Borsäuren werden Orthoborsäure (Summenformel H3BO3) und Meta- bzw. Polyborsäuren (Summenformel (HBO2)n) verstanden. Orthoborsäure kommt beispielsweise in Wasserdampfquellen und als Mineral Sassolin vor. Auch kann es aus Boraten (z.B. Borax) durch saure Hydrolyse hergestellt werden. Meta- bzw. Polyborsäuren lassen sich beispielsweise aus der Orthoborsäure durch intermolokulare Kondensation durch Erhitzen herstellen.
  • Borsäureanhydrid (Summenformel B2O3) lässt sich durch Glühen von Borsäuren herstellen. Dabei erhält man Borsäureanhydrid als meist glasige, hygroskopische Masse, die anschließend zerkleinert werden kann.
  • Borate leiten sich prinzipiell von den Borsäuren ab. Sie können sowohl natürlichen als auch synthetischen Ursprungs sein. Borate bauen sich u.a. aus Borat-Struktureinheiten auf, bei denen das Bor-Atom entweder von 3 oder von 4 Sauerstoffatomen als nächste Nachbarn umgeben ist. Die einzelnen Struktureinheiten sind meist anionisch und können innerhalb eines Stoffes entweder isoliert vorliegen, z.B. im Falle des Orthoborats [BO3]3-, oder miteinander verknüpft sein, wie beispielsweise Metaborate [BO2]n- n, dessen Einheiten zu Ringen oder Ketten verknüpft sein können - betrachtet man ein solches verknüpftes Gebilde mit entsprechenden B-O-B Bindungen, so ist ein solches in der Gesamtsicht anionisch.
  • Bevorzugt werden Borate eingesetzt, die verknüpfte B-O-B-Einheiten enthalten. Orthoborate sind geeignet, aber nicht bevorzugt. Als Gegenionen zu den anionischen Borat-Einheiten dienen beispielsweise Alkali- und/oder Erdalkali-Kationen, aber auch beispielsweise Zink-Kationen.
  • Im Falle von ein- bzw. zweiwertigen Kationen kann das molare Stoffmengenverhältnis zwischen Kation und Bor in der folgenden Weise beschrieben werden: MxO: B2O3, wobei M für das Kation steht und x für zweiwertige Kationen 1 und für einwertige Kationen 2 ist. Das molare Stoffmengenverhältnis von MxO (x=2 für M=Alkalimetalle und x=1 für M=Erdalkalimetalle) : B2O3 kann im Bereich weiter Grenzen variieren, vorzugsweise ist es allerdings kleiner als 10 : 1, bevorzugt kleiner als 5:1 und insbesondere bevorzugt kleiner als 2 : 1. Die Untergrenze ist vorzugsweise größer als 1 : 20, bevorzugt größer als 1 : 10 und insbesondere bevorzugt größer als 1 : 5.
  • Geeignet sind auch Borate, in denen dreiwertige Kationen als Gegenionen zu den anionischen Borat-Einheiten dienen wie beispielsweise Aluminium-Kationen im Fall von Aluminiumboraten.
  • Natürliche Borate sind meist hydratisiert, d.h. Wasser ist als Strukturwasser (als OH-Gruppen) und/oder als Kristallwasser (H2O-Moleküle) enthalten. Als Beispiel kann Borax oder auch Borax Decahydrat (di-Natriumtetraborat-Decahydrat) genannt betrachtet werden, dessen Summenformel in der Literatur entweder als [Na(H2O)4]2[B4O5(OH)4] oder der Einfachheit halber als Na2B4O7 10H2O angegeben wird. Sowohl hydratisierte als auch nicht-hydratisierte Borate können eingesetzt werden, bevorzugt werden allerdings die hydratisierten Borate eingesetzt.
  • Es können sowohl amorphe als auch kristalline Borate eingesetzt werden. Als amorphe Borate werden beispielsweise Alkali- oder Erdalkaliboratgläser verstanden.
  • Perborate sind aufgrund ihrer oxidativen Eigenschaften nicht bevorzugt. Denkbar ist prinzipiell auch der Einsatz von Fluoroboraten, aber aufgrund der Fluor-Haltigkeit nicht bevorzugt insbesondere im Aluminiumguss. Da bei der Verwendung von Ammoniumborat mit einer alkalischen Wasserglaslösung signifikante Mengen an Ammoniak entstehen, welches die Gesundheit der in der Gießerei arbeitenden Menschen gefährdet, ist ein solcher Stoff nicht bevorzugt.
  • Unter Borosilikaten, Borophosphaten sowie Borophosphosilikaten werden Verbindungen verstanden, die meist amorph/glasartig sind.
  • In der Struktur dieser Verbindungen finden sich nicht nur neutrale und/oder anionische Bor-Sauerstoff-Koordinationen (z.B. neutrale BO3-Einheiten oder anionische BO4 --Einheiten), sondern auch neutrale und/oder anionische Silizium-Sauerstoff- und/oder Phosphor-Sauerstoff-Koordinationen - das Silizium befindet sich in der Oxidationsstufe +4 und der Phosphor ist in der Oxidationsstufe +5. Die Koordinationen können über verbrückende Sauerstoffatome miteinander verbunden sein, wie z.B. bei Si-O-B oder bei P-O-B. In der Struktur der Borosilikate, Borophosphate und Borophosphosilikaten können Metalloxide, insbesondere Alkali- und Erdalkalimetalloxide eingebaut sein, die als sogenannte Netzwerkmodifizierer dienen. Vorzugsweise liegt der Anteil des Bors (berechnet als B2O3) in den Borosilikaten,Borophosphaten sowie Borophosphosilikaten bei größer als 15 Gew.%, bevorzugt bei größer 30 Gew.%, insbesondere bevorzugt bei größer 40 Gew.%, bezogen auf die Gesamtmasse des entsprechenden Borosilikats, Borophosphats oder Borophosphosilikats.
  • Aus der Gruppe von Boraten, Borsäuren, Borsäureanhydrid, Borosilikaten, Borophosphaten und/oder Borophosphosilikaten werden allerdings die Borate, Borophosphate und Borophosphosilikate und insbesondere die Alkali- und Erdalkaliborate, deutlich bevorzugt. Ein Grund für diese Auswahl liegt an der starken Hygroskopizität des Borsäureanhydrids, welche die mögliche Verwendung als Pulveradditiv bei längerer Lagerung desselben beeinträchtigt. In Gießversuchen mit einer Aluminiumschmelze hat sich darüber hinaus gezeigt, dass Borate zu deutlich besseren Gussoberflächen führen als die Borsäuren, daher sind letztere weniger bevorzugt. Besonders bevorzugt werden Borate eingesetzt. Insbesondere bevorzugt werden Alkali- und/oder Erdalkaliborate verwendet, von denen Natriumborate und/oder Calciumborate bevorzugt werden.
  • Überraschend wurde gefunden, dass selbst sehr geringe Zusätze zur Formstoffmischung die Zerfallsfähigkeit der Gießform nach Temperaturbelastung, d.h. nach dem Metallguss, insbesondere nach dem Aluminiumguss, deutlich verbessern. Der Anteil der oxidischen Bor-Verbindung, bezogen auf den feuerfesten Formgrundstoff, beträgt vorzugsweise kleiner als 1,0 Gew.%, bevorzugt kleiner als 0,4 Gew.%, besonders bevorzugt kleiner als 0,2 Gew. % , insbesondere bevorzugt kleiner als 0,1 Gew.% und insbesondere besonders bevorzugt kleiner als 0,075 Gew.%. Die Untergrenze liegt vorzugsweise jeweils bei größer als 0,002 Gew.%, bevorzugt größer als 0,005 Gew.%, besonders bevorzugt größer als 0,01 Gew.% und insbesondere bevorzugt größer als 0,02 Gew.%.
  • Es wurde ebenfalls überraschend gefunden, dass Erdalkaliborate, insbesondere Calciummetaborat, die Festigkeiten von Formen und/oder Kernen, die mit sauren Gasen wie CO2 ausgehärtet wurden, erhöht. Auch hat sich überraschend gezeigt, dass sich die Feuchtebeständigkeit der Formen und/oder Kerne durch den Zusatz von erfindungsgemäßen oxidischen Bor-Verbindungen verbessert.
  • Die Formstoffmischung enthält einen Anteil eines partikulären amorphen Siliziumdioxids, um das Festigkeitsniveau der mit solchen Formstoffmischungen hergestellten Gießformen zu erhöhen. Eine Steigerung der Festigkeiten der Gießformen, insbesondere die Steigerung der Heißfestigkeiten, kann im automatisierten Fertigungsprozess vorteilhaft sein. Synthetisch hergestelltes amorphes Siliziumdioxid ist besonders bevorzugt.
  • Die Teilchengrösse des amorphen Siliziumdioxids beträgt vorzugsweise weniger als 300 µm, bevorzugt weniger als 200 µm, insbesondere bevorzugt weniger als 100 µm und weist z.B. eine mittlere Primärpartikelgröße zwischen 0,05 µm und 10 µm auf. Der Siebrückstand des partikulären amorphen SiO2 bei einem Durchgang durch ein Sieb mit 125 µm Maschenweite (120 mesh) beträgt vorzugsweise nicht mehr als 10 Gew.%, besonders bevorzugt nicht mehr als 5 Gew.% und ganz besonders bevorzugt nicht mehr als 2 Gew.%. Unabhängig hiervon beträgt der Siebrückstand auf einem Sieb mit einer Maschenweite von 63 µm weniger als 10 Gew.-%, vorzugsweise weniger als 8 Gew.%. Die Bestimmung des Siebrückstands erfolgt dabei nach dem in der DIN 66165 (Teil 2) beschriebenen Maschinensiebverfahren, wobei zusätzlich ein Kettenring als Siebhilfe verwendet wird.
  • Das nach der vorliegenden Erfindung vorzugsweise eingesetzte partikuläre amorphe Siliziumdioxid hat einen Wassergehalt von kleiner 15 Gew.%, insbesondere kleiner 5 Gew.% und besonders bevorzugt von kleiner 1 Gew.%.
  • Das partikulare amorphe SiO2 wird als Pulver (einschließend Stäube) eingesetzt.
  • Als amorphes SiO2 können sowohl synthetisch hergestellte als auch natürlich vorkommende Kieselsäuren eingesetzt werden. Letztere sind z.B. aus DE 102007045649 bekannt, sind aber nicht bevorzugt, da sie i.d.R. nicht unerhebliche kristalline Anteile enthalten und deshalb als karzinogen eingestuft sind. Unter synthetisch wird nicht natürlich vorkommendes amorphes SiO2 verstanden, d. h. dessen Herstellung eine bewusst durchgeführte chemische Reaktion umfasst, wie sie von einem Menschen veranlasst wird, z.B. die Herstellung von Kieselsolen durch Ionenaustauschprozesse aus Alkalisilikatlösungen, die Ausfällung aus Alkalisilikatlösungen, die Flammhydrolyse von Siliziumtetrachlorid, die Reduktion von Quarzsand mit Koks im Lichtbogenofen bei der Herstellung von Ferrosilizium und Silizium. Das nach den beiden letztgenannten Verfahren hergestellte amorphe SiO2 wird auch als pyrogenes SiO2 bezeichnet.
  • Gelegentlich wird unter synthetischem amorphem Siliziumdioxid nur Fällungskieselsäure (CAS-Nr. 112926-00-8) und flammhydrolytisch hergestelltes SiO2 (Pyrogenic Silica, Fumed Silica, CAS-Nr. 112945-52-5) verstanden, während das bei der Ferrosilizium- bzw. Siliziumherstellung entstandene Produkt lediglich als amorphes Siliziumdioxid (Silica Fume, Microsilica, CAS-Nr. 69012-64-12) bezeichnet wird. Für die Zwecke der vorliegenden Erfindung wird auch das bei der Ferrosilizium- bzw. Siliziumherstellung entstandene Produkt als amorphes SiO2 verstanden.
  • Bevorzugt eingesetzt werden Fällungskieselsäuren und pyrogenes, d.h. flammhydrolytisch oder im Lichtbogen hergestelltes Siliziumdioxid. Insbesondere bevorzugt eingesetzt werden durch thermische Zersetzung von ZrSiO4 hergestelltes amorphes Siliziumdioxid (beschrieben in der DE 102012020509 ) sowie durch Oxidation von metallischem Si mittels eines sauerstoffhaltigen Gases hergestelltes SiO2 (beschrieben in der DE 102012020510 ). Bevorzugt ist auch Quarzglaspulver (hauptsächlich amorphes Siliziumdioxid), das durch Schmelzen und rasches Wiederabkühlen aus kristallinem Quarz hergestellt wurde, so dass die Partikel kugelförmig und nicht splittrig vorliegen (beschrieben in der DE 102012020511 ). Die mittlere Primärpartikelgröße des partikulären amorphen Siliziumdioxids kann zwischen 0,05 µm und 10 µm, insbesondere zwischen 0,1 µm und 5 µm, besonders bevorzugt zwischen 0,1 µm und 2 µm betragen. Die Primärpartikelgröße kann z.B. mit Hilfe von dynamischer Lichtstreuung (z.B. Horiba LA 950) bestimmt sowie durch Rasterelektronenmikroskop-Aufnahmen (REM-Aufnahmen mit z.B. Nova Nano-SEM 230 der Firma FEI) überprüft werden. Des Weiteren konnten mit Hilfe der REM-Aufnahmen Details der Primärpartikelform bis in die Größenordnung von 0,01 µm sichtbar gemacht werden. Die Siliziumdioxid-Proben wurden für die REM-Messungen in destilliertem Wasser dispergiert und anschließend auf einem mit Kupferband beklebten Aluminiumhalter aufgebracht, bevor das Wasser verdampft wurde.
  • Des Weiteren wurde die spezifische Oberfläche des partikulären amorphen Siliziumdioxids mithilfe von Gasadsorptionsmessungen (BET-Verfahren) nach DIN 66131 bestimmt. Die spezifische Oberfläche des partikulärem amorphen SiO2 liegt zwischen 1 und 200 m2/g, insbesondere zwischen 1 und 50 m2/g, besonders bevorzugt zwischen 1 und 30 m2/g. Ggfs. können die Produkte auch gemischt werden, z.B. um gezielt Mischungen mit bestimmten Partikelgrößenverteilungen zu erhalten.
  • Je nach Herstellungsart und Produzent kann die Reinheit des amorphen SiO2 stark variieren. Als geeignet haben sich Typen mit einem Gehalt von mindestens 85 Gew.% Siliziumdioxid erwiesen, bevorzugt von mindestens 90 Gew.% und besonders bevorzugt von mindestens 95 Gew.%. Je nach Anwendung und gewünschtem Festigkeitsniveau werden zwischen 0,1 Gew.% und 2 Gew.% des partikulären amorphen SiO2 eingesetzt, vorzugsweise zwischen 0,1 Gew.% und 1,8 Gew.%, besonders bevorzugt zwischen 0,1 Gew.% und 1,5 Gew.%, jeweils bezogen auf den Formgrundstoff.
  • Das Verhältnis von Wasserglasbinder zu partikuärem amorphen Siliziumdioxid kann innerhalb weiter Grenzen variiert werden. Dies bietet den Vorteil, die Anfangsfestigkeiten der Kerne, d.h. die Festigkeit unmittelbar nach der Entnahme aus dem Werkzeug, stark zu verbessern, ohne die Endfestigkeiten wesentlich zu beeinflussen. Dies ist vor allem im Leichtmetallguss von großem Interesse. Auf der einen Seite sind hohe Anfangsfestigkeiten erwünscht, um die Kerne nach ihrer Herstellung problemlos transportieren oder zu ganzen Kernpaketen zusammensetzen zu können, auf der anderen Seite sollten die Endfestigkeiten nicht zu hoch sein, um Schwierigkeiten beim Kernzerfall nach dem Abguss zu vermeiden, d.h. der Formgrundstoff sollte nach dem Gießen problemlos aus Hohlräumen der Gussform entfernt werden können.
  • Bezogen auf das Gesamtgewicht des Bindemittels Wasserglas (einschließlich Verdünnungs- bzw. Lösungsmittel) ist das amorphe SiO2 vorzugsweise in einem Anteil von 1 bis 80 Gew.%, vorzugsweise 2 bis 60 Gew.%, enthalten, besonders bevorzugt von 3 bis 55 Gew.% und insbesondere bevorzugt zwischen 4 bis 50 Gew.%. Oder unabhängig hiervon bezogen auf das Verhältnis Feststoffanteil des Wasserglases (bezogen auf die Oxide, d.h. Gesamtmasse aus Alkalimetalloxid und Siliziumdioxid) zu amorphem SiO2 von 10 : 1 bis 1 : 1,2 (Gewichtsteile) bevorzugt.
  • Die Zugabe des amorphen Siliziumdioxid kann gemäß EP 1802409 B1 sowohl vor als auch nach der Binderzugabe direkt zum Feuerfeststoff erfolgen, es kann aber auch, wie in EP 1884300 A1 (= US 2008/029240 A1 ) beschrieben, zuerst eine Vormischung des SiO2 mit zumindest einem Teil des Binders oder Natronlauge hergestellt und diese dann dem Feuerfeststoff zugemischt werden. Der ggf. noch vorhandene, nicht für die Vormischung verwendete Binder bzw. Binderanteil kann dem Feuerfeststoff vor oder nach der Zugabe der Vormischung oder zusammen mit dieser zugegeben werden. Vorzugsweise ist das amorphe SiO2 dem Feuerfeststoff vor der Binderzugabe zugegeben.
  • In einer weiteren Ausführungsform kann der Formstoffmischung Bariumsulfat zugesetzt sein, um die Oberfläche des Gussstücks, insbesondere aus Aluminium, weiter zu verbessern.
  • Das Bariumsulfat kann synthetisch hergestelltes als auch natürliches Bariumsulfat sein, d.h. in Form von Mineralien hinzugefügt sein, die Bariumsulfat enthalten, wie Schwerspat bzw. Baryt. Dieses wie auch andere Merkmale des geeigneten Bariumsulfats sowie der mit ihm hergestellten Formstoffmischung werden in der DE 102012104934 näher beschrieben und deren Offenbarungsgehalt wird insofern durch Bezugnahme auch zur Offenbarung des vorliegenden Schutzrechts gemacht. Das Bariumsulfat wird bevorzugt in einer Menge von 0,02 bis 5,0 Gew.%, besonders bevorzugt 0,05 bis 3,0 Gew.%, insbesondere bevorzugt 0,1 bis 2,0 Gew.% oder 0,3 bis 0,99 Gew.%, jeweils bezogen die gesamte Formstoffmischung, zugegeben.
  • In einer weiteren Ausführungsform können weiterhin zumindest Aluminiumoxide und/oder Aluminium/Silizium Mischoxide in partikulärer Form bzw. Metalloxide des Aluminiums und Zirkoniums in partikulärer Form in Konzentrationen zwischen 0,05 Gew.% und 4,0 Gew.%, vorzugsweise zwischen 0,1 Gew.% und 2,0 Gew.%, besonders bevorzugt zwischen 0,1 Gew.% und 1,5 Gew.% und insbesondere bevorzugt zwischen 0,2 Gew.% und 1,2 Gew.%, jeweils bezogen auf den Formgrundstoff, der Formstoffmischung zugegeben werden/sein, insbesondere über die Additiv-Komponente (A), wie in der DE 102012113073 bzw. der DE 102012113074 näher beschrieben.
  • Insofern werden diese Schriften durch Referenzierung auch als Offenbarung für das vorliegende Schutzrecht geltend gemacht. Durch derartige Zusätze können nach dem Metallguss Gussstücke, insbesondere aus Eisen oder Stahl mit sehr hoher Oberflächenqualität erhalten werden, sodass nach der Entfernung der Gießform nur eine geringe oder sogar gar keine Nachbearbeitung der Oberfläche des Gussstücks erforderlich ist.
  • In einer weiteren Ausführungsform kann die Formstoffmischung eine phosphorhaltige Verbindung umfassen. Dieser Zusatz ist bei sehr dünnwandigen Abschnitten einer Gießform bevorzugt. Es handelt sich dabei bevorzugt um anorganische Phosphorverbindungen, in denen der Phosphor bevorzugt in der Oxidationsstufe +5 vorliegt.
  • Die phosphorhaltige Verbindung liegt bevorzugt in Form eines Phosphats oder Phosphoroxids vor. Das Phosphat kann dabei als Alkali- bzw. als Erdalkalimetallphosphat vorliegen, wobei Alkalimetallphosphate und hierbei insbesondere die Natriumsalze besonders bevorzugt sind.
  • Als Phosphate können sowohl Orthophosphate als auch Polyphosphate, Pyrophophate oder Metaphosphate eingesetzt werden. Die Phosphate können beispielsweise durch Neutralisation der entsprechenden Säuren mit einer entsprechenden Base, beispielsweise einer Alkalimetallbase, wie NaOH, oder ggf. auch einer Erdalkalimetallbase hergestellt werden, wobei nicht notwendigerweise alle negativen Ladungen des Phophats durch Metallionen abgesättigt sein müssen. Es können sowohl die Metallphosphate als auch die Metallhydrogenphosphate sowie die Metalldihydrogenphosphate eingesetzt werden, wie beispielsweise Na3PO4, Na2HPO4, und NaH2PO4. Ebenso können die wasserfreien Phosphate wie auch Hydrate der Phosphate eingesetzt werden. Die Phosphate können sowohl in kristalliner als auch in amorpher Form in die Formstoffmischung eingebracht sein.
  • Unter Polyphosphaten werden insbesondere lineare Phosphate verstanden, die mehr als ein Phosphoratom umfassen, wobei die Phosphoratome jeweils über Sauerstoffbrücken miteinander verbunden sind.
  • Polyphosphate werden durch Kondensation von Orthophosphationen unter Wasserabspaltung erhalten, sodass eine lineare Kette von PO4-Tetraedern erhalten wird, die jeweils über Ecken verbunden sind. Polyphosphate weisen die allgemeine Formel (O(PO3)n)(n+2)- auf, wobei n der Kettenlänge entspricht. Ein Polyphosphat kann bis zu mehreren hundert PO4-Tetraedern umfassen. Bevorzugt werden jedoch Polyphosphate mit kürzeren Kettenlängen eingesetzt. Bevorzugt weist n Werte von 2 bis 100, insbesondere bevorzugt 5 bis 50 auf. Es können auch höher kondensierte Polyphosphate verwendet werden, d.h. Polyphosphate, in welchen die PO4-Tetraeder über mehr als zwei Ecken miteinander verbunden sind und daher eine Polymerisation in zwei bzw. drei Dimensionen zeigen.
  • Unter Metaphosphaten werden zyklische Strukturen verstanden, die aus PO4-Tetraedern aufgebaut sind, die jeweils über Ecken miteinander verbunden sind. Metaphosphate weisen die allgemeine Formel ((PO3)n)n- auf, wobei n mindestens 3 beträgt. Bevorzugt weist n Werte von 3 bis 10 auf.
  • Es können sowohl einzelne Phosphate verwendet werden als auch Gemische aus verschiedenen Phosphaten und/oder Phosphoroxiden.
  • Der bevorzugte Anteil der phosphorhaltigen Verbindung, bezogen auf den feuerfesten Formgrundstoff, beträgt zwischen 0,05 und 1,0 Gew.-%. Bevorzugt wird der Anteil der phosphorhaltigen Verbindung zwischen 0,1 und 0,5 Gew.% gewählt. Die phosphorhaltige, anorganische Verbindung enthält bevorzugt zwischen 40 und 90 Gew.%, insbesondere bevorzugt zwischen 50 und 80 Gew.% Phosphor, berechnet als P2O5. Die phosphorhaltige Verbindung kann an sich in fester oder gelöster Form der Formstoffmischung zugesetzt sein. Bevorzugt ist die phosphorhaltige Verbindung der Formstoffmischung als Feststoff zugesetzt.
  • Gemäß einer vorteilhaften Ausführungsform enthält die erfindungsgemäße Formstoffmischung einen Anteil an plättchenförmigen Schmiermitteln, insbesondere Grafit oder MoS2. Die Menge des zugesetzten plättchenförmigen Schmiermittels, insbesondere Grafits, beträgt vorzugsweise 0,05 bis 1 Gew.%, besonders bevorzugt 0,05 bis 0,5 Gew.%, bezogen auf den Formgrundstoff.
  • Gemäß einer weiteren vorteilhaften Ausführungsform können auch oberflächenaktive Substanzen, insbesondere Tenside, eingesetzt werden, welche die Fließfähigkeit der Formstoffmischung verbessern. Geeignete Vertreter dieser Verbindungen sind z.B. in WO 2009/056320 (= US 2010/0326620 A1 ) beschrieben. Bevorzugt werden anionische Tenside für die Formstoffmischung verwendet. Genannt seien hier insbesondere Tenside mit Schwefelsäure- oder SulfonsäureGruppen. In der Formstoffmischung ist der reine oberflächenaktive Stoff, insbesondere das Tensid, bezogen auf das Gewicht des feuerfesten Formgrundstoffs bevorzugt in einem Anteil von 0,001 bis 1 Gew.-%, besonders bevorzugt 0,01 bis 0,2 Gew.-% enthalten.
  • Die Formstoffmischung stellt eine intensive Mischung aus zumindest den genannten Bestandteilen des Mehrkomponenten-Systems dar. Dabei sind die Teilchen des feuerfesten Formgrundstoffs vorzugsweise mit einer Schicht des Bindemittels überzogen. Durch Verdampfen des im Bindemittel vorhandenen Wassers (ca. 40-70 Gew.%, bezogen auf das Gewicht des Bindemittels) kann dann ein fester Zusammenhalt zwischen den Teilchen des feuerfesten Formgrundstoffs erreicht werden.
  • Trotz der mit dem Bindemittelsystem erreichbaren hohen Festigkeiten zeigen die mit der Formstoffmischung hergestellten Gießformen nach dem Abguss überraschenderweise einen sehr guten Zerfall, insbesondere beim Aluminiumguss. Wie bereits erläutert, wurde auch gefunden, dass mit der Formstoffmischung Gießformen hergestellt werden können, die auch beim Eisenguss einen sehr guten Zerfall zeigen, sodass sich die Formstoffmischung nach dem Guss ohne weiteres auch aus engen und verwinkelten Abschnitten der Gießform wieder ausgießen lässt. Die Verwendung der aus der Formstoffmischung hergestellten Formkörper ist daher nicht nur auf den Leichtmetallguss und/oder Nichteisenmetallguss beschränkt. Die Gießformen eignen sich generell zum Gießen von Metallen, wie beispielsweise Buntmetalle oder Eisenmetalle. Besonders bevorzugt eignet sich die Formstoffmischung allerdings für das Gießen von Aluminium.
  • Die Erfindung betrifft weiter ein Verfahren zur Herstellung von Gießformen für die Metallverarbeitung, wobei die Formstoffmischung verwendet wird. Das erfindungsgemäße Verfahren umfasst die Schritte:
    • Bereitstellen der oben beschriebenen Formstoffmischung durch Zusammenbringen und Mischen zumindest der oben genannten obligatorischen Komponenten;
    • Formen der Formstoffmischung;
    • Aushärten der geformten Formstoffmischung, wobei die ausgehärtete Gießform erhalten wird.
  • Bei der Herstellung der Formstoffmischung aus dem erfindungsgemäßen Mehrkomponenten-System wird im Allgemeinen so vorgegangen, dass zunächst der feuerfeste Formgrundstoff (Komponente (F)) vorgelegt und dann unter Rühren der Binder bzw. Komponente (B) und das Additiv bzw. Komponente (A) zugegeben wird. Die oben beschriebenen Additive können an sich in jeglicher Form der Formstoffmischung zugesetzt werden. Sie können einzeln oder auch als Mischung zudosiert werden. Gemäß einer bevorzugten Ausführungsform wird das Bindemittel als Zwei-Komponenten-System bereitgestellt, wobei eine erste flüssige Komponente das Wasserglas und ggf. ein Tensid (siehe oben) enthält (Komponenten (B)) und eine zweite aber feste Komponente ein oder mehrere oxidische Bor-Verbindungen und das partikuäre Siliziumdioxid (Komponenten (A)) sowie alle anderen oben genannten festen Additive, ausgenommen der Formgrundstoffe, insbesondere das partikuläre amorphe Siliziumdioxid und ggf. ein Phosphat und ggf. einen vorzugsweise plättchenförmigen Schmierstoff und ggf. Bariumsulfat oder ggf. andere Komponenten wie beschrieben umfassen.
  • Bei der Herstellung der Formstoffmischung wird der feuerfeste Formgrundstoff in einem Mischer vorgelegt und dann bevorzugt zunächst die feste(n) Komponente(n) des Bindemittels zugegeben und mit dem feuerfesten Formgrundstoff vermischt. Die Mischdauer wird so gewählt, dass eine innige Durchmischung von feuerfestem Formgrundstoff und fester Bindemittelkomponente erfolgt. Die Mischdauer ist abhängig von der Menge der herzustellenden Formstoffmischung sowie von dem verwendeten Mischaggregat. Bevorzugt wird die Mischdauer zwischen 1 und 5 Minuten gewählt.
  • Unter bevorzugt weiterem Bewegen der Mischung wird dann die flüssige Komponente des Bindemittels zugegeben und dann die Mischung solange weiter vermischt, bis sich auf den Körnern des feuerfesten Formgrundstoffs eine gleichmäßige Schicht des Bindemittels ausgebildet hat.
  • Auch hier ist die Mischdauer von der Menge der herzustellenden Formstoffmischung sowie vom verwendeten Mischaggregat abhängig. Bevorzugt wird die Dauer für den Mischvorgang zwischen 1 und 5 Minuten gewählt. Unter einer flüssigen Komponente wird sowohl eine Mischung verschiedener flüssiger Komponenten als auch die Gesamtheit aller flüssigen Einzelkomponenten verstanden, wobei letztere auch einzeln zugegeben werden können. Ebenso wird unter einer festen Komponente sowohl das Gemisch einzelner oder aller der oben beschriebenen festen Komponenten als auch die Gesamtheit aller festen Einzelkomponenten verstanden, wobei letztere gemeinsam oder auch nacheinander zur Formstoffmischung gegeben werden können. Gemäß einer anderen Ausführungsform kann auch zunächst die flüssige Komponente des Bindemittels zum feuerfesten Formgrundstoff gegeben werden und erst dann die feste Komponente der Mischung zugeführt werden. Gemäß einer weiteren Ausführungsform wird zunächst 0,05 bis 0,3 Gew.% Wasser, bezogen auf das Gewicht des Formgrundstoffes, zum feuerfesten Formgrundstoff gegeben und erst anschließend die festen und flüssigen Komponenten des Bindemittels zugegeben.
  • Bei dieser Ausführungsform kann ein überraschender positiver Effekt auf die Verarbeitungszeit der Formstoffmischung erzielt werden. Die Erfinder nehmen an, dass die wasserentziehende Wirkung der festen Komponenten des Bindemittels auf diese Weise reduziert und der Aushärtevorgang dadurch verzögert wird. Die Formstoffmischung wird anschließend in die gewünschte Form gebracht. Dabei werden die für die Formgebung üblichen Verfahren verwendet. Beispielsweise kann die Formstoffmischung mittels einer Kernschießmaschine mit Hilfe von Druckluft in das Formwerkzeug geschossen werden. Die Formstoffmischung wird anschließend ausgehärtet, wobei alle Verfahren herangezogen werden können, die bei Bindemitteln auf der Basis von Wasserglas bekannt sind, z.B. Heißhärtung, Begasen mit CO2 oder Luft bzw. einer Kombination von beidem sowie Härtung durch flüssige oder feste Katalysatoren. Die Heißhärtung ist bevorzugt.
  • Bei der Heißhärtung wird der Formstoffmischung Wasser entzogen. Dadurch werden vermutlich auch Kondensationsreaktionen zwischen Silanolgruppen initiiert, sodass eine Vernetzung des Wasserglases eintritt.
  • Das Erwärmen kann beispielsweise in einem Formwerkzeug erfolgen, das vorzugsweise eine Temperatur von 100 bis 300 °C, besonders bevorzugt eine Temperatur von 120 bis 250 °C aufweist. Es ist möglich, die Gießform bereits im Formwerkzeug vollständig auszuhärten. Es ist aber auch möglich, die Gießform nur in ihrem Randbereich auszuhärten, so dass sie eine ausreichende Festigkeit aufweist, um aus dem Formwerkzeug entnommen werden zu können. Die Gießform kann dann anschließend vollständig ausgehärtet werden, indem ihr weiteres Wasser entzogen wird. Dies kann beispielsweise in einem Ofen erfolgen. Der Wasserentzug kann beispielsweise auch erfolgen, indem das Wasser bei vermindertem Druck verdampft wird.
  • Die Aushärtung der Gießformen kann durch Einblasen von erhitzter Luft in das Formwerkzeug beschleunigt werden. Bei dieser Ausführungsform des Verfahrens wird ein rascher Abtransport des im Bindemittel enthaltenen Wassers erreicht, wodurch die Gießform in für eine industrielle Anwendung geeigneten Zeiträumen verfestigt wird. Die Temperatur der eingeblasenen Luft beträgt vorzugsweise 100 °C bis 180 °C, insbesondere bevorzugt 120 °C bis 150 °C. Die Strömungsgeschwindigkeit der erhitzten Luft wird vorzugsweise so eingestellt, dass eine Aushärtung der Gießform in für eine industrielle Anwendung geeigneten Zeiträumen erfolgt. Die Zeiträume hängen von der Größe der hergestellten Gießformen ab. Angestrebt wird eine Aushärtung im Zeitraum von weniger als 5 Minuten, vorzugsweise weniger als 2 Minuten. Bei sehr großen Gießformen können jedoch auch längere Zeiträume erforderlich sein.
  • Das Entfernen des Wassers aus der Formstoffmischung kann auch in der Weise erfolgen, dass das Erwärmen der Formstoffmischung durch Einstrahlen von Mikrowellen bewirkt oder unterstützt wird. Es wäre beispielsweise denkbar, den Formgrundstoff mit der/den festen, pulverförmigen Komponente(n) zu vermischen, diese Mischung schichtweise auf einer Fläche aufzutragen und die einzelnen Schichten mithilfe einer flüssigen Binderkomponente, insbesondere mithilfe eines Wasserglases, zu bedrucken, wobei dem schichtweisen Auftragen der Feststoffmischung jeweils ein Druckvorgang mithilfe des flüssigen Binders folgt.
  • Am Ende dieses Prozesses, d.h. nach Beendigung des letzten Druckvorgangs, kann die gesamte Mischung in einen Mikrowellenofen erwärmt werden.
  • Die erfindungsgemäßen Verfahren eignen sich an sich für die Herstellung aller für den Metallguss üblicher Gießformen, also beispielsweise von Kernen und Formen. Besonders vorteilhaft können dabei auch Gießformen hergestellt werden, die sehr dünnwandige Abschnitte umfassen.
  • Die aus der Formstoffmischung bzw. mit dem erfindungsgemäßen Verfahren hergestellten Gießformen weisen eine hohe Festigkeit unmittelbar nach der Herstellung auf, ohne dass die Festigkeit der Gießformen nach dem Aushärten so hoch ist, dass Schwierigkeiten nach der Herstellung des Gussstücks beim Entfernen der Gießform auftreten. Weiterhin weisen diese Gießformen eine hohe Stabilität bei erhöhter Luftfeuchtigkeit auf, d.h. die Gießformen können überraschenderweise auch über längere Zeit hinweg problemlos gelagert werden. Als Vorteil weist die Gießform eine sehr hohe Stabilität bei mechanischer Belastung auf, sodass auch dünnwandige Abschnitte der Gießform verwirklicht werden können, ohne dass diese durch den metallostatischen Druck beim Gießvorgang deformiert werden. Ein weiterer Gegenstand der Erfindung ist daher eine Gießform, welche nach dem oben beschriebenen erfindungsgemäßen Verfahren erhalten wurde.
  • Im Weiteren wird die Erfindung anhand von Beispielen ohne auf diese beschränkt zu sein näher erläutert. Die Tatsache, dass als Härtungsverfahren ausschließlich die Heißhärtung beschrieben ist, stellt keine Einschränkung dar.
  • Beispiele 1) Einfluss verschiedener pulverförmiger oxidischer Bor-Verbindungen auf die Biegefestigkeiten
  • Für die Prüfung einer Formstoffmischung wurden sog. Georg-Fischer-Prüfriegel hergestellt. Unter Georg-Fischer-Prüfriegeln werden quaderförmige Prüfriegel mit den Abmessungen 150 mm x 22,36 mm x 22,36 mm verstanden. Die Zusammensetzungen der Formstoffmischungen sind in Tabelle 1 angegeben. Zur Herstellung der Georg-Fischer-Prüfriegel wurde wie folgt vorgegangen:
    • Die in Tabelle 1 aufgeführten Komponenten wurden in einem Laborflügelmischer (Firma Vogel & Schemmann AG, Hagen, DE) gemischt. Dazu wurde zunächst der Quarzsand vorgelegt und unter Rühren das Wasserglas zugegeben. Als Wasserglas wurde ein Natriumwasserglas verwendet, das Anteile von Kalium aufwies. In den nachfolgenden Tabellen ist das Modul daher mit SiO2:M2O angegeben, wobei M die Summe aus Natrium und Kalium angibt. Nachdem die Mischung für eine Minute gerührt worden war, wurden amorphes SiO2 und ggfs. pulverförmige oxidische Borverbindungen unter weiterem Rühren hinzugegeben. Die Mischung wurde anschließend noch für eine weitere Minute gerührt;
    • Die Formstoffmischungen wurden in den Vorratsbunker einer H 2,5 Hot-Box-Kernschießmaschine der Firma Röperwerk - Gießereimaschinen GmbH, Viersen, DE, überführt, deren Formwerkzeug auf 180 °C erwärmt war;
    • Die Formstoffmischungen wurden mittels Druckluft (5 bar) in das Formwerkzeug eingebracht und verblieben für weitere 35 Sekunden im Formwerkzeug;
    • Zur Beschleunigung der Aushärtung der Mischungen wurde während der letzten 20 Sekunden Heißluft (2 bar, 100 °C beim Eintritt in das Werkzeug) durch das Formwerkzeug geleitet;
    • Das Formwerkzeug wurde geöffnet und die Prüfriegel entnommen.
  • Zur Bestimmung der Biegefestigkeiten wurden die Prüfriegel in ein Georg-Fischer-Festigkeitsprüfgerät, ausgerüstet mit einer 3-Punkt-Biegevorrichtung (DISA Industrie AG, Schaffhausen, CH) eingelegt und die Kraft gemessen, welche zum Bruch der Prüfriegel führte. Die Biegefestigkeiten wurden nach folgendem Schema gemessen:
    • 10 Sekunden nach der Entnahme (Heißfestigkeiten)
    • 1 Stunde nach Entnahme (Kaltfestigkeiten)
    • 24 Stunden nach Lagerung der Kerne im Klimaschrank bei 30°C und 60% relativer Luftfeuchte, wobei die Kerne erst nach dem Erkalten (1 Stunde nach der Entnahme) in den Klimaschrank platziert wurden.
    Tabelle 1
    Zusammensetzungen der Formstoffmischungen
    Quarzsand H32 Alkaliwasserglas Amorphes SiO2 Pulverförmige(s) Borsäure oder Borat
    1.01 100 GT 2,0 GT a) - - Vergleich
    1.02 100 GT 2,0 GT a) 0,5 GT b) - Vergleich
    1.03 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT c) erfindungsgem.
    1.04 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT d) erfindungsgem.
    1.05 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT e) erfindungsgem.
    1.06 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT f) erfindungsgem.
    1.07 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT g) erfindungsgem.
    1.08 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT h) erfindungsgem.
    1.09 100 GT 2,0 GT a) 0,5 GT b) 0,05 GT i) erfindungsgem.
    1.10 100 GT 2,05 GT k) 0,5 GT b) - Vergleich
    1.11 100 GT 2,0 GT a) 0,5 GT b) 0,01 GT f) erfindungsgem.
    1.12 100 GT 2,0 GT a) 0,5 GT b) 0,02 GT f) erfindungsgem.
    1.13 100 GT 2,0 GT a) 0,5 GT b) 0,1 GT f) erfindungsgem.
    1.14 100 GT 2,0 GT a) 0,5 GT b) 0,2 GT f) erfindungsgem.
    1.15 100 GT 2,0 GT a) - 0,05 GT f) Vergleich
    1.16 100 GT 2,0 GT a) - 0,05 GT i) Vergleich
    Vergleich = nicht erfindungsgemäß
    Die Indizes in Tabelle 1 haben jeweils folgende Bedeutung:
    a) Alkaliwasserglas mit einem molaren Modul SiO2:M2O von ca. 2,2; bezogen auf das gesamte Wasserglas. Feststoffgehalt von ca. 35%
    b) Microsilica POS B-W 90 LD (amorphes SiO2, Fa. Possehl Erzkontor; Entstehung bei der thermischen Zersetzung von ZrSiO4)
    b) Microsilica POS B-W 90 LD (amorphes SiO2, Fa. Possehl Erzkontor; Entstehung bei der thermischen Zersetzung von ZrSiO4)
    c) Borsäure technisch (99,9% H3BO3, Fa. Cofermin Chemicals GmbH & Co. KG)
    d) Etibor 48 (Borax-Pentahydrat, Na2B4O7 5H2O, Fa. Eti Maden Isletmeleri)
    e) Sodium Metaborate 8Mol (Na2O∗B2O3 8H2O, Fa. Borax Europe Limited)
    f) Borax Decahydrat SP (Na2B4O7 10H2O - Pulver, Fa. Borax Europe Limited)
    g) Borax Decahydrat (Na2B4O7 10H2O - granuliert, Fa. Eti Maden Isletmeleri)
    h) Lithiumtetraborat (99,998% Li2B4O7, Fa. Alfa Aesar)
    i) Calciummetaborat (Fa. Sigma Aldrich)
    k) Alkaliwasserglas mit einem molaren Modul SiO2:M2O von ca. 2,2; bezogen auf das gesamte Wasserglas. Feststoffgehalt von ca. 35% - in dieses Wasserglas werden 0,05 GT Borax Decahydrat g) vor der Verwendung vorgelöst, sodass eine klare Lösung entsteht.
  • Die gemessenen Biegefestigkeiten sind in Tabelle 2 zusammengefasst.
  • Die Beispiel 1.01 und 1.02 verdeutlichen, dass sich durch den Zusatz von amorphem SiO2 ein deutlich verbessertes Festigkeitsniveau erreichen lässt (gemäß EP 1802409 B1 und DE 102012020509 A1 ). Ein Vergleich der Beispiele 1.02 bis 1.14 zeigt, dass durch die Zusätze von pulverförmigen oxidischen Bor-Verbindungen das Festigkeitsniveau nicht merklich beeinflusst wird.
  • Die Beispielen 1.06 sowie 1.11 bis 1.14 kann eine leichte Verschlechterung der Festigkeitsniveaus mit steigendem Anteil an erfindungsgemäßem Zusatz festgestellt werden. Der Effekt ist allerdings sehr schwach.
  • Der Vergleich der Beispiele 1.01, 1.15 und 1.16 zeigt, dass der Zusatz von erfindungsgemäßen Bor-Verbindungen allein, d.h. ohne den Zusatz des amorphen Siliziumdioxids, einen negativen Einfluss auf die Festigkeiten, insbesondere Heißfestigkeiten und Kaltfestigkeiten hat. Auch sind die Heißfestigkeiten für eine automatisierte Serienfertigung zu gering.
  • Ein Vergleich der Beispiele 1.02, 1.06 und 1.09 zeigt, dass der Zusatz von erfindungsgemäßen Bor-Verbindungen kaum einen Einfluss auf die Heiß- und Kaltfestigkeiten ausübt, wenn die Formstoffmischung amorphes Siliziumdioxid als pulverförmiges Additiv enthält. Überraschenderweise verbessert sich durch den Zusatz der erfindungsgemäßen Bor-Verbindung zur Formstoffmischung aber die Feuchtestabilität der damit hergestellten Kerne. Tabelle 2
    Biegefestigkeiten
    Heißfestigkeiten [N/cm2] Festigkeiten nach 1 h [N/cm2] Festigkeiten nach 24h Lagerung im Klimaschrank [N/cm2]
    1.01 90 380 10 Vergleich
    1.02 165 530 170 Vergleich
    1.03 160 520 nicht bestimmt erfindungsgemäß
    1.04 170 540 nicht bestimmt erfindungsgemäß
    1.05 160 510 nicht bestimmt erfindungsgemäß
    1.06 160 520 290 erfindungsgemäß
    1.07 170 545 nicht bestimmt erfindungsgemäß
    1.08 160 535 nicht bestimmt erfindungsgemäß
    1.09 165 520 400 erfindungsgemäß
    1.10 170 515 nicht bestimmt Vergleich
    1.11 170 550 nicht bestimmt erfindungsgemäß
    1.12 160 530 nicht bestimmt erfindungsgemäß
    1.13 160 515 nicht bestimmt erfindungsgemäß
    1.14 155 510 nicht bestimmt erfindungsgemäß
    1.15 75 360 10 Vergleich
    1.16 85 350 nicht bestimmt Vergleich
    Vergleich = nicht erfindungsgemäß
  • 2) Verbesserung des Zerfallverhaltens
  • Der Einfluss verschiedener pulverförmiger oxidischer Bor-Verbindungen auf das Entkernverhalten wurde untersucht. Zu diesem Zweck wurde wie folgt verfahren:
    • Georg-Fischer-Prüfriegel der Formstoffmischungen 1.01 bis 1.14 in Tabelle 1 wurden hinsichtlich der Biegefestigkeiten untersucht (analog zum Beispiel 1 - es haben sich keine Unterschiede zu den in Tabelle 2 zusammengefassten Werten ergeben).
    • Anschließend wurden die in zwei Teile etwa hälftig quer zur größten Längenausdehnung gebrochene Georg-Fischer-Prüfriegel in einem Muffelofen (Fa. Naber Industrieofenbau) bei einer Temperatur von 650 °C für 45 Minuten thermisch belastet.
    • Nach Entnahme der Riegel aus dem Muffelofen und nach einem darauf folgenden Abkühlprozess auf Raumtemperatur wurden die Riegel auf einem sogenannten Rüttelsieb (Sieb platziert auf der Vibrationssiebmaschine AS 200 digit, Fa. Retsch GmbH) mit einer Maschenweite von 1,25 mm platziert.
    • Anschließend wurden die Riegel bei einer festgelegten Amplitude (70% der maximal möglichen Einstellung (100 Einheiten)) für 60 Sekunden gerüttelt.
    • Es wurden sowohl der Rückstand auf dem Sieb als auch die zerkleinerte Menge in der Auffangwanne (entkernter Anteil) mit Hilfe einer Waage bestimmt. In Tabelle 3 ist der entkernte Anteil in Prozent angegeben.
  • Die jeweiligen Werte, die jeweils Mittelwerte einer Vierfachbestimmung wiederspiegeln, sind in Tabelle 3 zusammengefasst.
  • Ein Vergleich der Beispiele 1.01 und 1.02 zeigt, dass sich durch Zusatz eines partikulären, amorphen Siliziumdioxids zur Formstoffmischung das Zerfallsverhalten der damit hergestellten Formen deutlich verschlechtert. Ein Vergleich der Beispiele 1.02 bis 1.09 zeigt hingegen ganz eindeutig, dass die Verwendung von pulverförmigen oxidischen Bor-Verbindungen zu deutlich verbesserten Zerfallseigenschaften der mit Wasserglas gebundenen Formen führt. Ein Vergleich der Beispiele 1.07 und 1.10 zeigt, dass es einen Unterschied macht, ob das Borat (in diesem Fall) vor der Verwendung in der Formstoffmischung im Binder vorgelöst wurde oder ob das Borat der Formstoffmischung als festes Pulver hinzugegeben wurde. Ein solcher Effekt ist überraschend.
  • Die Beispiele 1.06 und 1.11 bis 1.14 verdeutlichen, dass das Zerfallsverhalten mit zunehmendem Anteil des erfindungsgemäßen Zusatzes deutlich gesteigert werden kann. Auch wird deutlich, dass selbst geringe Zusätze ausreichen, um die Zerfallsfähigkeit der ausgehärteten Formstoffmischung nach thermischer Belastung signifikant zu steigern. Tabelle 3
    Entkernverhalten
    Entkernter Anteil [%]
    1.01 58 Vergleich
    1.02 37 Vergleich
    1.03 57 erfindungsgemäß
    1.04 63 erfindungsgemäß
    1.05 56 erfindungsgemäß
    1.06 70 erfindungsgemäß
    1.07 60 erfindungsgemäß
    1.08 55 erfindungsgemäß
    1.09 59 erfindungsgemäß
    1.10 38 Vergleich
    1.11 52 erfindungsgemäß
    1.12 57 erfindungsgemäß
    1.13 79 erfindungsgemäß
    1.14 89 erfindungsgemäß
    Vergleich = nicht erfindungsgemäß

Claims (19)

  1. Mehrkomponenten-System zur Herstellung von Formen oder Kernen umfassend zumindest die folgende räumlich separat voneinander vorliegenden Komponenten (A), (B) und (F):
    (A) eine pulverförmige Additiv-Komponente umfassend zumindest
    - ein oder mehrere pulverförmige oxidische Bor-Verbindungen und
    - partikuläres amorphes Siliciumdioxid und
    - kein Wasserglas enthaltend gelöste Alkalisilikate,
    (B) eine flüssige Binder-Komponente (B) umfassend zumindest
    - Wasserglas enthaltend Wasser und gelöste Alkalisilikate, und
    (F) eine rieselfähige Feuerfest-Komponente (F) umfassend
    - einen feuerfesten Formgrundstoff und
    - kein Wasserglas enthaltend gelöste Alkalisilikate,
    zum Erhalt einer Formstoffmischung nach Zusammenbringen.
  2. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei die oxidische Bor-Verbindung ausgewählt ist aus der Gruppe bestehend aus Boraten, Borophosphaten, Borophosphosilikaten und deren Mischungen und insbesondere ein Borat ist, vorzugsweise ein Alkali- und/oder Erdalkaliborat wie Natriumborat und/oder Calciumborat, wobei die oxidische Bor-Verbindung weiter bevorzugt keine organischen Gruppen enthält.
  3. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei die oxidische Bor-Verbindung aus B-O-B Strukturelementen aufgebaut ist.
  4. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei die oxidische Bor-Verbindung eine mittlere Teilchengröße von größer als 0,1 µm und kleiner als 1 mm, vorzugsweise größer als 1 µm und weniger als 0,5 mm, und insbesondere bevorzugt größer als 5 µm und weniger als 0,25 mm aufweist.
  5. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei die oxidische Bor-Verbindung, bezogen auf den feuerfesten Formgrundstoff zu größer als 0,002 Gew.% und zu kleiner als 1,0 Gew.%, bevorzugt zu größer als 0,005 Gew.% und kleiner als 0,4 Gew.%, besonders bevorzugt zu größer als 0,01 Gew.% und kleiner als 0,1 Gew. % und insbesondere bevorzugt zu größer als 0,02 Gew.%. und kleiner als 0,075 Gew.% zugesetzt ist bzw. enthalten ist.
  6. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei der feuerfeste Formgrundstoff Quarz-, Zirkon- oder Chromerzsand, Olivin, Vermiculit, Bauxit, Schamotte, Glasperlen, Glasgranulat, Aluminiumsilikatmikrohohlkugeln und deren Mischungen umfasst und vorzugsweise zu mehr als 50 Gew.% aus Quarzsand bezogen auf den feuerfesten Formgrundstoff besteht.
  7. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei größer 80 Gew.%, vorzugsweise größer 90 Gew.%, und besonders bevorzugt größer 95 Gew.% des Mehrkomponentensystems feuerfester Formgrundstoff sind.
  8. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei das amorphe partikuläre Siliziumdioxid synthetisch hergestelltes amorphes partikuläres Siliziumdioxid ist.
  9. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei das Mehrkomponenten-System durch eines oder mehrere der folgenden Merkmale weiter gekennzeichnet ist:
    (a) im Wasserglas (einschließlich des Wassers) sind in einer Menge von 0,75 Gew.% bis 4 Gew.%, besonders bevorzugt zwischen 1 Gew.% und 3,5 Gew.%, lösliche Alkalisilikate enthalten, relativ zum Formgrundstoff in der Formstoffmischung, und wobei weiter bevorzugt unabhängig, vorzugsweise aber in Kombination mit obigen Werten, der Feststoffgehalt an Wasserglas von 0,2625 bis 1,4 Gew.%, vorzugsweise 0,35 bis 1,225 Gew.% beträgt, relativ zum Formgrundstoff in der Formstoffmischung;
    (b) das Wasserglas weist ein molares Modul SiO2/M2O im Bereich von 1,6 bis 4,0, insbesondere 2,0 bis kleiner 3,5, auf mit M = Lithium, Natrium und Kalium.
  10. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei das Mehrkomponenten-System neben partikulärem amorphem SiO2 weitere partikuläre Metalloxide, vorzugsweise Aluminiumoxide, enthält, insbesondere ausgewählt aus einem oder mehreren Mitgliedern der Gruppen a) bis d):
    a) Korund plus Zirkoniumdioxid,
    b) Zirkonmullit,
    c) Zirkonkorund und
    d) Aluminiumsilikate plus Zirkoniumdioxid,
    vorzugsweise als Bestandteil der Komponente (A).
  11. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei das Mehrkomponenten-System weiterhin zumindest eine phosphorhaltige Verbindung enthält, vorzugsweise von 0,05 bis 1,0 Gew.%, besonders bevorzugt 0,1 bis 0,5 Gew.%, bezogen auf das Gewicht des feuerfesten Formgrundstoffs, vorzugsweise als Bestandteil der Komponente (A) und auch unabhängig hiervon die phosphorhaltige Verbindung bevorzugt als Feststoff und nicht in gelöster Form zugesetzt ist.
  12. Mehrkomponenten-System nach zumindest einem der vorhergehenden Ansprüche, wobei ein Härter zugesetzt ist, insbesondere zumindest eine Ester- oder Phosphat-Verbindung, vorzugsweise als Bestandteil der Komponente (A) oder als weitere Komponente.
  13. Verfahren zur Herstellung von Formen oder Kernen umfassend:
    Bereitstellen einer Formstoffmischung durch Zusammenbringen und Mischen zumindest der Komponenten (A), (B) und (F) des Mehrkomponenten-Systems gemäß zumindest einem der Ansprüche 1 bis 12;
    Einbringen der Formstoffmischung in eine Form; und
    Aushärten der Formstoffmischung durch Heißhärtung unter Erwärmen und Entzug von Wasser, wobei die oxidische Bor-Verbindung der Formstoffmischung als festes Pulver zugegeben wird.
  14. Verfahren nach Anspruch 13, wobei die Formstoffmischung mittels einer Kernschießmaschine mit Hilfe von Druckluft in die Form eingebracht wird und die Form ein Formwerkzeug ist und das Formwerkzeug mit einem oder mehreren Gasen durchströmt wird, insbesondere CO2, oder Gase enthaltend CO2, vorzugsweise auf über 60°C erwärmtes CO2 und/oder auf über 60°C erwärmte Luft.
  15. Verfahren nach Anspruch 13 oder 14, wobei die Formstoffmischung zum Aushärten einer Temperatur von 100 bis 300 °C, vorzugsweise von 120 bis 250 °C ausgesetzt wird, vorzugsweise für unter 5 min, wobei weiter bevorzugt die Temperatur zumindest teilweise durch Einblasen von erhitzter Luft in ein Formwerkzeug hergestellt wird.
  16. Verfahren nach zumindest einem der Ansprüche 13 bis 15, wobei die Heißhärtung unter Erwärmen und Entzug von Wasser durch Aussetzen der Formstoffmischung einer Temperatur von 100 bis 300 °C erfolgt.
  17. Verfahren nach zumindest einem der Ansprüche 13 bis 16,
    wobei die oxidische Bor-Verbindung aus B-O-B Strukturelementen aufgebaut ist, und/oder
    wobei das amorphe partikuläre Siliziumdioxid synthetisch hergestelltes amorphes partikuläres Siliziumdioxid ist.
  18. Verfahren zum schichtweisen Aufbau von Körpern umfassend:
    - Vermischen zumindest der pulverförmigen Additiv-Komponente (A) und der schüttfähigen Feuerfest-Komponente (F) gemäß den Ansprüchen1 bis 12 neben unter anderem etwaigen weiteren fakultativen Bestandteilen gemäß dieser Ansprüche zu einer Mischung,
    - schichtweises Auftragen der Mischung auf eine Fläche in Form von Schichten und
    - Bedrucken der Schichten mithilfe der flüssigen Binder-Komponente (B),
    wobei dem schichtweisen Auftragen der Mischung jeweils ein Druckvorgang mithilfe der flüssigen Binderkomponente (B) folgt.
  19. Verfahren nach Anspruch 18, wobei eine Härtung durch Einwirkung von Mikrowellen erfolgt.
EP14796675.8A 2013-10-22 2014-10-21 Mehrkomponenten-system zur herstellung von formen und kernen und verfahren zur herstellung von formen und kernen Active EP3060362B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL14796675T PL3060362T3 (pl) 2013-10-22 2014-10-21 System wieloskładnikowy do wytwarzania form i rdzeni oraz sposób wytwarzania form i rdzeni
SI201431522T SI3060362T1 (sl) 2013-10-22 2014-10-21 Večkomponentni sistem za izdelavo form in jeder ter postopek za izdelavo form in jeder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310111626 DE102013111626A1 (de) 2013-10-22 2013-10-22 Formstoffmischungen enthaltend eine oxidische Bor-Verbindung und Verfahren zur Herstellung von Formen und Kernen
PCT/DE2014/000530 WO2015058737A2 (de) 2013-10-22 2014-10-21 Formstoffmischungen enthaltend eine oxidische bor-verbindung und verfahren zur herstellung von formen und kernen

Publications (2)

Publication Number Publication Date
EP3060362A2 EP3060362A2 (de) 2016-08-31
EP3060362B1 true EP3060362B1 (de) 2020-01-01

Family

ID=51897022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14796675.8A Active EP3060362B1 (de) 2013-10-22 2014-10-21 Mehrkomponenten-system zur herstellung von formen und kernen und verfahren zur herstellung von formen und kernen

Country Status (14)

Country Link
US (1) US9901975B2 (de)
EP (1) EP3060362B1 (de)
JP (1) JP6594308B2 (de)
KR (1) KR102159614B1 (de)
CN (1) CN105828973B (de)
BR (1) BR112016008892B1 (de)
DE (1) DE102013111626A1 (de)
ES (1) ES2778075T3 (de)
HU (1) HUE048328T2 (de)
MX (1) MX359164B (de)
PL (1) PL3060362T3 (de)
RU (1) RU2703746C2 (de)
SI (1) SI3060362T1 (de)
WO (1) WO2015058737A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3159073B1 (de) * 2014-06-20 2023-04-05 Asahi Yukizai Corporation Formherstellungsverfahren und form

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536243A (ja) * 2013-10-04 2016-11-24 コーニング インコーポレイテッド Rfプラズマを使用したガラス材料の溶融
CN104942218A (zh) * 2015-06-09 2015-09-30 含山县兴达球墨铸铁厂 一种大型钢铸件用高强度型砂
CN105665615B (zh) * 2016-02-05 2018-10-02 济南圣泉集团股份有限公司 一种铸造水玻璃用固化剂及其制备方法和用途
WO2017152589A1 (zh) * 2016-03-08 2017-09-14 沈阳汇亚通铸造材料有限责任公司 一种铸造用水玻璃砂吹气硬化的制型、芯方法
CN106001392A (zh) * 2016-05-30 2016-10-12 柳州市柳晶科技有限公司 无机覆膜砂及其制造方法
JP2020514078A (ja) * 2017-01-11 2020-05-21 トリノフスキー,ダグラス,エム. 高圧ダイカストにおける鋳造用中子のための組成物及び方法
CN108393430B (zh) * 2017-02-04 2020-05-08 济南圣泉集团股份有限公司 一种铸造水玻璃用固化剂
DE102017107531A1 (de) 2017-04-07 2018-10-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Gießformen, Kernen und daraus regenerierten Formgrundstoffen
DE102017114628A1 (de) * 2017-06-30 2019-01-03 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Formstoffmischung und eines Formkörpers daraus in der Gießereiindustrie sowie Kit zur Anwendung in diesem Verfahren
CN109420743A (zh) * 2017-08-31 2019-03-05 沈阳汇亚通铸造材料有限责任公司 一种水玻璃砂吹气硬化的高效制芯方法
EP3501690A1 (de) * 2017-12-20 2019-06-26 Imertech Sas Verfahren zur herstellung partikelfester feuerfestmittel und von diesem verfahren hergestelltes produkt
EP3620244B1 (de) 2018-09-07 2021-06-30 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer teilchenförmigen feuerfesten zusammensetzung zur verwendung bei der herstellung von giessereiformen und kernen, entsprechende verwendungen und rückgewinnungsmischung zur thermischen behandlung
DE102019113008A1 (de) * 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären Materials umfassend ein teilchenförmiges synthetisches amorphes Siliciumdioxid als Additiv für eine Formstoffmischung, entsprechende Verfahren, Mischungen und Kits
CN110064727A (zh) * 2019-06-10 2019-07-30 沈阳汇亚通铸造材料有限责任公司 一种酯固化铸造用水玻璃砂组合物
DE102019116702A1 (de) * 2019-06-19 2020-12-24 Ask Chemicals Gmbh Geschlichtete Gießformen erhältlich aus einer Formstoffmischung enthaltend ein anorganisches Bindemittel und Phosphat- und oxidische Borverbindungen, ein Verfahren zu deren Herstellung und deren Verwendung
DE102019131241A1 (de) 2019-08-08 2021-02-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechendes Granulat sowie Kit, Vorrichtungen und Verwendungen
DE102019131676A1 (de) * 2019-11-22 2021-05-27 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Kerne für den Druckguss
DE102020118148A1 (de) 2020-07-09 2022-01-13 Bindur Gmbh Formstoff zur Herstellung von Kernen und Verfahren zu dessen Härtung
DE102020119013A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen
RU2764908C1 (ru) * 2021-07-30 2022-01-24 Акционерное общество "Научно-производственная корпорация "Уралвагонзавод" имени Ф.Э. Дзержинского" Способ отверждения жидкостекольной смеси при изготовлении форм и стержней
CN114101593B (zh) * 2021-11-26 2023-08-01 陕西科技大学 一种高溃散、可回收氧化硅基陶瓷型芯及其制备方法和应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1146081A (en) * 1966-02-11 1969-03-19 Foseco Int Foundry moulds and cores
AU2236370A (en) 1969-11-17 1972-05-18 Minerals, Binders, Clays (Proprietary) Limited Improvements in the co2 process for bonding, moulding and core sands in foundries
JPS51112425A (en) 1975-03-28 1976-10-04 Hitachi Ltd Method of manufacturing mold
CH616450A5 (en) 1975-11-18 1980-03-31 Baerle & Cie Ag Binder based on aqueous alkali metal silicate solutions
US4226277A (en) * 1978-06-29 1980-10-07 Ralph Matalon Novel method of making foundry molds and adhesively bonded composites
DE3369257D1 (en) 1982-12-11 1987-02-26 Foseco Int Alkali metal silicate binder compositions
AT389249B (de) * 1985-06-20 1989-11-10 Petoefi Mgtsz Zusatz zum regulieren der nach dem giessen zurueckbleibenden festigkeit von wasserglasgebundenen gussformen und/oder kernen
SE520565C2 (sv) * 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
WO2002026419A1 (de) * 2000-09-25 2002-04-04 Generis Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
JP2002219551A (ja) 2001-01-22 2002-08-06 Okamoto:Kk 消失型中子及びそれを用いた鋳造方法
DE102004042535B4 (de) 2004-09-02 2019-05-29 Ask Chemicals Gmbh Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
DE102006036381A1 (de) 2006-08-02 2008-02-07 Minelco Gmbh Formstoff, Gießerei-Formstoff-Gemisch und Verfahren zur Herstellung einer Form oder eines Formlings
DE102006049379A1 (de) 2006-10-19 2008-04-24 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung
DE102007008149A1 (de) 2007-02-19 2008-08-21 Ashland-Südchemie-Kernfest GmbH Thermische Regenerierung von Gießereisand
DE102007027577A1 (de) * 2007-06-12 2008-12-18 Minelco Gmbh Formstoffmischung, Formling für Gießereizwecke und Verfahren zur Herstellung eines Formlings
DE102007045649B4 (de) 2007-09-25 2015-11-19 H2K Minerals Gmbh Verfahren zur Herstellung einer Form und/oder eines Kernes unter Verwendung von zerkleinerten natürlichen partikulären amorphen Kieselsäurematerialien im Gießereibereich und Binderzusammensetzung
DE102007051850A1 (de) 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
EP2305603B1 (de) 2009-10-05 2014-04-23 Cognis IP Management GmbH Aluminium-haltige Wasserglaslösungen
JP5933169B2 (ja) * 2010-10-01 2016-06-08 リグナイト株式会社 粘結剤コーテッド耐火物、鋳型、鋳型の製造方法
JP5972634B2 (ja) 2012-03-29 2016-08-17 株式会社ロキテクノ プリーツフィルターの製造方法
DE102012104934A1 (de) 2012-06-06 2013-12-12 Ask Chemicals Gmbh Forstoffmischungen enthaltend Bariumsulfat
DE102012020509A1 (de) 2012-10-19 2014-06-12 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020510B4 (de) 2012-10-19 2019-02-14 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020511A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012113074A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Metalloxide des Aluminiums und Zirkoniums in partikulärer Form
DE102012113073A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Aluminiumoxide und/oder Aluminium/Silizium-Mischoxide in partikulärer Form
DE102013106276A1 (de) 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithiumhaltige Formstoffmischungen auf der Basis eines anorganischen Bindemittels zur Herstellung von Formen und Kernen für den Metallguss

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3159073B1 (de) * 2014-06-20 2023-04-05 Asahi Yukizai Corporation Formherstellungsverfahren und form

Also Published As

Publication number Publication date
JP2016533900A (ja) 2016-11-04
JP6594308B2 (ja) 2019-10-23
ES2778075T3 (es) 2020-08-07
CN105828973A (zh) 2016-08-03
HUE048328T2 (hu) 2020-07-28
MX359164B (es) 2018-09-18
SI3060362T1 (sl) 2020-07-31
DE102013111626A1 (de) 2015-04-23
EP3060362A2 (de) 2016-08-31
KR20160088315A (ko) 2016-07-25
US9901975B2 (en) 2018-02-27
US20160361756A1 (en) 2016-12-15
WO2015058737A3 (de) 2015-06-18
RU2703746C2 (ru) 2019-10-22
CN105828973B (zh) 2019-10-18
KR102159614B1 (ko) 2020-09-28
MX2016005300A (es) 2016-08-08
PL3060362T3 (pl) 2020-07-13
WO2015058737A2 (de) 2015-04-30
RU2016118813A3 (de) 2018-05-25
RU2016118813A (ru) 2017-11-28
BR112016008892B1 (pt) 2021-01-12

Similar Documents

Publication Publication Date Title
EP3060362B1 (de) Mehrkomponenten-system zur herstellung von formen und kernen und verfahren zur herstellung von formen und kernen
EP2858770B9 (de) Formstoffmischungen enthaltend bariumsulfat sowie verfahren zur herstellung von giessformen / kernen, verfahren zum aluminiumguss und form oder kern somit herstellbar
EP3010669B1 (de) Verfahren zur herstellung von lithiumhaltigen formstoffmischungen auf der basis eines anorganischen bindemittels zur herstellung von formen und kernen für den metallguss
EP2097192B1 (de) Phosphorhaltige formstoffmischung zur herstellung von giessformen für die metallverarbeitung
EP3230046B1 (de) Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel
EP2934787B1 (de) Formstoffmischungen enthaltend aluminiumoxide und/oder aluminium/silizium-mischoxide in partikulärer form
DE102004042535B4 (de) Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
EP2209572B1 (de) Formstoffmischung mit verbesserter fliessfähigkeit
EP2934788B9 (de) Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form
DE102007045649B4 (de) Verfahren zur Herstellung einer Form und/oder eines Kernes unter Verwendung von zerkleinerten natürlichen partikulären amorphen Kieselsäurematerialien im Gießereibereich und Binderzusammensetzung
EP3606690B1 (de) Verfahren zur herstellung von giessformen, kernen und daraus regenerierten formgrundstoffen
DE102007008149A1 (de) Thermische Regenerierung von Gießereisand
WO2014059968A2 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
WO2014059969A2 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
DE102013006135A1 (de) Kerne auf der Basis von Salz, Verfahren zu ihrer Herstellung und deren Verwendung
EP3092092B1 (de) Verfahren zur herstellung von formen und kernen für den metallguss unter verwendung einer carbonylverbindung sowie nach diesem verfahren hergestellte formen und kerne
WO2020253917A1 (de) Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung
DE102006061876A1 (de) Kohlenhydrathaltige Formstoffmischung
DE102019116406A1 (de) Additivmischung für Formstoffmischungen zur Herstellung wasserglasgebundener Gießereiformen und Gießereikerne
WO2004080145A2 (de) Magnesium- und/oder aluminiumfathaltige formen und kerne mit phosphat/boratzusatz und ihre herstellung und verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160520

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013398

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 33968

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E048328

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2778075

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013398

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201015

Year of fee payment: 7

Ref country code: NL

Payment date: 20201020

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201022

Year of fee payment: 7

Ref country code: HU

Payment date: 20201012

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20201012

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201021

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211022

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230926

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231016

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231025

Year of fee payment: 10

Ref country code: IT

Payment date: 20231031

Year of fee payment: 10

Ref country code: FR

Payment date: 20231023

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231009

Year of fee payment: 10

Ref country code: AT

Payment date: 20231019

Year of fee payment: 10